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Abstract

A problem is said to be Gl-complete if it is provably as hardgasph isomorphism; that
is, there is a polynomial-time Turing reduction from the @rdasomorphism problem. It is
known that the Gl problem is Gl-complete for some speciaplgrelasses including regular
graphs, bipartite graphs, chordal graphs and split grdpttbis paper, we prove that deciding
isomorphism of double split graphs, the class of graphshéxing a 2-join, and the class of
graphs exhibiting a balanced skew patrtition are Gl-corapléturther, we show that the Gl
problem for the larger class including these graph classasis, the class of perfect graphs—is
also Gl-complete.

1 Introduction

The Graph Isomorphism (GI) problem consists of deciding whether two given grapiesisomor-
phic and thus, consists of determining whether there eaibtgctive mapping from the vertices of
one graph to the vertices of the second graph such that theeagtjgcencies are respected. The Gl
problem is a well-known open problem that was first listedrasrgortant open problem in Karp’s
paper over three decades ago [Kar72]. Gl is of great interast it is one of the few problems
contained in NP that is neither known to be computable inmpatyial time nor to be NP-complete.
Presently, there is no known polynomial-time algorithmdoaph isomorphism and further, there
is strong evidence that the problem is not NP-complete. MafMat79] demonstrates that the
problem of counting the number of isomorphisms between &beled graphs is Turing reducible
to GI; this gives indication that Gl is unlikely to be NP-col@ie since for almost all NP-complete
problems their counting versions are of much higher comgléixan themselves. The inability to
find a polynomial-time algorithm for the Gl problem demoas#ss evidence that it is unlikely that
the problem isin P.



A problem is said to b&l-completeif it is provably as hard as graph isomorphism; that is, there
is a Turing reduction to the graph isomorphism problem. Giapmorphism remains Gl-complete
even when restricted to a number of “hard” special classeduding regular graphs, bipartite
graphs, chordal graphs, comparability graphs, split ggaphdk-trees with unboundedl. Re-
cently, Uehara et al. [UTNO5] showed that deciding the isgrhsm of strongly chordal graphs is
GI-Complete. Specific subclasses of bipartite graphs haga bhown to be Gl-complete—namely,
isomorphism is Gl-complete for chordal bipartite graph&®3], which shows a distinction be-
tween the class of convex graphs and chordal bipartite graph

On the other hand, there exists specific cases of the Gl praoiblat have efficient, polynomial-
time algorithms; such cases require restrictions uponldss ©f graphs considered. Examples of
such restricted classes include, but are not limited t;malgraphs, interval graphs, convex graph
[Che99] and permutation graphs.

Given the current divide between graph classes that exhipdlynomial-time algorithm for
Gl and those where Gl is provable to be Gl-complete, sigmifiaftention has been given towards
investigating classes for which the relative complexitytied Gl problem is not known. Many
classes have been proposed and widely investigated; wethefeeader to Brandstadt, Le, and
Spinrad [BLS99] for a comprehensive survey of this topic. pkve that deciding isomorphism
for double split graphs, the class of graphs admitting artzad skew partition, and the class of
graphs admitting a 2-join is Gl-complete. We consider thelioations of these results to the
related graph classes—namely, QP and SQP.

2 Preiminaries

In order to be self-contained we describe all definitions msilts from graph theory and com-
putational complexity required for the comprehension afresults. We restrict attention to finite
simple graphs and use standard graph-theoretic notatienV, E), whereV is the vertex set and
E C V x V. We denote the complement of a given gr@plasG. The complement of a graph
can trivially be computed in polynomial time. A gragh= (V, E) is bipartiteif V' can be divided
into two setsA and B such that every edge joins exactly one vertedito another vertex itB. A
clique of a graph(7 is a subgrapl# of G such that every pair of vertices verticesHnare adjacent.
We denoteu () as the size of the largest clique in the gr&phA stable set is a setA of n vertices
such thatG(A4) = N,,, whereG(A) is the induced subgraph ef and NV, is the null graph witm
vertices.

