
Caspian:

A QoS-Aware Deployment Approach

for Channel-based Component-based

Applications

Abbas Heydarnoori

David R. Cheriton School of Computer Science,
University of Waterloo,

Waterloo, ON, N2L 3G1, Canada
aheydarnoori@uwaterloo.ca

Technical Report - CS-2006-39

October 2006

Abstract

With significant advances in software development technologies in recent
years, it is now possible to have complex software applications that include a
large number of heterogeneous software components distributed over a large
network of computers with different computational capabilities. To run such
applications, their components must be instantiated on proper hardware re-
sources in their target environments so that requirements and constraints
are met. This process is called software deployment. For large, distributed,
component-based applications with many constraints and requirements, it is
difficult to do the deployment process manually and automated tools and
techniques are required. This report presents a graph-based approach for
this purpose that is not dependent on any specific component technology
and does the deployment planning with respect to the communication re-
sources, i.e. channels, required by application components and communi-
cation resources available on the hosts in the target environment. In our
approach, component-based applications and distributed environments are
modeled with the help of graphs. Deployment of an application is then de-
fined as the mapping of the application graph to the target environment
graph.

Contents

1 Introduction 4

1.1 Deployment Planner Inputs 5

1.2 Deployment Planning . 6

1.3 Proposed Approach . 7

1.4 Outline . 7

2 Background 9

2.1 Software Crisis and Software Engineering 9

2.2 Software Components . 11

2.2.1 Software Components: Pros and Cons 12

2.3 Reo Coordination Model . 14

2.3.1 Reo Operations . 15

2.3.2 A Useful Set of Primitive Channels 16

2.3.3 An Examples of Reo Connectors 16

3 Related Work 18

3.1 Software Deployment Tools in Industry 18

3.1.1 Stand-alone Installers 19

3.1.2 Web-based Deployment Tools 20

3.1.3 Systems Management Tools 22

3.2 Software Deployment Approaches in Research 23

3.2.1 Deployment Frameworks 23

3.2.2 Using Mobile Agents in Software Deployment 35

3.2.3 QoS-Aware Deployment 37

3.2.4 Architecture Driven Deployment 40

3.2.5 Deployment into Computational Grids 41

3.3 Software Dock Characterization Framework 42

2

3

4 Problem Description 48

4.1 An Example of Composing Web Services Using Reo 48
4.2 Deployment Process . 49
4.3 Deployment Planner Inputs 50

4.3.1 Specification of the Application Being Deployed 50
4.3.2 Specification of the Target Environment 51
4.3.3 Specification of the User-defined Constraints 52

4.4 Modeling the Deployment Planner Inputs 53
4.4.1 Modeling the Application Being Deployed 53
4.4.2 Modeling the Target Environment 54

4.5 Definition of the Deployment Problem 56

5 Deployment Algorithm for P2P Target Environments 62

5.1 Minimum Cost Deployment 63
5.2 Reliable Deployment . 67

5.2.1 Use of Multiway Cut Problem in Planning 67

6 Prototype Implementation 73

7 Conclusions and Future Work 75

Chapter 1

Introduction

A few decades ago, software systems were only stand-alone systems, with-
out any connections to other software systems. However, with significant
advances in software development technologies, it is now possible to have
complex software systems that consist of a large number of heterogeneous
components distributed over many hosts with different hardware and soft-
ware characteristics. However, in these applications, different components
of the application may have various hardware and software requirements,
and hence they may provide their desired functionality only when these re-
quirements are answered. Furthermore, different hosts in the distributed
environment may have different computational capabilities; making it im-
possible to install any kind of software components on them. Consequently,
after the development of an application, a sequence of related activities must
be done to place its components into the suitable hosts in the distributed
environment, and to make the application available for use. This sequence
of activities is referred to as software deployment process, and includes the
following activities:

1. Acquiring: In this activity, the developed application is acquired from
the software producer and is put in a software repository to be deployed.

2. Planning: This activity specifies different components of the applica-
tion should be installed where in the distributed environment; resulting
in a deployment plan.

3. Installation: In this activity, the deployment plan is used to install the
application into the target environment.

4

Introduction 5

4. Configuration: The deployed application is being configured in this
activity.

5. Execution: After installing and configuring the application, it can be
executed.

For simple stand-alone software systems that should be deployed only to
a single computer, deployment activities can be easily done manually. But,
suppose a complex component-based application is being deployed into a
large distributed environment so that some QoS parameters, such as perfor-
mance or reliability, are also optimized. In this situation, the deployment
process is not so straightforward, and automated tools and techniques are
required for this purpose. Consequently, the software deployment process has
been given special attention both in research and industry in recent years,
and it is possible to find many tools and papers addressing different activities
of the software deployment process from different perspectives. However, to
our knowledge, few if any of these deployment approaches notices the char-
acteristics (e.g., behavior, cost, speed, security, etc.) of the interconnections
among the components of the application. However, these characteristics
have significant effects on the application’s QoS. In this project, we intend to
address this requirement. In particular, our focus is on the planning activity
of this deployment process. In this project, we intend to design the required
algorithms of an automated planner for the deployment of component-based
applications into distributed environments that does the planning with re-
spect to the properties of the interconnections among the application com-
ponents. For this purpose, the concept of channel is used to model the
interconnections among the application components. A channel is a peer-to-
peer communication medium with well-defined characteristics and behavior
[53]. Examples of channel-based models are Reo [53], MoCha [60], IWIM
[61], and Manifold [62].

1.1 Deployment Planner Inputs

To generate deployment plans, the following inputs are to be specified for
the planner:

1. A specification of the channel-based, component-based application: This
specification specifies different components of the application and the
channel types among them.

6 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

2. A specification of the target environment: This specification specifies
available hosts in the distributed environment, the topology of the phys-
ical network among them, and the channel types that each host can
support.

3. A specification of the user-defined constraints and requirements: Users
may have special requirements and constraints regarding the deploy-
ment of the application that should be noticed during the deployment
planning. For example, they may want certain QoS parameters to be
optimized, or they may have certain constraints regarding the place-
ment of the application components.

1.2 Deployment Planning

The deployment plan determines where different components of the applica-
tion will be executed in the target environment so that all requirements and
constraints are met. It is typically possible to deploy a complex component-
based application into a large distributed environment in many different
ways. However, when some QoS parameters are considered, some of these de-
ployment configurations are better than others, and only a few of them may
accommodate the constraints and requirements of the application. Thus,
when QoS of the application is important, it should be tried to deploy the
application so that its desired QoS parameter is optimized.

One naive solution for finding the best deployment configuration with the
highest QoS is generating all possible configurations for the deployment of
the application into the target environment and then, measuring the desired
QoS parameter of each deployment configuration. Finally, the deployment
configuration with the highest QoS is selected. However, when the number
of possible deployment configurations is large, it is difficult to generate all
of them. Thus, heuristic algorithms should be designed and applied to ef-
fectively solve this problem. For this purpose, in this project, a number of
QoS parameters will be selected, and algorithms for effectively finding the
deployment configurations with the highest desired QoS parameter will be
designed.

Introduction 7

1.3 Proposed Approach

A graph-based approach is currently used in this project to solve the software
deployment problem. For this purpose, two graphs are made in this approach:
the Application Graph, and the Target Environment Graph. The application
graph models a channel-based component-based application as a graph of
components connected by different channel types. The target environment
graph models the distributed environment as a graph of hosts connected by
different channel types that can exist between every two hosts. In other
words, before starting the deployment planning, the channel types that can
exist between every two hosts in the target environment are specified. Then,
the deployment planning of an application is defined as the mapping of its
application graph to its target environment graph, subject to optimization
of the desired QoS parameter.

The approach of this work is general and is not dependent on any specific
component technology or model (e.g., COM, CORBA, EJB, etc.) and can
be used for deploying different kinds of component-based applications with
different component technologies.

1.4 Outline

This report is organized as follows:

• Chapter 2 talks about the research fields that form the foundation of
the presented work: software crisis and software engineering, software
components, and the Reo coordination model.

• Chapter 3 provides a survey of the work done both in industry and
academia in the area of component-based software deployment.

• Chapter 4 provides a formal description of the deployment problem we
are solving in our ongoing research.

• Chapter 5 presents some algorithms for solving the deployment prob-
lem defined in Chapter 4 for QoS parameters cost and reliability when
the target environment is a peer-to-peer distributed environment (e.g.,
Internet).

• Chapter 6 introduces our currently evolving deployment planner tool.

8 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

• Chapter 7 presents the conclusions and outlines the future work.

Chapter 2

Background

This chapter provides the required background of this technical report. This
chapter is organized as follows. Section 2.1 talks about the software crisis and
using the software engineering approaches during the software development
process to overcome the software crisis. Then, Section 2.2 describes software
components and introduces the component-based software development as
a solution to software engineering problems. Finally, Section 2.3 provides a
description of the Reo coordination model.

2.1 Software Crisis and Software Engineering

In 1968, NATO organized a conference to discuss the issues in software de-
velopment projects in large corporations. The problem was that software
projects were often underestimated in time and cost and about 80% of them
were never completed. So, the phrase “software crisis” came into existence
at this conference [1]. This phrase shows the lack of productivity and per-
formance in software projects. It also shows that software developers are
not capable of satisfying the needs of their customers and users [2]. In other
words, software crisis is expressed by delays and failures in software projects
tasks that result in low quality software, unpredictable costs and times, and
unreached goals. The symptoms of software crisis are:

• Unacceptable quality of software;

9

10 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

• Not completion of software project within the estimated time and/or
budget;

• Failure in software development project management;

• Abortion of software projects before completion.

There are many reasons for software crisis. Here are some of them [3]:

• No similar systems ever built before;

• Requirements are not well understood;

• Requirements change during the software life cycle;

• Software is too much flexible.

To overcome these problems, “software engineering” was first introduced
by one of the study groups of NATO in 1967 [3]. The intent of software
engineering is to use engineering principles and methods in the development
of software projects. In other words, software engineering is an attempt to
base the software development on an engineering approach with well defined
inputs, well defined outputs and well defined methods [3]. The goal of soft-
ware engineering is to produce systems that are correct, efficient, reliable,
useable, maintainable, which satisfy their specification. Unfortunately, there
are still some unsolved issues in the software engineering. Here are some of
them:

• How to ensure the correctness, quality and maintainability of software
systems?

• How to meet the estimated time and budget for the software project
development?

• How to divide large systems into smaller manageable subsystems?

• How to ensure productivity of the software project development?

• How to answer the changing requirements during the software develop-
ment?

Background 11

Brooks in his classical paper on software crisis [4] mentioned some ways
which can help us to get rid of these issues: high level languages, expert
systems, software environments, incremental development, requirements re-
finement, prototyping, reuse and great designers [5]. In literature, some
other solutions have been also proposed: outsourcing, open source, visual
environments, CASE tools, software component repositories, object-oriented
environments, and so on. However, none of these solutions can solve the soft-
ware engineering problems definitely and there are some pros and cons with
each of them. But, one of the most promising proposals is reusing existing
software components in the development of new applications or component-
based software development (CBSD). In the following section, we talk about
software components in more detail.

2.2 Software Components

Making a system out of existing components is a common approach used in
many engineering disciplines. The success of this approach in other engineer-
ing disciplines encouraged software engineers to use this idea in the software
design too and thus, component-based software development methodologies
came into existence. Two main reasons can be considered for this: (1) many
software systems include similar or identical components and there is no need
to redevelop them from scratch, and (2) because of the increasing complex-
ity of software systems, it is becoming too expensive to develop them from
scratch. However, there are a large number of different definitions for the
term “software component” in literature. Here are some of them:

• Jose M. Troya and Antonio Vallecillo [6] believe that, components can
be seen as encapsulation of programs. The “capsule” abstracts the pro-
gram functionality, offers a common interface to the program services,
hides their implementation and allows the composition and coordina-
tion of components.

• Alan W. Brown and Keith Short [7], characterize a component as an
independently deliverable set of reusable services.

• H. John Reekie and Edward A. Lee [8] defined a component as a piece of
software that can be plugged into some other piece of software. In their
definition, a software component has clearly defined characteristics and

12 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

clearly defined behaviour in the domain of interest. Also, they told that,
the context of production and consumption maybe quite different.

• Sherif Yacoub and et al. [9] defined a component as an independent
replaceable part of the application that provides a clear distinct func-
tion. In their definition, a component is a unit of composition with
predefined dependencies on other components.

• Clemens Szyperski in his book [10] introduced a component as a unit of
composition with contractually specified interfaces and explicit context
dependencies only. Also, he told that a software component can be
deployed independently and is subject to composition by third parties.

• Wojtek Kozaczynski [11] provided the following definition: A com-
ponent is a non-trivial, nearly independent and replaceable part of a
system that fulfills a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical re-
alization of a set of interfaces.

Though these are different definitions of software components, there is a
common idea behind all of them. We observe that in most of the existing def-
initions of software components, a software component exhibits the following
properties:

• It is a unit of software implementation that can be reused in different
applications;

• It has one or more predefined interfaces;

• The internal details of the software component are hidden;

• It does a specific function.

2.2.1 Software Components: Pros and Cons

In this section, we describe some of the advantages and disadvantages of
using software components in the software development process. Some of
the advantages of using software components in the software development
process are the following:

Background 13

• Modularity: One of the main benefits of using software components
is the addition of “divide and conquer” or modularity to the software
development process. By using software components, a big problem
can be divided into smaller ones and then, for each subproblem, we
can check whether there exists a software component for solving that
subproblem or not. If yes, it can be used in the development process.

• Reliability: Software components may have been reused several times
in different situations, and they may have been tested under a large
variety of conditions. Thus, fewer errors would occur in the software
application, and it is possible to have more reliable software systems
[12, 13].

• Productivity: By using high quality software components, higher
quality software systems can be developed within lower times, costs
and effort. Thus, it increases efficiency and productivity.

