
Improved Bounds for the Online Steiner Tree Problem in Graphs of

Bounded Edge-Asymmetry

Spyros Angelopoulos

David R. Cheriton School of Computer Science, University of Waterloo

sangelop@cs.uwaterloo.ca

Technical Report CS-2006-36
David R. Cheriton School of Computer Science

Abstract

In this paper we consider the Online Steiner Tree problem in weighted directed graphs of
bounded edge-asymmetry α. The edge-asymmetry of a directed graph is defined as the maximum
ratio of the cost (weight) of antiparallel edges in the graph. The problem has applications in
multicast routing over a network with non-symmetric links. We improve the previously known
upper and lower bounds on the competitive ratio of any deterministic algorithm due to Faloutsos
et al. [10]. In particular, we show that a better analysis of a simple greedy algorithm yields a
competitive ratio of O(min{k, α log k

log log α
}), where k denotes the number of terminals requested.

On the negative side, we show a lower bound of Ω(min{k1−ǫ, α log k

log log k
}) on the competitive ratio

of every deterministic algorithm for the problem, for any arbitrarily small constant ǫ.
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1 Introduction

The Steiner Tree problem in undirected graphs is defined as follows. Given an undirected graph
G = (V,E) with a cost function c : E → R

+ on the edges, and a subset of vertices K ⊆ V with
|K| = k, (also called terminals), the goal is to find a minimum-cost tree which spans all vertices
in K. The cost of the tree is defined as the sum of the costs of its edges. When the input graph
is directed, the input to the problem must specify, in addition to G and K a specific vertex r ∈ V
called the root. The problem then translates to finding a minimum cost arborescence rooted at r
which spans all vertices in K.

In the online version of the problem, terminals in K are requested in an online, sequential
fashion. Every time a request (terminal) t ∈ V arrives, the algorithm must ensure that there is a
path from an earlier requested terminal to t, for the undirected version, or a directed path from
r to t in the directed version of the problem, respectively. We assume that the graph G is known
to the algorithm. In the standard framework of competitive analysis (see, e.g., [6]), the goal is to
design online algorithms of small competitive ratio. In the context of Steiner tree problems the
competitive ratio is defined as the supremum of the ratio of the cost of the tree (or arborescence)
produced by the algorithm over the optimal off-line cost (namely the cost of an offline algorithm
which has complete knowledge of the request set K).

Both the offline and online versions of the problem have been studied extensively in the liter-
ature (c.f. section 1.1 for some representative results concerning the online version) and are often
encountered in the context of several combinatorial optimization problems. In addition to interest
from the point of view of theoretical analysis, the problem has important applications in the design
of multicast protocols in computer networks, which involves distribution of the same information
stream to the members of the multicast group over an existing network. Indeed, multicasting can
be modeled as the problem of selecting communication links (edges of the underlying graph) so as
to minimize the cost for supporting multicast routing through a tree, which is essentially identical
to the Steiner tree problem formulation. For the interplay between the Steiner Tree problem and
multicast applications, the interested reader is referred to the work of Faloutsos [9].

Most of the theoretical work on the Steiner tree problem and its generalizations is focused on
undirected graphs (see eg [14] [1] [11] [5] [16] for some representative results concerning the offline
version of the problem). On the other hand, research considering directed underlying graphs has
been relatively limited (see e.g. [7] [15], once again for the offline case) . However, a directed graph
is a more appropriate and realistic representation of a real-life network. As argued in [13], [8]
studies on network traffic on backbones have revealed marked asymmetry in link utilization. For
instance, one should expect that a typical subscriber to a home internet-cable service will incur
more traffic on the incoming link “download”), than the outgoing link (“upload”). Moreover [13]
if the link is wireless, its quality/bandwidth is inherently asymmetric, due to differences in noise
levels, power of transmission and mobility levels of its endpoints.

Motivated by such observations, Ramanathan [13] proposed several metrics which are meant to
capture deviation from the symmetry observed in undirected graphs. Perhaps the most intuitive
metric is the so-called maximum edge-asymmetry α of a directed graph G = (V,E) (or simply
asymmetry, for the rest of this paper) which is defined as the maximum ratio of the costs of
antiparallel links in the graph. To define this measure formally, let A denote the set of pairs of
vertices in V , such that if the pair u, v is in A, then either (v, u) ∈ E or (u, v) ∈ E (i.e, there is an
edge from u to v or an edge from v to u or both). Then the edge asymmetry is defined as

α = max
{v,u}∈A

c(v, u)

c(u, v)
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Note that undirected graphs can be seen as graphs of asymmetry α = 1, while directed graphs
in which there is at lest one pair of vertices v, u such that (v, u) ∈ E, but (u, v) /∈ E are graphs
with unbounded asymmetry (meaning that α = ∞). Between these extreme cases, graphs with
relatively small asymmetry model networks which are relatively homogenous in terms of the qual-
ity/characteristics of antiparallel links.

Ramanathan presented a 2α-approximation algorithm for the offline Steiner problem in graphs
of asymmetry α. In addition, Ramanathan showed that the same approximation ratio is guaranteed
when a different metric for capturing the graph asymmetry is applied, namely the ratio, over all
adjacent pairs of vertices in the graph, of the sum of the larger edge-pair costs over the sum of the
smaller edge-pair costs. In this paper we focus exclusively on the maximum-edge asymmetry only,
since it represents a more clean-cut and easy to estimate measure of the graph edge asymmetry.

In subsequent work, Faloutsos Pankaj and Sevcik [10] studied the online Steiner tree problem in
graphs of asymmetry α. They showed that a simple greedy algorithm (which we denote by Greedy)
has a competitive ratio of O(min{k, α log k}). In particular, when a new terminal t is requested,
Greedy will find the directed path of minimum cost from some vertex in the current arborescence
to t, and buy such edges. Once an edge is bought it is assigned zero cost in subsequent iterations,
to reflect that the edge has irrevocably become part of the solution. Intuitively, the upper bound
is not too difficult to derive: first,note that the cost of Greedy is at most k times the optimal
cost. Second, since Greedy is O(log k)-competitive for undirected graphs (see Section 1.1) when
we move to directed graphs, the competitive factor is multiplied by at most α (to account for the
fact that the connection paths may choose the “wrong”, expensive direction). On the negative
side, Faloutsos et al. showed a lower bound on the competitive ratio of Ω(min{k, α log k

log α }) for

every deterministic algorithm1. The construction for the lower bound is interesting, since not only
indicates that the problem is not trivial, but also provides some intuition about a better analysis
of the greedy algorithm.

In this paper we narrow the gap between the upper and lower bounds for the problem. In
particular, we first provide a more elaborate analysis of Greedy and prove the following:

Theorem 1 Greedy is O(min{k, α log k
log log α})-competitive.

On the negative side, we show the following lower bound on the competitive ratio of deterministic
algorithms:

Theorem 2 The competitive ratio of every deterministic online algorithm is
Ω(min{k1−ǫ, α log k

log log k}), for every constant 0 < ǫ < 1.

Theorem 2 in conjunction with the lower bound of [10] yields

Corollary 3 The competitive ratio of every deterministic online algorithm is
Ω(max{min{k, α log k

log α },min{k1−ǫ, α log k
log log k}}) for every constant 0 < ǫ < 1.

Our results improve the known bounds in a variety of situations, depending on the parameters
α and k. In particular, consider graphs which are highly asymmetric, in the sense that there is a
constant c > 1 such that k = αc, for some constant c. In this case Theorem 1 and Theorem 2 yield
a tight bound of Θ( α log α

log log α) whereas the analysis of [10] only shows the trivial bounds of Ω(α) and
O(α log α).

An outline of the intuition behind the proof of Theorem 1 is given is Section 2. Section 3 is
dedicated to the formal proof of Theorem 1. Section 5 outlines the proof of Theorem 2.

1Note that when α ∈ Ω(k) the lower bound on the competitive ratio due to [10] is Ω(k), which is obviously tight
(using the trivial upper bound for the greedy algorithm). Thus the problem is interesting only when α ∈ o(k).
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1.1 Some related results

The Steiner tree problem has been extensively studied in several settings and variations. We
overview only some of the results which are of particular relevance to this work. For the online
Steiner tree problem in undirected graphs, Imase and Waxman [12] showed a tight bound of Θ(log k)
on the competitive ratio of online Steiner Tree. In directed graphs of unbounded asymmetry, it
is very easy to show that the competitive ratio of every algorithm, deterministic or randomized,
is as large as the trivial bound, namely Θ(k). When the terminals are given as a sequence of
points in the Euclidean plane, Alon and Azar [2] showed a lower bound of Ω(log k/ log log k) on the
competitive ratio. For the so-called on-line generalized Steiner problem, in which pairs of terminals
are requested sequentially and the algorithm must guarantee connectivity for every such requested
pair, Berman and Coulston [4] proved a tight upper bound of O(log k), a result which improved
the upper bound of O(log2 k) due to Awerbuch et al. [3]. Both results apply to undirected graphs.