A path has distinct nodes,, ..., z; and edges;z;,1 for1 < i < k. If P = zq,...,24 and
k > 3, then the grapld’ = P U {z,x } is called acycle. The number of edges in a path or cycle is
its length. We denote a path of lengthby P,. An edge which joins two nodes of a path or cycle
but is not itself an edge of the path or cycle, is callechard. We refer to ahole as an induced
subgraph that is a chordless cycle of length at least fouraarahtihole as the complement of a



hole. Aneven pair is any pair of non-adjacent vertices such that every chesdath between
them has even length.

A colouring of a graphG = (V, E) is a mapping: : V' — C such thate(z) # ¢(y) for all
zy € E. If |C| = k thenc is ak-colouring. The smallesk such thatG admits ak-colouring is the
chromatic number x(G). The gap between the lower bound) and the chromatic numbei(G)
can be arbitrary large [Car01]. Berge [Ber61] called a gr&pperfect if and only if thew(H)
coincides withy (H) for all proper induced subgrapltg of G. All other graphs ar@émperfect.

We say thatG is adouble split graph if V(G) can be partitioned into four sefg, . ..a,},
{b1,---bn}, {c1,.. .}, {di,...d,} for somen, m > 2, such that:

e ¢; is adjacent td; for 1 < i < m andc; is nonadjacent td; for 1 < j < n;,

e there are no edges betweém, b;} and{ay,by} for 1 < i < ¢ < n and all four edges
between{c;,d;} and{c;,d; } for1 < j < j' <wm;

e there are exactly two edges betwdemn b;} and{c;,d;} for1 <i <mandl < j <n,and
these two edges have no common end.

Further, we aim to show Gl for the class of graphs admittirgjain is GlI-complete. We let
A, B be a partition of/ (G), A, As be non-empty disjoint subsets dfand B, B, be non-empty
disjoint subsets oB. If for i = 1,2, every vertex of4; is adjacent to every vertex d$; and
there are no other edges betweeand B, then we say thatr admits a 2-join. This concept was
introduced by Cornuéjols and Cunningham [CC85] in 1985thRimuble split graphs and graphs
exhibiting a 2-join are perfect graphs [C+06]. We will shdwat GI for these graph classes is
Gl-complete and that Gl for perfect graphs is also Gl-coteple

2.1 Graph Isomorphism

We define two graph&; andG, to beisomorphic if there is a bijectionp : V; — V5 such that
(u,v) € Ey if and only if (o(u), ¢(v)) € Ey;. We writeG; = G5 and callp an isomorphism.
Hence, the GI problem is to determinedf, = G, for given input graphgs; andG,. If G; and

G, are isomorphic, it follows from the definition that there sgia bijectiony : V; — V5 which

preserves edge adjacencies. ket {vi,v,} ande’ = ¢ 1(e) = {¢ ' (v1), ¢ '(ve)}. It follows

thate € G, if and only ife ¢ G, and further becauseis an isomorphism fo€; andG, we have
thate ¢ G, ifand only ife’ & G,. Finally,e’ ¢ G, if and only ife’ € G, proves that € G if and

only if ¢’ € G,. If G; andG,, are not isomorphic, a similar result can be shown. Thus, we tiee
following fact.

Observation 1 Given two graphs G; and G, and their respective complements G; and G, G =
G, ifandonlyif G; = G,.



An early result by Booth and Lueker [BL79] will be central tosemple proof we give for
showing that the class of perfect graphs are Gl-completey Pinove that graph isomorphism is
polynomially-reducible to chordal graph isomorphism [BI Dy defining a mapping/ from an
arbitrary graph to a chordal graph. Trivially, this mappoan be carried out in polynomial time
and perserves the isomorphism property, demonstratingahfor the class of chordal graphs is
Gl-complete.

Theorem 1 ([BL79]) The GI problem for arbitrary graphs is polynomially reducible to chordal
graphs.

Using this result we prove two important results—one thaves that the GI-completeness of
a subclass of a graph class implies the GlI-completenesg @itompasing class and another that
demonstrates that the GI problem restricted to any arigeaiph class is in Gl. The following
lemma has important ramfications for many restricted gragéses since the inclusion of chordal
graphs is not severe; thus, implying that Gl for many restdgraph classes is GlI-complete.

Lemma 1l Given the graph classes o and 5 such that 8 C «, if Gl for g is Gl-complete then Gl
for a is Gl-complete.