• Maintainability:If the interface of a component does not change, a
component implementation can be simply substituted by a newer ver-
sion of that component. Thus, a software application which is built by
software components is more maintainable. Also, it is possible to add
new functionalities to the application over time by adding new com-
ponents to the existing application to answer changing requirements
[10, 14]. Furthermore, because of the increased reliability of the soft-
ware system, fewer errors would occur and maintenance costs would be
reduced.

• Standardization: In CBSD, software components should follow a
predefined standard to interoperate with each other in an application.
Thus, another profit of software components is the standardization of
software development process.

Although there are lots of advantages in using software components, there
are also some disadvantages and problems too:

• Finding suitable components: One of the main difficulties in using
software components is the difficulty to find suitable components. This
raises risks such as using a software component which does not suf-
ficiently satisfy the requirements regarding reliability, suitability, cor-
rectness and interoperability [15].

14 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

• Compositionality: This problem relates to the composition and
packaging of components. The selected components might be com-
positional mismatch and it might be impossible to interconnect them
successfully [16].

• Change: When the source code of the component is not available
to the application developers (e.g., in the case of using COTS compo-
nents), they do not have enough control over the component evolution.
If that component does not satisfy their needs, they should ask the de-
veloper of that component to make the desired changes. This is often
impossible. Since the level of support that is available from different
component developers varies significantly, the adjustments to the com-
ponents become much slower.

• Hidden dependencies: There might be some hidden dependencies
among software components which software developers are unaware of
them [17].

• Component development time and cost: The required time and
cost for developing a reusable software component is much higher than
the required time and cost for developing a special purpose software
[18].

2.3 Reo Coordination Model

Reo is a channel-based coordination model that exogenously coordinates the
cooperative behavior of component instances in a component-based system.
From the point of view of Reo, a system consists of a number of component
instances communicating through connectors that coordinate their activities.
The emphasis of Reo is on connectors, their composition and their behavior.
Reo does not say much about the components, whose activities it coordi-
nates. In Reo, connectors are compositionally constructed out of a set of
simple channels. Thus, channels represent atomic connectors. A channel is
a communication medium which has exactly two channel ends. A channel
end is either a source channel end or a sink channel end. A source channel
end accepts data into its channel. A sink channel end dispenses data out of
its channel. Although every channel has exactly two ends, these ends can be

Background 15

of the same or different types (two sources, two sinks, or one source and one
sink).

In Reo, a connector is represented as a graph of nodes and edges such that:
zero or more channel ends coincide on every node; every channel end coincides
on exactly one node; and an edge exists between two (not necessarily distinct)
nodes if and only if there exists a channel whose channel ends coincide on
those nodes.

2.3.1 Reo Operations

Reo defines two sets of operations. The first set, relates to the manipulation
of the connector topology: create, forget, join, split, and hide. The create
operation creates a channel of some defined type. With the forget operation
a component instance tells Reo that it does not need a channel end anymore.
The join operation allows joining of two nodes, each identified by one of
the channel ends. The split operation then splits a node into two nodes by
specifying the channel ends that the performer requires to coincide on the
new nodes. The hide operation allows the performer to protect the topology
of a node.

The second set of operations defined by Reo enable component instances
to connect to and perform I/O on source and sink nodes. These operations
are: connect, disconnect, wait, read, take, write, and move. The connect
operation connects the performer to a channel end by providing exclusive
access to the node (and thus to all of its coincident channel ends) on which
this channel end coincides. The disconnect operation releases a previously
established connection. The wait operation allows the performer to wait for
some condition on a channel end. The read operation allows the performer to
non-destructively read data from a sink. The take operation does the same
as read but it also removes the data from the sink. The write operation
replicates its value and atomically writes a copy of its value to every source
channel end that coincides on the source node on which it is performed.
The move operation allows the performer to move a channel end to another
location. Note that changing location does not change the topology of the
connector or the connection status of the moved channel end.

16 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

2.3.2 A Useful Set of Primitive Channels

Reo assumes the availability of an arbitrary set of channel types, each with
well-defined behavior provided by the user. However, a set of examples in
[53] show that exogenous coordination protocols that can be expressed as
regular expressions over I/O operations correspond to Reo connectors which
are composed out of a small set of only five primitive channel types:

• Sync: It has a source and a sink. Writing a value succeeds on the
source of a Sync channel if and only if taking of that value succeeds at
the same time on its sink.

• LossySync: It has a source and a sink. The source always accepts all
data items. If the sink does not have a pending read or take operation,
the LossySync loses the data item; otherwise the channel behaves as a
Sync channel.

• SyncDrain: It has two sources. Writing a value succeeds on one of the
sources of a SyncDrain channel if and only if writing a value succeeds
on the other source. All data items written to this channel are lost.

• AsyncDrain: This channel type is analogous to SyncDrain except that
the two operations on its two source ends never succeed simultaneously.
All data items written to this channel are lost.

• FIFO1: It has a source and a sink and a channel buffer capacity of one
data item. If the buffer is empty, the source channel end accepts a data
item and its write operation succeeds. The accepted data item is kept
in the internal buffer. The appropriate operation on the sink channel
end (read or take) obtains the content of the buffer.

2.3.3 An Examples of Reo Connectors

As an example of Reo connectors, Fig. 2.1 shows a barrier synchronization
connector in Reo. In this connector, a data item passes from a to d only
simultaneously with the passing of a data item from g to j and vice versa.
This is because of the “replication on write” property in Reo. ab is a Sync
channel. So, writing on a succeeds only if writing on the mixed node bec
succeeds. This happens only when both cd and ef are capable of consuming

Related Work 17

Figure 2.1: Barrier synchronization connector in Reo

a copy of the written data (definition of write). Similarly, writing on g
succeeds only if writing on the mixed node hfi succeeds. Again, this happens
only when both ij and fe are capable of consuming a copy of the written
data. With respect to the semantic of the SyncDrain channel which both
writes on its both source ends should be done at the same time, a data item
passes from a to d only at the same time with the passing a data item from
g to j.

Since the entities on a, d, g, and j do not need to know that they are
communicating with each other and their communication is regulated, this
connector is an example of exogenous coordination in Reo. In Reo, it is easily
possible to construct different connectors by a set of simple composition
rules out of a very small set of primitive channel types. One can find a
more elaborate introduction to Reo in [54], and a detailed description of the
language and its model in [53].

Chapter 3

Related Work

As mentioned in Chapter 1, there are typically many constraints in the de-
ployment of large component-based applications into distributed environ-
ments. For this purpose, software deployment process is given special atten-
tion both in academia and industry, and it is possible to find a large number
of tools, procedures, techniques, and papers addressing different aspects of
the software deployment process from different perspectives. However, none
of them is able to cover the full range of deployment activities. Furthermore,
none of them is general enough so that it can be used for deploying all kinds
of component-based applications with different component technologies. In
this chapter, we provide a survey of existing deployment tools and techniques
in industry and academia.

This chapter is organized as follows. In Section 3.1, a survey of soft-
ware deployment tools which have been developed in industry is provided.
Section 3.2 discusses various research approaches for component-based ap-
plications deployment. Finally, Section 3.3 presents another survey done by
the University of Colorado’s Software Dock research team.

3.1 Software Deployment Tools in Industry

A variety of tools and technologies exist in industry to support different
software deployment activities mentioned in Chapter 1. In this section, we
classify them into three main categories: stand-alone installers, Web-based
deployment tools, and systems management tools. Then, the features of these
categories are described and three sample tools are considered for each of

18

Related Work 19

Deployment

Technology
Sample Tool

Software Deployment Lifecycle

Acquiring Planning Installation Configuration Execution

Stan-alone Installers

Linux RPM •
InstallShield •
InstallAnywhere •

Web-based

Deployment Tools

Java Web Start • • •
Windows Update • • •
Microsoft Clickonce • • •

Systems Management

Tools

Microsoft SMS • • •
IBM TME-10 • • •
Altiris • • •

Table 3.1: Comparison of different industry-based deployment tools in terms
of their support of deployment process

them. Table 3.1 represents these tools and characterizes them in terms of
their support of software deployment process.

3.1.1 Stand-alone Installers

There are some tools whose main activities are installing and uninstalling
stand-alone software systems from a single computer. In these tools, different
files of the software system along with some semantic information about the
files are packaged into a software package and is delivered to the user. Then,
users use these tools to un-package this software package and install it on their
intended machines. Linux RPM [19], InstallShield [20], and InstallAnywhere
[56] are representatives of this kind of tools.

However, these tools have some limitations. As mentioned earlier, they
can be used only for installing and uninstalling stand-alone applications from
a single computer, and it is impossible to use them for distributed systems.
Also, users themselves have to update their software systems whenever newer
versions of those systems are available.

20 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Linux RPM

The Redhat Package Manager or RPM is a powerful command line tool used
for deployment of software packages in the Linux environment. Each RPM
package contains an archive of files to be deployed along with some metadata
information about the software package such as its version, cryptographic sig-
natures for each file in the package to verify the integrity of the package, and
so on. RPM supports the following activities: packaging, installing, verify-
ing, updating, and removing of the software systems. RPM uses a number
of Linux scripts to do these activities. RPM also maintains a database of all
the software packages it has installed so far. Thus, information about the
installed software systems is available at any time.

InstallShield

InstallShield for Windows is a commercial tool which is used widely for in-
stalling, reconfiguring, and removing Windows-based applications from a sin-
gle site.

InstallAnywhere

Zero G Software Corporation’s InstallAnywhere is a commercial tool that can
be used by software developers to package a software system written in Java,
C++, J2EE or .NET so that it can be installed or uninstalled from any major
operating system (e.g., Windows, Linux, Solaris, HP-UX, Mac OS, NetWare,
etc.). As its name shows, one of the main advantages of InstallAnywhere is
that the developer does not need to package different distribution versions of
a software system for different operating systems.

3.1.2 Web-based Deployment Tools

Web-based deployment tools try to use the connectivity and popularity char-
acteristics of the Internet in the software deployment process. In these tools,
it is not required to install or update the software system on every single
host separately. Instead, the software application is deployed only to a single
Web server. Then, client machines (users) connect to this server to download
the application files or application updates automatically. Examples of this
category of tools are Java Web Start [22], Microsoft Windows Update [23],
and Microsoft ClickOnce [24]. However, one of the major limitations of these

Related Work 21

tools is that they are used for stand-alone applications and it is impossible
to use them for deploying distributed applications.

Java Web Start

Java Web Start provided by Sun Microsystems as a deployment tool for
Java-based software systems that allows users to run and manage software
applications right off the Web. Java Web Start guarantees that the user is
always using the latest version of the application. At the first time that
the application is being used, that application is downloaded from the Web
server and is cached locally on the computer. Then, on each subsequent run
of the application, Java Web Start checks the Web server to see whether or
not there exists a newer version of the application. If yes, it automatically
downloads the new version of the application and executes it.

Microsoft Windows Update

Microsoft Windows Update is a Web-based software update service for Mi-
crosoft Windows operating system. Whenever the user visits the Windows
update site1, it automatically scans the computer to see if any updates is
available for the computer. If so, it downloads those updates automatically
and applies them to the system. These updates usually help to protect
against known security threats.

Microsoft ClickOnce

Microsoft ClickOnce is very similar to Sun Microsystems Java Web Start. It
is part of the Microsoft .Net Framework (version 2.0) that allows the user
to deploy Windows-based applications to a client computer by placing the
application files on a Web or file server accessible to the client. Then, a
link to that application is provided to the user. When user clicks this link
on a Web page (or an email, etc.) the application files are downloaded to
the user’s computer and run. However, the subsequent executions of the
application can be offline and it is not required to download the application
files again. When a new version of the application is installed on the server,
it can be automatically detected by connected clients, and updates can be
downloaded and applied.

1http://update.microsoft.com

22 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

3.1.3 Systems Management Tools

The term systems management is typically used to describe a set of capabili-
ties (e.g., tools, procedures, policies, etc.) that enable organizations to more
easily support their hardware and software components throughout their life
cycle [25]. More specifically, they help organizations to gather information
about the existing hardware and software, make decisions to purchase new
hardware and software, distribute and deploy them to wherever they should
be, configure and maintain them with updates, and so on [26].

Systems management tools usually have a centralized architecture. In
these tools, the IT administrator performs operations from a centralized lo-
cation and it is applied automatically to many systems in the organization.
So, the IT administrator is able to deploy, configure, manage, and maintain a
large number of hardware and software systems from his/her own computer.
Examples of these tools are Microsoft Systems Management Server [27], IBM
Tivoli Management Environment [28], and Altiris Deployment Solution [29].
However, there are some limitations associated with these tools: they are
often heavy and complex systems, they require reliable networks, and they
require complete administration control.

Microsoft Systems Management Server

Microsoft Systems Management Server (SMS) can be used by IT administra-
tors to manage, support, and maintain a distributed network of computer re-
sources within their organization that are running Microsoft Windows operat-
ing system. SMS provides a comprehensive change and configuration solution
for centrally managing client computers and servers, enabling organizations
to provide relevant software and updates to users. SMS consists of com-
prehensive hardware inventory, software inventory and metering, software
distribution and deployment, and remote troubleshooting tools. However, in
this report, our focus is on its software deployment features. SMS provides
the necessary tools to plan, test, analyze, and deploy software applications,
enabling the enterprises to provide the necessary applications throughout the
organization. For example, IT administrators can use the reports generated
by hardware and software inventory to understand the status of the hardware
and software assets and decide whether or not deploy a new application.

Related Work 23

IBM Tivoli Management Environment

IBM Tivoli Management Environment (TME-10) is a set of management ap-
plications for managing a network of computing resources of many different
types from a single point. In other words, TME-10 provides a consistent
interface to different operating systems and services. It allows IT adminis-
trators to control users, systems, and applications from a single computer
and provides some methods to automate time consuming tasks. One of its
features is application deployment management. For this purpose, the same
as Microsoft SMS, it maintains an enterprise-wide hardware and software
inventory.

