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Abstract

A problem is said to be GI-complete if it is provably as hard asgraph isomorphism; that
is, there is a polynomial-time Turing reduction from the graph isomorphism problem. It is
known that the GI problem is GI-complete for some special graph classes including regular
graphs, bipartite graphs, chordal graphs and split graphs.In this paper, we prove that deciding
isomorphism of double split graphs, the class of graphs exhibiting a 2-join, and the class of
graphs exhibiting a balanced skew partition are GI-complete. Further, we show that the GI
problem for the larger class including these graph classes–that is, the class of perfect graphs–is
also GI-complete.

1 Introduction

TheGraph Isomorphism (GI) problem consists of deciding whether two given graphs are isomor-
phic and thus, consists of determining whether there existsa bijective mapping from the vertices of
one graph to the vertices of the second graph such that the edge adjacencies are respected. The GI
problem is a well-known open problem that was first listed as an important open problem in Karp’s
paper over three decades ago [Kar72]. GI is of great interestsince it is one of the few problems
contained in NP that is neither known to be computable in polynomial time nor to be NP-complete.
Presently, there is no known polynomial-time algorithm forgraph isomorphism and further, there
is strong evidence that the problem is not NP-complete. Mathon [Mat79] demonstrates that the
problem of counting the number of isomorphisms between two labeled graphs is Turing reducible
to GI; this gives indication that GI is unlikely to be NP-complete since for almost all NP-complete
problems their counting versions are of much higher complexity than themselves. The inability to
find a polynomial-time algorithm for the GI problem demonstrates evidence that it is unlikely that
the problem is in P.



A problem is said to beGI-complete if it is provably as hard as graph isomorphism; that is, there
is a Turing reduction to the graph isomorphism problem. Graph isomorphism remains GI-complete
even when restricted to a number of “hard” special classes, including regular graphs, bipartite
graphs, chordal graphs, comparability graphs, split graphs, and

�
-trees with unbounded

�
. Re-

cently, Uehara et al. [UTN05] showed that deciding the isomorphism of strongly chordal graphs is
GI-Complete. Specific subclasses of bipartite graphs have been shown to be GI-complete–namely,
isomorphism is GI-complete for chordal bipartite graphs [NUT93], which shows a distinction be-
tween the class of convex graphs and chordal bipartite graphs.

On the other hand, there exists specific cases of the GI problem that have efficient, polynomial-
time algorithms; such cases require restrictions upon the class of graphs considered. Examples of
such restricted classes include, but are not limited to: planar graphs, interval graphs, convex graph
[Che99] and permutation graphs.

Given the current divide between graph classes that exhibita polynomial-time algorithm for
GI and those where GI is provable to be GI-complete, significant attention has been given towards
investigating classes for which the relative complexity ofthe GI problem is not known. Many
classes have been proposed and widely investigated; we refer the reader to Brandstädt, Le, and
Spinrad [BLS99] for a comprehensive survey of this topic. Weprove that deciding isomorphism
for double split graphs, the class of graphs admitting a balanced skew partition, and the class of
graphs admitting a 2-join is GI-complete. We consider the implications of these results to the
related graph classes–namely, QP and SQP.

2 Preliminaries

In order to be self-contained we describe all definitions andresults from graph theory and com-
putational complexity required for the comprehension of our results. We restrict attention to finite
simple graphs and use standard graph-theoretic notation� � �� � � �, where� is the vertex set and
� � � 	 � . We denote the complement of a given graph� as� . The complement of a graph�
can trivially be computed in polynomial time. A graph� � �� � � � is bipartite if � can be divided
into two sets
 and� such that every edge joins exactly one vertex in
 to another vertex in� . A
clique of a graph� is a subgraph� of � such that every pair of vertices vertices in� are adjacent.
We denote
 �� � as the size of the largest clique in the graph� . A stable set is a set
 of � vertices
such that� �
 � � �� , where� �
 � is the induced subgraph of
 and�� is the null graph with�
vertices.

A path has distinct nodes�� � � � � � � � and edges��� �� � for � � � � �
. If � � � � � � � � � � � and� � �

, then the graph� � � �  ��� � ! is called acycle. The number of edges in a path or cycle is
its length. We denote a path of length

�
by �� . An edge which joins two nodes of a path or cycle

but is not itself an edge of the path or cycle, is called achord. We refer to ahole as an induced
subgraph that is a chordless cycle of length at least four andan antihole as the complement of a
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hole. An even pair is any pair of non-adjacent vertices such that every chordless path between
them has even length.