1.2 Preliminaries

Given a directed graph of bounded asymmetry and an edge e = (v, u) ∈ E, it is always the case
that its antiparallel edge e = (v, u) is always in E as well. Let T = (r′, V ′, E′) be an arborescence
rooted at r′, we denote by T̂ the graph (V ′, E′′), with E′′ = E′ ∪ {e : e ∈ E′}. In words, T̂ is
the subgraph of G induced by the vertices of T , and induces all edges in T as well as all their
antiparallel edges. For arborescence T and vertices v, u in T , we denote by pT (u, v) (resp. pT̂ (u,v))

the simple directed path from u to v using exclusively edges in T (resp. T̂ ). Note that such paths
are uniquely defined (provided that pT (u, v) exists).

The cost of a directed path p is the total cost of all directed edges in p, and will be denoted by
c(p). We denote by c(T ) the cost of arborescence T , namely the sum of the cost of the directed
edges in T . We emphasize that only edges in T and none of their antiparallel edges contribute to
c(T ). We will always use T ∗ to denote the optimal arborescence on input (G,K), with |K| = k,
with OPT = c(T ∗). For any K ′ ⊆ K, we let cGR(K ′) denote the cost that Greedy pays on the
subset K ′ of the input (in other words, the contribution of terminals in K ′ to the total cost of
Greedy).

For convenience, we will be using the term “tree” to refer to a (rooted) arborescence.

2 Outline of the proof of Theorem 1 and intuition

First, note that when α ∈ Ω(k) the lower bound on the competitive ratio due to [10] is Ω(k), which
is obviously tight (using a trivial upper bound for the greedy algorithm). Thus the problem is
interesting only when α ∈ o(k). We will be assuming that α is integral since we can round α to
the closest integer without affecting, asymptotically, the bounds. Let l be such that αl = k, which
means that l = log k

log α .
There are two main components in the proof. The first addresses the following question. Sup-

pose that a subset K ′ ⊆ K of O(α) terminals belongs in a (rooted) subtree T ′ of T ∗. Suppose also
that Greedy has been charged already the cost for serving a single terminal in K ′, but no other
terminals in K ′ have arrived yet. Can we bound cGR(K ′) as a function of c(T ′)? Of course we can
give trivial upper bounds: for every terminal t ∈ K ′ (excluding the first terminal in K ′) we have
cGR(t) = O(α)c(T ′), hence cGR(K ′) = O(α2)c(T ′); even better we can use the fact that Greedy is
log-competitive in undirected graphs, which implies that cGR(K ′) = O(α log |K ′|c(T ′)) = O(α log α·
c(T ′)). Note that it is not true that one can claim that cGR(K ′) = α ·c(T ′); this would be true if the

4



root of T ′ had already become part of the current tree Greedy builds (borrowing terminology from
the literature on the Steiner problem in undirected graphs, Greedy should include appropriate
Steiner vertices in the tree it builds). There is no easy way to guarantee this; in fact Theorem 2
shows this does not hold. However, we can still improve the bound to O(α log α

log log αc(T ′)), as shown
in Lemma 4.

The second component of the proof provides a framework for a recursive application of the
previous observation. In particular, suppose that T ∗ can be partitioned into (roughly) α edge-
disjoint trees T1, . . . , Tα of (roughly) the same number of terminals, namely αl−1. Let vi (i ∈ [1, α])
denote the first terminal, among all terminals in Ti, to be requested; V1 denote the set {vi : i ∈ [1, α]}
and K1, . . . ,Kα denote the set of all remaining terminals in T1, . . . , Tα respectively. Using Lemma 4
we have that cGR(K) = cGR(V1) +

∑α
i=1 cGR(Ki) = O(α log α

log log αOPT ) +
∑α

i=1 cGR(Ki). We then

proceed recursively2 at each subtree Ti. Note that trees Ti are edge-disjoint, hence at each level of
the recursion the cost of Greedy increases by O(α log α

log log α )OPT . Since there are roughly l levels
of recursion, we derive the required upper bound on the cost of Greedy.

Naturally, the previous argument relies upon the ability to provide a decomposition of T ∗ into
(roughly) α trees of (roughly) the same size. Moreover, the decomposition should be hierarchical,
in the sense that we should be able to further decompose the resulting trees while upholding the
above property. Lemma 14 proves the existence of such a “balanced”, hierarchical decomposition
of T ∗.

3 Proof of Theorem 1

The following is a key Lemma in the analysis of Greedy.

Lemma 4 Let T ′ be a subtree of T ∗ rooted at vertex r′ and let K ′ ⊆ K, with |K ′| = O(α) be a
subset of K such that every terminal in K ′ is a vertex in T ′. Let w denote the terminal which was
requested the earliest among all terminals in K ′. Then3 cGR(K ′) = cGR(w) + O(α log α

log log α)c(T ′).

In order to show Lemma 4, we will first prove the lemma for the case in which T ′ and K ′ have
a relatively simple structure (c.f. Lemma 6). The proof of Lemma 4 will then become substantially
easier.

Definition 5 Let T ′,K ′ and r′ be as defined in the statement of Lemma 4. We call the triplet
C = (T ′,K ′, r′) a comb instance, or comb for simplicity if the following hold: T ′ consists of a
directed path P from r′ to a certain vertex v1, which visits vertices vk′ , . . . , v1 in this order (but
possibly other vertices too); there are also directed paths pi from vi to ui. No other edges are in T ′.
Finally the set K ′ is defined as the set of vertices {u1, . . . , uk′}. We call P the backbone of C, and
the paths pi the terminal paths of the comb. The vertex set of C is the set of vertices in T ′.

Figure 1 illustrates the structure of a comb. Note that the definition allows the paths pi to be
empty, in which case vi ≡ ui; in addition, the directed paths from vi to vi−1 (as well as the path
from r′ to vk′) may also be empty, in which case vi ≡ vi−1. For the proof of Lemma 6 we will
assume, a forteriori, that such degeneracies do not arise (see Appendix A for a justification).

2 In the first level of the recursion, we could instead claim that cGR(V1) = O(α · OPT ), since we know that r is
the root of T

∗. However, this is true only for the first level, and for all subsequent levels we have to rely to Lemma 4.
3An alternative statement of the lemma is that cGR(K′ \ {w}) = O(α log α

log log α
)c(T ′). In fact, in the proof of

Theorem 1 we will use the latter statement. The same applies to the statement of Lemma 6.
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Figure 1: The structure of a comb instance. Wavy lines indicate directed paths between vertices.

We will make use of some auxiliary definitions. For terminal ui in comb C we say that its index
is i. We say that uj precedes ui in C (denoted by uj ≺ ui) iff j < i. We say that uj is between ui

and ui′ iff ui ≺ uj ≺ ui′ . Given terminals ui and uj such that ui ≺ uj we call the path pT̂ (vi, vj)
the segment between ui and uj.

The following lemma is a version of Lemma 4 in which T ′ and K ′ are restricted to form a comb.

Lemma 6 Given the comb C = (T ′,K ′, r′), with |K ′| = k′ = O(α), let w ∈ K ′ denote the terminal
requested the earliest among all terminals in K ′. Then cGR(K ′) = cGR(w) + O(α log α

log log α)c(T ′).

Proof. Let π denote a permutation of {1, . . . , k′} such that uπ1, . . . , uπk′
is the sequence of the

requests in K ′ in the order in which they are requested (w = uπ1). Also let x be such that xx = |K ′|
which implies that x = O( log α

log log α). For convenience we will assume that x is an integer.

In order to bound cGR(K ′ \ uπ1) we will determine an assignment for every terminal uπi
with

2 ≤ i ≤ k′ to a specific terminal uπi
∈ {uπ1, . . . uπi−1}. We call terminal uπi

the mate of uπi
. Let

qi denote the directed path in T̂ from uπi
to uπi

, also called the connection path for uπi
. We will

show that

C
def
=

k′∑

i=2

c(qi) = O(α
log α

log log α
)c(T ′). (1)

Since cGR(K ′ \ uπ1) ≤
∑k′

i=2 c(qi) the lemma will then follow.
In order to simplify the proof we will ignore the contribution to the cost C of all (directed) edges

in the connection paths qi’s which belong in the tree T , and will only consider the contribution of
edges in T̂ but not in T . This is because the total contribution to C of edges in qi which belong
to T is at most k′c(T ) = O(αc(T )), which does not exceed asymptotically the bound we want to
prove.

We first aim towards grouping together terminals as they are being requested; this will also
facilitate our assignment of terminals to their mates. To this end we introduce the concept of a
run and the concept of the representative of a run. The first terminal to be requested, namely uπ1

begins run 1. At the time uπi
(i ≥ 2) is requested, for every run j generated thus far, let uh(j)

denote the terminal with the highest index in the comb among all terminals in run j requested so
far. If uh(1) ≺ uπi

in the comb, then uπi
becomes a member of run 1. Otherwise let πl, πr be the

highest and lowest indices, respectively, with l, r ≤ i − 1, such that uπi
is between uπl

and uπr in
the comb (if such a πl does not exist, then we set it to 0). If either i) πl = 0; or ii) there is no run
j with the property that uπl

≡ uh(j) and uπr is the representative of run j, then uπi
starts a new

run with the representative of the new run to be uπr . Otherwise, uπi
becomes a member of the

same run4 as uπl
, namely run j, and its predecessor in the run is uπl

.