Proof. Given that3 is Gl-complete the is Gl-hard, implying that there there exists a polynomial-
time Turing reduction from the GI problem of arbitrary gragb the Gl problem of graphs in the
classs. This same reduction can then be applied to graphs thus, showing that the GI problem
for classa is in Gl. Next, we demonstrate that isomorphism for graphs is at least as hard as
isomorphism for graphs ifi. Suppose otherwise, that there exits a polynomial-timerélgn for
solving the GI problem when attention is restricted to gsapla, then it follows that this algorithm
can be applied to any graph ih(since ifG € g thenG € «). Hence, the same algorithm that
is a polynomial-time algorithm for the classexists for the clasg, contradicting the fact that the
classg is Gl-hard.O

The following lemma demonstrates that in order to demotestitzat any graph class is Gl-
complete we need only give a polynomial-time reduction frany known Gl-comlpete graph
class to the considered class that preserves graph isorsiorph

Lemma 2 The GI problemfor any restricted graph classisin the class Gl.

Proof. We define a mappind/ from an arbitrary graph to a chordal graph, corresponding to
the mapping of Booth and Leuker [BL79]. It is apparent thag thapping can be carried out in
polynomial time and preserves the isomorphism propertyncé&any graph in any given graph
class can be considered to be an arbitrary graph, the mapgpingn be applied. Hence, this
demonstrates that there exists a polynomial-time redudtam any given graph class to the class
of chordal graphs that preserves the isomorphism propedylrerefore is in the class Gl
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3 Main Results

As previously mentioned, the set of known Gl-complete grajalsses includes bipartite graphs
and line graphs [BC79]. Further, when attention is regtddb the class of comparability graphs
and chordal graphs isomorphism remains Gl-complete [UTNOBe polynomial-time reduction
of isomorphism for arbitrary graphs to isomorphism for dargraphs then demonstrates that
isomorphism for the class of perfect graphs is Gl-compliteesthat reduction can be applied to
perfect non-chordal graphs. Further, we restrict intdoestio specific subclasses of perfect graphs
and show that Gl for these classes is Gl-complete.

3.1 Perfect Graphsand GI-Completeness

We have the following lemma that demonstrates that the daperfect graphs is Gl-complete.
Using Lemma 1 we can explicitly show that the class of perfeaphs is Gl-complete.

Lemma 3 The Gl problemfor the class of perfect graphsis Gl-complete.

Proof. Clearly, chordal graphs are a subclass of perfect graplislidivs then from the fact that
Gl for chordal graphs is GI-complete [BL79] and Lemma 1, {hatfect graphs are Gl-complete.
O

3.2 Reduction for Double Split Graphs

A split graph is a graph whose vertex set can be partitioned into sengoty stable set and a
non-empty clique. It is known that the Gl problem is Gl-coeiplif attention is restricted to split
graphs [UTNO5]. We form a double split graghby taking asplit graph G = (Q U S, E') whereQ
is a clique,S is a stable set, anf contains edges betweéhandsS, replacing every node; € @
by two non-adjacent nodes, x;' and every nodg; € S by two adjacent nodeg;, y;, and for
every edge z;, y;} € E we have{z],yj} € £, {z},y;} € £, and for every edgéz;, y;} ¢ E we
have{z],y;} € £, {=},y} € £. We letA be the set of ali;, B the set of ally, C' the set of alk;

K3

andD the set of allz}. Finally, for everyz;, z. € C, andx;, z] € D with i # j, we have all four

edges betweefw;, '} and{z’, 27 }. See figure 1 for an example of this reduction.

Lemma4 G isadouble split graph.

Proof. First we note that4| = |B| and|C| = |D|, and letm = |A|,n = |C|. Our sets can be
rewritten asA = {ay,...,an}, B = {b1,...,bn},C = {c1,...,¢c}, D = {dy,...,d,}. Note
that|@|, |S| > 1 implies thatn, m > 2. Thus, from our construction we see tigais a double split
graph.