A colouring of a graph� � �� � � � is a mapping� � � � �
such that� �� � �� � �� � for all

�� � � . If �� � � �
then� is ak-colouring. The smallest

�
such that� admits a

�
-colouring is the

chromatic number � �� �. The gap between the lower bound
 �� � and the chromatic number� �� �
can be arbitrary large [Car01]. Berge [Ber61] called a graph� perfect if and only if the
 �� �
coincides with� �� � for all proper induced subgraphs� of � . All other graphs areimperfect.

We say that� is a double split graph if � �� � can be partitioned into four sets 	 � � � � � 	
 !,
 � � � � � � �
 !,  � � � � � � �� !,  � � � � � � �� ! for some� �
 � �

, such that:

� 	 � is adjacent to�� for � � � � 
 and�� is nonadjacent to�� for � � � � �;

� there are no edges between 	 � � �� ! and  	 �� � ��� ! for � � � � � � � � and all four edges
between �� � �� ! and �� � � �� � ! for � � � � � � � �;

� there are exactly two edges between 	 � � �� ! and �� � �� ! for � � � � 
 and� � � � �, and
these two edges have no common end.

Further, we aim to show GI for the class of graphs admitting a2-join is GI-complete. We let

 , � be a partition of� �� �, 
 �, 
 � be non-empty disjoint subsets of
 and� �, � � be non-empty
disjoint subsets of� . If for � � �� �, every vertex of
� is adjacent to every vertex of�� and
there are no other edges between
 and� , then we say that� admits a 2-join. This concept was
introduced by Cornuéjols and Cunningham [CC85] in 1985. Both double split graphs and graphs
exhibiting a 2-join are perfect graphs [C+06]. We will show that GI for these graph classes is
GI-complete and that GI for perfect graphs is also GI-complete.

2.1 Graph Isomorphism

We define two graphs� � and� � to be isomorphic if there is a bijection� � � � � �� such that
�� � � � � � � if and only if �� �� � � � �� �� � � � . We write� � �� � � and call� an isomorphism.
Hence, the GI problem is to determine if� � �� � � for given input graphs� � and� � . If � � and
� � are isomorphic, it follows from the definition that there exists a bijection� � �� � �� which
preserves edge adjacencies. Let� �  � � � �� ! and�� � �� � ��� �  �� � �� �� � �� � ��� �!. It follows
that� � � � if and only if � �� � �, and further because� is an isomorphism for� � and� � we have
that� �� � � if and only if �� �� � �. Finally, �� �� � � if and only if �� � � � proves that� � � � if and
only if �� � � � . If � � and� � are not isomorphic, a similar result can be shown. Thus, we have the
following fact.

Observation 1 Given two graphs � � and � � and their respective complements � � and � �, � � ��
� � if and only if � � �� � �.
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An early result by Booth and Lueker [BL79] will be central to asimple proof we give for
showing that the class of perfect graphs are GI-complete. They prove that graph isomorphism is
polynomially-reducible to chordal graph isomorphism [BL79] by defining a mapping� from an
arbitrary graph to a chordal graph. Trivially, this mappingcan be carried out in polynomial time
and perserves the isomorphism property, demonstrating that GI for the class of chordal graphs is
GI-complete.

Theorem 1 ([BL79]) The GI problem for arbitrary graphs is polynomially reducible to chordal
graphs.

Using this result we prove two important results–one that proves that the GI-completeness of
a subclass of a graph class implies the GI-completeness of the encompasing class and another that
demonstrates that the GI problem restricted to any arbitrary graph class is in GI. The following
lemma has important ramfications for many restricted graph classes since the inclusion of chordal
graphs is not severe; thus, implying that GI for many restricted graph classes is GI-complete.

Lemma 1 Given the graph classes � and � such that � � � , if GI for � is GI-complete then GI
for � is GI-complete.