Altiris Deployment Solution

Altiris Deployment Solution makes it possible to remotely manage all types of
hardware devices (e.g., notebooks, desktops, servers) within an organization’s
LAN or WAN. For example, distribute patches and drivers, image computer
hard-drives, install or upgrade software systems, or migrate a large number of
users to new computers while transferring their custom settings or installed
programs.

3.2 Software Deployment Approaches in Re-

search

In the previous section, we considered some of the software deployment tools
and technologies that are currently available in industry. However, in recent
years, component-based software deployment has been given special attention
in research too and several approaches addressing the software deployment
problem have been proposed. In this section, some of these approaches are
discussed.

3.2.1 Deployment Frameworks

In this section, a number of research approaches are described such that they
mention a sequence of activities for the software deployment process and try
to provide a general framework for this purpose.

24 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Software Dock

In the University of Colorado Software Dock research project, software de-
ployment is defined as a collection of interrelated activities that form the
software deployment life cycle [30]. This cycle includes the following activi-
ties: release, install, activate, update, adapt, reconfigure, deactivate, remove,
and retire. These activities can be divided into two groups:

• Producer-side Activities:

– Release: This includes all the tasks required to package, prepare,
provide, and advertise a system for deployment to consumer sites.
This activity acts as a bridge between development and deploy-
ment.

– Retire: When a software system or a given configuration of a
software system is no longer supported by the software producer,
this activity is done.

• Consumer-side Activities:

– Install: This activity configures and assembles all of the necessary
resources for using a given software system.

– Activate: This is responsible for running or executing a deployed
software system.

– Deactivate: This is responsible for shutting down any executing
components of an activated software system.

– Update: This modifies a previously installed software system and
deploys a new, previously unavailable configuration of a software
system.

– Adapt: This activity maintains the consistency of the currently
selected configuration of a deployed software system.

– Reconfigure: Its purpose is to select a different configuration of
a previously deployed software system from its existing semantic
description.

– Remove: this activity is performed when a software system is no
longer required at a consumer site.

Related Work 25

Figure 3.1: Software Dock architecture (taken from [31])

The Software Dock research project has created a distributed, agent-based
deployment framework that supports cooperation among software producers
themselves and between software producers and software consumers [31]. The
Software Dock architecture is shown in Fig. 3.1. This architecture has the
following components:

• Release dock: Its purpose is to serve as a release repository for the
software systems provided by the software producer. In this reposi-
tory, each software release is semantically described using a standard
semantic schema: Deployable Software Description or DSD.

• Field Dock: It is a server residing at a consumer site and providing
information about the resources and configuration of the consumer site.

• Agents: Each software release is accompanied by generic agents that
perform software deployment processes with the help of interpreting
the semantic description of the software release.

• Wide-area event system: The release dock generates events as changes
are made to the software release that it hosts.

A description of the actual deployment by the architecture presented in
Fig. 3.1 follows. When a software system is to be installed on a given

26 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

consumer site, initially an agent responsible for installing that software and
the DSD description of that software are loaded onto the consumer site from
the originating release dock. This agent docks at the local field dock and
configures the software system using the DSD description of that software and
the consumer site state information provided by the field dock. When this
configuration is done, this agent asks the precise configuration that it requires
from its release dock. It also may request other agents (such as update
and adapt) from its release dock to come and dock at the local field dock
and do other deployment activities. The wide-area event service provides a
means of connectivity between software producers and software consumers.
As we see, Software Dock uses mobile agents to do software deployment
activities. We will talk more about using mobile agents in the process of
software deployment later in section 3.2.2.

With the architecture presented in Fig. 3.1, Software Dock provides a
comprehensive framework for deploying and configuring a software system
into a single site using its DSD description. However, when the software sys-
tem is large and is composed of many components, it may have many differ-
ent configurations. But, with respect to some externally defined constraints,
some of these configurations might be invalid. For example, combinations of
specific versions of components are not acceptable. In this case, it is impos-
sible to effectively enumerate all possible configurations manually. Another
way is to analyze the DSD descriptions to detect potentially invalid configura-
tions. In [32], D. Heimbigner et al. present their ongoing work on developing
such a framework for analyzing DSD descriptions and detecting potentially
invalid configurations with respect to externally defined constraints. In other
words, this framework generates all of the possible configurations for a sys-
tem using its DSD description and then applies specified analysis packages
to each of those configurations to detect problems and conflicts with those
configurations. Then, the result of this analysis could be fed back to the
DSD descriptions to prevent future generation of invalid configurations.

ORYA - Open enviRonment to deploY Applications

Suppose you want to install different versions of the same application on
many sites at the same time with respect to the characteristics of these sites.
For this purpose, an automated tool is required and it is very hard to do
this activity manually. ORYA deployment process is introduced in [33] to
answer this requirement. In ORYA, the following entities are introduced as

Related Work 27

Figure 3.2: An example of ORYA deployment environment (taken from [33]))

the main entities of an automatic process for deploying applications on one
or more sites:

• Application Server (AS): A repository of application packages. A pack-
age consists of a set of application files, a set of executable files for in-
stalling the application and a metadata file to specify the dependencies,
constraints and features of the application.

• Target (T): The target in which the applications should be installed and
run (e.g., a computer or a device). Each target is modeled by a site
model. Site model represents which applications are already deployed
into a target and what are its hardware properties (disk space, CPU,
memory, etc.)

• Deployment Server (DS): this server finds the suitable packages to be
deployed, transfers them to the target and installs them. DS should
cope with several problems such as dependencies or shared components,
or it should confirm that other existing applications continue to work.

Fig. 3.2 shows an example of the above mentioned entities. In this
example, the producer side includes a number of application servers and
one deployment server and is connected to the Internet via a firewall. Also,
different targets which belong to an enterprise is connected to the Interne
through a firewall.

Fig. 3.3 shows the deployment process being done by the deployment
server to install an application into only one target. In the ORYA envi-
ronment, there exist several application servers hosting several application

28 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 3.3: ORYA deployment process (taken from [33]))

packages. The deployment process should find the desired application pack-
age among many ones in such a way that the selected package will work truly
and it will not affect other existing applications in the target. This process
includes the following activities:

• Select server: Receives the application and target names as input and
prepares the deployment process. For this purpose, first it checks
whether or not that application already exists in the target. If yes,
then the deployment process stops. Otherwise, it finds an application
server containing that application package. Then, it considers whether
this package can be deployed in the target. If not, another package will
be searched. If no package is found, the deployment process terminates.

• Verify package: Verifies that the package can be deployed on the target.
The focus of this activity is checking the hardware constraints (e.g.,
memory, disk space, etc.). Software constraints will be checked in the
next activity.

• Dependencies resolve: Checks the software dependencies.

Related Work 29

Figure 3.4: ORYA Install activity (taken from [33]))

• Transfer: Transfers the package from the application server to the tar-
get.

• Install: Does the physical installation. It is a composite activity and
its constituent activities are shown in Fig. 3.4:

– Extract: Extracts the package into a temporary folder on the tar-
get.

– Install step: Each install step activity performs two basic activi-
ties: execution (executes the script related to the install step) and
checking (performs the necessary verifications)

– Uninstall: If some problems occur during the installation, this
activity returns the target to a consistent state and undoes all
already modifications.

OMG Deployment and Configuration Specification

The “OMG Deployment and Configuration Specification” or “OMG D&C
Specification” is an attempt towards unified deployment of component-based
applications into distributed environments [34]. The deployment process
defined in this specification consists of five stages. But, before starting the
deployment process, the metadata describing the software and the binary
compiled code artifacts should be combined into a software package by the
software producer. Then, this package is published by the producer and

30 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

acquired by the user (e.g., via Internet). Then the following deployment
process can be started:

• Installation: During installation, the published software package is ac-
quired by the user and is put into a repository of software components.
This activity does not involve transfer of binary files to the hosts in
which software components will actually execute.

• Configuration: When the software is installed in the repository, its
functionality can be configured.

• Planning: After a software package has been installed into a repository
and configured, deployment planning of the application can be started.
This planning involves selection of hosts on which the software will run,
the resources it will require to run, deciding which implementations
will be used for component instances, and so on. This stage results in
a deployment plan.

• Preparation: This activity prepares the target environment for execu-
tion of the software. For example, transfers binary files to the specified
hosts in the target environment on which the software will run.

• Launch: In this stage, the application is executed. As planned, com-
ponent instances are created and configured on hosts in the target en-
vironment and the connections among the component instances are
established.

The OMG D&C Specification defines three platform independent mod-
els, the component model, the target model, and the execution model. Each of
these models is also split into the data model and the runtime (management)
model to reduce the complexity. The runtime models deal with runtime enti-
ties and they are outside the scope of this report. Below are brief descriptions
of data models:

• Component Data Model: The UML diagram for Component Data Model
is presented in Fig. 3.5. This model shows the information about in-
stalled and configured software packages in the software component
repository. In this model, a software package may contain several
implementations of the same component (e.g., to work with different
operating systems). The component itself has an interface composed

Related Work 31

Figure 3.5: OMG component data model (taken from [34]))

of operations, attributes, and ports that may be connected to other
components. The implementation of the component could be either
monolithic, or an assembly of other components.

• Target Data Model: This model describes the target environment in
which the application can be deployed. The UML diagram of this
model is depicted in Fig. 3.6. The top level entity of this model is
Domain which itself is composed of Node, Interconnect, Bridge, and
SharedResource. Nodes have computational capabilities and will run
component instances. Interconnects provide direct connections among
nodes and connections among components will be deployed on them.
Bridges act as router among interconnects and thus, provide indirect
connections among nodes. SharedResources are those resources which
are shared among nodes.

• Execution Data Model: Before starting to deploy the software system
into the target environments, it should be decided which implementa-
tions to select (if there are several implementations of the same compo-
nent in the package) and where to deploy each monolithic component
implementation. The result of this decision making process is collected
in a Deployment Plan. Actually, Execution Data Model is this Deploy-
ment Plan. The UML diagram of this model is shown in Fig. 3.7.
In this diagram, Artifact Deployment Description specifies an artifact
that is being deployed as part of the plan; Monolithic Deployment De-

32 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 3.6: OMG target data model (taken from [34]))

Figure 3.7: OMG execution data model (taken from [34]))

scription describes how to create a component instance; Instance De-
ployment Description specifies where to instantiate it; Plan Connection
Description includes information about connections among component
instances. This model also includes information about the component
interface which is realized by this software system.

As mentioned earlier, these models are platform independent. In order
to use them with a specific component model, they should be transformed to
platform dependent models, capturing the specifics of the concrete platform
[35]. An example of this transformation to the CORBA Component Model
(CCM) can be found in [34].

Related Work 33

Figure 3.8: New component data model (taken from [36])

However, as mentioned earlier, OMG D&C Specification is an effort to-
wards a unified framework for deploying component-based applications into
distributed environments. But, P. Hnetynka in [36] and [37] mentions that
OMG’s approach is not suitable for building a single environment for unified
deployment of component-based applications and it leads to several deploy-
ment environments. He mentions that in order to have a unified environment
for this purpose, a generic component model that covers all the component
technologies is required. In order to develop such a generic component model,
he examined several component models and ADLs: CORBA Component
Model (CCM) [38], Enterprise Java Beans (EJB) [39], Fractal [40], SOFA
[41], Darwin [42], Wright [43], and ACME [44]. After considering these mod-
els and languages, Hnetynka noticed that a number of component features are
missing in the OMG D&C Component Data Model. But, they are crucial
for developing a unified deployment environment. These features include:
Component technology, Control interfaces, Groups of interfaces, Behavior,
Versioning, and Dynamic changes of applications at runtime. Thus, he de-
veloped a new component data model which includes these features. This
model is shown in Fig. 3.8.

Another issue in the OMG D&C Specification relates to its support
of heterogeneous component-based applications. This kind of applications
can constitute components written using different component models (EJB,
CORBA, Fractal, SOFA, etc.). Since, different component models typically

34 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 3.9: Using connectors for capturing the interactions among compo-
nents (taken from [35])

have different communication middleware and their communications have
different semantic, one of the main issues in making components from dif-
ferent component models to work together is their communication. To solve
this problem, L. Bulej and T. Bures in [35] propose to use software connec-
tors [45] to describe the semantics of connections between components from
different component models. A connector itself can be viewed as a number
of connector units attached to the corresponding components (Fig. 3.9). In
order to use connectors, an appropriate connector should be instantiated be-
tween every two components. For this purpose, whenever a component is
instantiated, for each of its interfaces a server connector unit is created and
whenever an interface is being connected to another component, a client con-
nector unit is instantiated and bound to the corresponding server connector
unit. Then, the communication between components are done through these
connector units.

In [35], the OMG D&C Specification is extended to support deployment of
heterogeneous component applications by introducing connectors as bridges
between the heterogeneous parts of an application, and by extending the
model to support construction of connectors during the deployment. For
this purpose, some slight changes have been made on the Component Data
Model presented in Fig. 3.5. More specifically, the Assembly Connection
Description in the component data model class have been extended with
another association named ConnectionRequirement. This association makes
available the information about the connection requirements for the deploy-
ment planner.

Related Work 35

3.2.2 Using Mobile Agents in Software Deployment

In section 3.2.1, we talked about University of Colorado Software Dock re-
search project and we mentioned that mobile agents are used in this project
to do deployment activities. In this section, we talk about the concept of us-
ing mobile agents in the software deployment process in more detail. In [46]
a mobile agent is defined as an object which migrates through many hosts
in a heterogeneous network, under its own control, in order to perform tasks
using resources of those hosts. In other words, a mobile agent can perform its
task autonomously without any independence to the application generated
it. A Mobile Agent System or MAS is defined as a computational framework
that implements the mobile agent paradigm [47]. This framework provides
services and primitives that help in the implementation, communication, and
migration of software agents.

A. Carzaniga et al. in [30] mention that there are some issues and chal-
lenges in the software deployment process presented in the Software Dock
research project (section 3.2.1). In the following, we consider some of them:

• Large-scale Content Delivery: It refers to transferring a large volume
of software packages from producers to consumers.

