Optimal Superblock Instruction Scheduling for
Multiple-Issue Processors using Constraint
Programming”

Abid M. Malik, Tyrel Russell, Michael Chase, Peter van Beek

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Canada

Abstract

Modern processors have multiple pipelined functional units and can issue more than
one instruction per clock cycle. This puts great pressure on the instruction schedul-
ing phase in a compiler to expose maximum instruction level parallelism. Instruction
level parallelism (ILP) at the local level using basic blocks is limited. Compilers in-
crease ILP by doing instruction scheduling at the global level using larger regions,
which are created by combining basic blocks. Superblocks are one of the most com-
monly used scheduling regions for global instruction scheduling. Superblock schedul-
ing is NP-complete, and is done sub-optimally in production compilers using heuris-
tic approaches. In this work, we present a constraint programming approach to the
superblock instruction scheduling problem that is both optimal and fast enough to
be incorporated into production compilers. We experimentally evaluated our optimal
scheduler on the SPEC2000 integer and floating point benchmarks. On this benchmark
suite, the optimal scheduler was very robust and scaled to the largest superblocks. De-
pending on the architectural model, between 99.991% to 99.999% of all superblocks
were solved to optimality. The scheduler was able to routinely solve the largest su-
perblocks, including superblocks with up to 2600 instructions. This compares favorably
to the recent best work by Shobaki and Wilken on optimal superblock scheduling using
dynamic programming and enumeration.

1 Introduction

Modern processors are pipelined and can issue more than one instruction per clock cycle.
The main challenge is to find an order of instructions that minimizes pipeline stalls with
out violating dependency or resource constraints. Depending upon the scope, there are two

*Technical Report CS-2006-37, David R. Cheriton School of Computer Science, University of Waterloo,
2006.

B
Dependency
Flow
- &
W - !
—- +
—,
Exit
Flow B2
............ > R — h 4
a] e
wa
¥ Ba
N
Bs
b
. ex
wy
k4
g
Bs
A 4

Figure 1: Section of a Control Flow Graph (CFG) with five basic blocks. Control enters
through ey and can leave through ey, ey, e3 or es.

types of instruction scheduling: local and global instruction scheduling. In local instruc-
tion scheduling, the reordering is done within a basic block. On wider issue machines, this
approach does not detect enough parallelism among instructions to keep all the functional
units busy. This bottleneck has stimulated substantial research effort in global instruction
scheduling, where instructions are allowed to move across basic blocks.

Figure 1 shows a region in a Control Flow Graph (CFG)!consisting of five basic blocks.
Instructions in the basic block B, are independent of the instructions in basic blocks Bsy, Bs
and Bs. We can increase ILP by inserting instructions from B, into the free slots available in
B,, B and Bs. This is only possible if we schedule instructions in all basic blocks at the same
time. Many regions have been proposed for performing global instruction scheduling. The
most commonly used regions are traces [13], superblocks [20] and hyperblocks [28]. The com-
piler community has mostly targeted superblocks for global instruction scheduling because
of their simple implementation as compared to the other regions. Superblock scheduling is
harder than basic block scheduling. In basic block scheduling, all resources are considered
available for the basic block under consideration. In superblock scheduling, having multiple
basic blocks with conflicting resource and data requirements, each basic block competes for
the available resources [18]. A number of heuristics have been developed for superblock
scheduling. However, even the best heuristics produce sub-optimal solutions [30].

Previous work on optimal instruction scheduling is mainly basic block based and several
approaches, including: branch-and-bound enumeration [6, 16, 17, 25, 36], dynamic pro-
gramming [23], integer linear programming [1, 4, 22, 24, 38], and constraint programming

'A CFG is an abstract data structure used in compilers to represent a program.

[12, 37, 27] have been proposed. However, little work has been done on optimal global in-
struction scheduling [36, 39]. A major challenge, when developing an exact approach to an
NP-complete problem, is to develop a solver that scales and is robust in that it rarely fails to
find a solution in a timely manner on a wide selection of real problems. Winkel [39] presents
an integer linear programming model for global instruction scheduling problem for Itanium
processors. The model is limited to small regions with size up to 200 instructions. Shobaki
and Wilken [36] were the first to develop a robust optimal scheduler for superblocks that
scaled up to large superblocks. Their experimental work is limited to superblocks with size
up to 1236 instructions. For their work, instruction latencies are 2 cycles for floating point
(FP) adds, 3 cycles for loads and FP multiplies, 9 cycles for FP divides and 1 cycle for all
other instructions. Our test suite, obtained from the IBM TOBEY compiler, contains larger
superblocks with size upto 2600 instructions and more varied latencies. Our test suite also
contains zero latency edges, which are used to capture anti-dependencies and output depen-
dencies? between two instructions. This makes the optimal superblock scheduling problem
more challenging.

In a constraint programming approach, one models a problem by stating constraints on
acceptable solutions, where a constraint is simply a relation among several unknowns or
variables, each taking a value in a given domain. The problem is then usually solved by
interleaving a backtracking search with a series of constraint propagation phases. In the
constraint propagation phase, the constraints are used to prune the domains of the variables
by ensuring that the values in their domains are locally consistent with the constraints. In
developing our optimal scheduler, the keys to scaling up to large, real problems were im-
provements to the constraint model and to the constraint propagation phases.

We experimentally evaluated our optimal scheduler on the SPEC2000 integer and floating
point benchmarks, using four different architectural models. On this benchmark suite, the
optimal scheduler scaled to the largest superblocks and was very robust. Depending on
the architectural model, at most 15 superblocks out of 187334 superblocks used in our
experiments could not be solved within a 10-minute time bound. In our experiments we also
performed a detailed analysis of several state-of-the-art heuristics for superblock scheduling
in comparison to the optimal scheduler.

2 Background

In this section, we first define the instruction scheduling problem studied in this paper
followed by a brief review of the needed background from constraint programming (for more
background on these topics see, for example, [19, 29, 31]).

2 An anti-dependency occurs when an instruction requires a value that is later updated; an output depen-
dency occurs when the ordering of instructions will affect the final output value of a variable.

2.1 Target Machine Architecture

We consider multiple-issue pipelined processors. On such processors, there are multiple
functional units, and multiple instructions can be issued (begin execution) each clock cycle.
Associated with each instruction is a delay or latency between when the instruction is issued
and when the result is available for other instructions that use the result. In this paper, we
assume that all functional units are fully pipelined, that instructions and functional units
are typed, and that instructions of a given type only execute on one type of functional
unit. Examples of types of instructions are load/store, integer, floating point, and branch
instructions.

2.2 Superblock Scheduling

A basic block is a collection of instructions with a unique entrance and a unique exit point.
Larger scheduling units for global instruction scheduling such as traces, superblocks and
hyperblocks are built by combining basic blocks. A trace [13] can have multiple side exit
points (control flow out of the trace) and multiple side entrance points (control flow into the
trace). Traces are created by marking the most frequently executed paths in a CFG using
profiling. Scheduling based on traces is known as trace scheduling. In trace scheduling,
a trace is scheduled independently ignoring side exit and side entrance points. This may
move some instructions across side exit and side entrance points. Book keeping is done to
ensure the correct execution of the program. Figure 2 explains the book keeping process
for downward movement of an instruction across a side exit point. Trace-1 and Trace-2 are
connected by the control flow from instruction 2 (exit point in Trace-1) to instruction 3 (side
entrance point in Trace-2). Trace scheduling moves instruction 1 across instruction 2 in the
downward direction. In order to ensure execution of instruction 1, even if the program jumps
from instruction 2 to instruction 3, a copy of instruction 1 is placed between instruction 2
and instruction 3. Upward movement of an instruction across a side exit point is known as
speculation and the moved instruction is called a speculative instruction. An instruction is
allowed to be a speculative instruction if (i) the destination of the speculative instruction is
not used before it is redefined when the exit point is taken and (ii) the speculative instruction
will never cause an exception that may terminate program execution when the exit point is
taken. Special hardware support is needed to handle speculative instructions, but no book
keeping is done.

