
Generalized Labeled LCA QueriesJérémy Barbay, Ehsan Chiniforooshan, Alexander Golynski,Jui-Yi Kao, Aleh VeraskouskiDavid R. Cheriton S
hool of Computer S
ien
e,University of Waterloo, CanadaTe
hni
al Report CS-2006-31,revised in July 2007.Abstra
tS
hema-free queries permit to sear
h XML do
uments without knowing their s
hema. Amongthem, lowest 
ommon an
estor (LCA) queries were introdu
ed in several variants on labeledtrees. We de�ne threshold LCA queries to generalize all those variants, and to extend them tothe 
ase where weights are assigned to ea
h term of the query. We study how to solve those inthe 
ontext where a

ess to the do
ument is streamed, and in the 
ontext where the do
ument isa

essed through a pre
omputed index. We propose spa
e-e�
ient algorithms for both 
ontexts,using spa
e O(h+σ) independant from the size of the do
ument, where h is the height of theinput do
ument and σ is the number of di�erent labels. We des
ribe two distin
t algorithmsin the streamed model, both of whi
h read the input stream exa
tly on
e and run in lineartime, and one algorithm in the indexed model, whi
h provably runs in sublinear time for manyinstan
es, 
hara
terized by a di�
ulty measure.Keywords: Streamed XML, S
hema-free queries, LCA, SLCA, Threshold Set.1 Introdu
tionXML [12℄ standardizes do
ument tree stru
tures, so that general tools 
an be developed and usedfor the many distin
t appli
ations adopting this standard. Ea
h do
ument is mainly 
omposedof text, whi
h forms its 
ontent, and tags, whi
h form its hierar
hi
al stru
ture. It is assumedthat do
uments of di�erent 
ontent but similar semanti
s will share a similar hierar
hi
al stru
ture,expressed as a s
hema whi
h spe
i�es whi
h tags 
an be used, and 
onstrains the stru
tures that they
an form. Knowing the s
hema allows to write relevant queries on the stru
ture of the do
ument,while its 
ontent 
an be sear
hed using traditional te
hniques. In many 
ases the s
hema is notknown or is voluntarily ignored, for instan
e be
ause do
uments following many di�erent s
hemesmust be sear
hed [1℄: then the do
uments are sear
hed using S
hema-Free [5, 8℄ queries. We 
onsiderstreamed do
uments, on whi
h one query must be answered in one single pass over the do
umentand in linear time; and indexed do
uments, for whi
h an index has been 
omputed in advan
e inorder to allow faster 
omputations.S
hema-Free [5, 8℄ queries, whi
h 
onsist only of a set of keywords, are studied for appli
ationswhere the queries must be written without any knowledge of the s
hema of the do
ument, forinstan
e be
ause many do
uments with many di�erent s
hemes must be sear
hed [1℄, or simplybe
ause the s
hema is not 
ommuni
ated (as often in the streamed model). In parti
ular, S
hmidt,1



Kersten and Windhouwer [8℄ de�ned Lowest Common An
estor (LCA) queries, whi
h are answeredwith the list of nodes whi
h des
endants mat
h at least two keywords. Li, Yu and Jagadish [5℄,observing that the answer to those queries is not always relevant, proposed to ex
lude the nodeswhose des
endants also answer the query. Xu and Papakonstantinou [11℄ went further in restri
tingthe answer set of the queries, by requesting that the des
endants mat
h all the keywords, while stillex
luding the nodes with a des
endant also answering the query.We introdu
e in Se
tion 2 the 
on
ept of Threshold LCA queries, whi
h generalizes the previousde�nitions of LCA queries into a single one through an additional parameter t and optional weightsasso
iated to the labels of the query. In Se
tion 3 we propose two distin
t one-pass algorithms tosear
h Streamed Do
uments in linear time: one slightly more general (allowing negative weights) andthe other returning more information (size of 
orresponding interval in the do
ument). In Se
tion 4we des
ribe an algorithm to sear
h Indexed Do
uments in sublinear time for many instan
es, provedthrough an adaptive analysis in fun
tion of a measure of the di�
ulty of the instan
es. Throughoutthe paper we assume that the tree-stru
tured do
ument is a

essed as a multi-labeled tree su
h thatea
h of the n nodes is asso
iated with some of the labels from an alphabet of size σ. The algorithmsproposed are spa
e-e�
ient: their spa
e usage depends on the height h of the do
ument and on thesize of the alphabet σ, but is independant of the size of the do
ument, assuming that a word of thema
hine 
an index a position in the do
ument.2 Previous Work and De�nitionsWhile XML do
uments have a great variety of features, only a few are of interest in the 
ontextof s
hema-free queries. For instan
e, the distin
tion between elements and attributes, based on thesemanti
 meaning of order, is ludi
rous in the 
ontext of s
hema-free queries, where this order isnot used at all. As a 
onsequen
e we fo
us only on a few features of XML. The original de�nition ofXML do
uments [12℄ is text-based, where ea
h node of the stru
ture of the do
ument is asso
iatedwith a string. We propose a view based on a relation between the stru
ture of the do
ument and a�nite set of labels. More pre
isely, in this work, an XML tree is 
omposed of a set [σ] = {1, . . . σ] oflabels, a tree of n nodes su
h that ea
h leaf is the only 
hild of its parent, and a relation 
omposedof t pairs between nodes and labels su
h that ea
h internal node is assigned a label and ea
h leafis assigned a set of labels. The distin
tion is se
ondary, as any di
tionary stru
ture (su
h as a trie)permits to translate ba
k and forth between labels and strings, but it makes the de�nition of thequeries and algorithms easier. More formally, we say that a node x mat
hes k labels α1, . . . , αk ifthere is a k-tuple of nodes (x1, . . . , xk) mat
hing (α1, . . . , αk) in the subtree rooted in x.2.1 Ordinal LCAConsidering only the stru
ture of the tree, the ordinal Lowest Common An
estor (LCA) of k nodes
x1, . . . , xk is the lowest 
ommon node LCA(x1, . . . , xk) in 
ommon between the paths from ea
h node
xi to the root. LCA queries on labeled trees have been studied by the database 
ommunity in the
ontext of s
hema-free queries on XML do
uments. The te
hniques used 
onsist in 
hoosing theen
oding of the tree so that the LCA 
an be 
omputed qui
kly. One te
hnique often used is basedon Dewey numbers, whi
h represent the path to ea
h node, redu
e the LCA Problem to �nding the
ommon pre�x of two paths, whi
h takes time linear in the length of the smallest path.LCA queries on ordinal trees were �rst studied by Harel and Tarjan [4℄., and later on by S
hieberand Vishkin [7℄, Wen [10℄, and Bender et al. [2, 3℄. They de�ned the ordinal Lowest Common2