• Heterogeneous Platforms: Nowadays, it is possible to have a network
of heterogeneous hardware platforms (e.g., Mainframes, PCs, etc.), all
possibly running different operating systems. As a result, this makes
new challenges for the software deployment process.

• Integration with the Internet: With the arrival of the Internet, there
exists a virtual, worldwide marketplace. So, producers can advertise
their products and customers can evaluate those products. Thus, the
deployment process should be tightly integrated with the Internet.

• Security: The use of Internet as a deployment media causes a variety of
security concerns (e.g., privacy, authentication, and integrity concerns).
More specifically, since installation or update activities have access to
system resources, it is very important to monitor these activities during
the deployment process.

In [47], some ideas of using mobile agents to deal with these issues are
presented:

36 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 3.10: TACOMA software deployment architecture (taken from [48])

• Large-scale Content Delivery: Mobile agents can prevent the trans-
fer of already installed components by requesting just the necessary
components from the consumer host using the local description of the
consumer site.

• Heterogeneous Platforms: If mobile agent systems use interpreted lan-
guages as Java, then those systems can cope with the hardware hetero-
geneity and the same mobile agent can be executed in different hard-
ware/software platforms.

• Integration with the Internet: Again, MASs can be implemented in
Java and then they can communicate with each other by CORBA or
RMI. These middleware layers are implemented on top of the standard
Internet protocols.

• Security: The deployment of software as a mobile agent allows the
system to monitor installation procedures, and preventing illegal oper-
ations.

As another work of using mobile agents in the software deployment pro-
cess, N.P. Sudmann and D. Johnson in [48] show how mobile agents can be
used for updating or installing software components in a distributed environ-
ment such as Internet. In their paper, they talk about a middleware toolkit
called TACOMA which is a mobile agent system built to support software
deployment over the network.

Software deployment infrastructure in TACOMA includes one or more
repositories that contain the latest versions of software packages. These
packages can be used to update or install new software at a number of hosts
that have subscribed to the repository service. Fig. 3.10 shows the software

Related Work 37

deployment architecture of TACOMA. As shown in this figure, it has two
different agents: the state collector agent (SC) and the installer agent (PI).
SC agent probes all hosts and collects information about the required updates
for each host. Then, it returns to the repository. After that, with respect to
the information collected by the SC agent, one PI agent will be generated for
each host. These PI agents include the required packages for their intended
hosts along with the install logic of those packages. Then, these PI agents
will travel to their intended hosts in parallel and do the actual installations
or updates.

3.2.3 QoS-Aware Deployment

Typically, it is possible to deploy a large component-based application which
constitutes a large number of components into a distributed environment in
many different ways. Obviously, some of these deployment configurations
are better than others in terms of some quality of service (QoS) attributes
as efficiency, availability, reliability, fault tolerance, and so on. Thus, the
deployment configuration has significant effects on the system behavior and
it is necessary to consider the issues related to the quality of a deployment.
M. M. Rakic et al. in [49] claim that existing tools for showing software
deployments lack support for specifying, visualizing, and analyzing different
factors that influence the quality of a deployment and they try to provide such
an environment to answer this requirement for large-scale, highly distributed
systems. They named their environment DeSi.

As mentioned earlier, it is possible to consider different quality attributes
for a deployment. However, in [49], the emphasize is on the “availability”
and it is defined as the ratio of the number of successfully completed inter-
component interactions in the system to the total number of attempted in-
teractions over a period of time. Because of the so many parameters that
influence the availability of a system, it is too much hard to find the best
deployment architecture that maximizes the availability. One naive solution
is to repetitively redeploy the system actually in order to gain the desired
availability. Another approach is to model the system with some parameters
and assess the deployment architecture prior to the actual deployment. DeSi
can be used for this purpose. It supports specification, manipulation, visu-
alization, and assessment of deployment architectures for large-scale, highly
distributed systems. DeSi provides a GUI in which it is possible to explore
candidate deployments for a given system, specify the deployments that will

38 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

result in the highest improvements in availability, and assess the influence
of changes in specific parameters and deployment constraints on the system
and visualize them. In DeSi, a valid candidate deployment should satisfy the
following four conditions: (1) the total required memories of the components
deployed onto a host should not exceed the available memory of that host,
(2) total volume of data exchanged over a link should not exceed its band-
width, (3) a component can only be deployed onto a host that belongs to a
set of allowed hosts for that component, and (4) two components should be
deployed on the same or different hosts if it is specified to do so.

In DeSi, it is possible to integrate, evaluate, and compare different al-
gorithms for improving systems availability in terms of their feasibility, effi-
ciency and precision. Six of such algorithms are:

• Exact Algorithm: It tries every possible deployment, and selects the
best one that has maximum availability and satisfies the constraints.

• Unbiased Stochastic Algorithm: It randomly assigns each component
to a single host from the set of available hosts for that component and
randomly generates a deployment. If this deployment satisfies all the
constraints, its availability will be calculated. This process is done for
a given number of times and the best deployment is selected.

• Biased Stochastic Algorithm: First, it randomly orders all the hosts and
all the components. Then, for each host in this order, it assigns as many
components as possible in such a way that all constraints are satisfied.
This process continues until all components have been deployed.

• Greedy Algorithm: At each step of the algorithm, the best host for
the best component is selected. The best host is one that has the
highest sum of network reliabilities with other hosts in the system and
the highest memory capacity. The best software component is the one
that has the highest frequency of interaction with other components in
the system, and the lowest required memory. This process continues
with searching for the next best component until the best host is full.
Then, again the best host is selected. This process proceeds until all
components are assigned to hosts.

• Clustering Algorithm: In this algorithm, components with high frequen-
cies of interaction are grouped into component clusters. Also, hosts

Related Work 39

with high connection reliability are grouped into host clusters. Then,
when a member of a component cluster requires to be redeployed to a
new host, then all members of that cluster should be redeployed.

• Decentralized Algorithm: The above mentioned algorithms suppose the
existence of a central host with reliable connections to every other host
in the system. But, for some distributed systems as mobile networks
which there does not exist such reliable connections, a decentralized
algorithm is required. In this algorithm, each host acts as an agent and
may conduct or participate in auctions (auction algorithm). In this
algorithm, if none of the hosts connected to the desired host is already
conducting an auction, the desired host initiates an auction by sending
a message to all the neighboring hosts that carries information about
a component needs to be redeployed. Each recipient host calculates an
initial bid for the auctioned component by considering the frequency
and value of interaction between components on its host and the auc-
tioned component. The bidding agent sends this bid together with some
local information such as its network reliability and its bandwidth with
the neighboring hosts to the auctioneer. The auctioneer selects the
highest bid as the winner. If the winner has enough resources to host
the auctioned component, then the component is redeployed to it and
the auction is closed. Otherwise, the winner and the auctioneer try to
find another component on the winner host to be swapped with the
auctioned component.

Another work in the area of QoS-aware deployment is done by D. Wichadakul
and K. Nahrstedt. In [50], they talk about a translation system for enabling
the deployment of QoS-aware applications that can be deployed into different
ubiquitous environments with different middleware services. Ubiquitous sys-
tems are those that can be instantiated and accessed anytime, anywhere, and
by using any computing devices. Examples of such systems are e-business
audio/video streaming, and world-wide web.

Assuming the availability of QoS-oriented middleware services in differ-
ent ubiquitous computing environments, they intend to answer the following
question: “How to develop a QoS-aware application which can be deployed
flexibly and efficiently in different environments, with different available mid-
dleware services, and satisfy acceptable quality of service?”.

To answer this question, they introduce the concept of middleware ab-
straction layer or MAL. MAL represents a high-level functional view of

40 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 3.11: Prism deployment environment (Prism-DE) (taken from [51]))

the application and abstracts from individual middleware implementations.
Then, the mapping (translation) between application services and a specific
middleware services is done through the following steps. First, the QoS-
aware application is mapped to configurations of generic middleware services
without any respect to any specific implementations, resulting in the MAL
representation of that application. In the second step, the MAL representa-
tion is customized with respect to a specific deployment environment.

3.2.4 Architecture Driven Deployment

In [51], software architecture is defined in terms of components, connec-
tors, and configurations which provide high-level abstractions for showing
the structure, behavior, and key properties of a software system. In this
definition, components specify the computations and state of a system; con-
nectors specify the mechanisms of communication among the components;
configuration specify the topologies of components and connectors. In [51],
M. M. Rakic and N. Medvidovic provide an approach for software deploy-

Related Work 41

ment based on the principles of software architecture. They use the concepts
of software architecture to (1) initially deploy a software system into a target
environment, (2) update the components of an already deployed system, (3)
analyze the likely effects of a deployment on a system before deploying it,
and (4) analyze the effects of a deployment on a running system after its de-
ployment. For this purpose, they introduce Prism architectural style which
is suitable for heterogeneous, highly distributed, highly mobile, resource con-
strained systems. Prism also provides guidelines for software architects to
design the architecture of systems. If a software system is designed based on
these guidelines, then it is possible to use the Prism infrastructure developed
by the authors of [51] to deploy that software system. More specifically, a GUI
named Prism deployment environment (Prism-DE) has been implemented by
them(Fig. 3.11). Users can use this GUI to design the architecture of an ap-
plication based on the Prism architecture style guidelines. For this purpose,
the architect is able to specify the configuration of hardware, devices (PCs,
Laptops, etc.) by dragging their icons onto the convas and connecting them.
Then, the architect provides software components and connectors that may
be placed on top of the hardware devices. Once a designed software config-
uration is created and validated in Prism-DE, it can be deployed onto the
depicted hardware configuration automatically.

3.2.5 Deployment into Computational Grids

A computational grid is defined as a set of efficient computing resources con-
nected to the Internet and managed by a middleware that gives transparent
access to resources wherever they are located on the network [52]. In such
environments, the application deployment phase must be as automated as
possible while taking into account application constraints (CPU, Memory,
etc.) and/or user constraints, to prevent the user from directly dealing with
a large number of hosts and their heterogeneity within a grid.

In [52], a framework for automatic deployment of component-based ap-
plications into computational grids in the context of the CORBA component
model (CCM) is presented. However, it does not say anything about the
necessary algorithms to develop such an automatic deployment tool. The
authors of this paper mention that this architecture should have three enti-
ties: the inputs, the planner, and the actual deployment. In the following,
these entities are described:

42 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

• The inputs:

1. A description of the component-based application being deployed:
In the context of the CCM, each application consists of a set of
components (component assembly package). In this package, there
exists an assembly description file which describes the components
and their relationships. Also, each component in the CCM has a
deployment descriptor that specifies how that component can be
installed, configured, and launched on a machine.

The component and application descriptors may express different
requirements such as the CPU, Memory, Operating system, etc.

2. A description of the grid resources on which the application may
be deployed: This description includes information about comput-
ing resources, storage resources, and network description.

• The deployment planner uses the above inputs to generate a deploy-
ment plan in which:

1. The computers that will run the components and the component
servers are selected;

2. The network links or network technology to interconnect the com-
ponents are selected;

3. The component servers are mapped onto the selected computers.

• Actually executing components on the computational grid

1. In this step, the deployment plan is used to launch the component-
based application and to configure it according to the CCM.

3.3 Software Dock Characterization Frame-

work

In section 3.2.1, we talked about University of Colorado Software Dock re-
search project. As part of this project, its research team did a survey of
different software deployment technologies and provided a framework for
characterizing them [30]. This framework has four factors for this character-
ization:

Related Work 43

• Process Coverage: This factor specifies a given technology to what de-
gree covers each of the constituent activities of the deployment process
mentioned in the Software Dock research project. This factor can have
each of these 3 values: no support for the given activity, minimal sup-
port, and full support.

• Process Changeability: sometimes it is impossible to anticipate all the
requirements of the deployment process. As an example, it might be
required to do some special tests at some points during the deployment
process. This factor specifies whether or not it is possible to change
the deployment process after its definition. For this purpose, the de-
ployment process should be represented in an explicit and manipulable
way.

• Interprocess Coordination: suppose you want to install a composite
system which includes a number of subsystems. In this situation, first
you need to deploy its subsystems. Thus, different deployment ac-
tivities might be associated with different systems and so a coordina-
tion mechanism is required for cooperation and synchronization among
these activities. In this framework, it is examined whether or not a
technology supports synchronization and data exchange among differ-
ent activities, and whether this support is extended over a wide-area
network.

• Site, Product, and Policy Abstraction: Fig. 3.12 shows an example of
deploying m products on n sites with three policies: confirm (dashed
arrow) which requires a confirmation by the consumer before taking
any action; notify (dotted arrow) which informs the consumer of every
step taken; and automatic (solid arrow) which performs every action
silently. In such a case, in the worst case, m×n×3 specific deployment
procedures for each deployment activity (e.g. Installation) is required.
It means, in such a case, it is similar to having a deployment system
that requires separate scripts for each activity, for every product, at ev-
ery consumer site, and with every kind of execution policy. Obviously,
the number of these scripts could become large. So, a good idea is con-
sidering to what extent different deployment technologies can provide
abstract models for site, product, and policy information. For exam-
ple, in Fig. 3.12, by moving from left to right in the figure and by

44 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 3.12: An Example of site, product, and policy factoring (taken from
[30])

introducing abstract models for site, product, and policy, the number
of specialized deployment procedures reduces.

A site model is an abstraction of a consumer site’s resources and con-
figuration. For example, the site model for a single computer can include
information such as the machine type, the operating system, the available
hardware resources, and the available software resources. This abstraction
allows us to treat all different consumer sites in the same manner.

The product model is an abstraction of the constraints and dependen-
cies of the system to be deployed in such a way that all deployable systems
can be reasoned about in a consistent manner by a particular deployment
procedure. This abstraction includes information as producer contact infor-
mation, subsystem dependency specification, the set of constituent files, and
documentation.

Both site model and product model should provide a standard schema
together with some access and query functions so that deployment activities
can use.