Complex book keeping is done when an instruction is moved across a side entrance. In
Figure 3(a), instruction 5 is moved upward across the side entrance point. To ensure the ex-
ecution of instruction 5, if the control is entering the trace through the side entrance, a copy
of instruction 5 is placed at the entrance point. In Figure 3(b), instruction 1 is moved down-
ward across the entrance point, and placed after instruction 4. For correct execution of the
program, if the control enters the trace through the side entrance, instruction 1 should not
be executed. The entrance point is moved down after instruction 1 and copies of instruction
3 and instruction 4 are placed at the side entrance. Book keeping for side entrance points
makes other compiler optimization phases more difficult. This can be avoided by removing
side entrance points in traces. Hwu et al. [20] give a solution by introducing superblocks

4

1is moved dovmward
across 2

Copy of
1 for Book
Keeping

Trace-2 Trace-1

Figure 2: Book keeping for the downward movement across a side exit point: instruction
2 is a side exit point for Trace-1 and instruction 3 is a side entrance point in Trace-2.
Instruction 1 is moved downward across instruction 2. A copy of instruction 1 is placed
between instruction 2 and instruction 3.

which have unique entrance and multiple exit points. Superblocks are built from traces, and
tail duplication is performed to remove the side entrances into a trace. All blocks from the
side entrance to the end of the trace are duplicated, and all side entrances are redirected
into the copy. Therefore, a superblock can have a single entry point but might have more
than one exit point. Figure 4 shows the formation of a superblock. Basic blocks By, By and
B, form superblock S;. Basic blocks B3 and Bj form superblock Ss.

We use the standard labeled directed acyclic graph (DAG) representation of a superblock
(see [31]). Each node corresponds to an instruction and there is an edge from 7 to j labeled
with a non-negative integer [(i,7) if j must not be issued until ¢ has executed for [(i,j)
cycles. In particular, if [(i,j) = 0, j can be issued in the same cycle as 4; if [(i,j) = 1, j
can be issued in the next cycle after 7 has been issued; and if (i, j) > 1, there must be some
intervening cycles between when i is issued and when j is subsequently issued. These cycles
can possibly be filled by other instructions.

The critical-path distance from a node i to a node j in a DAG, denoted ¢p(i, j), is the
maximum sum of the latencies along any path from i to 7, if there exists a path from ¢ to
j; —oo otherwise. A node 7 is a predecessor of a node j if there is a directed path from ¢
to 7; if the path consists of a single edge, 7 is also called an immediate predecessor of j. A
node j is a successor of a node i if there is a directed path from ¢ to j; if the path consists
of a single edge, j is also called an immediate successor of i. A sink node is a node with
no successors. A root node is a node with no predecessor. For convenience, we assume that
a fictitious sink node, hereafter called the sink node, is added to each DAG and that an

() (b)

Figure 3: Book keeping (a) upward movement across side entrance instruction; (b) downward
movement across side entrance instruction.

edge is added from each node 7 in the DAG to the sink node, where the label on the edge
is the latency of instruction i. Ezit nodes are special nodes in a DAG, representing branch
instructions, which have some associated weightage. The weightage represents the chance
that the flow of control will leave the superblock through this exit point and are calculated
using profiling. The weightage for an exit node e;, denoted by w;, is also known as the exit
probability. Figure 5 shows a DAG for a superblock.

When scheduling a basic block in local instruction scheduling, the objective is to minimize
the schedule length of the basic block. In the case of global scheduling with superblocks, the
objective is to minimize the Weighted Completion Time (WCT); i.e., the number of cycles
from the entry point to each exit point, weighted by the exit probability. The weighted
completion time is referred to as the cost function for the optimal superblock scheduling
problem.

Definition 1 (Weighted Completion Time) Let G(V, E) be a DAG that represents a
superblock, where V' is the set of nodes and E is the set of edges in G. Let there be n
branch instructions, i.e., exit points. Let w; be the weight of branch e;, where 1 < i < n and
e; € V. The weight of a branch instruction is equal to the exit probability associated with
that branch instruction. Hence, Y . , w; = 1. The weighted completion time, WCT, for G

. n
is Y 1, wie;.

A schedule for a superblock is an assignment of a clock cycle to each instruction such that
the precedence, latency and resource constraints are satisfied.

Definition 2 (Optimal Superblock Scheduling) Let S be a schedule for a superblock’s

(b)

Figure 4: Superblock formation: B; is a basic block in a CFG (a) Path B; — By — By has
the highest probability of execution; (b) In order to remove the entrance from Bs to path
By — By — By, a copy of B, is created, called tail duplication, and the flow from Bj is
directed towards Bj.

DAG G with weighted completion time W. Schedule S is an optimal schedule for G, iff W
is the minimum for all schedules for G.

Example 1 Consider the superblock in Figure 5. Nodes E and K are branch instructions,
with exit probability 0.3 and 0.7 respectively. Consider a fully pipelined processor with
two functional units. One functional unit can execute clear instructions and the other can
execute shaded instructions. Figure 5(b) shows two possible schedules, S; and S,. For S,
WCT = 0.3 x44 0.7 x 15 = 11.7 cycles. And for Sy, WCT = 0.3 x5+ 0.7 x 14 = 11.3
cycles. Schedule S5 is an optimal solution.

List scheduling is the commonly used algorithm for superblock scheduling. It is a greedy
algorithm and gives near optimal solutions. It maintains a priority queue of ready instruc-
tions which are instructions with no predecessors. The priority of an instruction is calculated
using a heuristic. For a given clock cycle, the list scheduler picks the top instructions in the
priority queue. The number of picked instructions depend upon the number of functional
units and the available free slots in the given cycle. If it could not find any instruction, it
inserts a NOP (No OPeration). It continues this process until all instructions are sched-
uled. Many heuristics have been crafted to find a good schedule including critical path [20],
successive retirement [5], dependence height and speculative yield [13], G* [5], speculative
hedge [10] and balance scheduling [30]. In our work we did a detail analysis of critical path,
G*, dependence height and speculative yield and speculative hedge heuristics with respect
to their success for finding optimal solutions. We dropped the balance scheduling and suc-
cessive retirement heuristics because of their high computational cost.

7

7.
/i% cycle S So
1 A A
\.) -'/D> 2 C B C D
3 D B
\/5/ s 1[G [®
TN 5 I G E
03 . \}\ 6 I
L}J 7 F
@ @ . -
S
0 1 10
(’l\ @ 11
x/ @ o .
; CKD/ l 13 H J
T 14 J K
0‘.:1.-’ 15 K

(a) (b)

Figure 5: (a) Superblock representation: nodes E and K are exit nodes with exit probabilities
0.3 and 0.7 respectively; (b) two possible schedules for Example 1.

Superblocks, when introduced [20], were scheduled using the critical path heuristic. The
critical path heuristic is good when the aim is to minimize the distance between the root and
the sink node. In superblock scheduling the objective is to minimize the WCT'. Exit nodes,
which define the W CT', may not be on the critical path of a DAG representing a superblock.
Hence, this heuristic may not be a good choice for finding a good schedule for superblock
scheduling.