4Note that the representative of a run is not a member of the run.
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The above process produces a partition of K ′ into runs, and determines a representative of all
runs other than run 1. We will be denoting by rep(r) the representative of a run r; we will also be
using the notation rep(uπi

) to denote the representative of the run to which uπi
is assigned. An

example of the partition of K ′ into runs is given in Appendix B.
We introduce some additional definitions. Let σ(i, j) ∈ {1, . . . k′} be such that uσ(i,j) is the

terminal of the j-th lowest index which belongs in run i. The size of a run is the number of
terminals in the run. For a certain terminal uπi

, denote by s(uπi
) the segment between uπi

and
rep(uπi

); we call s(uπi
) the segment of uπi

. Denote by d(r) the cost of the segment of the first
terminal in run r, namely d(r) = c(s(uσ(r,1))).

The following claim describes some properties related to a run.

Claim 7 (i) Every terminal in a run other than run 1 precedes its representative in the comb.
Furthermore, each terminal is the representative of at most one run.
(ii) Suppose r, r′ (r 6= r′) denote two runs such that there exists a terminal u in run r′ such that
uσ(r,j) ≺ u ≺ uσ(r,j+1), i.e., u is between two consecutive terminals of run r. Then the whole run r′

is contained between uσ(r,j) and uσ(r,j+1).

Proof. We only prove the second statement (the first statement is straightforward). First, note
that at the time uσ(r,j+1) is requested, no member of run r′ which is between uσ(r,j) and uσ(r,j+1)

has yet been requested, otherwise uσ(r,j+1) would not have become a member of run r with uσ(r,j)

as its predecessor. Hence, at the time u is requested, since it becomes member of the run r′, rep(r′)
has to be either uσ(r,j+1), or a terminal u′ which is between u and uσ(r,j+1) in the comb. In either
case, rep(r′) will be between uσ(r,j) and uσ(r,j+1).

Suffices then to show that uσ(r′,1) is such that uσ(r,j) ≺ uσ(r′,1). By way of contradiction, suppose
that this is not true, then let u′′ denote the terminal of smallest index in run r′ which is between
uσ(r,j) and uσ(r,j+1) (such a terminal exists, by the hypothesis of the claim). When u′′ is requested,
uσ(r,j+1), and thus uσ(r,j) as well have been requested, as argued early. This would imply, however,
that u′′ cannot be a member of run r′, a contradiction. 2

Once the runs and the representatives have been determined, we can proceed with assigning
mates to the terminals, using the following rules.

1. Terminal uσ(1,j) is always assigned uσ(1,j−1) as its mate, for j ≥ 2.

2. The terminal of smallest index in run i > 1, i.e., uσ(i,1), is always assigned the representative
of the run rep(i) as its mate.

3. If the size of run i > 1 is at most x, then each terminal in the run i is assigned the represen-
tative of the run as its mate.

4. Otherwise (i.e., if the size of run i > 1 is larger than x), then

(a) If c(pT̂ (vσ(i,j−1), vσ(i,j))) ≥ d(i)/x (j ≥ 2) then uσ(i,j) is assigned the representative of
the run as its mate;

(b) Otherwise, the mate of uσ(i,j) is set to be uσ(i,j−1).

Note that for every i, j uσ(i,j) is requested after uσ(i,j−1). Likewise, every terminal in any run
(other than run 1) is requested after the representative of the run. This means that our assignment
of terminals to mates is feasible, in the sense that the mate of a terminal is requested prior to
the terminal itself. Recall that once terminals are assigned mates, the connection paths qi’s are
uniquely determined.

7



Recall that C denotes the total cost due to the assignment of terminals to mates (see the
definition in Eq (1)) via the connection paths qi’s. In order to bound C we observe that we can
express C as the sum of two partial costs, which we call C1 and C2. Here, C1 denotes the cost
due to edges e such that e belongs in some terminal path pi in T , and C2 denotes the cost due to
edges e such that e belongs in the backbone P of the comb. Indeed, our particular assignment of
terminals to mates is motivated by the main objective to balance the contributions of C1 and C2

to the overall cost C. At an intuitive level, if a run other than run 1 has small size (at most x),
then its representative can “afford” to act as the mate of all terminals in the run (see assignment
rule 3), since this does not contribute much to the C1 cost, and it definitely does not affect the C2

cost. However, if the size of a run is large we must be more careful as assignment rule 4 suggests.
For instance, we can no longer afford to assign all terminals in the run to the representative of the
run as their mate: this would implode the C1 cost. Instead, as long as a terminal in a run is “not
too far away” with respect to the backbone cost (distance) from its predecessor in the run, we let
the predecessor be its mate: the C2 cost will not increase by much, in the sense that the average
contribution of such terminals to C2 will be kept low (rule 4b). Otherwise, i.e., when the terminal
is indeed far away from its predecessor in the run, then we will choose the representative as the
mate (rule 4a); since the later case will not arise too often for any given run (namely at most x
times) the C1 cost will be kept low. In the remainder of the proof we elaborate on this intuitive
explanation.

First we show how to bound C1. Denote by C1,i the contribution of the connection path qi for

terminal uπi
to this cost which means that C1 =

∑k′

i=2 C1,i. Note that uπi
contributes to C1 only

in two cases: i) If it is the mate of its successor in the run to which it belongs (rule 1, 4b). In this
case, it contributes at most αc(pi) to C1,i; ii) If it is the mate of certain terminals in the run for
which it is the representative (the remaining rules). Recall that from Claim 7 (i), uπi

can be the
representative of at most one run; let r denote this specific run. Then uπi

can be the mate of uσ(r,1)

(rule 2), as well as either at most x terminals in r (as follows when either rule 3 or 4a applies). The
total contribution to C1,i, in this case, is then bounded by (x + 1)αc(pi). Summarizing,

C1,i ≤ (x + 2)α · c(pi) = O(xα · c(pi)). (2)

Next define C2,i as the contribution of uπi
to C2. We say that uπi

contributes the directed edge e,
with e ∈ P when the path qi includes e. For the remainder of this proof, we will call such edges
expensive. Also, let P denote the directed path from v1 to r in T̂ and q′i denote the intersection
of P with qi, namely the subpath of qi which consists of expensive edges only, which means that
C2,i = c(q′i). Let X denote the subset of K ′ which consists of terminals with non-zero contribution
to C2. We can think of the assignment of terminals in X to their mates as being done as the
terminals in X are requested over time; more precisely, we can think of all edges in q′i being
“bought”, as the connection path between the terminal and its mate is established, at the precise
moment uπi

∈ X is requested. In this view, every time an expensive edge in P is contributed due
to such an assignment, we say that the depth of the edge increases by 1 (initially, i.e., before any
terminals have been requested, all expensive edges have depth zero).

In addition, observe that uπi
contributes to C2 when it is assigned to its mate as a result of

either rule 1 or rule 4b only. In other words, we are only considering cases in which uπi
is the

predecessor of uπi
in its run.

Claim 8 For a terminal uπi
∈ X, all expensive edges in q′i have the same depth, right after qi is

established.

8



Proof. By way of contradiction. Consider the first terminal uπi
∈ X, in the order in which terminals

are requested, which does not have the required property. This implies that there would exist a
terminal u′ 6= uπi

such that u′ is requested earlier than uπi
, and for which uπi

≺ u′ ≺ uπi
in the

comb. Indeed, if this was not the case, then for all pairs (uπj
, uπj

) such that uπj
is requested before

uπi
and uπj

∈ X, we would have that either i) uπj
≺ uπi

and uπi
≺ uπj

; or ii) uπj
≺ uπj

≺ uπi

or uπi
≺ uπj

≺ uπj
. This would imply that either q′i is a subpath of q′j (case (i)), or q′j and q′i are

edge-disjoint (case (ii)). But since all edges in q′j have the same depth after q′j is established (by
our choice of uπi

), the same would be true for q′i, a contradiction. Hence there is a terminal u′

between uπi
and uπi

in the comb which is requested earlier than uπi
, which is also a contradiction

since uπi
would not become the successor of uπi

in the latter’s run. 2

Claim 8 asserts that it is meaningful to say that terminal uπi
is of depth δ if right after it is

assigned to its mate, and the connection path qi is established, the depth of all expensive edges at
the connection path becomes equal to δ. This implies that we can further partition X into sets X1,
X2 . . . such that Xi consists of all terminals of depth i. Note that for all i with uπi

∈ Xj , the paths
q′i are edge-disjoint.

The following lemma shows that the contribution of a terminal to C2 decreases exponentially
with its depth.

Lemma 9 For a terminal uπi
∈ Xj , C2,i ≤

αc(P )
xj−1 .