Policy model can contain information for describing scheduling, ordering,
preferences, and security control. Unlike site and product models, it is im-
possible to abstract policy information into a generic schema. So, in [30], just
the policy issues related to parameters for scheduling and control of resource
usage are examined.
Deployment Technologies Examined. There are many different tech-
nologies both in academia and industry which support different parts of the
deployment process. However, [30] classifies them into 5 major categories:

• Installers: They package a stand-alone software system into a self-
installing archive. Then, This package can be distributed to its users.

Problem Description 45

Usually, they also provide some uninstallation features by undoing the
changes they made during installation.

• Package managers: Many operating systems have some utilities to help
system administrators to install, update, and manage software systems.

• Application Management Systems: Their original purpose was to sup-
port the management of corporate LANs in order to detect hardware
and network failures and report them to administration centers. But,
recently they have started to address some software management issues
in medium- or large-scale organizations.

• System Description Standards: these standards specify various hard-
ware and software properties. Thus, they could be used to specify both
the site and product models.

• Delivery of Content: In this category, the information being deployed is
transferred directly from one or more information servers to a number
of client sites.

For each of these categories a number of samples are selected which are
shown in Table 3.2 and Table 3.3. Table 3.2 shows the characterization of
the technologies in terms of deployment process coverage. Table 3.3 shows
their support for changeability, coordination, and model abstraction. In these
tables, a filled circle (•) shows full support and an empty circle (◦) shows
minimal support, and the absence of a circle shows no support at all.

46 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Table 3.2: Software Dock’s deployment process coverage in different tech-
nologies (taken from [30])

Problem Description 47

Table 3.3: Changeability, coordination, and model abstraction in different
technologies (taken from [30])

Chapter 4

Problem Description

This chapter provides a description of the deployment problem we intend to
solve in this research. The focus of this research is on the planning activity of
the software deployment process introduced in Chapter 1. In this research,
we intend to develop the required algorithms for the deployment of channel-
based component-based applications into distributed environments so that
some QoS parameters (e.g., cost, reliability, etc.) are also optimized.

This chapter is structured as follows. Section 4.1 provides a simple exam-
ple of modeling a flight reservation system with the Reo coordination model
which is used as the running example throughout this chapter. Then, Section
4.2 provides a description of the software deployment process and its activ-
ities. Section 4.3 talks about the user-specified inputs that are used during
the deployment planning. Then, in Section 4.4, these inputs are modeled
with the help of graphs. Finally, in Section 4.5, a formal description of the
deployment problem we intend to solve is provided.

4.1 An Example of Composing Web Services

Using Reo

In the following, we provide a simple example of how a Reo connector such
as barrier synchronization can be used to compose a number of Web services
together. Web services refer to accessing services over the Web [55, 56]. In
this example, they are treated as black-box software components.

Suppose a travel agency wants to offer a Flight Reservation Service (FRS).
For some destinations, a connection flight might be required. Suppose some

48

Problem Description 49

Figure 4.1: Modeling the flight reservation system with Reo

other agencies offer services for International Flight Reservation (IFRS) and
Domestic Flight Reservation (DFRS). Thus, FRS commits successfully when-
ever both IFRS and DFRS services commit successfully. This behavior can
be easily modeled by a barrier synchronization connector in Reo (Fig. 4.1).
The FRS service makes commit requests on channel ends A and B. These
commits will succeed if and only if the reservations at the IFRS and DFRS
services succeed at the same time. This behavior is because of the semantic
of the barrier synchronization connector in Reo. This example shows how
Reo succeeds in modeling complex behaviors.

4.2 Deployment Process

Software deployment is a sequence of related activities for placing a developed
application into its target environment and making the application available
for use. Though this definition of software deployment is reasonable and
clear, for developing an automated deployment planner, the characteristics
and nature of the deployment activities must be described more clearly.

Different sequences of activities are mentioned in literature for the soft-
ware deployment process. Some of them are mentioned in Section 3.2.1.
However, in our view, the software deployment process should include at
least the following activities: Acquiring, Planning, Installation, Configura-
tion, and Execution. Below are brief descriptions of these activities:

1. Acquiring: In this activity, the components of the application being
deployed and the metadata specifying the application are acquired from
the software producer and are put in a repository to be used by other
activities of the deployment process.

2. Planning: Given the specifications of the component-based application,
a target environment, and user-defined constraints, this activity deter-

50 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

mines where different components of the application will be executed
in the target environment, resulting in a deployment plan.

3. Installation: This activity uses the deployment plan generated in the
previous activity to install the application into the target environment.
More specifically, this activity transfers the components of the applica-
tion from the repository to the hosts in the target environment.

4. Configuration: After installing the application components into the
target environment, it might be necessary to modify its settings and
configurations. For example, after installing an application, one may
want to set different welcome messages for different users.

5. Execution: following the installation and configuration of the software
application, it can be run. More specifically, the installed application
components into the hosts are launched, the interconnections among
them are instantiated, the components are connected to the intercon-
nections, and the software application actually starts to work.

The focus of this project is on the planning activity of this process. In
the following sections, we talk about this in more detail.

4.3 Deployment Planner Inputs

To generate deployment plans, the following inputs should be specified by
the user: (1) the component-based application being deployed, (2) the dis-
tributed environment in which the application will be deployed, and (3) the
user-defined constraints regarding this deployment. In the following, these
inputs are described in more detail.

4.3.1 Specification of the Application Being Deployed

This input specifies the software application being deployed into the target
environment. In the view of this project, a software application comprises a
number of software components connected by a number of channels with dif-
ferent characteristics. The nature of these software components are irrelevant
to this specification; they are treated as black box software entities that read

Problem Description 51

data from their input ports and write data to their output ports. How they
manipulate the data or their internal details are not important. For example,
they can be processes, Web services, Java beans, CORBA components, and
so on.

In this project, the communications among these black box software en-
tities is done via channels among them. However, these channels can have
different characteristics and implementations. For example, in the case of us-
ing the Reo coordination middleware, channel types T1 −T5 could be defined
as the following channel types (or implementations):

• T1: Sync channel type implemented by shared memory;

• T2: Sync channel type implemented by encrypted peer-to-peer connec-
tion;

• T3: Sync channel type implemented by simple peer-to-peer connection;

• T4: SyncDrain channel type;

• T5: SyncSpout channel type.

Logically, T1−T3 are all implementations of the same channel type (Sync).
However, their hardware requirements and QoS characteristics differ.

Furthermore, it is possible to model the primitives of other communica-
tion models (such as message passing, shared spaces, or remote procedure
calls) by the channel-based communication model [53]. Thus, other kinds of
component-based applications can also be seen as some sorts of channel-based
component-based applications.

In summary, the specification of the application should specify different
components of the application and the channel types among them (e.g., Fig.
4.1).

4.3.2 Specification of the Target Environment

In this project, the target environment for the deployment of the application
is a distributed environment consisting of a number of hosts with computa-
tional capabilities (e.g., PCs, laptops, servers, etc.) connected by a network.
Furthermore, the required software for the communication among the ap-
plication components has been already installed on them. However, since

52 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 4.2: A sample target distributed environment for the deployment of
the flight reservation system

different hosts may have different hardware properties, they may not be able
to support some features of the communication software installed on them,
or it may be even impossible to install some sorts of communication software
on them. It is also possible that different features/versions of the communi-
cation software have been installed on different hosts intentionally because
of some reasons (e.g., cost, security, etc.). With respect to this discussion,
available hosts in the target environment might be able to support different
sets of channel types (or implementations) with different behaviors and QoS
characteristics. As an example, Fig. 4.2 shows a sample target environment
for the flight reservation system consisting of five hosts H1 − H5, connected
by a network (solid lines). In this figure, Tds represent different channel types
(or implementations) that different hosts can support.

In summary, the specification of the target environment specifies available
hosts in the distributed environment for the deployment of the application,
the topology of the physical network among them, and the channel types (or
implementations) that each of them can support.

4.3.3 Specification of the User-defined Constraints

Users may have special requirements and constraints regarding the deploy-
ment of the application that should be taken into account during the de-
ployment planning. For example, users may want a special component to be
run on a certain host, or they may have certain QoS requirements such as
security, cost, or reliability. The deployment planner needs this information

Problem Description 53

to generate a plan that answers these requirements too.
For example, in the flight reservation system, suppose users require the

transfer of data between FRS and IFRS to be encrypted. In addition, they
want FRS to be run on H1, IFRS to be run on either H2 or H3.

4.4 Modeling the Deployment Planner Inputs

The deployment planner inputs should be modeled with well-defined struc-
tures in order to be used for effective deployment planning purposes. In this
section, we show that it is easily possible to develop graph representations of
these inputs. This graph-based modeling can have several advantages. First,
it is possible to have visual representation of the inputs. Second, graph
theory algorithms can help us in designing deployment planning algorithms.
Third, it is possible to use graph theory symbols to formally represent deploy-
ment planner inputs and to prove the correctness of the designed deployment
planning algorithms.

4.4.1 Modeling the Application Being Deployed

In section 4.3.1, we mentioned that channel-based component-based appli-
cations are viewed in this project as a number of components connected by
a number of channels with different characteristics through which they com-
municate. With respect to this description of component-based applications,
it is possible to model any channel-based component-based application as a
graph whose nodes are application components and its edges are channels
among these components.

Definition 4.4.1 (Application Graph) Suppose Cis represent different
components of the application, and Tds represent different channel types.
Then, application graph AG = (VAG, EAG) is defined as a graph on VAG =
{C1, C2, ..., Cn} in which each edge e ∈ EAG has a label le ∈ {T1, T2, ..., Tk}.

For example, Fig. 4.3 shows the application graph for the flight reserva-
tion system. This graph is built with respect to both the specifications of
the application being deployed, and user-defined constraints regarding this
deployment. For example, in the specification of the application (Fig. 4.1),

54 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 4.3: Application graph for the flight reservation system

Sync channels are used to connect FRS and IFRS components. But, as
mentioned in section 4.3.3, users want the transfer of data between FRS and
IFRS to be encrypted. Thus, in the application graph presented in Fig. 4.3,
Encrypted Sync channel type is used between FRS and IFRS components.

4.4.2 Modeling the Target Environment

As mentioned in section 4.3.2, in this project the target environment for the
deployment of the application is a number of hosts with different computa-
tional capabilities connected by a network in a distributed environment and
each of them can support a set of channel types. With respect to this descrip-
tion of the target environment, it is possible to model the target environment
with the help of a graph in which:

• Nodes represent available hosts in the distributed environment;

• Edges represent different channel types that can exist between every
two hosts.

To generate such a graph, first it is required to notice to the following
definitions.

Definition 4.4.2 (Physically Connected) Two distinct hosts Hx and Hy

are physically connected if there is a direct physical link between them in the
distributed environment.

As an example, hosts H1 and H4 in Fig. 4.2 are physically connected.

Problem Description 55

Definition 4.4.3 (Virtually Connected) Two distinct hosts Hx and Hy

are virtually connected if there is not any direct physical link between them
in the distributed environment. But, they are connected indirectly through
intermediate hosts.

As an example, hosts H1 and H2 in Fig. 4.2 are virtually connected.

Definition 4.4.4 (Transitive Channel Type) Suppose two hosts Hx and
Hy are virtually connected. A channel type Td is transitive if it is possible to
create a channel of type Td between them when (1) both of them can support
channel type Td, and (2) all intermediate hosts between them can also support
channel type Td.

For example, in the Reo coordination model, channel type Sync is a
transitive channel type.

Definition 4.4.5 (Non-transitive Channel Type) A channel type Td is
non-transitive if it is possible to create a channel of type Td between two hosts
Hx and Hy only when (1) both of them can support channel type Td, and (2)
they are physically connected.

As an example, in the Reo coordination model, channel type SyncDrain
is a non-transitive channel type.

With respect to the above definitions, target environment graph is defined
in the following way:

Definition 4.4.6 (Target Environment Graph) Suppose His represent
different hosts in the target environment, Tds represent different channel
types, and eHx,Hy,Td

represents an edge from node Hx to node Hy with label Td.
Then, the target environment graph TG = (VTG, ETG) is defined as a graph
on VTG = {H1, H2, ..., Hm} in which the set of edges ETG =

⋃
{eHx,Hy,Td

} is
determined in the following way:

• If Td is a transitive channel type, then there exists an edge eHx,Hy,Td

between two distinct nodes Hx and Hy only if (1) both of them are
physically or virtually connected, (2) both of them support channel type
Td, and (3) if they are virtually connected, all intermediate hosts sup-
port channel type Td.

56 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 4.4: Target environment graph for the distributed environment pre-
sented in Fig. 4.2. T1 − T3 are transitive channel types. T4 − T5 are non-
transitive channel types. For simplicity, loopback edges are not shown.

• If Td is a non-transitive channel type, then there exists an edge eHx,Hy,Td

between two distinct nodes Hx and Hy only if (1) they are physically
connected, (2) both of them support channel type Td.

• If Td can be supported by host Hx, then there is an edge eHx,Hx,Td
from

Hx to Hx (loopback edge).

As an example, Fig. 4.4 shows the target environment graph generated
by this method for the distributed environment presented in Fig. 4.2. To
make the figure simpler, loopback edges are not shown. For a more spe-
cific example, consider hosts H1 and H2 which are virtually connected (i.e.,
through host H4). As mentioned in section 4.3.1, in this example, T1 − T3

are different implementations of the Sync channel type which is a transitive
channel type. Thus, it is possible to have channels of types T1 − T3 between
H1 and H2. Furthermore, both H1 and H2 support channel type T4 (i.e.,
SyncDrain) which is a non-transitive channel type. However, since H1 and
H2 are not physically connected, it is impossible to have a channel of type
T4 between them.

4.5 Definition of the Deployment Problem

After specifying the deployment planner inputs and modeling them with the
help of graphs, they can be used to generate the actual deployment plan.

Problem Description 57

Figure 4.5: A sample deployment for the flight reservation system

This deployment plan determines where different components of the appli-
cation will be executed in the target environment so that all requirements
and constraints are met. The deployment planning approach of this project
is based on the communication resources different application components
require, and different communication resources available on different hosts in
the target environment.