Proof. Given that� is GI-complete then� is GI-hard, implying that there there exists a polynomial-
time Turing reduction from the GI problem of arbitrary graphs to the GI problem of graphs in the
class� . This same reduction can then be applied to graphs in�, thus, showing that the GI problem
for class� is in GI. Next, we demonstrate that isomorphism for graphs in� is at least as hard as
isomorphism for graphs in� . Suppose otherwise, that there exits a polynomial-time algorithm for
solving the GI problem when attention is restricted to graphs in�, then it follows that this algorithm
can be applied to any graph in� (since if� � � then� � �). Hence, the same algorithm that
is a polynomial-time algorithm for the class� exists for the class� , contradicting the fact that the
class� is GI-hard.�

The following lemma demonstrates that in order to demonstrate that any graph class is GI-
complete we need only give a polynomial-time reduction fromany known GI-comlpete graph
class to the considered class that preserves graph isomorphism.

Lemma 2 The GI problem for any restricted graph class is in the class GI.

Proof. We define a mapping� from an arbitrary graph to a chordal graph, corresponding to
the mapping of Booth and Leuker [BL79]. It is apparent that this mapping can be carried out in
polynomial time and preserves the isomorphism property. Since any graph in any given graph
class can be considered to be an arbitrary graph, the mapping� can be applied. Hence, this
demonstrates that there exists a polynomial-time reduction from any given graph class to the class
of chordal graphs that preserves the isomorphism property and therefore is in the class GI.�
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3 Main Results

As previously mentioned, the set of known GI-complete graphclasses includes bipartite graphs
and line graphs [BC79]. Further, when attention is restricted to the class of comparability graphs
and chordal graphs isomorphism remains GI-complete [UTN05]. The polynomial-time reduction
of isomorphism for arbitrary graphs to isomorphism for chordal graphs then demonstrates that
isomorphism for the class of perfect graphs is GI-complete since that reduction can be applied to
perfect non-chordal graphs. Further, we restrict interestto two specific subclasses of perfect graphs
and show that GI for these classes is GI-complete.

3.1 Perfect Graphs and GI-Completeness

We have the following lemma that demonstrates that the classof perfect graphs is GI-complete.
Using Lemma 1 we can explicitly show that the class of perfectgraphs is GI-complete.

Lemma 3 The GI problem for the class of perfect graphs is GI-complete.

Proof. Clearly, chordal graphs are a subclass of perfect graphs. Itfollows then from the fact that
GI for chordal graphs is GI-complete [BL79] and Lemma 1, thatperfect graphs are GI-complete.
�

3.2 Reduction for Double Split Graphs

A split graph is a graph whose vertex set can be partitioned into a non-empty stable set and a
non-empty clique. It is known that the GI problem is GI-complete if attention is restricted to split
graphs [UTN05]. We form a double split graph� by taking asplit graph � � �� � � � � � where�
is a clique,� is a stable set, and� contains edges between� and� , replacing every node�� � �
by two non-adjacent nodes� �� � � ��� and every node�� � � by two adjacent nodes� �� � � ��� , and for
every edge �� � �� ! � � we have � ��� � � ��� ! � � ,  � �� � � �� ! � � , and for every edge �� � �� ! �� � we
have � ��� � � �� ! � � ,  � �� � � ��� ! � � . We let
 be the set of all� �� , � the set of all� ��� , � the set of all� ��
and� the set of all� ��� . Finally, for every� �� � � �� � � � and� ��� � � ��� � � with � �� � , we have all four
edges between � �� � � ��� ! and � �� � � ��� !. See figure 1 for an example of this reduction.

Lemma 4 � is a double split graph.

Proof. First we note that�
 � � �� � and �� � � �� �, and let
 � �
 �� � � �� �. Our sets can be
rewritten as
 �  	 � � � � � � 	
 !� � �  � � � � � � � �
 !� � �  � � � � � � � �� !�� �  � � � � � � � �� !. Note
that �� �� �� � � � implies that� �
 � �

. Thus, from our construction we see that� is a double split
graph.

Lemma 5 Given split graphs � � and � � , � � �� � � if and only if � � �� � �.
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� � � ��
�

Figure 1: Reduction from split graph� to double split graph�

Proof. It is clear that if� � �� � � then � � �� � �. It remains to show the other direction. By
construction, if � ��� � � ��� ! � � then three things follow: � �� � � �� ! � � , no other edges exist between
 � �� � � ��� ! and  � �� � � ��� !, and  �� � �� ! � � . Further, if  � ��� � � �� ! � � then  � �� � � ��� ! � � , no other
edges exist between � �� � � ��� ! and  � �� � � ��� !, and  �� � �� ! �� � . It follows that every split graph
reduces to an unique double split graph, and that the split graph can be uniquely recovered from
our constructed double split graph. Therefore, if� � �� � � then� � �� � �. �

The first of the two main theorems in the paper is the following.