Proof. By induction on j. The claim is trivially true for j = 1 from the disjointness of all q′i’s for
terminals in X1. Suppose the claim holds for j, we will show it holds for j + 1. Consider the set
of terminals Xj+1. Recall that every terminal in Xj+1 will buy expensive edges of current depth
exactly j prior to the assignment of the said terminal to its mate, then right after the assignment
the depth of such edges increases by one. Let uπi

be a terminal in Xj+1, qi its connection path,
and r > 1 the run to which it belongs. We want to show that the whole run r is contained between
two terminals uπl

and uπl
with the property that uπl

∈ Xj , and that in addition uπl
≺ rep(r) � uπl

(here � denotes either precedence or equivalence).
We begin with a simple observation. Consider the set Q of paths of the form q′l such that

uπl
∈ Xj . As noted earlier, any two paths in Q are edge disjoint. We claim that q′i is a subpath of

one of the paths in Q. Note first that every edge e ∈ q′i must belong in some path q ∈ Q, since the
depth of all edges in q′i become j + 1 once q′i is established. Then we can use an argument along
the lines of the proof of Claim 8: If q′i was not a subpath of a path in Q, then there would exist a
terminal u′ ∈ Xj other than uπi

which is requested earlier than uπi
and such that uπi

≺ u′ ≺ uπi

in the comb, a contradiction, since that would mean that uπi
cannot be the predecessor of uπi

in r.
We know, therefore, that there exists a terminal uπl

∈ Xj for which q′i is a subpath of q′l. Since
uπl

is requested earlier than uπi
, and uπi

≺ uπl
in the comb, we have that uπi

≺ rep(r) � uπl
,

hence every terminal in r must precede uπl
. In addition, if r′ 6= r denotes the run in which the

(consecutive) members uπl
and uπl

belong, we know that there exists a member of run r, namely
uπi

which is between uπl
and uπl

. Claim 7, in particular statement (ii), will then guarantee that
all elements in r are between uπl

and uπl
.

We thus derive that C2,i ≤ d(r)/x ≤ C2,l/x. The first inequality follows from the assignment
of terminals to mates, when applying rule 4b (Note that rule 1 cannot apply since uπi

∈ Xj+1

has to belong to a run r > 1). The second inequality follows from the previously shown property
concerning the containment of run r, including rep(r), between uπl

and uπl
. By the induction

hypothesis, C2,l ≤
αc(P )
xj−1 and the lemma follows.

2
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We now proceed to bound C2. Denote by c2(Xj) the contribution of Xj to C2. Recall that paths
of the form q′l, for all uπl

∈ Xj are edge-disjoint, for fixed j. Hence c2(Xj) ≤ α · c(P ). Combining
this fact with Lemma 9 we have

c2(Xj) = min{αc(P ),
αc(P )

xj−1
|Xj |}

therefore,

C2 =
∑

j

c2(Xj) =
∑

j

min{αc(P ),
αc(P )

xj−1
|Xj |} (3)

Note that (3) is maximized when |Xj | = xj−1, for all j ≥ 2, which implies that

C2 ∈ O(xαc(P )) (4)

We are now ready to conclude the proof of Lemma 6, observe that

C = C1 + C2 =

k′∑

i=1

C1,i + C2

= O(xα
k′∑

i=1

c(pi)) + O(xαc(P )) (From Eq (2) and Eq (4))

= O(xα(
k′∑

i=1

c(pi) + c(P ))) = O(xαc(T ′)) = O(α
log α

log log α
C(T ′)).

2

As mentioned earlier in the section, Lemma 6 will facilicate the proof of Lemma 4. The idea
behind the proof is to decompose the set K ′ into a collection of “near-disjoint” comb instances.

Proof of Lemma 4 We will show how to partition K ′ into two collections of sets: The first collection,
denoted by I, will consist of terminals which asymptotically do not affect much the overall cost of
Greedy; we will call such terminals ignored. The second collection will consist of a partition of
K ′ \ I into near-disjoint comb-instances. In particular, by near-disjoint we mean that any edge in
T ′ will be shared by at most two comb instances.

The decomposition is determined by visiting terminals in K ′ in the order they are requested.
Let σ′ denote the sequence of terminals in K ′, and σ′[i] the i-th requested terminal in K ′. We
initialize the set I as well as the collection of comb instances, denoted by C, to empty sets. For any
terminal t ∈ σ′ let qt denote the path pT ′(r′, t), namely the path from r′ to t in T ′ and qt denote
the path pT̂ (t, r′), namely the path from t to r′ which follows all edges antiparallel to edges in qt.

The first terminal in σ′, namely σ′[1] = w, induces a (trivial) comb instance of the form
C1 = (qw, w, r′), with backbone qw, and a single, empty terminal path5. We say that we assign w
to C1, and we add C1 to C.

Consider now terminal t = σ′[i] with i > 1. Focus on the sequence of vertices, in the order they
are visited, in the directed path qt. Let v denote the first vertex in this sequence which belongs to
the vertex set of some Cl ∈ C, with the convention that in the case where t itself is in the vertex
set of Cl, we consider v to be vertex t (if v belongs to more than one combs, then we choose any of
such combs to be Cl.) Note that the sequence of vertices must include r′ which is in C1, so such a
v always exists. We consider the following cases, and make appropriate decisions in this order:

5Recall that our definition of a comb instance allows combs in which the terminal paths are empty. This is one
case where such an instance arises.
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• Case 1. v is a terminal σ′[j] with j < i. In this case we add t to the set of ignored terminals
I.

• Case 2. v is a vertex in the backbone of Cl. In this case we assign t to Cl and we update Cl
by adding the corresponding terminal path pT ′(v, t) (possibly empty) to Cl.

• Case 3. If none of the above happen, then it must be the case that v belongs in one of the
terminal paths for Cl. In particular, there must exist some j < i, such that terminal s = σ′[j]
is a terminal already assigned to Cl, and v is a vertex in the terminal path corresponding to s
in Cl which does not belong in the backbone of Cl and is not s either. Let s′ denote the vertex
of the terminal path for s in Cl which also belongs in the backbone of Cl. In this particular
case, we say that t initiates a new comb Cρ+1, where ρ is the highest current index of combs
in the collection C. More precisely, we create a new comb Cρ+1, rooted at s′, with pT ′(s′, s) as
its backbone, and the path pT ′(v, t) as the terminal path for t. We assign t to Cρ+1; we also
say that terminal s pays for initiating comb Cl+1 (the context of this will become clear later
in the proof).

Figure 2 illustrates the application of the decomposition.
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v

r′

σ′[1]

σ′[12]

s′

σ′[2]

σ′[3 . . . 10]

σ′[13 . . . 19]

t = σ′[20]

s = σ′[11]

Figure 2: An example of the comb decomposition. Here, terminals σ′[1], σ′[2], σ′[11] and σ′[12]
are assigned to C1. Terminals σ′[3 . . . 10] and σ′[13, . . . 19] which belong in the subtrees of σ′[2]
and σ′[11], respectively, are all ignored terminals. Terminal t = σ′[20] initiates C2, with terminal
s = σ′[11] paying for initiating C2.

Once the whole sequence σ′ is processed as above, we are left with a set of ignored terminals
I and a partition of terminals in K ′ \ I into sets K ′

i such that all terminals in K ′
i are assigned to

comb Ci. Denote by t1i the terminal which initiates comb Ci, and s1
i the terminal which pays for

initiating that comb. From the decomposition we have

cGR(K ′) = cGR(I) +
∑

i

cGR(t1i ) +
∑

i

cGR(K ′
i \ {t

1
i }). (5)

Suffices then to bound cGR(K ′), as expressed by (5). First, observe that for every ignored
terminal i ∈ I, there is a terminal which has been requested earlier in σ′ and which is an ancestor

11



of i in T ′. It follows that cGR(i) ≤ c(T ′), therefore

cGR(I) ≤ |I ′|c(T ′) = O(α)c(T ′). (6)

Next, denote by T ′
i the edge set for Ci. The decomposition has the following property

Property 10 A (non-empty) terminal path for any comb Ci ∈ C is the backbone for at most one
Cj, with j 6= i. In addition, all (non-empty) terminal paths for all combs in C are edge-disjoint.

Property 10 implies that any edge in T ′ appears in at most two combs in C. We can combine
this fact with Lemma 6 to derive that

∑

i

cGR(K ′
i \ {t

1
i }) = O(α

log α

log log α
)
∑

i

c(T ′
i )

≤ O(α
log α

log log α
)2c(T ′), (7)

Finally, consider terminal t = t1i . Let v be the vertex on the path qt, as defined in the statement
of case (3), which describes the initiation of comb Ci. For convenience, let p1

i denote the terminal
path for s1

i in the comb to which s1
i is assigned. Observe that a terminal s1

i will always initiate
only one comb, namely Ci. It follows that for every i > 1, we have

cGR(t1i ) ≤ c(pT̂ ′(s
1
i , v)) + c(pT ′(v, t1i ) ≤ αc(p1

i ) + c(T ′).