Fig. 4.5 shows one sample deployment for the flight reservation system.
As can be seen in this figure, different components of the application and
channels among them are mapped to different hosts in the target environ-
ment and network links among them for the purpose of this deployment.
Actually, you may notice that in this deployment, different nodes and edges
of the application graph AG shown in Fig. 4.3 are mapped to different nodes
and edges of the target environment graph TG presented in Fig. 4.4. This
mapping is shown in Fig. 4.6. In this way, it is possible to see the deploy-
ment planning as a graph mapping problem from the application graph to
the target environment graph. In this section, we intend to formally define

58 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 4.6: Mapping application graph (Fig. 4.3) to the target environment
graph (Fig. 4.4) to generate a deployment plan for the flight reservation
system

Component Name Candidate Hosts

FRS H1

IFRS H2, H3

DFRS H1, H2, H3, H4, H5

N1 H1, H2, H4, H5

N2 H1, H2, H4, H5

Table 4.1: Candidate hosts for the deployment of the flight reservation system
components

this graph mapping problem. However, before everything, we begin with
defining some general terms which are used in the rest of this report.

Definition 4.5.1 (Candidate Host) Let TCi
= {Td|Td ∈ T, ∃{Ci, Cj} ∈

EAG : l{Ci,Cj} = Td} represent all required channel types by component Ci in
the application graph AG = (VAG, EAG) and let THx

= support(Hx) repre-
sent the set of channel types that host Hx can support. Then, host Hx is a
candidate host for the deployment of component Ci, only if (1) TCi

⊆ THx
,

and (2) host Hx satisfies user-defined constraints regarding the deployment
of component Ci.

This definition implies that a host Hx is a candidate host for the deploy-
ment of component Ci if it supports all required channel types by component

Problem Description 59

Ci in the application graph and also the deployment of component Ci on host
Hx meets user-defined constraints. As an example, Table 4.1 shows the can-
didate hosts for the deployment of the flight reservation system components.
For a more specific example, consider component IFRS. In the application
graph presented in Fig. 4.3, IFRS just requires channel type T2 and all of the
hosts in the target environment presented in Fig. 4.2 support this channel
type. But, as mentioned in section 4.3.3, users want IFRS to be deployed on
either hosts H2 or H3. So, with respect to this constraint, candidate hosts
for the deployment of component IFRS are H2 and H3.

Definition 4.5.2 (Candidate Deployment) Suppose CHCi
represents the

set of candidate hosts for the deployment of component Ci. Then, a candi-
date deployment Dc is a set of pairs (Ci, Hx) in which every component Ci in
the application graph AG = (VAG, EAG) is mapped to a host Hx in the target
environment graph TG = (VTG, ETG) so that host Hx is a candidate host
for the deployment of component Ci, i.e., Dc = {(Ci, Hx)|Ci ∈ VAG, Hx ∈
VTG, Hx ∈ CHCi

}.

For example, {(FRS 7→ H1), (IFRS 7→ H2), (DFRS 7→ H3), (N1 7→ H4), (N2 7→
H5)} and {(FRS 7→ H1), (IFRS 7→ H3), (DFRS 7→ H3), (N1 7→ H4), (N2 7→
H5)} are two candidate deployments for the flight reservation system.

Definition 4.5.3 (Valid Deployment) A candidate deployment Dc is a
valid deployment, if for all edges eCi,Cj ,Td

in the application graph AG =
(VAG, EAG) if components Ci and Cj are mapped to two not necessarily dis-
tinct hosts Hx and Hy in the target environment, then it should be possible to
create a channel of type Td between hosts Hx and Hy, i.e., there should be an
edge eHx,Hy,Td

in the target environment graph TG = (VTG, ETG). Formally
speaking, ∀eCi,Cj ,Td

∈ EAG ⇒ ∃eDc(Ci),Dc(Cj),Td
∈ ETG.

As an example, Dc = {(FRS 7→ H1), (IFRS 7→ H2), (DFRS 7→ H1), (N1 7→
H1), (N2 7→ H2)} is an invalid deployment for the flight reservation system,
because there is an edge eN1,N2,T4

in the application graph presented in Fig.
4.3. But, there is not an edge eDc(N1),Dc(N2),T4

= eH1,H2,T4
in the target en-

vironment graph presented in Fig. 4.4. In other words, with respect to the
specification of the target environment presented in Fig. 4.2, it is impossible
to create a channel of type T4 between hosts H1 and H2.

With respect to above definitions, it is typically possible to deploy a
complex component-based application into a large distributed environment

60 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

for each component Ci in the application do

Find set of candidate hosts, CHCi
;

if CHCi
== null then

return “No Answer!”;

end

end

Generate all permutations of CHCi
s and set them as candidate

deployments;
initialize Best QoS;
for each candidate deployment Dc do

if Dc is a valid deployment then

QoSDc
= Compute QoS(Dc);

if QoSDc
> Best QoS then

Best QoS = QoSDc
;

end

end

end

return Best QoS

Algorithm 1: Exhaustive algorithm for the deployment planning

in many different ways. As an example, consider again the candidate hosts
for deploying each of the components of the flight reservation system shown
in Table 4.1. As can be understood from this table, it is possible to deploy
this application into the target environment in at most 160 = 1×2×5×4×4
different ways (because some of them are invalid deployments). Obviously,
this number is much bigger for complex applications deployments. However,
when some QoS parameters, such as cost, performance, reliability, etc., are
considered, some of these candidate deployments are equivalent, some are
better than others and only a few of them may accommodate the constraints
and requirements of the application. Thus, when QoS of the application is
important, it should be tried to deploy the application so that its desired
QoS parameter is optimized.

The pseudocode presented in Algorithm 1 shows one naive solution to
the deployment problem when QoS of the application should be noticed. In
this pseudocode, first the sets of candidate hosts for deploying different com-
ponents of the application are found. Then, all candidate deployments are

Deployment Algorithm for P2P Target Environments 61

generated by permuting the sets of candidate hosts for different components
of the application. Then, the desired QoS parameter of all valid candidate
deployments is measured and the best one is selected. The complexity of
this algorithm is O(mn + mn) = O(mn), where m is the number of avail-
able hosts in the target environment and n is the number of components
of the application. As we see, this is an exponentially complex solution to
the deployment problem. Thus, when the number of candidate deployments
is large, it is very difficult to generate all of them and then select the best
one. So, a set of algorithms and heuristics should be designed and applied
to effectively solve such an exponentially complex problem. The following
definition, provides a formal definition of the deployment problem we intend
to solve.

Definition 4.5.4 (Deployment Problem) Suppose deployment planner
inputs are used to build the application graph and the target environment
graph according to the methods presented in section 4.4. CHCi

also represents
the set of candidate hosts for the deployment of component Ci. Then, for the
given application graph AG = (VAG, EAG), target environment graph TG =
(VTG, ETG), and QoS parameter Q, the problem is to find an efficient mapping
function D : VAG → VTG such that the application’s Q parameter is optimized,
and the following two conditions are also satisfied:

1. D(Ci) = Hx ⇒ Hx ∈ CH(Ci). This means that all components of the
application must be mapped to one of their respective candidate hosts
for the deployment;

2. ∀eCi,Cj ,Td
∈ EAG ⇒ ∃eD(Ci),D(Cj),Td

∈ ETG. This means that the deploy-
ment D must be a valid deployment.

This definition implies that during the deployment, it is possible to map
several application components to a single host if that host is a candidate
host for the deployment of those components. Furthermore, if there exists a
channel of type Td between two components in the application graph, then
those components can be mapped to two different hosts only if there exists
a channel of type Td between them in the target environment graph.

As an example of how such efficient algorithms and techniques can be
applied to effectively solve the deployment problem, in the following chap-
ter, the deployment problem is solved for the QoS parameters cost and re-
liability, when the target environment is a peer-to-peer (P2P) distributed
environment.

Chapter 5

Deployment Algorithm for P2P

Target Environments

In this chapter, we intend to solve the deployment problem defined in chap-
ter 4 for QoS parameters cost and reliability when the target environment
is a peer-to-peer (P2P) distributed environment (e.g., Internet). In a P2P
distributed environment, two or more computers (called nodes) can directly
communicate with each other, without the need for any intermediary devices
[57]. In other words, it is assumed in this architecture that every two com-
puters in the network are directly connected. In particular, in contrast to
the client/server architecture, in a P2P architecture, nodes have equivalent
responsibilities, enabling applications that focus on collaboration and com-
munication [56]. In this situation, it is not required to consider the issues
related to the physical connectivity among hosts, i.e., transitive property of
channel types. In other words, the physical topology of the network is not
important for us. As an example, Fig. 5.1 shows a sample P2P distributed
environment consisting of four hosts H1 − H4, each of them can support
different subsets of channel types T1 − T7. In this case, the definition of
the target environment graph becomes much simpler than that provided in
Chapter 4.

Definition 5.0.5 (P2P Target Environment Graph)The target envi-
ronment graph TG = (VTG, ETG) for a P2P distributed environment is a
graph on VTG = {H1, H2, ..., Hm} in which there exists an edge eHx,Hy,Td

be-
tween two not necessarily distinct nodes Hx and Hy if and only if both of
them can support channel type Td. Formally speaking:

62

Deployment Algorithm for P2P Target Environments 63

Figure 5.1: A sample distributed environment consisting of fours hosts H1 −
H4 supporting different channel types T1 − T7.

ETG =
⋃
{eHx,Hy,Td

} where

Hx, Hy ∈ VTG∧
Td ∈ support(Hx) ∩ support(Hy)

T = {T1, T2, ..., Tk}
support : VTG −→ 2T

support(Hx) = The set of channel types

that host Hx can support;

eHx,Hy,Td
= An edge from node Hx to

node Hy with label Td;

5.1 Minimum Cost Deployment

Suppose different hosts in the target environment have different costs and
whenever they are being used, their costs should be paid to their administra-
tor(s). In this situation, one QoS parameter of a deployment is its cost and
should be minimized in the deployment plan. For this, two different cases
can be considered:

Case 1: The cost should be paid for each component. In this case, for every
component to be run on each host, its cost should be paid separately. For
example, for each component to be run on host H1, $1000 should be paid
to its administrator(s). Thus, if five components to be run on host H1,
5 × $1000 = $5000 should be paid. The required algorithm of this case is

64 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

for each component Ci in the application do

Find the set of candidate hosts, CHCi
;

if CHCi
== null then

return “No Answer!”;

end

else

Hx = cheapest host in the set CHCi
;

Output: Ci 7→ Hx

end

end

Algorithm 2: Minimum cost deployment algorithm when the cost
should be paid for each component

very simple. In this case, in the set of candidate hosts for the deployment
of each of the application components, the cheapest one is selected and that
component is deployed on it. The pseudocode of this algorithm is shown in
Algorithm 2. This algorithm has the polynomial complexity O(mn).

Case 2: The cost should be paid for each host, no matter how many compo-
nents will be run on it. In this case, the number of components will be run
on each host is not important; if the cost of one host is paid, it is possible to
run as many components as you want on it. The complexity of this case is
much more than the previous one. In this case, it should be tried to select a
subset of available hosts in the target environment so that the total cost of
the deployment is minimized and all the components of the application are
also assigned to a host. This case of the minimum cost deployment problem
is defined formally in the following definition.

Definition 5.1.1 (Minimum Cost Deployment Problem) Suppose the
following inputs are given:

1. A finite set VAG of n components, VAG = {C1, C2, ..., Cn};

2. A collection of subsets of VAG, S = {CSH1
, CSH2

, ..., CSHm
}, in which

each CSHx
corresponds to host Hx, and it represents the subset of appli-

cation components that can be run on host Hx. Also, every component
Ci belongs to at least one CSHx

;

Deployment Algorithm for P2P Target Environments 65

X = Ø, τ = Ø;
while X 6= VAG do

Find the set ω ∈ S that minimizes c(ω)/|ω\X|;
X = X ∪ ω, τ = τ ∪ {ω};

end

Output: τ

Algorithm 3: Greedy approximation algorithm for the minimum set
cover problem

Figure 5.2: A sample application graph. Cis represent application compo-
nents. Tds represent different channel types among them.

3. A cost function c : S −→ R so that c(CSHx
) = c′(Hx). Function

c′ : H −→ R returns the cost of each host.

The minimum cost deployment problem is to find a minimum cost subset of
S (a subset of available hosts) that covers all components of VAG.

This problem is exactly one of the existing problems in graph theory
that is called Minimum Set Cover problem [58]. However, it is proved that
minimum set cover problem is a NP-hard problem and it can not be solved in
polynomial time [58]. But, there exist some greedy approximation algorithms
that can find reasonably good answers in polynomial time. One of the key
algorithms for solving this problem is provided in Algorithm 3. The main idea
in this algorithm is to iteratively select the most minimum cost si ∈ S and
remove the covered elements until all elements are covered. The complexity
of this algorithm is O(log(|VAG|)).

As an example of using this greedy approximation algorithm, suppose
that we want to find the minimum cost deployment of the application whose

66 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Component Name Candidate Hosts

C1 H1, H2

C2 H1, H2, H3

C3 H2, H4

C4 H1, H3, H4

C5 H2

C6 H3, H4

Table 5.1: Candidate hosts for the deployment of the application components
presented in Fig. 5.2 into the target environment presented in Fig. 5.1.

graph is presented in Fig. 5.2 into the target environment shown in Fig. 5.1.
Also, suppose that users want the component C5 to be run on either H1 or
H2. Table 5.1 shows the candidate hosts for deploying the components of this
application graph into the target environment presented in Fig. 5.1. With
respect to Table 5.1, the elements of the minimum cost deployment problem
are defined in the following way:

• VAG = {C1, C2, C3, C4, C5, C6};

• S = {{C1, C2, C4}, {C1, C2, C3, C5}, {C2, C4, C6}, {C3, C4, C6}};

• c′(H1) = $1000, c′(H2) = $2500, c′(H3) = $2000, c′(H4) = $1500.