The Dependence Height and Speculative Yield (DHASY) [13] heuristic is a modified ver-
sion of the critical path heuristic for superblock scheduling. Instead of a plain critical path,
a weighted critical path to all exit points is used to prioritize the instruction nodes in a
superblock. The priority of an instruction x is calculated as,

priority(z) =Y (we(ep(1,n) +1 = ((cp(1,€) — cp(x, €)))

ecB

where B is the set of exit nodes that are descendants of x, ¢p(1,n) is the critical path dis-
tance between the root and the sink node, ¢p(1,e) is the critical path distance between the
root node and exit node e and ¢p(z,e) is the critical path distance between instruction z
and exit node e.

In the G* heuristic [5], a superblock is scheduled using the critical path heuristic. The
rank for each exit point is then calculated by dividing the cycle in which the exit point is
scheduled by the sum of the exit probabilities for the exit point under consideration and
its preceding exit points. The exit points are sorted in ascending order. The final schedule
for the superblock is obtained by taking an exit point from the sorted list one by one and
scheduling it as early as possible with its predecessors.

The Speculative Hedge [10] heuristic calculates the priority of an instruction by the sum of
the weights of the branches that it helps schedule early. Speculative Hedge investigates each
operation to determine whether it helps still unscheduled exit points or not. An operation
can help an exit point in two ways: (i) the operation is on the critical path to the exit point
and delaying the operation will delay the exit point, and (ii) the operation uses a critical
resource that is critical to the exit point, and preferring some other operation will delay
the exit point. An operation’s priority is the sum of the exit probabilities helped by the
operation.

2.3 Constraint Programming

Constraint programming is a methodology for solving combinatorial problems. A problem
is modeled by specifying constraints on an acceptable solution, where a constraint is simply
a relation among several unknowns or variables, each taking a value in a given domain.

Definition 3 (Constraint Model) A constraint model consists of a set of n wvariables,
{z1,...,2,}; a finite domain dom(x;) of possible values for each variable z;, 1 < i < n; and
a collection of r constraints, {C,...,C,}. Each constraint C;, 1 < i < r, is a constraint
over some set of variables, denoted by wvars(C;), that specifies the allowed combinations of
values for the variables in vars(C;). A solution to a constraint model is an assignment of a
value to each variable that satisfies all of the constraints.

Constraint models are often solved using a backtracking algorithm. At every stage of the
backtracking search, there is some current partial solution that the algorithm attempts to
extend to a full solution by assigning a value to an uninstantiated variable. One of the keys
behind the success of constraint programming is the idea of constraint propagation. During
the backtracking search when a variable is assigned a value, the constraints are used to reduce
the domains of the uninstantiated variables by ensuring that the values in their domains are
“consistent” with the constraints. The form of consistency we use in our approach to the
instruction scheduling problem are bounds consistency.

Definition 4 (Bounds Consistency Constraint Propagation) Given a constraint C,
a value d € dom(z) for a variable x € vars(C') is said to have a support in C if there exist
values for each of the other variables in vars(C) — {z} such that C is satisfied, where for
each variable y its value is taken from [min(dom(y)), max(dom(y))]. A constraint C'is bounds
consistent if for each z € vars(C), the value min(dom(x)) has a support in C' and the value
max(dom(z)) has a support in C.

A constraint model can be made bounds consistent by repeatedly removing unsupported
values from the domains of its variables. Example 2 explains the concept of bounds consis-
tency constraint propagation.

cycle S

1 A |E
2 B C
3 D |F
4 G

(a) (b)

Figure 6: (a) Superblock (taken from [30]) for Example 2. Nodes D and G are branch
instructions; (b) a possible schedule for Example 2.

Example 2 Consider the constraint model of the small instruction scheduling problem in

Figure 6(a) with variables A, ..., G, each with domain {1,2, 3,4}, and the constraints,
Oli DZA—Fl, 033 DZC—Fl, 053 GZF+1,
Cy: D>B+1, Cy: F>E+2, Ce: G>D+1,

C7: gee(A,B,C,D,E, F,G,width = 2),

where constraint C7, a global cardinality constraint (gcc), enforces that atmost two in-
structions can be issued in any cycle. The constraints are not bounds consistent. For
example, the minimum value 1 in the domain of D does not have a support in constraint
C1, Cy and Cjs as there is no corresponding values for A, B and C that satisfies the con-
straints. Enforcing bounds consistency using constraints C; through Cg reduces the do-
mains of the variables as follows: dom(A) = {1,2}, dom(B) = {1,2}, dom(C) = {1,2},
dom (D) = {2,3}, dom(E) = {1,2}, dom(F) = {3}, and dom(G) = {4}. We are consid-
ering dual-issue fully pipelined processors. Enforcing bounds consistency using C7 reduces
the domain of D to dom(D) = {3}. Now, arbitrarily picking® A and E for the first cycle
and enforcing bounds consistency using C7 again will reduce the domains of variables as

3In constraint programming, special heuristics are adopted to select variables.

10

follows: dom(A) = {1}, dom(B) = {2}, dom(C) = {2}, dom(D) = {3}, dom(E) = {1},
dom(F) = {3} and dom(G) = {4}, which is a schedule S given in Figure 6(b).

3 Our Solution

In this section, we present our constraint model of the superblock instruction scheduling
problem. In the constraint programming methodology a problem is modeled in terms of
variables, values, and constraints. The choice of variables defines the search space and the
choice of constraints defines how the search space can be reduced so that it can be effectively
searched using backtracking search.

We model each instruction by a variable with names 1,...,n (we use ¢ to refer interchange-
ably to variable i, instruction ¢, and node 7 in the DAG). The domain of each variable dom (i)
is a subset of {1, ..., m} which are the available time cycles. Assigning a value d € dom(i) to
a variable ¢ has the intended meaning that instruction ¢ will be issued at time cycle d. The
domain dom(i) = {a,...,b} of a variable i is represented by the endpoints of the interval

[a, b].

The six main types of constraints in the model are latency, resource, distance, predecessor
and successor, safe pruning, and dominance constraints. For details on these constraints,
consult the work by Malik et al. [27]. We discuss here only the dominance constraints and
distance constraints for subgraphs in a DAG for a superblock.

3.1 Dominance constraints

Heffernan and Wilken [17] present a set of graph transformations for dependency DAGs
for basic blocks and show that optimally scheduling the transformed DAGs using branch-
and-bound enumeration is faster and more robust. The DAG transformations reduce the
search space while preserving optimality and hence are safe. Malik et al. [27] found that
these transformations also worked well in a constraint programming approach for basic block
scheduling. The transformations add simple constraints to the model of the form 7 > j, which
they call dominance constraints.

For the transformation, we are interested in pairs of disjoint, isomorphic subgraphs A and
B induced from a given dependency DAG. Subgraphs A and B are isomorphic, if there is
a mapping from the node set of A to the node set of B such that A and B are identical
(identical instruction types, edges, and latencies on the edges). That adding dominance
constraints between A and B is safe is based on the following theorem.

Theorem 1 (Heffernan and Wilken [17]) Let A and B be isomorphic subgraphs in a
DAG G, of a basic block, with node sets V(A) = {ay,...,a,} and V(B) = {by,...,b,}. If,
(i) a; is neither a predecessor or a successor of b;, 1 < i < r, (ii) for all k£ € pred(a;) such
that k£ & V(A), I(k,a;) < cp(k,b;), 1 < i <r, (iii) for all k& € suce(b;) such that k ¢ V(B),

11

() (b)

Figure 7: Examples of adding dominance constraints: (a) (adapted from [17]) the constraints
B < C,D<E, and F < E would be added to the constraint model; (b) the constraints B
<(C,C<D,..., F <G would be added to the constraint model.