Therefore

∑

i

cGR(t1i ) = cGR(t11) +
∑

i≥1

cGR(t1i ) ≤ cGR(w) +
∑

i≥1

(αc(p1
i ) + c(T ′))

= cGR(w) + α
∑

i≥1

c(p1
i ) +

∑

i≥1

c(T ′)

≤ cGR(w) + αc(T ′) + O(α)c(T ′) = cGR(w) + O(α)c(T ′), (8)

where, in the last line of inequalities, we used the fact that a terminal s1
i will always initiate only

one comb, in conjunction with the edge-disjointness of terminal paths (Property 10) and the fact
that O(α) combs are initiated.

Using (6), (7) and (8), Eq (5) gives cGR(K ′) = cGR(w) + O(α log α
log log α)c(T ′). 2.

As outlined in Section 2, we aim towards applying Lemma 4 in a recursive manner. To this end,we
now proceed to decompose the optimal arborescence T ∗ into a “balanced” family of arborescences.
We are interested in decompositions which are edge-disjoint. Vertex-disjointness is not critical,
however, in the event a terminal vertex belongs to more than one tree in the decomposition, we
insist that the terminal itself is assigned to exactly one tree in the decomposition (c.f. proof of
Lemma 11). Effectively, this will allow us to treat the trees as if they were “terminal-disjoint”,
even though the trees are not necessarily vertex-disjoint. This is a convention we make and its only
purpose is to simplify the proofs.

Lemma 11 Let T be a Steiner tree for a set of k terminals, and x a number such that 1 ≤ x ≤ k.
Then T can be decomposed in at most ⌈k

x⌉ and at least k
2x edge-disjoint arborescences, with each

arborescence assigned between x and 2x terminals.
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Proof. There is a simple algorithm that provides the decomposition. Let Tv denote the subtree of
T rooted at node v ∈ T . Let k(T ′) denote the number of terminals in a tree T ′. Starting with T ,
find a node v of maximum depth such that k(Tv) is at least x. Let T1, . . . Tl denote those subtrees,
in increasing order of terminals they contain. Denote by T ′

j, j ∈ [1, l] the subtree rooted at v
which has T1 . . . Tj as its children, i.e., in T ′

j there are directed edges from v to each of T1, . . . , Rj .
Find the smallest j ≤ l such that k(T ′

j) is at least x and let T ′ denote this particular T ′
j . Clearly,

x ≤ k(T ′) ≤ 2x. We input T ′ in the decomposition, and repeat the process with the tree T \ T ′.
We emphasize that once a terminal t is assigned to a tree in the decomposition, the vertex of
terminal t is treated, in subsequent iterations of the algorithm as a non-terminal vertex. This will
guarantee that the decomposition assigns each terminal to a unique tree in the decomposition, even
though the decomposition itself is not vertex-disjoint. Since every time a tree is inserted in the
decomposition we decrease the number of terminals in T by at least x and by at most 2x, the
decomposition consists of at most ⌈k

x⌉ and at least k
2x trees. 2

Definition 12 Let D(T ) denote the set of trees obtained by applying an edge-disjoint decomposition
D to tree T with k terminals. We say that D is balanced for tree T if every tree in D(T ) is assigned
between k

4α and 4k
α terminals, and α

4 ≤ |D(T )| ≤ 4α.

In what follows, let k(T ′) denote the number of terminals assigned to a tree T ′, as the result of
a decomposition. Recall that K denotes the set of all terminal requests, with |K| = k. Let τ be
such that ατ = k, which means that τ = log k

log α .

Definition 13 A balanced hierarchical decomposition H of height L of a Steiner tree T consists
of L families of sets, denoted by F1, . . .FL, defined recursively as follows. Let DT

1 be a balanced
decomposition for tree T . First, we define F1 to be the set DT

1 (T ), and every tree in F1 is said to be
at level 1. We define Fi+1 in terms of Fi as Fi+1 = {DT ′

i+1(T
′)|T ′ ∈ Fi}, where DT ′

i+1 is a balanced
tree decomposition for tree T ′ (with respect to the terminals assigned to T ′). We also say that every
tree in Fi+1 is at level i + 1. Finally, H must be such that every tree at level L is assigned at most
c · α terminals, for some constant c.

Lemma 14 For every tree Steiner tree T with k terminals there exists a balanced hierarchical
decomposition H of T such that for every tree T ′ at level i, we have 1

4ατ−i ≤ k(T ′) ≤ 4ατ−i, and
the height of the decomposition is L = O(τ).

Proof. We prove the first statement by induction on i, the second statement concerning the bound
on L follows then from the fact that all trees at level ⌈τ − 1⌉ in H have O(α) terminals. We
need to define an appropriate balanced tree decomposition, for every tree and every level in the
decomposition. For the first level, we invoke Lemma 11 with parameter x = ατ−1. Given tree T ′

at level i, we define DT ′

i+1 as follows:

• If k(T ′) > ατ−i , then invoke Lemma 11 with parameter x = 2ατ−(i+1).

• otherwise, invoke Lemma 11 with parameter x = ατ−(i+1)

2 .

It is easy to verify, by induction on the levels that for every tree T ′ at level i, DT ′

i+1 is a balanced

decomposition for T ′, and to show by induction that for every tree in T ′′ ∈ DT ′

i+1(T
′) ( i.e., a tree

at level i + 1) we have 1
4ατ−(i+1) ≤ k(T ′′) ≤ 4ατ−(i+1). 2
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Let H∗ denote the balanced decomposition of T ∗ which satisfies the conditions of Lemma 14, and
let F1, . . .FL be its levels. We can now proceed with the main result of this section:

Proof of Theorem 1. Let σ denote the input sequence of terminals. Define the depth of a terminal
t = σ[i] in σ, as the smallest index j such that t is assigned to some tree T ∈ Fj and no terminal
in σ[1 . . . i − 1] is assigned to T ; we also say that t is associated with tree T . If such a j does not
exist, then the depth of the terminal t is defined to be L + 1, and t is associated with the (unique)
tree of level L to which is is assigned in H∗. Note that every terminal is associated with a unique
tree. We can then partition K ′ into disjoint sets S1, . . . SL+1, where Si denotes the set of terminals
of depth i. Let cGR(Si) denote the cost induced by Greedy on Si.

Lemma 15 cGR(Si) = O(α log α
log log αOPT ).

Proof. Consider first S1. There are at most 4α trees in F1, hence at most 4α terminals in S1.
The first terminal (σ[1]) incurs a cost of at most OPT . We can now invoke Lemma 4 to get that6

cGR(S1) = O(α log α
log log αOPT ).

In general, consider set Si, with 2 ≤ i ≤ L. Recall that Fi is derived by applying a balanced
decomposition to each tree in Fi−1, namely Fi =

⋃
T∈Fi−1

DT
i (T ). For each T ∈ Fi−1 there are

|DT
i (T )| trees in Fi, and each such tree is assigned at most one terminal in Si. Denote by ST

i

the subset of Si which consists of terminals assigned to trees in DT
i (T ). Since DT

i is a balanced
decomposition for T by Definition 12 we know that |DT

i (T )| ≤ 4α, hence |ST
i | ≤ 4α. In addition,

by the definition of the depth of a terminal, we know that there is one terminal in Sj with j ≤ i−1,
say terminal w, which is assigned to T and has been requested earlier than all terminals in ST

i (if
this was not the case, one terminal in ST

i would have depth smaller than i, a contradiction). In
addition, the contribution of w to the cost of Greedy has already been taken into account when
bounding cGR(Sj). This means that we can apply Lemma 4 for the tree T , the set of terminals ST

i

and w as a terminal requested earlier than all terminals in ST
i , and get that

cGR(ST
i ) = O(α

log α

log log α
c(T )),

Finally, since every terminal in Si is associated with a tree of level i, note that Si =
⋃

T∈Fi−1
ST

i .
In addition, Fi−1 consists of edge-disjoint trees, therefore

cGR(Si) =
∑

T∈Fi−1

cGR(ST
i ) = O(α

log α

log log α

∑

T∈Fi−1

c(T )) = O(α
log α

log log α
c(T ∗)).

For the case i = L+ 1 the bound on cGR(SL+1) follows along the same lines and the fact that from
the definition of H∗, O(α) terminals are associated with each tree at level L + 1. 2

To conclude the proof, we have that the total cost of Greedy is bounded as follows:

cGR(K) =

L+1∑

i=1

cGR(Si) = (L + 1) ·O(α
log α

log log α
OPT ) (From Lemma 15)

= O(τ)O(α
log α

log log α
OPT ) (From Lemma 14)

= O(
log k

log α
)O(α

log α

log log α
OPT ) = O(α

log k

log log α
OPT )

hence cGR(K ′) = O(min{k, α log k
log log α})OPT . 2

6For S1 a better bound is c(S1) ≤ 4αOPT . See also footnote 2.
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4 Outline of the proof of Theorem 2 and intuition

Consider the graph G illustrated in Figure 3: this graph will provide the motivation behind the
definition of the actual adversarial input graph. Graph G is such that all “downwards” edges
are cheap, whereas all “upwards” edges are expensive, and each has cost α times the cost of its
antiparallel upwards edge. In particular, there is a path from the root r to a vertex t such that the
cost of the directed path r → t is equal to 1 (hence the cost of the path t → r is α). Call P the
path from s to t.