By applying the greedy approximation algorithm, we will have the follow-
ing results and the minimum cost will be c′(H2) + c′(H4) = $2500 + $1500 =
$4000:

• {(C1 7→ H2), (C2 7→ H2), (C3 7→ H2), (C4 7→ H4), (C5 7→ H2), (C6 7→
H4)};

• {(C1 7→ H2), (C2 7→ H2), (C3 7→ H4), (C4 7→ H4), (C5 7→ H2), (C6 7→
H4)}.

Note that it is possible to use the algorithm presented here more generally
for some other QoS parameters too, when you want to minimize the total
usage of some resources of available hosts in the target environment. In this
situation, it is possible to define the cost function c to return the amount of
that resource for each host and then use the greedy approximation algorithm
presented in Algorithm 3 to find the solution.

Deployment Algorithm for P2P Target Environments 67

5.2 Reliable Deployment

In this section, our focus is on maximizing the reliability of the software
application, defined as the probability of failure-free software operation for
a specified period of time in a specified environment [59]. In the context
of distributed environments, one potential problem is network failures. In
these environments, connectivity losses can lead to disastrous effects on the
system’s reliability, and the software application may not provide its desired
functionality. To reduce the risks of this problem, one solution is to make the
communications among the application components as local as possible. In
this way, components located in the same host can communicate without any
respect to the network’s status. Thus, we define the most reliable deployment
configuration as one with the least amount of communications among the
hosts in the distributed environment. From another point of view, this can
be seen as the increased performance. This is because of the fact that in
distributed environments, network communications have some overheads on
the software application. Thus, reduced communication among hosts can
result in a higher performance.

5.2.1 Use of Multiway Cut Problem in Reliable De-

ployment Planning

In this section, we show that the reliable deployment problem corresponds
to the multiway cut problem in graph theory [63].

Definition 5.2.1 (Multiway Cut Problem) Let G = (V, E) be an undi-
rected graph on V = {v1, v2, ..., vn} in which each edge e ∈ E has a non-
negative weight w(e), and let T = {t1, t2, ..., tm} ⊆ V be a set of terminals.
Multiway cut is the problem of finding a set of edges E ′ ⊆ E such that the
removal of E ′ from E disconnects each terminal from all other terminals, and
solution cost MC =

∑

e∈E′ w(e) is also minimized.

Suppose AG = (VAG, EAG) is the application graph of the software appli-
cation being deployed, VTG = {H1, H2, ..., Hm} represents the set of available
hosts in the target environment, and CHCi

represents the set of candidate
hosts for the deployment of component Ci. To solve the reliable deployment
problem, a graph G = (V, E) is made in the following way:

68 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 5.3: A graph built for finding the most reliable deployment configu-
ration of the application presented in Fig. 5.2 into the target environment
shown in Fig. 5.1.

• V = VAG ∪ VTG. This means that the components of the application
and hosts of the target environment are set as the nodes of graph
G = (V, E).

• E = EAG ∪ EH , where EH = {{Ci, Hx}|Ci ∈ VAG, Hx ∈ CHCi
}. This

means that E includes both the edges of the application graph, and
edges that connect each component to its respective candidate hosts
for the deployment.

• w(e) =

{
1 e ∈ EAG

n2 e ∈ EH
. Here n2 shows a large number. This means

that the weight of the application graph edges are set as 1 and the
weight of the edges connecting application components to their candi-
date hosts for the deployment are set as n2.

Fig. 5.3 shows an example of a graph developed in this way for the
application graph presented in Fig. 5.2, and the target environment presented
in Fig. 5.1. In this graph, if we set hosts as the terminals of the multiway cut
problem, we prove in the following theorem that the solution of the multiway
cut problem is the solution of the reliable deployment problem we intend to
solve.

Deployment Algorithm for P2P Target Environments 69

Theorem 5.2.1 Suppose graph G = (V, E) is built in the way mentioned
earlier, and hosts of the target environment are set as the terminals. Then,
the multiway cut solution of this graph is the solution of the reliable deploy-
ment problem we are looking for. This means that the application components
that lie in the same subgraph with a host should be deployed on that host, and
this deployment configuration has the least number of channels among hosts.

Proof Suppose n represents the number of components of the application,
and k represents the size of the EH , i.e., k = |EH |. In the multiway cut
solution we are looking for, each component must be assigned to exactly one
host. Thus, (k−n) edges whose total weight is n2(k−n) will be removed from
the EH in the cut. Also, suppose LOPT represents the solution of the reliable
deployment problem, i.e., the least number of channels among hosts after the
deployment of the application. Actually, these channels are those application
graph edges that lie in the cut, and their total weight is LOPT × 1 = LOPT.
Thus, our goal is to prove that MC = n2(k − n) + LOPT. For this purpose,
we should prove that MC ≤ n2(k − n) + LOPT and MC ≥ n2(k − n) + LOPT.

Case A: MC ≤ n2(k − n) + LOPT.

Suppose a deployment D : VAG −→ VTG whose cost is optimum is done,
i.e., it has LOPT number of channels among hosts. Now, assume that
C is its corresponding cut in the graph G = (V, E):

C = {{Ci, Hx}|D(Ci) 6= Hx, {Ci, Hx} ∈ EH}
︸ ︷︷ ︸

M

⋃

{{Ci, Cj}|D(Ci) 6= D(Cj), {Ci, Cj} ∈ EAG}
︸ ︷︷ ︸

N

M represents the set of edges of EH that lie in the cut, and N represents
the set of edges of EAG that lie in the cut. The size of M is (k − n)
and the size of N is LOPT. Furthermore, the weight of the edges in
M is n2 and the weight of the edges in N is 1. With respect to this
description:

w(C) = w({{Ci, Hx}|D(Ci) 6= Hx, {Ci, Hx} ∈ EH})+
w({{Ci, Cj}|D(Ci) 6= D(Cj), {Ci, Cj} ∈ EAG})

= n2 × |{{Ci, Hx}|D(Ci) 6= Hx, {Ci, Hx} ∈ EH}|+
1 × |{{Ci, Cj}|D(Ci) 6= D(Cj), {Ci, Cj} ∈ EAG}|

= n2(k − n) + LOPT

70 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Since MC is the cost of the optimum multiway cut, for sure, MC ≤
w(C). Therefore, MC ≤ n2(k − n) + LOPT.

Case B: MC ≥ n2(k − n) + LOPT.

Suppose C is the optimum multiway cut for graph G = (V, E) whose
cost is MC. Now, we want to use this cut to generate its corresponding
deployment D. For this purpose, we prove the following subcases:

Subcase B.1: Cut C includes at most (k − n) edges of EH .

Suppose we want to find a cut whose cost is the heaviest. In
the deployment configuration we are looking for, each component
should be assigned to exactly one host. For this purpose, for each
component Ci in graph G, we keep an arbitrary edge connecting
that component to an arbitrary host, and we cut the rest of the
edges in EH and EAG. Since the maximum number of edges in
the application graph is (n

2), the cost of this cut is at most (n
2) +

n2(k − n). Thus, the cost of the multiway cut C can not be more
than n2

2
+ n2(k − n). This means that the cut C includes at most

(k−n) edges of EH . Because, for example, if it includes (k−n+1)
edges of EH , then the cost of the cut would be (n

2)+n2(k−n+1)
which is more than the maximum cost we found here.

Subcase B.2: Each component Ci is connected to at most one host
in the cut C.

Suppose a component Ci is connected to two different hosts Hx

and Hy in the cut. This means that Hx and Hy are connected
together in the cut. However, since Hx and Hy belong to the set
of terminals, this is impossible. Therefore, Ci is connected to at
most one host in the cut.

Subcase B.3: Each component Ci is connected to exactly one host
in the cut C.

From subcases B.1 and B.2 together, it can be easily understood
that each component Ci is connected to exactly one host in the cut
C. D(Ci) represents the host on which component Ci is mapped.

By using the subcase B.3, cut C’s corresponding deployment configura-
tion D can be made. Suppose LD = |{{Ci, Cj}|D(Ci) 6= D(Cj), {Ci, Cj} ∈
EAG}| represents the cost of the deployment configuration D, i.e., the

Deployment Algorithm for P2P Target Environments 71

1. For each terminal ti ∈ T , find a minimum-cost set of edges Cti
whose removal disconnects ti

from the rest of the terminals;
2. Discard cut Ctx

whose cost w(Ctx
) is the heaviest;

3. Output the union of the rest, call it C.

Algorithm 4: Approximation algorithm for solving the multiway cut
problem.

Figure 5.4: An approximation for the multiway cut of the graph presented
in Fig. 5.3.

number of channels among the hosts in the deployment configuration
D. In the following, we prove the correctness of case B:

MC = n2(k − n) + |{{Ci, Cj}|{Ci, Cj} ∈ C, {Ci, Cj} ∈ EAG}|
≥ n2(k − n) + |{{Ci, Cj}|D(Ci) 6= D(Cj), {Ci, Cj} ∈ EAG}|

= n2(k − n) + LD =⇒
MC ≥ n2(k − n) + LD ≥ n2(k − n) + LOPT

Cases A and B together imply that MC = n2(k − n) + LOPT. Therefore,
the correctness of theorem 5.2.1 is proved.

In theorem 5.2.1, we showed that the solution of the reliable deployment
problem can be found by solving the multiway cut problem in graph theory.
However, it is proved that the multiway cut problem is an NP-hard problem

72 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

when the number of terminals is greater than two. Thus, unless P=NP, it
does not have a polynomial time solution [63]. However, it is possible to find
many approximation algorithms for the multiway cut problem in literature
[63, 64, 65]. One of the well-known and very simple approximation algorithms
developed by Dalhaus et al. is provided in Algorithm 4 [63]. This algorithm
finds a minimum cost cut for each terminal ti separating it from the remaining
terminals. Then, outputs the union of the m−1 cheapest of the m cuts. As an
example, Fig. 5.4 shows an example of applying this algorithm on the graph
presented in Fig. 5.3. As we see in this figure, one of the main problems of
these approximation algorithms is that some components may not be assigned
to any hosts (e.g., C4 and C6). To solve this problem, after applying the
multiway cut approximation algorithm on the graph, we check whether or
not all components are assigned to a host. If there are some components
which are not assigned to any hosts, we connect those components to one
of their candidate hosts for the deployment, and we cut all the application
graph edges that are connected to those components. This approach not
only will solve the problem, but also will improve the approximation of the
multiway cut. Because, we are actually removing from the multiway cut
approximation some heavy edges that connect the components to the hosts.
Thus, the cost of the multiway cut is being reduced. Consequently, the result
is closer to the optimum solution we are looking for. After applying this
improvement on the multiway cut approximation presented in Fig. 5.4, one
possible solution for the reliable deployment problem is {(C1 7→ H2), (C2 7→
H2), (C3 7→ H2), (C4 7→ H4), (C5 7→ H2), (C6 7→ H4)}.

Chapter 6

Prototype Implementation

At the time of writing this report, we have implemented a deployment planner
tool by Java using the algorithms provided in Chapter 5. The inputs of this
tool are “Application.inf” and “Target.inf” files. In “Application.inf”, the
components of the application being deployed and the channel types among
them are specified. In other words, the topology of the application to be
deployed is specified in this file. In the “Target.inf” file, available hosts in
the target environment and their properties are specified. These properties
include different channel types they can support, their costs, their IPs, and
so on.

The data structure used to hold the information about the application
and the target environment is Linked-List. In this structure, the topology of
the application is kept as a linked-list of components. Each component itself

Figure 6.1: Linked-list holding the application graph of the flight reservation
system

73

74 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

Figure 6.2: Linked-list holding the properties of available hosts in the target
environment of the flight reservation system

points to a linked-list containing the information about adjacent components
and the channel types used to connect the current component to them (Fig.
6.1). Also, the information about the target environment is kept as a linked-
list of hosts. Each host points to a linked-list holding the properties of that
host (Fig. 6.2). As we see, this linked-list data structure is flexible and gives
us the freedom to define as many properties as we want for different hosts.
After processing the input files and generating these linked-lists, the deploy-
ment planner tool uses them and starts to generate the actual deployment
plan.

Chapter 7

Conclusions and Future Work

The software deployment process is defined as a sequence of related activ-
ities that makes an already developed application available for use in its
operational environment. For simple stand-alone applications that should
be installed only on a single computer, this process is easy. However, for
complex component-based applications that should be deployed into a large
distributed environment and some QoS parameters have to be also optimized,
the deployment process is not that straightforward. In this report, we pre-
sented our ongoing work on addressing this problem. The main aim of this
work is to design and develop an automated planner for the deployment of
channel-based, component-based applications into distributed environments.
For this purpose, we used the concept of peer-to-peer communication chan-
nels to capture the properties of interconnections among the components of
the application. Then, our deployment planner did the planning with respect
to the various channel types (or channel implementations) required by dif-
ferent components of the application, and various channel types (or channel
implementations) that different hosts in the target environment can support.

In this report, we proposed a graph-based approach to address this de-
ployment problem. In this approach, the component-based application to be
deployed is modeled as a graph of components connected by different channel
types. The target environment is also modeled as a graph of hosts connected
by different channel types that can exist among them. Then, the deployment
problem is defined as finding efficient algorithms for mapping the application
graph to the target environment graph so that the desired QoS parameter is
optimized. This report presented required algorithms for optimizing the cost
and reliability of the deployments.

75

76 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

For future work, we intend to solve the deployment problem for other QoS
parameters such as performance and security. More specifically, we have the
following research objectives in our work:

• Developing a number of general and efficient algorithms for different
QoS parameters to effectively deploy channel-based, component-based
applications into distributed environments;

• Developing a deployment planner tool by using the algorithms designed
in step one;

• Proving the correctness of our algorithms by applying them on a num-
ber of case studies.