[(bi, k) < eplai, k), 1 <i<r, and (iv) for any edge (b;, a;), l(b;, a;) < cp(ai, bj), then adding
the constraints a; < b;, 1 < i <r in G} is safe.

Example 3 Consider the DAG shown in Figure 7a. Dominance constraints can be added
iteratively as follows. First, the subgraphs with nodes V(A) = {B, D} and V(B) = {C,
E} are isomorphic and satisfy the conditions of the theorem. Hence, the constraints B < C
and D < E can be added to the model. Adding these constraints updates the critical path
distances. In particular, ¢p(D, E) was —oo and is now 0. Second, the subgraphs with nodes
V(A) = {F} and V(B) = {E} are isomorphic and now satisfy the conditions of the theorem.
Hence, the constraint F' < E can be added to the model.

Adding a dominance constraint in a dependency DAG for a superblock is safe, if it does
not change the optimal cost function value; i.e, WCT of the DAG. The number of speculative
instructions across an exit node define the speculative characteristic of the exit node. The
speculative characteristic of exit nodes and their schedule length affect the WC'T value. Let
G be a DAG of a superblock S. Let [7 be the minimum schedule length of exit node e; from
the root node of G for all schedules of S. If there are n exit nodes in S, then a lower bound,
C*, on the value of W(C'T can be calculated as:

=1

Let [; be the schedule length of exit node e; from the root node of G in any schedule of S.
The following relationship holds between C* and the value of WCT', C, for any schedule:

=1 =1

12

Let C’ be the difference between C' and C* i.e.,

c' = C-C,
C, = Zwl(lz—lf),
i=1

C, == zn:wléz,
=1

where Vi,0; = [; — 7. 0; gives the distance of e; from its minimum schedule length in any
schedule for the superblock. In order to ensure an optimal solution for G after a transfor-
mation, we have to ensure that ¢; does not change after the transformation. The value of §;
depends upon the number of instructions that can be moved across e;; i.e., the speculative
characteristic of ¢; and the minimum schedule length of e;. If we preserve the speculative
characteristic and the minimum schedule length of e;, we preserve the value of §; and hence
the optimal cost function value for G after transformation.

Definition 5 (Immediate Predecessor Exit Node) If all paths from an exit node e; to
a node j do not contain any other exit node, then e; is an immediate predecessor exit node
of j.

Definition 6 (Immediate Successor Exit Node) If all paths from a node j to an exit
node e; do not contain any other exit node, then e; is an immediate successor exit node of j.

Example 4 Consider Figure 5. Nodes E and K are exit nodes. Node E is the immediate
predecessor exit node for nodes F,G, H,I and .J. Node K is the immediate successor exit
node for nodes F, G, H, I and J.

We restate the theorem by Heffernan and Wilken [17] for dependency DAGs for su-
perblocks.

Theorem 2 Let A and B be isomorphic subgraphs in a DAG G, of a superblock S, with
node sets V(A4) = {ay,...,a,} and V(B) = {by,...,b,.}. If, (i) a; is neither a predecessor or
a successor of b;, 1 < i <r, (ii) for all k& € pred(a;) such that k & V(A), I(k,a;) < ep(k,b;),
1 <i<r,(iii) for all k£ € succ(b;) such that k& & V(B), l(b;, k) < ep(a;, k), 1 <i<r, (iv) for
any edge (b;, a;), l(bi,aj) < ep(a;,b;), and (v) neither a; nor b;, 1 < i < r, are exit nodes.
Then adding the constraints a; < b;, 1 <7 < r in Gy is safe.

Proof. Figure 8 shows the two possibilities of adding a dominance constraint in a su-
perblock. Subgraph A and B are same as in Theorem 2; i.e., A dominates B. To show that
the transformations are safe, we must show that the transformations preserve the speculative
characteristic and the minimum schedule length of the exit nodes.

13

Figure 8: Adding dominance constraints in a superblock. A and B are isomorphic graphs (a)
Case-1: V(B) consists of speculative nodes (b) Case-2: V(A) consists of speculative nodes.

Part-1 : Preserving the speculative characteristic of exit nodes.

Case-1 : V(B) consists of speculative nodes that can be moved across basic blocks. By insert-
ing zero-latency edges from V(A) to V(B) (adding dominance constraints V(A) < V(B)),
we are restricting the movement of b; € V(B) to be below e;; i.e., e;, which is an immediate
predecessor exit node for a; € V(A), now is also the immediate predecessor exit node for
b; € V(B). According to condition (ii) of Theorem 2, there is a path from each predecessor
of a; € V(A) to b; € V(B). As there is a path from e; to each predecessor of a; € V(A), then
there is also a path from e; to b; € V(B), which also makes e; the immediate predecessor
exit for b; € V(B). Thus the transformations do not change the speculative characteristic of
the exit nodes in the superblock.

Case-2 : V(A) consists of speculative nodes that can be moved across basic blocks. By in-
serting zero-latency edges from V(A) to V(B), we are restricting the movement of a; € V' (A)
to be above e;1; i.e., €;,1, which is the immediate successor exit node for b; € V(B), now is
also the immediate successor exit node for a; € V(A). According to condition (iii) of Theo-
rem 2, there is a path from a; € V(A) to successors of b; € V(B). As there is a path from
each successor of b; € V(B) to e;;1, then there is also a path from each a; € V(A) to e;41,
which also makes e;,; the immediate successor exit for a; € V/(A). Thus the transformations
do not change the speculative characteristic of the exit nodes in the superblock.

Part-2 : Preserving the minimum schedule length of exit nodes.

The minimum schedule length of e;,; can be determined by scheduling a subgraph G’ con-
taining e;,1 and all its predecessors using an optimal scheduler. According to Theorem 1,
adding dominance constraint within G’ preserves the minimum schedule length of ;1.

14

Case-1 : V(B) consists of speculative nodes that can be moved across basic blocks. This case
can be further divided into following three sub-cases:

e When for every b; € V(B), there is a path from b; to e;;;. This makes each b; € V(B)
a predecessor of e;;1, i.e., b; € V(G'). Then the transformations are within subgraph
G'. The transformations preserve the minimum schedule length of e; ;.

e When for every b; € V(B), there is no path from b; to e;,;. It means b; > V(G’). Then
the transformations are outside of subgraph G’. The transformations do not change
G'. The transformations preserve the minimum schedule length of e; ;.

e When for some b; € V(B), there is a path from b; to e;;; and for some b; € V(B) there
is no path from b; to ;1. Let By be a subgraph of B consisting of b; € V(B) which
has a path to e;;1. Let A; be a subgraph of A which is isomorphic to By. Then adding
dominance constraints from a; € V(A;) to b; € V(By) are within G’ and dominance
constraints from a; € V(A — Ay) to b; € V(B — By) are outside of G'. The transfor-
mations preserve the minimum schedule length of e;, ;.