Lemmab Given split graphs G; and Go, G1 & Gy ifand only if G; = G,.
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Figure 1. Reduction from split graph to double split graply

Proof. It is clear that ifG; = G5 thenG;, = G,. It remains to show the other direction. By
construction, if{z}, y/} € £ then three things follow{z;,y;} € £, no other edges exist between
{z}, 2z} and{y}, yi}, and{z;,y;} € E. Further, if{z},y’} € £ then{z},y7} € &, no other
edges exist betweefw;, 2’} and {y},y;}, and{z;,y;} ¢ E. It follows that every split graph
reduces to an unigue double split graph, and that the splfitgcan be uniquely recovered from
our constructed double split graph. Thereforeg; it~ G, thenG, = G,. O

The first of the two main theorems in the paper is the following
Theorem 2 The GI problem for double split graphsis Gl-complete.

Proof. Graph isomorphism for the class of double split graphs galty in the class GI. It is
apparent that the reduction from split graphs to doublé gm@iphs can be done in polynomial time
and therefore, if follows from lemmas 4 and 5 that this claimdouble split graphs holds]

3.3 Reduction for 2-join Graphs

The reduction from any given non-trivial bipartite graphat@-join graph works as follows: given
the bipartite graplG = (A; U Ao, E) with non-empty vertex partitions, the vertex 3&of the
reduced graply = (V = 4; U A, U B; U By, £) containsA; U A, anda) € B, for everya; € A;
andal, € B, for everya, € A,. The edge set of the reduced graph contains an édgé’ } for
all a; € A; andd| € B; and similarly for eachu, € A, andd,, € B,. Finally, {a1,as} € £ if
{a1,a2} € E. See figure 2 for an example of this reduction.

Lemma6 G admitsa 2-join.

Proof. DefineA = A; U Ay, B = B; U By. Fori = 1,2 every vertex of4; is adjacent to every
vertex of B; and there are no other edges betwdesnd B. Thus,G admits a 2-joind

Lemma 7 Given non-trivial bipartitegraphs G; and G5, G; & Gy ifand only if G; = G,.

Proof. If G; = G, then the result follows. Letr; = (411 U Ao, E1), Gy = (A1 U Agy, E5) and
assume thaf;, = G, with isomorphismy. If E;, = E, = () thenG; = G,. Assume the edge set is



non-empty and note thgt = (A;; U Ao U Byy U Byp, &) andGy = (Ag U Agy U By U Bgg, Es).
For anyb; € By we know thaty)(b;) € By U By,. Suppose otherwise, and assume that
¥(by) € Ag. by was only adjacent to vertices if;; and soyy must map each vertex id;; to
either B,; or the set of vertices adjacent &9. Note that becausg3s;| > 0 at least one vertex
of A;; must be mapped tBy;. If |By;| > |Aj;] this contradicts the ismorphic mapping because
the degree of;, is not the same as the degreebof If |By;| < |Aj1| then the vertices fromty;
mapped td B, | have too small of a degree. HenéBy; | = | A11]. This means that every vertex in
A1 was mapped to a single vertexi;. From this, we see that every vertexh;, was mapped
to a single vertex iM,;. This contradicts our definition of a 2-join because veditceB;; cannot
be adjacent to vertices from;, or By, which is what) must do in order to map the remaining
vertices fromg, to G,. A similar argument holds ifi; = 1(b1) € A, and both arguments can be
reapplied for anyp, € Bi,. Thus,i) must map vertices froml;; U A5 t0 Ay U Ag preserving
edge adjacencies. Therefofe, = G,. O

Theorem 3 The Gl problemfor the class of graphs admitting a 2-join is Gl-complete.

Proof. By Lemma 2 Gl for the class of graphs admitting a 2-join is ia tihass GlI. It is apparent
that the reduction from bipartite graphs to graphs adngttr2-join can be done in polynomial
time and therefore, if follows from Lemma 6 and Lemma 7 thé& ttaim for graphs admitting a
2-join holds.O

By
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Figure 2: Reduction from bipartite graghto 2-join graphg

Lemma8 The Gl problem for the class of graphs whose complement exhibits a 2-join is GI-
complete.