In addition, there are Θ(k) pairs of vertices, of the form (vi, ui), defined in a recursive manner
as follows. Let x be such that xx = k, hence x = Θ( log k

log log k ), and assume wlog that x is integral.

The first group of vertices, namely group K1, consists of x pairs such that the v′is are all evenly
distributed over the path P (namely the cost of the path from vi to vi+1, over edges of P is the
same for all i’s such that vi ∈ K1, and is also the same as the cost of the path r → v1 and vx → t).
In addition, the cost of the edge (vi, ui) is equal to 1

x2 whereas is antiparallel edge has cost α 1
x2 .

Suppose now that groups K1, . . . Kj have been defined, we will show how to define Kj+1. For
every pair of consecutive vertices (vi, vi+1) in P such that each of vi, vi+1 belongs in some Km with
m ≤ j, we insert x vertices of the form v1

i , . . . , v
x
i , all distributed evenly over the path vi → vi+1.

In addition, we insert x vertices of the form ul
i, l ∈ [1, x] such that the cost of the edge (vl

i, u
l
i) is

1
xj+2 , while the antiparallel edge (ul

i, v
l
i) has cost α 1

xj+2 . We do the same with the pairs (r, v1) and
vlast, t), where vlast is the bottom vertex among all groups Km with m ≤ j We continue until x
groups have been defined. Note that the total number of u-vertices is then Θ(k)7

The adversary will request u-vertices as terminals in rounds. In particular, in round i, with
1 ≤ i ≤ x, the adversary will request the u-vertices of group Ki, in a bottom-up manner (i.e.,
starting from the u-vertex which is the farthest away from r and ending with the one that is the
closest).

t

r

Figure 3: The structure of the adversarial graph G, for the case x = 2. Only “cheap” edges are
shown while “expensive” antiparallel edges are omitted

To illustrate the intuition behind our argument, we will make the following assumption: suppose
that every time the algorithm establishes a new connection path for a certain request (ie a path from
a previously requested terminal), several new edges must be bought, in the sense that there is little

7Note the close similarity between this construction and the concepts of the comb and the run which we used in
the proof of the upper bound. In fact, their definition was much motivated by this adversarial construction, and vice
versa.
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overlapping between the new connection path and the ones which have already been established.
Of course this is not the case in G itself, and enforcing this requirement is by no means a trivial
task. In fact, much of the details in the formal proof of Theorem 2 is dedicated to this issue.

Consider then the l-th u-vertex (terminal) requested in round j. There are three options
concerning the connection path for this u-vertex: either i) will originate in r; or ii) originate
in a “higher” vertex which was requested in an earlier round; or iii) originate in a “lower” vertex
which was requested before u. In the second and third cases, a cost (roughly) of at least α 1

(x+1)j

will be incurred. It is easy to show that round j consists of Θ((x + 1)j) vertices. Thus, if the
majority of the requests in round j fall in the last two cases, a cost of Ω(α) is incurred for the
round. Otherwise, the majority of the requests in the round are for terminals u which incur cost
roughly the cost of the directed path from r to u, which translates to a total cost of Ω(kj), where
kj is the number of requests in Kj . This argument shows that each round contributes a cost of
Ω(min{kj , α}). Since there are x rounds, the result will then follow by combining the contribution
of each round to the overall cost, and the observation that the the optimal algorithm will buy the
path P and all edges of the form (v, u), for a total cost which can be shown that it is bounded by
a constant.

Details on the formal proof can be found in Section 5.

5 Proof of Theorem 2

5.1 Construction of the adversarial graph

The construction of the adversarial input is based on a recursive definition of a suitable graph G. In
order to define G we will need first to define certain auxiliary constructions which will facilitate the
description of the input graph. First, let v, u be two vertices (in the vertex set of a certain graph)
with the property that edge e = (v, u) has cost c(e) = c, while the antiparallel edge e = (u, v)
has cost αc, where α is the asymmetry of the graph in which v, u belong. We then say that we
insert a vertex w at height h in e with h < c if we introduce a new vertex w and replace e, e
with new edges of costs c(v,w) = c − h, c(w, u) = h, c(w, v) = α(c − h), c(u,w) = αh (for the
sake of visualization, we should think of v as being located higher than u). Note that the insertion
maintains the asymmetry of the graph.

Second, let T1 = {v1, . . . , vl} and T2 = {u1, . . . , ul} be two disjoint sets of l vertices each (again,
we may think of vertices of T1 as located higher than vertices of T2). In addition, we require that
T1 and T2 have the property that all edges of the form ei = (vi, ui) have the same cost, say c, while
all antiparallel edges ei have cost αc. Let E denote the set {ei|i ∈ [1, l]}. We call index i ∈ [1, l] the
i-th column. On the collection of edges E we define a construction denoted by (E, q, g) which we
call layered component or simply component and which, informally, adds vertices in edges in E in
layers. Here, q and g are parameters used in the construction. The construction is as follows (see
also Figure 4). Layer 1 consists of l vertices inserted at height c/q, one for each edge in E. Call those
vertices w1,1, . . . w1,l. We group these vertices into 21 = 2 groups, namely S1,1 = {w1,1, . . . , w1,l/2}

and S1,2 = {w1, l
2
+1, . . . , w1,l}. We also add two new vertices, u1,1 and u1,2, such that for every

vertex w ∈ S1,i, with i ∈ {1, 2}, there is an edge of cost g from w1,i to u1,i and an edge of cost
αg from u1,i to w1,i. Recursively, suppose that layers 1, 2, . . . j − 1 ≤ q − 2 have been defined, we
show how to derive layer j. Let E′ be the collection of edges of the form (vi, w

j−1,i), after layers
1, . . . j − 1 have been created. By construction, all of them have the same cost, which we denote
by c′. Again, we insert l new vertices wj,1, . . . , wj,l at height c/q for each edge in E′ which we then
partition (left-to-right) in 2j groups Sj,1, . . . , Sj,2j

, all of the same size; namely, group Sj,i consists
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of vertices {wj,i(2l−j )+1, . . . , wj,(i+1)(2l−j )}. We also add 2j new vertices uj,1, . . . uj,2j
such that for

every vertex w ∈ Sj,i, there is an edge from w to uj,i of cost g, and an edge from uj,i to w of cost
αg. We stop when q − 1 layers in total have been defined.

1 2 3 4 5 6 7 8

u
1,2

u
1,1

u
2,1

T1

T2

u
12,3

u
2,2

u
2,4

Figure 4: The structure of a component for the case q = 3, and l = 8.

We will call a set of the form Si,j an s-set. We will also say that a set of vertices S crosses or
intersects a certain set of columns if and only if the set of columns in which the vertices of S lie
intersect the set of columns in question. Two sets of vertices cross each other iff the intersection of
the columns each one crosses is non-empty. Similar definitions apply for a set of edges: a directed
edge which lies on column i is said to cross column i. Note also that there is a 1-1 correspondence
between sets Si,j and vertices ui,j, which means that several properties/definitions pertaining to
S-sets carry over to their corresponding u-vertices: we will use this correspondence to make the
discussion more accessible (at a slight abuse of notation).

Note that in the layered component, a set Sj,i at layer j crosses a set of columns J = J1 ∪ J2

(where J1 and J2 are disjoint sets of columns) such that one s-set at layer j +1 crosses J1 (and only
J1) and another s-set in layer j + 1 crosses J2 (and only J2). We call these two s-sets the children
of Sj,i (or we say that Sj,i is their parent). We extend this definition to the u-vertices to which the
s-sets described above correspond. Namely, the children of uj,i are the u-vertices corresponding to
the children of set Sj,i. By convention, we will also say that the children of T2 are S1,1 and S1,2.

We now proceed with the description of the adversarial input graph G. At a high level, the
construction is based on a recursive series of insertions of appropriately defined layered components.
In particular, we will show how to construct a family of graphs G0, G1, . . . , Gρ: G will then be
defined as Gρ for a suitable choice of the value ρ. First, denote by G0 the graph which consists of
two sets of vertices T1 = {v1, . . . , vl} and T2 = {u1, . . . , ul}, as well as vertex r. The root of the
Steiner tree is set to be r, and the same will hold for every Gi. It will be convenient to think of l as
very large compared to k, although suffices to set l = 2k. Edges from r to vertices in T1 have all zero
cost (or, more precisely, infinitesimally small cost), and the same holds for their antiparallel edges.
In addition, c(vi, ui) = 1 and c(ui, vi) = α. Informally, the “downwards” direction is the cheap one,
while the “upwards” direction is the expensive; this property will be maintained throughout the
recursive construction. We let E denote the set of edges (vi, ui). We will use the words “down”
and “up” to distinguish between edges in the graphs, with the natural meaning of the words.