Bibliography

[1] Gibbs, W. W. Software’s Chronic Crisis. Scientific American, September
1994, pp. 86-95

[2] Karlsson, E. A., Sorumgard S., and Tryggeseth, E. Classification of
Object-Oriented Components for Reuse. In Proceedings of the 7th Inter-
national Conference on Technology of Object-Oriented Languages and
Systems , Dortmund, Germany, 1992, pp. 21-31.

[3] Leue, S. Software Engineering: Introduction and History,
http://tele.informatik.uni-freiburg.de/ leue/IU/it460.part1.pdf.

[4] Brooks, J. F. P. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, 20, 4 (April 1987), pp. 10-19.

[5] Butler, G. Quality and Reuse in Industrial Software Engineering. In
Proceedings of Asia-Pacific Software Engineering Conference and In-
ternational Computer Science Conference, December 1997, Hong Kong,
IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 3-12.

[6] Troya J. M., and Vallecillo, A. On the Addition of Properties to Compo-
nents. In Proceedings of the 2nd International Workshop on Component-
Oriented Programming (WCOP’97), June 1997, Jyvskyl, Finland, pp.
95-103.

[7] Brown A. W., and Short, K. On Components and Objects: The Foun-
dations of Component-Based Development. In Proceedings of the 5th
International Symposium on Assessment of Software Tools (SAST ’97),
June 1997, Pittsburgh, PA, USA, IEEE Computer Society Press, pp.
112-121.

77

78 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

[8] Reekie H. J., and Lee, E. A. Lightweight Component Models for Embed-
ded Systems. Technical report, Electronics Research Laboratory, Uni-
versity of California at Berkeley, UCB ERL M02/30, October 2002.

[9] Yacoub, S., Ammar, H., and Mili, A. Characterizing a Software Compo-
nent. In Proceedings of the 2nd International Workshop on Component-
Based Software Engineering, in conjunction with IEEE/ACM 21st In-
ternational Conference on Software Engineering (ICSE99), Los Angeles,
CA, USA, May 1999.

[10] Szyperski, C. Component Software - Beyond Object-Oriented Program-
ming. Addison-Wesley/ACM Press, 1999.

[11] Kozaczynski, W. Composite Nature of Component. In Proceedings of
the 1999 International Workshop on Component-based Software Engi-
neering, May 1999, pp. 73-77.

[12] Goulo, M., and Abreu, F. B. Towards a Components Quality Model.
Work in Progress Session of the 28th Euromicro Conference (Euromicro
2002, Dortmund, Germany, 2002.

[13] Yacoub, S., Mili, A., Kaveri, C., and Dehlin, M. A Hierarchy of COTS
Certification Criteria. In Proceedings of the 1st Software Product Line
Conference (SPLC1), Denver, Colorado, USA, August 2000.

[14] Aitken, A. M. Components and Component-Based Software Develop-
ment. In Proceedings of the 3rd Western Australian Workshop on Infor-
mation Systems Research (WAWISR), Edith Cowan University, Perth,
WA, USA, November 2000.

[15] Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothhelfer-Kolb, B. A COTS
Acquisition Process: Definition and Application Experience. In Proceed-
ings of the 11th ESCOM Conference, Munich, Germany, Shaker Publi-
cations, April 2000, pp. 335-343.

[16] Wuyts R., and Ducasse, S. Composition Languages for Black-Box
Components. In Proceedings of the 1st OOPSLA Workshop on Lan-
guage Mechanisms for Programming Software Components, Tampa Bay,
Florida, USA, October 2001.

Bibliography 79

[17] Orso, A., Harrold, M. J., and Rosenblum, D. S. Component Metadata
for Software Engineering Tasks. In Proceedings of the 2nd International
Workshop on Engineering Distributed Objects (EDO 2000), LNCS 1999,
Davis, CA, USA, November 2000, pp. 126-140.

[18] Crnkovic, I., Component-based Software Engineering - New Challenges
in Software Development, Software Focus, 2, 4 (Winter 2001), 127-133.

[19] RPM Package Manager, http://www.rpm.org/.

[20] InstallShield Developer, http://www.installshield.com/isd/.

[21] Zero G Software Deployment and Lifecycle Management Solutions,
http://www.zerog.com/.

[22] Java Web Start Technology, http://java.sun.com/products/javawebstart.

[23] Microsoft Windows Update, http://update.microsoft.com.

[24] ClickOnce: Deploy and Update Your Smart Client Projects Using a
Central Server, MSDN Magazine, May 2004,
http://msdn.microsoft.com/msdnmag/issues/04/05/clickonce/default.aspx.

[25] Dell OpenManage Systems Management,
http://www1.us.dell.com/content/topics/global.aspx/solutions/en/openma
nage.

[26] IBM eServer BladeCenter Systems Management,
http://www.redbooks.ibm.com/redpapers/pdfs/redp3582.pdf.

[27] Systems Management Server Home, http://www.microsoft.com/smserver/.

[28] IBM Tivoli Software, http://www.tivoli.com/.

[29] Altiris Deployment Solution,
http://www.altiris.com/products/deploymentsol/.

[30] Carzaniga, A., Fuggetta, A., Hall, R. S., Hoek, A. V. D., Heimbigner,
D., Wolf, A. L. A Characterization Framework for Software Deployment
Technologies. Technical Report CU-CS-857-98, Dept. of Computer Sci-
ence, University of Colorado, April 1998.

80 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

[31] Hall, R.S., Heimbigner, D., and Wolf, A.L. A Cooperative Approach to
Support Software Deployment Using the Software Dock. In Proceedings
of the 1999 International Conference on Software Engineering, ACM
Press, New York, May 1999, pp. 174-183.

[32] Heimbigner, D., Hall, R.S., and Wolf, A.L. A Framework for Analyzing
Configurations of Deployable Software Systems. In Proceedings of the
Fifth IEEE International Conference on Engineering of Complex Com-
puter Systems, October 1999, p. 32.

[33] Lestideau, V. and Belkhatir, N. Providing Highly Automated and
Generic Means for Software Deployment Process. In Proceedings of the
9th International Workshop on Software Process Technology (EWSPT
2003), Helsinki, Finland, September 1-2, 2003, pp. 128-142.

[34] Object Management Group, Deployment and Configuration of
Component-based Distributed Applications Specification,
http://www.omg.org/docs/ptc/04-05-15.pdf.

[35] Bulej, L. and Bures, T. Using Connectors for Deployment of Heteroge-
neous Applications in the Context of OMG D&C Specification. In Pro-
ceedings of the INTEROP-ESA 2005 Conference, Geneva, Switzerland,
Feb 2005.

[36] Hnetynka, P. Making Deployment of Distributed Component-based Soft-
ware Unified. In Proceedings of CSSE 2004 (part of ASE 2004), Linz,
Austria, Austrian Computer Society, Sep 2004, pp. 157-161.

[37] Hnetynka, P. Component Model for Unified Deployment of Distributed
Component-based Software. Technical Report No. 2004/4, Department
of Software Engineering, Charles University, Prague, Jun 2004.

[38] CORBA Component Model (v3.0),
http://www.omg.org/technology/documents/formal/components.htm.

[39] Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/.

[40] Brunneton, E., Coupaye, T., Stefani, J. B. The Fractal Component
Model, http://fractal.objectweb.org/.

Bibliography 81

[41] Plasil, F., Balek, D., Janecek, R. SOFA/DCUP: Architecture for Com-
ponent Trading and Dynamic Updating. In Proceedings of the Fourth
IEEE International Conference on Configurable Distributed Systems
(ICCDS’98), Annapolis, USA, 1998.

[42] Magee, J., Kramer, J. Dynamic Structure in Software Architectures. In
Proceedings of the Fourth ACM SIGSOFT Symposium on Foundations
of Software Engineering (FSE-4), San Francisco, USA, 1996.

[43] Allen, R. A Formal Approach to Software Architecture, PhD thesis,
Carnegie Mellon University, 1997.

[44] Garlan, D., Monroe, R. T., Wile, D. Acme: Architectural Description of
Component-based systems. In Foundation of Component-based Systems,
G. T. Leavens and M. Sitaraman (eds), Cambridge University Press,
2000.

[45] Balek, D., Plasil, F. Software Connectors and Their Role in Component
Deployment, In Proceedings of DAIS’01, Krakow, Kluwer, Sep. 2001.

[46] Rus, D., Gray, R., Kotz, D. Transportable Information Agents. In Pro-
ceedings of the first ACM International Conference on Autonomous
Agents, 1997, pp. 228-236.

[47] Silva Filho, R.S. Mobile Agents and Software Deployment. ICS280-
Configuration Management and Runtime Change Final Paper, Informa-
tion and Computer Science Department, University of California Irvine,
Fall 2000.

[48] Sudmann, N.P. and Johansen, D. Software Deployment Using Mobile
Agents. In Proceedings of First International IFIP/ACM Working Con-
ference on Component Deployment (CD 2002), Berlin, Germany, June
20-21, 2002.

[49] Mikic-Rakic, M., Malek, S., Beckman, N. and Medvidovic, N. A Tai-
lorable Environment for Assessing the Quality of Deployment Architec-
tures in Highly Distributed Settings. In Proceedings of the Second In-
ternational Working Conference on Component Deployment (CD 2004),
Edinburgh, UK, May 20-21, 2004.

82 Caspian: A QoS-Aware Deployment Approach, A. Heydarnoori

[50] Wichadakul, D., and Nahrstedt, K. A Translation System for Enabling
Flexible and Efficient Deplyoment of QoS-aware Applications in Ubiqui-
tous Environments. In Proceedings of the First International IFIP/ACM
Working Conference on Component Deployment (CD 2002), Berlin,
Germany, 2002.

[51] Mikic-Rakic, M. and Medvidovic, N. Architecture-Level Support for
Software Component Deployment in Resource Constrained Environ-
ments. In Proceedings of the First International IFIP/ACM Working
Conference on Component Deployment (CD 2002), Berlin, Germany,
June 20-21, 2002.

[52] Lacour, S., Prez, C., and Priol, T. A Software Architecture for Auto-
matic Deployment of CORBA Components Using Grid Technologies. In
Proceedings of the First Francophone Conference On Software Deploy-
ment and (Re)Configuration (DECOR 2004), Grenoble, France, October
2004, pp. 187-192.

[53] Arbab, F. Reo: A Channel-based Coordination Model for Component
Composition. Mathematical Structures in Computer Science, 14, 3 (June
2004), pp. 329-366.

[54] Arbab, F. and Mavaddat, F. Coordination through channel composition.
In Proceedings of the 5th International Conference on Coordination Mod-
els and Languages (Coordination 2002), LNCS 2315, Springer-Verlag,
pp. 21-38.

[55] WEB SERVICES: FOOD FOR THOUGHT.
http://www.cutter.com/webservices/wss0209.pdf.

[56] Web Services Conceptual Architecture.
http://www-306.ibm.com/software/solutions/webserv
ices/pdf/WSCA.pdf.

[57] Schollmeier, R. A Definition of Peer-to-Peer Networking for the Classi-
fication of Peer-to-Peer Architectures and Applications. In Proceedings
of the IEEE 2001 International Conference on Peer-to-Peer Computing
(P2P2001), Linkping, Sweden, August 27-29, 2001.

[58] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. Introduction
to Algorithms, Second edition, MIT Press, 2001.

Bibliography 83

[59] Lyu, M. R. Handbook of Software Reliability Engineering, IEEE Com-
puter Society Press and McGraw-Hill, 1996.

[60] Arbab, F., de Boer, F. S., Bonsangue, M. M., and Guillen-Scholten, J.
V. MoCha: A Middleware Based on Mobile Channels. In Proceedings of
COMPSAC 2002, IEEE Computer Scociety Press, 2002.

[61] Katis, P., Sabadini, N. and Walters, R. F. C. A Formalization of the
IWIM Model. In Proceedings of the 4th International Conference on Co-
ordination Languages and Models (COORDINATION 2000), Limassol,
Cyprus, September 11-13, 2000.

[62] Bonsangue, M. M., Arbab, F., de Bakker, J. W., Rutten, J., Scutell, A.
and Zavattaro, G. A Transition System Semantics for the Control-driven
Coordination Language Manifold. Theoretical Computer Science, 240, 1
(June 2000), pp. 3-47.

[63] Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D. and
Yannakakis, M. The Complexity of Multiterminal Cuts. SIAM Journal
on Computing, 23, 4 (August 1994), 864-894. Preliminary version ap-
peared in STOC’92.

[64] Calinescu, G., Karloff, H., and Rabani, Y. An Improved Approximation
Algorithm for Multiway Cut. Journal of Computer and System Sciences,
60, 3 (June 2000), 564-574. Preliminary version in STOC’98.

[65] Vazirani, V. V. Approximation Algorithms, Second Edition, Springer,
2002.

	Introduction
	Deployment Planner Inputs
	Deployment Planning
	Proposed Approach
	Outline

	Background
	Software Crisis and Software Engineering
	Software Components
	Software Components: Pros and Cons

	Reo Coordination Model
	Reo Operations
	A Useful Set of Primitive Channels
	An Examples of Reo Connectors

	Related Work
	 Software Deployment Tools in Industry
	Stand-alone Installers
	Web-based Deployment Tools
	Systems Management Tools

	 Software Deployment Approaches in Research
	Deployment Frameworks
	Using Mobile Agents in Software Deployment
	QoS-Aware Deployment
	Architecture Driven Deployment
	Deployment into Computational Grids

	Software Dock Characterization Framework

	Problem Description
	An Example of Composing Web Services Using Reo
	Deployment Process
	Deployment Planner Inputs
	Specification of the Application Being Deployed
	Specification of the Target Environment
	Specification of the User-defined Constraints

	Modeling the Deployment Planner Inputs
	Modeling the Application Being Deployed
	Modeling the Target Environment

	Definition of the Deployment Problem

	Deployment Algorithm for P2P Target Environments
	Minimum Cost Deployment
	Reliable Deployment
	Use of Multiway Cut Problem in Planning

	Prototype Implementation
	Conclusions and Future Work