Proof. Again, by Lemma 2 that the Gl problem for the class of graplmslettng a 2-join is in the
class GlI. If we letZ; andG, be two graphs admitting a 2-join then their respective cemgnts
G, andG, can be computed in polynomial time. This construction tbgetvith Observation 1
then shows that the GI problem for the class of graphs whosglament exhibits a 2-join is
Gl-complete.O

3.4 Implicationsto Other Graph Classes

On the basis of the concept of even pairs in a graph, we nowedfio classes of perfect graphs:
guasi-parity (QP) andstrict quasi-parity SQP. The class of SQP graphs is defined as the class of
graphs where every induced subgraph is either a clique daicean even pair, and is first defined
by Meyniel in 1987 [Mey87]. Meyniel proves that no minimaiiyiperfect graph has an even pair
[Mey87] and as a consequence, shows that every SQP graptigstpé graphG is called QP if,

for every induced subgrapti of G on at least two vertices, eithéf or its complement has an even
pair. Meyniel further proves that QP graphs are perfect [8¥¢y The class of chordal bipartite
graphs is contained in the class of strongly chordal graphNp5] and further, strongly chordal
graphs are a subclass of SQP graphs [LMRO01]. Hence, we haveltbwing inclusion:

chordal bipartiteC strongly chordalC SQP C QP.

Uehara et al. [UTNO5] show that the GI problem for both chotipartite graphs and strongly
chordal graphs are Gl-complete. As an implication of theseilts, Lemma 2 and inclusion of
graph classes described above, we have that Gl for SQP gsa@tsomplete. Further, we con-
clude that GI for QP graphs is Gl-complete; this result febdrom the above inclusion and an
additional application of Lemma 2. In addition, Lemma 2 andlusion properties of specific
graph classes can be used to demonstrate that other grapbhskre Gl-complete. For example, a
graph isperfectly contractileif for all induced subgraph#&/ there is a sequendé = Hy, ..., H;
such thatH,, is a clique andH;_; is obtained fromH; by contracting an even pair. Therefore, in a
similar manner to above it can be demonstrated that peyfeotitractile graphs are Gl-complete
since strongly chordal graphs are a subclass of perfectiiyractile graphs [Ber90].

Babel et al. [BPT96] demonstrate that Gl for directed patipgs is Gl-complete. Uehara
et al. [UTNO5] explicitly give a reduction from chordal bipide graphs to a strongly chordal
graphs in order to demonstrate that strongly chordal graph&1-complete. However, given that
directed path graphs are a subclass of strongly chordahgramd that Gl for directed path graphs
is Gl-complete, Lemma 1 trivially implies that Gl for strdgghordal graphs is GlI-complete.



4 Concluding Remarks

There are many graph classes for which we do not know whdtbest problem is GI-complete or
polynomial-time solvable. In order to obtain further insignto the complexity of the Gl problem,
the complexity of Gl for other restricted graph classes wdid advantegous. For example, clique
separable graphs, which is a subclass of perfectly collergcaphs as shown by Bertschi [Ber90],
is a subclass of perfect graphs where the complexity of ther@lem is unknown. Further, there
does not exist a known graph class that is a subclass of digp@rable graphs and for which Gl
is Gl-complete, implying that Lemma 1 does not lead to anyltesoncerning this graph class.
However, showing Gl for clique separable graphs is Gl-catgplvill imply the results in Section
3.3. The implications of Lemma 1 are vast—that is, many gcd@éses can trivially be shown to be
Gl-complete.

Recently, Chudnovskst al. [C+06] demonstrate that @ is perfect then eithefr belongs to
one of the five basic classes defined, or on&'pfi admits a 2-join, oG admits a homogeneous
pair, orG admits a balanced skew partition. Chudnovsky later showusiimoctoral thesis that the
class of graphs admitting a homogeneous pair can be eliedj@hu03]. Given a split grapi
we know that the vertex set can be partitioned into a stalbld sexd a cliqueB. Therefore, every
split graph trivially exhibits a balanced skew partiti@gi(A) is obviously not connected;(B) is
not connected, there does not exist any induced path offiegrgtater than or equal to two with
ends inB (sinceB is a clique), and there does not exist any induced path othegrgater than or
equal to two with ends i in G (A is a stable set an# is a cliqgue). Hence, the class of splits
graphs is contained in the class of graphs exhibiting a lbathskew partition and it follows from
Lemma 1 that the class of graphs exhibiting a balanced sketwtipa is GI-complete. It is worth
remarking that in proving the Gl-completness of Gl for daubplit graphs, the class of graphs
exhibiting a 2-join, and the class of graphs exhibiting eabhaéd skew partition, we demonstrate
that each of the graph classes Chudnowatkal. considered to prove the Strong Perfect Graph
Theorem are Gl-complete.
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