Case-2 : V(A) consists of speculative nodes that can be moved across basic blocks. In this
case all immediate successors of b; € V(B) are predecessors of e;,1. According to condition
(iii) of Theorem 2, there is a path from a; € V(A) to successors of b; € V(B). As there is a
path from each successor of b; € V(B) to e;;1, then there is also a path from each a; € V' (A)
to e;41, which also makes e;,; the immediate successor exit for a; € V(A). The transforma-
tions are within subgraph G’.The transformations preserve the minimum schedule length of

€it1-

Thus, the transformations are safe. [

Example 5 Consider the DAG shown in Figure 9(a). Nodes H and I are speculative nodes
as they can be moved across exit node G. Hence, the number of speculative instructions
across exit node G is 2. The subgraphs with nodes V(A) = {C, E} and V(B) = {H, I} are
isomorphic and satisfy the conditions of Theorem 1. Hence, the constraints C < H and E <
I can be added to the model. Figure 9(b) shows the DAG with the added constraints. The
added constraints do not change the speculative characteristic of exit node G, as node H
and node [still can be moved across node G.

Testing isomorphism is NP-complete in general. Malik et al. [27] give a fast heuristic
to determine whether two components are isomorphic. In this work, we adopted the same
strategy for finding isomorphic graphs to add dominance constraint.

3.2 Upper bound distance constraints

Wilken et al. [38] introduced the concept of region in their work for optimal basic block
scheduling using integer programming. Using the concept of region, Van Beek and Wilken

15

() (b)

Figure 9: Example of adding dominance constraints in a superblock; (a) actual DAG; (b)
the constraints C < H, E < I (zero latency edges) would be added to the constraint model.
Nodes A, G and L are exit nodes.

[37] introduced the distance constraint in their work for optimal basic block scheduling using
constraint programming. The distance constraint improves the lower bound for the distance
that must exist between a pair of instructions, defining the region, in any schedule. In our
work, we give an upper bound for the distance constraint for a region between a pair of
articulation nodes. Consider articulation nodes x; and x; in a superblock, with no exit node
in between them, a distance constraint of the form z; + d;; > x; is added to the constraint
model. If there is no resource contention at x;, then d;; is the minimum schedule length, [7;,
between x; and z; in any legal schedule for the superblock. If there is resource contention
at x;, then d;; = [3; + 1. Adding upper bound distance constraints for such regions is based

on Theorem 3.

Definition 7 (Region) A pair of nodes x;,z; in a DAG define a region if there is more
than one path between z; and x; and there does not exist a node z;, distinct from z; and x;
such that every path between x; and x; goes through z;.

Definition 8 (Articulation Node) Let G be a graph. Node V; € V(G) is an articulation
node for G, if the subgraph of G induced by V(G)/{V;} is unconnected.

Definition 9 (Resource Contention) Let G be a DAG for superblock. Let B;_; and B;
be two basic blocks in G’ connected by exit node e;. If instructions from B;_; and B; compete
for slots available at the clock cycle in which e; can be issued, then there is said to be resource
contention at the exit node e;.

16

Figure 10: Articulation node and resource contention: (a) no resource contention at the
articulation node F; (b) resource contention at the articulation node E.

Example 6 Consider Figure 10. Assume a fully pipelined processor with issue-width equal
to four. Basic block B consists of nodes A, B,C,D and E. Basic block B, includes of
nodes F, F,G and H. Node E is an articulation node. There is resource contention at E in
Figure 10(b), as nodes B, C, D from B; and nodes F, G from By compete for the slots in the
cycle in which E can be issued. There is no resource contention at E in Figure 10(a).

Theorem 3 The schedule length of a region between two consecutive articulation nodes,
with no exit nodes in-between them, can not be more than [* 4+ 1, where [* is the optimal
schedule length of the region when scheduled independently.

Proof. Consider a region r;; between exit nodes z; and z; in a superblock S. Where z; is
a predecessor of x;, and there are no exit nodes between z; and x; as per the statement of
Theorem 3. When r;; is scheduled independently, all resources are considered at the disposal
of region r;; at clock cycle 1. An optimal scheduler will give optimal schedule length [* for
rij. In any schedule for S, r;; can not have schedule length less than [*. When there is
no resource contention at x;, the situation is the same as if the region was being scheduled
independently. If there is resource contention, then some resources might still be occupied
by the instructions which are predecessors of x;. Let ¢; be the clock cycle of x;. If we insert
a free slot at ¢; + 1, then all resources will be available for the region r;;, and all the nodes in
rij can be scheduled within ¢; + [* 4+ 1 schedule length from x;. Thus, the distance between
x; and x; can not be more than [* 41 in any schedule for S. [J

Example 7 Figure 11(a) is a region in a superblock bounded by articulation nodes A and E.
Nodes X and Y are predecessor nodes of A. With latency of more than zero between A and

17

Figure 11: Region for Example 7: (a) no resource contention at the articulation node A; (b)
region between node A and E in isolation; (c¢) resource contention at the articulation node

A.

cycle| Schedule
1 A B

2 C D

3 E

Table 1: An optimal schedule for the region in Figure 11(b).

its predecessor nodes, there is no resource contention at node A. The distance between A and
E can not be less than the minimum schedule length of the region scheduled independently
by an optimal scheduler. Figure 11(b) shows the region in isolation. Considering a dual-
issue processor, Table 1 gives a minimum length schedule for the region. In Figure 11(c),
the latency between A and its predecessor nodes is not zero. This gives rise to resource
contention at A. The worst case is when one of the predecessor node takes the slot parallel
to node A. But, we can still schedule all the nodes in the region (excluding A) within the
minimum length after the node A issue slot.

3.3 Improved lower and upper bounds for cost variables

The cost function, cost, is given by,

n
cost = E W; Ty,
i=1

where w; is the exit probability of exit node e; with schedule length x;. The cost function
value from any efficient heuristic approach can be used as an upper bound. Given an upper
bound, ¢, on cost and bounds on the variables in the cost function, i.e. exit nodes; it is
straightforward to improve upper bounds for each cost function variable by considering each
exit node at their minimum domain value except the exit node under consideration. An
upper bound improvement for exit node e; can be calculated as:

18

=1
n
C Z Cjj + Zwlxz
i=1
i#£]
c— Y i wir
i#] > x;
Cj
c— Y w; - min(z;)
i#£] > zj
wj
c— Y i w; - min(z;)
= > (1)

We also use singleton consistency to prune the upper bounds of the cost variables. In
singleton consistency, a variable is temporarily instantiated to a single value and the con-
straint model is tested for consistency. If the consistency test fails, the value can be removed
from the domain of the variable. In our work, we iteratively instantiated and tested the
consistency on the upper bounds of the domains of the variables. Let z; be a cost vari-
able and dom(xz;) = [a,b]. We temporarily instantiate z; <— b and test whether the CSP
is consistent by propagating the constraints and also by testing, once the constraints have
been propagated and the lower bounds have potentially been updated, whether Equation 1
is satisfied. If the CSP is not consistent or the equation is not satisfied, the domain of z; is
set to [a,b — 1] and the process repeats.

Given a lower bound ¢ on cost and bounds on the variables in the cost function, the lower
bound for each cost function variable can be improved by considering each exit node at their
maximum domain except the node under consideration. A lower bound improvement for
exit node e; can be determined by Equation 2.

c— Zfill ¢; - max(x;)

1]
< x; 2
w; =T ()

We also use singleton consistency to prune the lower bounds of the cost variables. Let
x; be a cost variable and dom(z;) = [a,b]. We temporarily instantiate z; <— a and test
whether the CSP is consistent by propagating the constraints and also by testing, once
the constraints have been propagated and the lower bounds have potentially been updated,
whether Equation 2 is satisfied. If the CSP is not consistent or the equation is not satisfied,
the domain of z; is set to [a + 1,b] and the process repeats.