For the sake of clarity, we first present the construction of G1, the construction of Gi for
larger values of i will follow next. Suppose that x′ is such that (x′)(x

′) = k, which means that
x′ = Θ( log k

log log k ) (recall that k denotes the total number of requests) . We let x denote ⌊x′⌋. G1 is
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derived by inserting only one component, namely C1 = (E, x, 1/x2). The height H1 of G1 is defined
as the total number of layers added by the construction, plus one (to account for T1 and T2 which
we may think of as layers on their own; we define the height of T2 to be zero). After the insertion of
the component, we partition the set of all l columns into a collection of l

2x disjoint sets of columns
R = {R1, . . . R l

2x
}, with the property that column y ∈ [1, l] is in class Ri if and only if it crosses

Sx−1,i
1 . In other words, there is a class in R for each of the highest s-sets in the component C1.

We will also use the notation Lj,m
1 to denote the m-th (from left to right) s-set in G1 at height

j. By convention we consider L0,1
1 ≡ T2, while Lx,1

1 = T1, to reflect that T1 and T2 constitute the
bottom and the top level, respectively.

Suppose now that graphs G0, . . . , Gi have been defined. Let Hi denote the height of Gi, namely
the total number of layers of s-sets inserted, plus one. We say that two s-sets of vertices (possibly
including T1 and T2) are consecutive in Gi if and only if they cross each other, and in addition
there is no other s-set of vertices between them which crosses either set. As expected, an s-set is
“between” two s sets if it is located above one of the two sets and below the other.

We now describe how to define Gi+1. The construction is presented in pseudocode. Similar to
the case of i = 1, we use the notation Lj,m

i to denote the m-th (from left to right) s-set in Gi at

height j. Lj
i is then defined simply as the union of all Lj,m

i .

for j = 0 to Hi − 1 do

for every m such that L ≡ Lj,m
i ∈ Lj

i do

Let C(L) ⊆ Lj+1
i denote the collection of s-sets in Lj+1

i with the additional property
that each s-set in C(L) is consecutive to L in Gi ;
for every L′ ∈ C(L) do

Partition the set of columns crossed by both L′ and L into a collection of classes
P = {P1, . . .} such that Pj consists of columns in one of the classes in R and only

that class;
for each class Pi do

Let E′ be the set of edges from L′ to L which are on the same column with class
Pi ;
Perform the layered insertion (E′, x, 1/xi+2). ;

end
end

end

Update the partition of the column space R: Redefine R such that all columns crossed by
the same highest s-set inserted in this iteration(i.e., for the current value of j) are placed
in the same partition ;

end

An example of the construction is given in Figure 5
The following lemma is easy to show (proof omitted).

Lemma 16 Let li denote the total number of levels in Gi (including T1, T2). Also let ni denote
the number of “new” levels added when obtaining Gi from Gi−1 (i.e., ni = li − li−1). Then li, ni ∈
Θ((x + 1)i). In addition for ρ = x, there are Θ(k) levels in Gρ.

Graph Gρ will be the adversarial input graph, i.e., G ≡ Gρ. In the next section we present the
adversarial strategy, namely the game between the adversary and the deterministic algorithm. We
say that a u-vertex (resp. S-set) is a vertex/set of Gi if it is present in Gi but not in Gi−1. Note
that such a vertex is present in all graphs Gj′ with j′ > i. For simplicity we will assume wlog that
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Figure 5: Example of the construction of the adversarial graph. Bold rectangles depict the layers of
the only component of G1.The eight s-sets of the highest layer of this component induce a partition
of the column space into 8 classes. Shaded rectangles correspond to components of the form G2,0,id,
with id = 1 . . . 8}.

Gρ has exactly k levels. (the proof is only slightly more complicated if this is not the case, e.g. we
must set l = 2Θ(k) instead of 2k.)

Having defined the construction of Gi, we need a more convenient way of identifying all compo-
nents present in graph Gi. In particular we will use the notation Ci,l,id to refer to the component
inserted during the construction of graph Gi between levels l and l + 1 of Gi−1 (which means that
l ranges between 0 and Hi−1 − 1) and has a certain component id, which is simply determined
by numbering the components from left to right for each such fixed value of l. Within a specific
component Ci,l,j, we use the notation Sm1,m2

i,l,j to define the m1-th s-set from bottom to the top of
the component (i.e., located at the m1-th layer of the component) which is also the m2-th s-set
from left to right among all s-sets in that layer). The corresponding u vertices will be identified in
the natural way, i.e, um1,m2

i,l,j is the u-vertex corresponding to Sm1,m2

i,l,j .

5.2 The algorithm/adversary game

At a high level, the game proceeds in rounds. Only u vertices are requested. In round i , the
algorithm will request vertices of Gi only in a bottom-up fashion, i.e., from lowest to highest
height. The important property that the adversary will guarantee is that all requested u-vertices
have corresponding s-sets which all lie on the same unique path of down-edges from r. This will
ensure that the optimal cost is bounded by a constant. On the other side, we will show that the
algorithm will have to pay a high cost per round (roughly Θ(min({ki, x})), where ki is the number
of vertices requested at round i. This means that the algorithm will pay (roughly) either a constant
cost per request, or a cost proportional to x per round.

We begin with certain preliminary definitions and conventions. Each time the adversary presents
a new request, namely a certain u-vertex, the algorithm must guarantee there is a (directed) path
from a previously requested vertex to u, possibly buying some new edges. Among all possible such
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paths the adversary will fix/choose one such path, which we call a connection path. For this path,
our analysis will charge only parts of it (i.e. specific edges) to the algorithm. If we ensure that
each edge bought by the algorithm is charged at most once, then the total cost of all charged edges
cannot exceed the actual cost paid by the online algorithm. Without loss of generality we will
assume that the connection path is acyclic (otherwise we simply bypass all cycles).

Consider now a u-vertex requested in round i, and its connection path p(u) chosen by the
adversary. We observe that p(u) can be chosen so that it is one of the following three types:

• Connection path from r: A connection path which originates from r and does not visit any
previously requested vertex.

• Connection from above: A connection path which originates from a previously requested
vertex which lies higher than u in Gi (and visits no other previously requested vertices).

• Connection from below: A connection path which originates from a previously requested
vertex which lies lower than u in Gi (and visits no other previously requested vertices).

To illustrate the main ideas of the game, we describe the intuition behind the actions of the
adversary during the first round of the game, namely when the adversary requests u-vertices in G1.
Later we will describe the game in a more formal way. Since there is only one component in G1,
we omit subscripts for simplicity, in this example.

The first round begins with request u1,1 which corresponds to S1,1. The algorithm will buy a
connection path from r, say p(u1,1). The adversary will then charge “down”-edges in this path (but
no other edges). Observe that no matter what the connection path is, there is a child of S1,1 in
the second layer of the component, which does not cross any columns of the charged edges. The
adversary will choose this child as its second request; call this child u, and its s-set S. At this
point, there are two choices concerning the connection path p(u):

• Case 1. p(u) is of the form shown in Figure 6: namely, it consists of down-edges, from r
down to (at least) the level of u1,1. In this case we charge the algorithm will the cost of one
down-edge per level, from r down to the level of u1,1 in G1.

• Case 2. The connection path is as in Figure 6: namely the connection path consists of
“up”-edges between the level of u1,1 up to (at least) the level of u. We charge the algorithm
with the cost of one up-edge per level from the level of u1,1 up to the level of u.

T2

p(u1,1)

p(u)

S1,1

S

T1

T2

p(u1,1)

p(u)

S1,1

S

T1

Figure 6: Depictions of Case 1 (left) and Case 2 (right).
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In either of the above cases, let q(p) denote the part of the connection path p(u) (i.e., collection of
edges) which is charged. Hence depending on which case applies, different edges will be charged, and
different costs will be incurred. The critical observation (along the lines of the earlier observation
concerning u1,1) is that exactly one of the children of u in C will correspond to an s-set which does
not cross columns with the columns of q(p); call this child u′. This provides a good strategy for
the adversary to choose its next request; in fact u′ will be the next request. In particular, once
again,the connection path to u′ will either result in a charge of “down”-edges from r down to the
level of u′, or a charge of up-edges from the level of u up to the level of u′. We continue the game
until we reach a vertex at the top layer (layer x − 1) of the component, at which point the first
round concludes8 The algorithm yields a charge for (almost) all the layers in the component: if the
majority of such requests were charged as in case (1), then the total charge is Ω(k1), where k1 is
the number of requests in graph G1; otherwise the total charge due to requests charged as in case
(2) will clearly be Ω(α). Therefore, the charge incurred during round 1 is Ω(min{k1, α}).