Theorem 2 The GI problem for double split graphs is GI-complete.

Proof. Graph isomorphism for the class of double split graphs is trivially in the class GI. It is
apparent that the reduction from split graphs to double split graphs can be done in polynomial time
and therefore, if follows from lemmas 4 and 5 that this claim for double split graphs holds.�

3.3 Reduction for 2-join Graphs

The reduction from any given non-trivial bipartite graph toa 2-join graph works as follows: given
the bipartite graph� � �
 � � 
 � � � � with non-empty vertex partitions, the vertex set� of the
reduced graph� � �� � 
 � � 
 � � � � � � � � � � contains
 � � 
 � and	�� � � � for every	 � � 
 �
and	�� � � � for every	� � 
 �. The edge set of the reduced graph contains an edge 	 � � ��� ! for
all 	 � � 
 � and ��� � � � and similarly for each	� � 
 � and ��� � � �. Finally,  	 � � 	� ! � � if
 	 � � 	� ! � � . See figure 2 for an example of this reduction.

Lemma 6 � admits a 2-join.

Proof. Define
 � 
 � � 
 � � � � � � � � � . For � � �� � every vertex of
� is adjacent to every
vertex of�� and there are no other edges between
 and� . Thus,� admits a 2-join.�

Lemma 7 Given non-trivial bipartite graphs � � and � �, � � �� � � if and only if � � �� � � .

Proof. If � � �� � � then the result follows. Let� � � �
 �� � 
 �� � � �� � � � � �
 � � � 
 �� � � � � and
assume that� � �� � � with isomorphism� . If � � � � � � � then� � �� � � . Assume the edge set is
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non-empty and note that� � � �
 �� � 
 �� � � �� � � �� � � �� and� � � �
 � � � 
 �� � � � � � � �� � � � �.
For any� � � � �� we know that� �� � � � � � � � � �� . Suppose otherwise, and assume that	 � �
� �� � � � 
 � �. � � was only adjacent to vertices in
 �� and so� must map each vertex in
 �� to
either� � � or the set of vertices adjacent to	 �. Note that because�� � � � � � at least one vertex
of 
 �� must be mapped to� � �. If �� � � � � �
 �� � this contradicts the ismorphic mapping because
the degree of	 � is not the same as the degree of� �. If �� � � � � �
 �� � then the vertices from
 ��
mapped to�� � � �have too small of a degree. Hence,�� � � � � �
 �� �. This means that every vertex in

 �� was mapped to a single vertex in� � �. From this, we see that every vertex in� �� was mapped
to a single vertex in
 � �. This contradicts our definition of a 2-join because vertices in� �� cannot
be adjacent to vertices from
 �� or � �� , which is what� must do in order to map the remaining
vertices from� � to � �. A similar argument holds if	� � � �� � � � 
 ��, and both arguments can be
reapplied for any�� � � �� . Thus,� must map vertices from
 �� � 
 �� to 
 � � � 
 �� preserving
edge adjacencies. Therefore,� � �� � �. �

Theorem 3 The GI problem for the class of graphs admitting a 2-join is GI-complete.

Proof. By Lemma 2 GI for the class of graphs admitting a 2-join is in the class GI. It is apparent
that the reduction from bipartite graphs to graphs admitting a 2-join can be done in polynomial
time and therefore, if follows from Lemma 6 and Lemma 7 that this claim for graphs admitting a
2-join holds.�


 �


 �

� �


 �


 �

� �

Figure 2: Reduction from bipartite graph� to 2-join graph�

Lemma 8 The GI problem for the class of graphs whose complement exhibits a 2-join is GI-
complete.
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Proof. Again, by Lemma 2 that the GI problem for the class of graphs exhibiting a 2-join is in the
class GI. If we let� � and� � be two graphs admitting a 2-join then their respective complements
� � and� � can be computed in polynomial time. This construction together with Observation 1
then shows that the GI problem for the class of graphs whose complement exhibits a 2-join is
GI-complete.�

3.4 Implications to Other Graph Classes

On the basis of the concept of even pairs in a graph, we now define two classes of perfect graphs:
quasi-parity (QP) andstrict quasi-parity SQP. The class of SQP graphs is defined as the class of
graphs where every induced subgraph is either a clique or contains an even pair, and is first defined
by Meyniel in 1987 [Mey87]. Meyniel proves that no minimallyimperfect graph has an even pair
[Mey87] and as a consequence, shows that every SQP graph is perfect. A graph� is called QP if,
for every induced subgraph� of � on at least two vertices, either� or its complement has an even
pair. Meyniel further proves that QP graphs are perfect [Mey87]. The class of chordal bipartite
graphs is contained in the class of strongly chordal graphs[UTN05] and further, strongly chordal
graphs are a subclass of SQP graphs [LMR01]. Hence, we have the following inclusion:

chordal bipartite� strongly chordal� SQP � QP.

Uehara et al. [UTN05] show that the GI problem for both chordal bipartite graphs and strongly
chordal graphs are GI-complete. As an implication of these results, Lemma 2 and inclusion of
graph classes described above, we have that GI for SQP graphsis GI-complete. Further, we con-
clude that GI for QP graphs is GI-complete; this result follows from the above inclusion and an
additional application of Lemma 2. In addition, Lemma 2 and inclusion properties of specific
graph classes can be used to demonstrate that other graph classes are GI-complete. For example, a
graph isperfectly contractile if for all induced subgraphs� there is a sequence� � � � � � � � � � �
such that�� is a clique and��� � is obtained from�� by contracting an even pair. Therefore, in a
similar manner to above it can be demonstrated that perfectly contractile graphs are GI-complete
since strongly chordal graphs are a subclass of perfectly contractile graphs [Ber90].

Babel et al. [BPT96] demonstrate that GI for directed path graphs is GI-complete. Uehara
et al. [UTN05] explicitly give a reduction from chordal bipartite graphs to a strongly chordal
graphs in order to demonstrate that strongly chordal graphsare GI-complete. However, given that
directed path graphs are a subclass of strongly chordal graphs and that GI for directed path graphs
is GI-complete, Lemma 1 trivially implies that GI for strongly chordal graphs is GI-complete.
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4 Concluding Remarks

There are many graph classes for which we do not know whether the GI problem is GI-complete or
polynomial-time solvable. In order to obtain further insight into the complexity of the GI problem,
the complexity of GI for other restricted graph classes would be advantegous. For example, clique
separable graphs, which is a subclass of perfectly contractile graphs as shown by Bertschi [Ber90],
is a subclass of perfect graphs where the complexity of the GIproblem is unknown. Further, there
does not exist a known graph class that is a subclass of cliqueseparable graphs and for which GI
is GI-complete, implying that Lemma 1 does not lead to any results concerning this graph class.
However, showing GI for clique separable graphs is GI-complete will imply the results in Section
3.3. The implications of Lemma 1 are vast–that is, many graphclasses can trivially be shown to be
GI-complete.

Recently, Chudnovskyet al. [C+06] demonstrate that if� is perfect then either� belongs to
one of the five basic classes defined, or one of� , � admits a 2-join, or� admits a homogeneous
pair, or� admits a balanced skew partition. Chudnovsky later shows inher doctoral thesis that the
class of graphs admitting a homogeneous pair can be eliminated [Chu03]. Given a split graph�
we know that the vertex set can be partitioned into a stable set 
 and a clique� . Therefore, every
split graph trivially exhibits a balanced skew partition;� �
 � is obviously not connected,� �� � is
not connected, there does not exist any induced path of length greater than or equal to two with
ends in� (since� is a clique), and there does not exist any induced path of length greater than or
equal to two with ends in
 in � (
 is a stable set and� is a clique). Hence, the class of splits
graphs is contained in the class of graphs exhibiting a balanced skew partition and it follows from
Lemma 1 that the class of graphs exhibiting a balanced skew partition is GI-complete. It is worth
remarking that in proving the GI-completness of GI for double split graphs, the class of graphs
exhibiting a 2-join, and the class of graphs exhibiting a balanced skew partition, we demonstrate
that each of the graph classes Chudnovskyet al. considered to prove the Strong Perfect Graph
Theorem are GI-complete.
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