19

3.4 Solving an instance

We construct the constraint model and use the constraints to establish the lower bounds
of the variables and a lower bound on the length m of an optimal schedule. Given m, the
upper bounds of the variables are similarly established. A lower bound on the value of the
cost function of an optimal schedule is given by:

n
cost = Zwixi
i=1
n
> Zwi - min(x;)
i=1

An upper bound on the value of the cost function is found by a heuristic approach. If
lower(cost) = upper(cost), then the schedule given by the heuristic approach is optimal.
If lower(cost) # upper(cost), an optimal schedule can be determined depending upon the
characteristic of the superblock. For a superblock with all exit points as articulation points,
Algorithm 1 is adopted. In Algorithm 1, ConstraintModel constructs a constraint model of
DAG G. SubConstraintModel gives a sub-constraint model of G with exit node e; as final
exit point. OptimalSchedule gives the optimal schedule length for exit node e; using sub-
constraint model C'M’. The optimal scheduler for basic blocks by Malik et al. [27] has been
used as OptimalSchedule. UpdateDomain makes the domain of exit node e; the singleton
domain equal to ;.

Algorithm 1: Algorithm for finding an optimal schedule for a superblock with exit
points as articulation points

input : Dependency DAG G for a Superblock §
output: Optimal Schedule for S

CM = ConstraintModel (G);
for i=0 to n do

{
CM'" = SubConstraintModel (C M, i);

L; = OptimalSchedule(CM', Schedule);
UpdateDomain(i, L;) CM);
}

return Schedule;

Example 8 Consider Figure 12. Using Algorithm 1, an optimal schedule for the superblock
can be obtained by first finding the minimum schedule length of exit node e, then fixing
this node at its minimum schedule length slot and finding the minimum schedule length for

20

I
- !
w1
v
—
Ba
-
- 2

Figure 12: Superblock for Example 8; all exit nodes are articulation points

next exit node e and so on. This methodology ensures an optimal solution by the following
theorems.

Lemma 1 When scheduling a superblock using Algorithm 1, the first basic block of the
super block will have schedule length equal to [*, where [* is the optimal schedule length of
the basic block when scheduled independently.

Proof. When a superblock is scheduled using Algorithm 1, the resource condition for the

first basic block is same as when it is scheduled independently using an optimal scheduler.
OJ

Theorem 4 Scheduling a superblock with all exit nodes as articulation nodes using Algo-
rithm 1, each exit node in the superblock is at the minimum schedule length from the root
node of the superblock.

Proof. Let S be a schedule for a superblock obtained using Algorithm 1. Let there be n
exit nodes in the superblock with ey as the root node. Let L;, 0 < i < n, be the schedule
length of exit node e; from ¢y in S. Let S’ be any other feasible schedule of the superblock.
Let L, 0 <i < n, be the schedule length of exit node e; from ¢y in S’. Our claim is:

Vi, L; < L

We will use a proof by contradiction approach. Suppose there exist values of ¢ for which
this claim is not true. Let j be the smallest such value; i.e. for Vi < j, the claim is true, and
e; is the first exit node which contradicts the claim. For this condition to be true, we have
to examine two cases.

21

l Lj_1 ej_1

Figure 13: Case-2: L; > L exists when L; | < L},

Case-1: L; > L) exists when L; , =L, , .

This is not possible. As we are using a true optimal scheduler. Had there been a schedule
which gives L), < Lj, when L; = L ,, the optimal scheduler would have found it.

Case-2: L; > L) exists when L; | <L ,.

Figure 13 explains case-2 graphically. Let X; be the schedule length of the basic block Bj,
that exists between exit nodes e; and e;_1, in the schedule S, that is found using Algorithm 1.
Let X} be the schedule length of the same basic block in the schedule S’, having L; > L',
found by any other heuristic. The relationship between X; and X can be expressed as:

X; = X;+ A+ Ay, (3)

where Ay = L) | — L;j y and Ay = L; — L. We know that L; > L and L; | < L ;.
Therefore, A1, Ay > 1. Let Njpyay = N1 + ANg. Then we can safely say that Ay > 2.
According to Theorem 3, X, +1 > X; > X, where X, is the optimal schedule length
of basic block B; when scheduled independently. When there is resource contention at e;_1,
then X; = X, + 1 and Equation 3 can be written as:

Xopj - X], + Atota,l -1 (4)

In Equation 4, Ayt — 1 > 1. Thus, Xop; > X}. This can not be true. Now, if there is no
resource contention at e;, then X; = X,, . Equation 3 can be written as,

Xop]- = XJI + Atota,l (5)

In Equation 5, Ayyer > 2. Thus, Xop; > X}. This is not possible. Hence, case-2 is not
possible.

22

Thus, the contradiction, L; > L, is not true. [J

Theorem 5 Scheduling a superblock with all exit nodes as articulation nodes using Algo-
rithm 1 will give an optimal schedule for the superblock.

Proof. By using Theorem 4. [

If lower(cost) # upper(cost), and each exit point in a superblock is not an articulation
node, we used backtracking along with constraint propagation, as used by Malik et al. [27]
for their CSP model for basic block instruction scheduling, to find an optimal solution.

4 Experimentation

In this section, we describe the experimental evaluation of our optimal superblock scheduler.

The constraint programming model was implemented and evaluated on all of the su-
perblocks from the SPEC2000 integer and floating point benchmarks [http://www.spec.org].
The benchmarks were compiled using IBM’s Tobey compiler [3] targeted towards the IBM®
PowerPC® processor [21], and the superblocks were captured as they were passed to To-
bey’s instruction scheduler. The superblocks contain four types of instructions: branch,
load/store, integer, and floating point. The range of the latencies is: all 1 for branch instruc-
tions, 1-12 for load/store instructions (the largest value is for a store-multiple instruction,
which stores to memory the values in a sequence of registers), 1-37 for integer instructions
(the largest value is for division), and 1-38 for floating point instructions (the largest value
is for square root). The Tobey compiler performs instruction scheduling before global reg-
ister allocation and once again afterwards, and our test suite contains both versions of the
superblocks. The compilations were done using Tobey’s highest level of optimization, which
includes aggressive optimization techniques such as software pipelining and loop unrolling.

The following table shows the four architectural models we used in our evaluation. We
assumed that all functional units were fully pipelined and that the issue width of the processor
was equal to the number of functional units.

1-issue processor executes all types of instructions.

2-issue processor with one floating point functional unit and one functional unit
that can execute integer, load/store, and branch instructions.

4-issue processor with one functional unit for each type of instruction.

6-issue processor with the following functional units: two integer, one floating
point, two load/store, and one branch.

The optimal constraint programming scheduler was compared experimentally with pop-
ular superblock scheduling heuristics: critical path heuristic [20], dependence height and
speculative yield heuristic [13], the G* heuristic [5] and the speculative hedge heuristic [10].
Table 2 shows the number of superblocks in the SPEC 2000 benchmark suite where the

23

optimal scheduler failed to complete within the given time limit of 10 minutes®. Table 2
summarizes the performance of the optimal scheduler.

Shobaki and Wilken [36] were the first to present experimental results on solving large
superblocks targeted towards a multiple-issue processor. Their test suite contains the su-
perblocks from the SPEC2000 integer and floating point benchmarks. They reported that
on average 98.7% of the superblocks were scheduled optimally within one second. Also, on
average they were not able to solve about 1.3% of superblocks. They also claimed that
they were able to improve 80% of the hard problems (the problems that were passed to
the enumerators) . Comparing with Shobaki and Wilken’s work, we speculate that our test
suite contains more difficult problems for the following five reasons. First, our test suite
contains longer and more varied latencies. Second, our test suite contains shorter latencies
(our DAGs contain many latency 0 edges, which are used to capture anti-dependencies and
output dependencies between two instructions). Third, our test suite contains many larger
basic blocks (work [36] used the GCC compiler and the largest DAG was 1236 instructions).
Fourth, our test suite contains more speculation (more instructions that can move up to
higher basic blocks) as there is little speculation after register allocation.