For round 2, the adversary will play a strategy defined along the same lines; however, instead
of requesting vertices within a single component only, the adversary will request vertices in H1

components in total, where H1 is the height of G1. More precisely, round 2 begins with identifying
the set of critical columns, namely those columns which cross the highest s-vertex requested in
round 1 (which was also the last vertex requested in round 1); then the adversary identifies the
unique component of the form C2,0,id for some id which crosses exclusively the critical set of columns.
For this component, the algorithm plays a game very similar to the one corresponding to round
1 (which, recall, takes place within a single component). Once “done” with this component, the
critical set of columns is updated to reflect the set of columns crossed by the last request (or more
precisely, the s-set of the last request) so far; the algorithm then proceeds with the next unique
lowest component in G2 which crosses only edges of the critical set (a component of the form C2,1,id′

for some id′). This repeats until the algorithm has completed requests within H1 components, in
which case round 3 begins. The game continues for ρ rounds.

In the rest of this section we give a more formal description of the game. Consider the input
graph G and any two s-sets s1 and s2 such that s1 is higher than s2 and the two s-sets cross each
other. We say that a directed path p includes all down-edges between s1 and s2 (resp. all up-edges)
if the path includes one down-edge (resp. up edge) per level, for all levels between s1 and s2.

The following is a basic property concerning the connection paths which can be derived by
observing the structure of the request graph (proof omitted).

Claim 17 Let C be a certain component in G and let Si,j , with i < x− 1 be an s-set in layer i of
C with children Si+1,j1, Si+1,j2 such that: the corresponding vertex ui,j has already been requested,
and no other u-vertex in C located between the level of Si,j and the level of its children in G has
been requested. Suppose that the next request, is a child of ui,j , say ui+1,j1. Let p = p(ui+1,j1) be
the connection path for this request. Then:

• If p is a path from r, then the connection path will always include all down-edges between r
and Si+1,j1.

• If p is a path from below, then then the connection path will always include all upward edges
between Si,j and Si+1,j1.

8In order to ensure that no edge is charged more than once, we will not charge any cost incurred at the first and
top (x− 1)-th layers of each componenent. Since this only happens for 2 our of the x− 1 layers, this technical point
will not affect the analysis.
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• If p is a path from above, say from a previously requested vertex u′, then the connection path
will always include the edge (u′, s′) from u′ to its corresponding s-set s′ such that Si+1,j1

crosses s′.

In addition, if q(p) denote either i) the set of up-edges between Si,j and Si+1,j1; or ii) the set of
down-edges between r and Si+1,j1; or ii) the edge (u′, s′) (depending on which case applies) then
exactly one of the children of Si+1,j will not cross columns with the columns of q(p).

The first part of the claim suggests that the connection paths have a certain structure. The
second part of the claim suggests a way for the adversary to request the “appropriate” child of the
last request as the next request to be presented. In particular, let us denote by u the last requested
vertex, and p(u) the corresponding connection path for u. Then, the second part of the claim shows
that given q(p(u)), as defined in the statement of the claim, there is a unique child of u (within
the component to which u belongs) which does not cross the columns of q(p(u)). We will use the
notation ch(q(p(u)), u) to denote this unique vertex.

To make the above more precise, the adversary will play the game as follows:

Initialize the critical set to the set of all columns {1, . . . , l} ;
for i = 1 to ρ do

Requests(Gi)
end

where Requests(Gi) is the strategy for requesting vertices which belong in Gi, described in
what follows:

for l = 0 to Hi − 1 do

Find the unique component Ci,l,y (for some index y) which crosses all columns of the critical
set ;
for j = 1 to x− 1 do

if j = 1 then

request u = u1,1
i,l,y ;

update u← u ;
end

if j = x− 1 then

u = ch(q(p(u)), u) ;
update the critical set to the set of columns crossed by the s-set to which u corre-
sponds. ;

end

else

request u = ch(q(p(u)), u) ;
for the connection path p(u) chosen update u← u and p(u)← p(u) ;

end
end

end

From the structure of the graph, one can easily prove the following claim:

Claim 18 Let Mi denote the number of columns with the property that they cross the s-sets of all
vertices requested up to and including the i-th request. Then Mi = l

2i .

Proof sketch. First, observe that the set of columns crossed by the s-set which corresponds to the
i-th request crosses all s-sets for vertices requested in iterations 1 . . . i − 1. In addition, this set
crosses, by construction, exactly l/2i columns. 2
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Claim 18 implies that the adversary/algorithm game is feasible, in the sense that it can go on
for k iterations, namely as many as the number of terminals requested by the adversary.

5.3 Analysis

Last, we need to upper-bound the cost of the optimal offline algorithm, and lower-bound the cost of
any deterministic online algorithm. For the former, suffices to use Claim 18. An offline algorithm
can buy a path with r as its origin, consisting exclusively of down-edges, and which visits all s-sets
corresponding to all u-vertices requested by the adversary, at a cost of at most 1. In addition, it
will buy all directed edges from the s-sets in question to all u-vertices requested. Recall that the
adversary requests Θ((x+1)i) vertices which belong to graph Gi (Lemma 16). Therefore, the total
cost for such edges is bounded by

ρ∑

i=1

1

xi+1
Θ((x + 1)i) =

1

x

x∑

i=1

(1 +
1

x
)i ≤ e,

where e denotes the base of the natural logarithm. Hence the algorithm’s total cost is upper-
bounded by e + 1.

In order to place a lower bound on the cost of any online algorithm, we will charge a subset of
the edges of each connection path according to specific rules. The charging will be such that every
edge is charged at most once, which guarantees that the total charged cost is a lower bound for the
cost paid by the algorithm.

Let u be a vertex requested at round i (i.e., a vertex which belongs in graph Gi), and p(u) its
corresponding connection path. Recall that Claim 17 provides a classification of the connection
paths. Our charging scheme is based on this classification. In particular, we will charge certain edges
in q(p), and only such edges (with the exception of the lowest and highest layers in a component
as argued earlier). There are three cases:

• Case 1: q(p) describes up-edges. In this case, the cost charged to the algorithm is α · 1
(x+1)i

(since q(p) includes all up-edges between two consecutive levels at graph Gi).

• Case 2: q(p) describes down-edges from s. In this case, the cost charged to the algorithm is
the cost of all such down-edges, down to the level of u.

• Case 3. q(p) describes an edge of the form (u′, s′) such that u′ is a previously requested
vertex. Since u′ belongs to some Gj , with j < i, the charge in this case is at least α

xj+1 ≥
α
xi .

The second part of Lemma 17 guarantees that each edge in the graph is charged only once.
It remains to express the total charge incurred by the algorithm. Let k1

i and k2
1 denote the

number of requests which incur a charge of at least α 1
(x+1)i (Cases (1) and (3) above) and a charge

which follows Case (2), respectively. Recall that ki denote the number of requests in graph Gi.
From Lemma 16 we have that k1

i + k2
i = Θ((x + 1)i). It follows that if k1

i ≥ ki/2 then the total
charge for round i is Ω(α), otherwise, it is not difficult to see that the total charge is Ω(ki). This
observation holds for all levels i; let ri be the indicator variable which is 0 if the charge of round i
is Ω(α) and 1 if the charge is Ω(ki).

Let R1 denote the set {i : ri = 1} and R0 the set {i : ri = 0}, for all i ∈ [1, ρ]. Suppose that
|R0| ≥ ρǫ, for some constant ǫ ≥ 0. In this case, the total charge is Ω(αρ) = Ω(αx). Otherwise,

|R1| ≥ ρ(1− ǫ). Therefore the total charge due to all rounds in R1 is at least Ω(
∑ρ(1−ǫ)

i=1 (x + 1)i) =
Ω(k1−ǫ).
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Summarizing, the total cost paid by the algorithm is at least the total charge, which in turn is
bounded as shown above, and thus is

Ω(max{k1−ǫ, αx}) = Ω(max{k1−ǫ, α
log k

log log k
}).
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Appendix

A Dealing with degeneracies in the proof of Lemma 6

There are many ways to argue about this. A formal way is as follows. Suppose first that vi ≡ ui,
then we can create a new vertex u′

i, add a directed edge of infinitesimally small, but positive cost
ǫ, treat u′

i as a terminal while the vertex vi as a non-terminal vertex. Likewise, if vi−1 ≡ vi, then
we can add a directed edge of cost ǫ from vi to vi−1 in the comb. We charge only the algorithm
with the additional cost, but not the optimal solution. Since ǫ is negligible, the overhead does not
affect asymptotically the algorithm’s cost.

A different way to argue is that even if such degeneracies arise, they do no affect the proof of
Lemma 6. The only reason they should be nevertheless considered is that Lemma 4 requires that
Lemma 6 is correct even when such degeneracies arise.

B An example of the partition of the terminals in a comb into

runs

Consider the comb instance of Figure 7, with K ′ consisting of 12 terminals (for simplicity, we
represent terminal ui, with 1 ≤ i ≥ 12, by its index i). Suppose the terminals are given in the order

3,7,1,11,4,6,5,2,8,12,10,9

The decomposition is then as follows:

run representative terminals
1 – 3,7,11,12
2 3 1,2
3 7 4,6
4 6 5
5 11 8,10
6 10 9
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Figure 7: An example of the comb decomposition.
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