Tables 3 and 4 systematically studies the scaling behavior of the optimal scheduler, as we
report the results broken down by increasing size ranges of the superblocks. For reference,
the number of superblocks in each size range is also given. It can be seen that the optimal
scheduler scales well, finding improved solutions for large superblocks. Not surprisingly, as
the superblock size increases, the heuristic method has more opportunities to make a mistake
and the fraction of superblocks improved by the optimal scheduler increases. For the largest
superblocks, up to 40.9% of the schedules are improved by the optimal scheduler (see the 4-
issue architecture in Table 4). Tables 3 summarizes the percentage improvements in schedule
length of the optimal schedule over the schedule found by a list scheduling algorithm using
the critical-path heuristic, the G* heuristic, the dependence height and speculative yield
heuristic and the speculative hedge heuristic. Somewhat surprising is that on all size ranges
the optimal scheduler can find substantial improvements. In other words, commonly used
heuristic methods, sometimes find schedules that are very sub-optimal.

5 Conclusions

We presented a constraint programming approach to superblock instruction scheduling for
multiple-issue processors. The problem is considered intractable, yet our approach is opti-
mal and robust on large, real problems. The key to scaling up to large, real problems was
in the development of an improved constraint model and the application of more powerful
constraint propagation techniques. We performed an extensive experimental evaluation and
demonstrated that our approach compares favorably to the best previous exact approaches.
The scheduler was able to routinely solve the largest superblocks with up to 2600 instruc-
tions.

4All of the experiments were run on a 2.40 GHz Intel® Pentium@®) 4 processor with 1 GB of main memory.

24

Acknowledgements

We thank Jim Mclnnes from the IBM Toronto Lab for helpful discussions and assistance
with gathering the superblocks used in our experiments.

References

1]

2]

3]

[5]

[10]

[11]

[12]

S. Arya. An optimal instruction-scheduling model for a class of vector processors. IEEE
Transactions on Computers, C-34(11):981-995, 1985.

P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems. Kluwer, 2001.

R. J. Blainey. Instruction scheduling in the TOBEY compiler. IBM J. Res. Develop.,
38(5):577-593, 1994.

C.-M. Chang, C.-M. Chen, and C.-T. King. Using integer programming for instruction
scheduling and register allocation in multi-issue processors. Computers and Mathematics
with Applications, 34(9):1-14, 1997.

C. Chekuri, R. Johnson, R. Motwani, B.K. Natarajan, B.R. Rau, and M. Schlansker.
Profile-driven instruction level parallel scheduling with applications to superblocks.
In Proceeding of the 29th Annual International Symposium on Microarchitechture
(MICRO-29), Paris, France, December, 1996.

H. Chou and C. Chung. An optimal instruction scheduler for superscalar processors.
IEEE Transactions on Parallel and Distributed Systems, 6(3):303-313, 1995.

K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann, 2004.

J. M. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning, pages 148-159, 1996.

R. Debruyne and C. Bessiere. Domain filtering consistencies. J. Artificial Intelligence
Research, 14:205-230, 2001.

B. L. Deitrich and W. W. Hwu. Speculative hedge: Regulating compile-time speculation
against profile variations. In Proceedings of the 29th Annual International Symposium
on Microarchitecture, pages 70-79, Paris, France, December, 1996.

U. Dorndorf. Project Scheduling with Time Windows. Physica-Verlag, 2002.

M. A. Ertl and A. Krall. Optimal instruction scheduling using constraint logic pro-
gramming. In Proceedings of 3rd International Symposium on Programming Language
Implementation and Logic Programming, pages 75-86, Passau, Germany, 1991.

25

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. A. Fisher. Trace scheduling: A technique for global microcode compaction. In IEEE
Transactions on Computers, pages 478-490, July 1981.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

R. Govindarajan. Instruction scheduling. In Y. N. Srikant and P. Shankar, editors, The
Compiler Design Handbook, pages 631-687. CRC Press, 2003.

S. Haga and R. Barua. EPIC instruction scheduling based on optimal approaches. In
1st Annual Workshop on Ezplicitly Parallel Instruction Computing Architectures and
Compiler Technology (EPIC), Austin, Texas, 2001.

M. Heffernan and K. Wilken. Data-dependency graph transformations for instruction
scheduling. Journal of Scheduling, 8:427-451, 2005.

J. Hennessy and T. Gross. Postpass code optimization of pipeline constraints. ACM
Transactions on Programming Languages and Systems, 5(3):422-448, 1983.

J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, second edition, 1996.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T.Kiyohara, G. E. Haab, J. G. Holm, , and D. M. Lavery.
The Superblock: An Effective Technique for VLIW and Superscalar Compilation. J.
Supercomputing, vol. 7, no. 1, pp. 229-248, May 1993.

S. Hoxey, F. Karim, B. Hay, and H. Warren. The PowerPC Compiler Writer’s Guide.
Warthman Associates, 1996.

D. Késtner and S. Winkel. ILP-based instruction scheduling for IA-64. In Proceedings
of the SIGPLAN 2001 Workshop on Languages Compilers, and Tools for Embedded
Systems (LCTES), pages 145-154, Snowbird, Utah, 2001.

C. W. Kessler. Scheduling expression DAGs for minimal register need. Computer
Languages, 24(1):33-53, 1998.

R. Leupers and P. Marwedel. Time-constrained code compaction for DSPs. IEEFE Trans.
VLSI Systems, 5(1):112-122, 1997.

J. Liu and F. Chow. A near-optimal instruction scheduler for a tightly constrained,
variable instruction set embedded processor. In Proceedings of the International Con-
ference on Compilers, Architectures, and Synthesis for Embedded Systems, pages 9-18,
Grenoble, France, 2002.

A. Lépez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In Proceedings of the Fighteenth
International Joint Conference on Artificial Intelligence, pages 245-250, Acapulco, Mex-
ico, 2003.

26

[27]

28]

[29]
[30]

[31]
32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

Abid M. Malik, Jim Mclnnes, and Peter van Beek. Optimal basic block instruction
scheduling for multiple-issue processors using constraint programming. Technical Report
CS-2005-19, School of Computer Science, University of Waterloo, 2005.

S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann. Effective Com-
piler Support for Predicated Execution Using the Hyperblock. In Proceedings of Micro-
25, Portland, Oregon, 1992.

K. Marriott and P. J. Stuckey. Programming with Constraints. The MIT Press, 1998.

W. M. Meleis and A. E. Eichenberger. Balance Scheduling: Weighting Branch Tradeoffs
in Superblocks. In Proceedings of the 32nd Annual IEEE/ACM International Sympo-
stum on Microarchitecture, pages 272283, November 1999.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with Time Windows
and Scarce Resources. Springer, second edition, 2003.

C.-G. Quimper, P. van Beek, A. Lopez-Ortiz, A. Golynski, and S. B. Sadjad. An efficient
bounds consistency algorithm for the global cardinality constraint. In In Proceedings of
the Ninth International Conference on Principles and Practice of Constraint Program-
ming, pages 600-614, Kinsale, Ireland, 2003.

J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence, pages 209-215,
Portland, Oregon, 1996.

T. Russell, A. M. Malik, M. Chase, and P. van Beek. Learning basic block scheduling
heuristics from optimal data. In Proceedings of the 15th CASCON, Toronto, 2005.

G. Shobaki and K. Wilken. Optimal superblock scheduling using enumeration. In Pro-
ceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture
(Micro-37), pages 283-293, Portland, Oregon, 2004.

P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue proces-
sors with arbitrary latencies. In Proceedings of the Seventh International Conference on
Principles and Practice of Constraint Programming, pages 625-639, Paphos, Cyprus,
2001.

K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer pro-
gramming. In Proceedings of the SIGPLAN 2000 Conference on Programming Language
Design and Implementation (PLDI), pages 121-133, Vancouver, 2000.

S. Winkel. Optimal Global Scheduling for Itanium Processor Family. In Proceedings of
the 2" EPIC Compiler and Architecture Workshop (EPIC-2), pages 59-70,November
2002.

27

Table 2: For the SPEC 2000 benchmark suite, (a) total time (hh:mm:ss) to schedule all
superblocks in the benchmark, and (b) number of superblocks in the benchmark where the
optimal scheduler did not complete within the given time limit of 10 minutes, for various
issue widths. Depending on the architecture, between 99.992% — 99.999% of all superblocks
are solved to optimality.

1-issue 2-issue 4-issue 6-issue

#blocks (a) (b) (a) (b) (a) (b) (a) (b)
ammp 3,785 2:17 3:58 3:33 2:37
applu 529 58 2:22 2:24 58
apsi 2,321 4:55 6:40 7:05 4:15
art 744 55 48 10 10
bzip2 976 29 29 21 7
crafty 5,100 10:03 10:02 6:13 6:37
eon 5,513 5:09 8:00 4:54 4:13
equake 386 16 11:07 1 1:07 1:51
facerec 1,224 5:29 6:55 5:56 1:48
fma3d 10,898 54:44 1 2:33:13 9 | 1:59:32 7| 2:21:27 9
galgel 5,704 5:33 7:23 6:10 2:23
gap 23,043 6:11 6:10 4:24 2:17
gce 49,752 18:38 18:36 10:45 7:18
gzip 1,605 23 23 52 19
lucas 1,098 1:04 1:20 1:41 20
mcf 439 33 33 12 3
mesa 14,779 10:17 8:15 6:35 5:35
mgrid 151 20 40 16 10:09 1
parser 4,093 27 27 21 17
perlbmk 18,607 5:11 5:11 3:20 1:59
sixtrack 10,436 04:15 54:20 41:30 1:27:18 5)
swim 383 19 21 37 4
twolf 8,600 4:21 4:21 4:20 1:48
vortex 13,215 14:29 14:46 6:02 5:48
vpr 3,430 2:04 1:39 1:07 1:21
wupwise 549 29 19 10 9
Total 187,334 | 3:30:18 15:2846 10 | 3:59:41 71 4:51:10 15

28

Table 3: Maximum percentage from optimal for the critical-path heuristic (h.,), the de-
pendence height and speculative yield heuristic (hgnqsy), the G* heuristic (hg.) and the
speculative hedge heuristic (hgpe.) for ranges of super block sizes and various issue widths.

1-issue 2-issue

Range (#blOCkS) hcp hdhasy hg* hspec hcp hdhasy hg* hspec
3-5 (30,371) 26.9 269 269 269]| 269 269 269 269
6-10 (46,615) 65.8 375 375 44.7| 658 375 375 447

11-15 (33,687) 82.0 256 256 65.7| 82.0 26.7 256 65.7
16-20 (23,512) 98.2 247 269 982 98.2 247 269 98.2
21-30 (22,858) | 159.3 28.7 27.9 155.6 | 159.3 28.7 279 155.6
31-50 (17,765) | 192.2 35.2 31.1 143.7 | 1922 35.2 31.1 143.7

51-100 (9,481) | 246.0 40.9 37.7 246.0 | 246.0 40.9 37.7 246.0

101-250 (2,683) | 170.6 13.8 20.5 133.5 | 170.6 13.8 20.5 133.5

251-2,600 (362) 86.4 58 6.8 244 | 86.4 7.3 11.6 152

Total (187,334) | 246.0 40.9 37.7 246.0 | 246.0 40.9 37.7 246.0

4-issue 6-issue

Range (#blOCkS) hep hdhasy hg* Pspec hep hdhasy hg* Nspec
3-5 (30,371) 22.2 20.0 22.2 222 0.0 0.0 0.0 0.0
6-10 (46,615) 41.1 40.0 41.1 40.0 | 28.6 22.2 28.6 258

11-15 (33,687) 474 33.3 41.1 474 | 314 222 222 314
1620 (23,512) 73.7 222 346 737 | 5277 219 238 527
21-30 (22,858) | 152.9 37.8 42.7 1529 | 804 21.1 221 804
31-50 (17,765) | 136.0 28.6 35.0 129.7 | 61.5 294 294 615

51-100 (9,481) | 136.5 34.2 39.1 133.0 | 106.0 29.3 184 48.9
101-250 (2,683) | 556.1 14.5 16.8 556.0 | 285.3 9.6 9.6 285.3
251-2,600 (362) | 962.1 7.6 19.8 962.1 | 478.1 3.3 6.4 4781
Total (187,334) | 962.1 40.0 42.7 962.1 | 478.1 29.4 294 478.1

29

Table 4: Number of superblocks in the SPEC2000 benchmark not scheduled optimally by the
critical-path heuristic (h.p), the dependence height and speculative yield heuristic (hgpasy),
the G* heuristic (h,.) and the speculative hedge heuristic (hspe.) for ranges of super block
sizes and various issue widths.

1-issue 2-issue
Range (#blocks) hep Pdnasy hgs Pspee hep Pdnasy hgs Pspec
3-5 (30,371) 143 124 129 143 126 123 128 126

6-10 (46,615) 3,095 720 2,551 1,935 | 3,097 717 2,510 1,938
11-15 (33,687) 4,058 1,555 3,902 2,939 | 4,027 1,557 3,804 2,918
1620 (23,512) 3,363 1,469 3,835 2,639 | 3,353 1,479 3,786 2,626
21-30 (22,858) 4,333 1,802 5,224 3,273 | 4,350 1,829 5,169 3,272
31-50 (17,765) 4,168 1,954 4,966 3,299 | 4,214 2,015 4,985 3,322
51-100 (9,481) 2,482 1,321 2,960 2,012 | 2,680 1,502 3,102 2,149
101-250 (2,683) 795 491 861 676 909 299 931 756
251-2,600 (362) 131 80 131 101 152 103 148 114
Total (187,334) | 22,568 9,516 24,559 17,017 | 22,908 9,924 24563 17,221

4-issue 6-issue
Range (#blOCkS) hcp hdhasy hg* hspec hcp hdhasy hg* hspec
3-5 (30,371) 6 1 6 6 0 0 0 0

6-10 (46,615) 1,009 228 1,075 978 159 115 204 120
11-15 (33,687) 1,894 788 2,045 1,662 470 255 634 398
16-20 (23,512) 1,694 79 1,905 1,504 497 306 641 394
21-30 (22,858) 2,774 1,250 3,166 2,310 912 266 1,202 747
31-50 (17,765) 2,737 1,444 3,219 2,233 | 1,092 773 1,470 908
51-100 (9,481) 2,061 1,385 2,404 1,740 984 787 1,228 866
101-250 (2,683) 726 603 770 680 444 400 510 419
251-2,600 (362) 129 119 142 118 79 74 80 7
Total (187,334) | 13,020 6,577 14,732 11,231 | 4,637 3,276 5,969 3,929

30