An
estor (LCA) of k nodes x1, . . . , xk as the lowest 
ommon node LCA(x1, . . . , xk) between thepaths from ea
h node xi to the root.It is a fundamental algorithmi
 problem on trees and has been extensively studied [3, 4, 7, 10℄.The te
hnique allowing to 
ompute it qui
kly 
onsists in 
hoosing an adequate en
oding of thetree: for instan
e Dewey numbers, whi
h represent the path to ea
h node, redu
e the LCA Problemto �nding the 
ommon pre�x of two paths. Using some more sophisti
ated o�-line pre
omputation,the LCA of two nodes 
an be 
omputed in 
onstant time [3, 10℄.The te
hnique introdu
ed by Harel and Tarjan [4℄ and later re�ned 
onsists in pre
omputingthe answer to some queries (an index), and to use those pre
omputed answers to answer the futurequeries in 
onstant time. One of the latest results about LCA is due to Bender, Fara
h-Colton,Pemmasani, Skiena, and Sumazin [3℄, who pre
ompute in linear time a stru
ture of O(n) words (i.e.
O(n lg n) bits) using dynami
 programing, so that they support in 
onstant time LCA on a tree of
n nodes. Sadakane [6℄ improves this to pre
ompute the largest 
ommon pre�x length of su�xes in
6n + o(n) bits and impli
itly de�nes a tree en
oding using 2n + o(n) to support LCA in 
onstanttime.2.2 Previous WorkS
hmidt, Kersten and Windhouwer [8℄ observe that requiring the user to know the s
hemais impra
ti
al and unrealisti
, and that 
ontent queries are insu�
ient. They suggest insteadunstru
tured queries interpreted in regard to the stru
ture of the do
ument, and de�ne the LowestCommon An
estor set of k labels α1, . . . , αk as the set LLCA(α1, . . . , αk) su
h that the subtreesrooted at ea
h node of this set partition all nodes mat
hing at least two labels without interse
tingea
h other.Li, Yu and Jagadish [5℄ observe that the answer to LCA queries is sometime meaningless, be
ausethe level of relevan
e of the nodes mat
hing some labels vary too mu
h. They propose to returnonly the most relevant nodes mat
hing the query, through theMeaningful Lowest Common An
estorset of k labels α1, . . . , αk, de�ned as the set MLCA(α1, . . . , αk) of nodes mat
hing at least two labelswhi
h 
orresponding subtree does not 
ontain any other node mat
hing at least two labels.The distin
tion with the previous queries is that the nodes returned by a LLCA query 
over allnodes mat
hing the labels, while the MLCA query reje
ts nodes whi
h mat
h the labels but are judgedtoo general be
ause some of their des
endants are already mat
hing those labels.Xu and Papakonstantinou [11℄ go further in restri
ting the answer set of the queries, byrequesting that the nodes mat
h all labels. As Li et al., they don't 
onsider all su
h nodes butredu
e the answer to the most meaningful nodes, forming the Smallest Lowest Common An
estorset of k labels α1, . . . , αk: the set SLCA(α1, . . . , αk) of nodes su
h that the subtrees rooted at ea
hnode of this set partition all nodes mat
hing α1, . . . , αk without interse
ting ea
h other.They also extended their algorithm to 
ompute the list of nodes mat
hing k distin
t labels,hen
e introdu
ing a new query.De�nition 1 (ASLCA queries [11℄) The set of All Lowest Common An
estors 
orresponding to klabels α1, . . . , αk is the set ASLCA(α1, . . . , αk) of nodes mat
hing α1, . . . , αk.2.3 Threshold Labeled LCAWe propose a fourth type of query, generalizing both MLCA and SLCA query-types. Whereas MLCAqueries require two labels to be mat
hed by ea
h node of the answer, and SLCA queries require all3



of the labels to be mat
hed, we parametrize the amount of labels that a node of the answer shouldmat
h, and 
onsider weights asso
iated to ea
h label to measure the relevan
e of ea
h label to theanswer.De�nition 2 Consider a tree T labeled by a binary relation R : [n] × [σ] → {0, 1}, a query Q :
[σ]→ {0, . . . , µ

Q
}, a node x of the tree, and a positive number t.

• The s
ore of x is the sum of the weights of the labels asso
iated to x or at least to one of itsdes
endants:
score(x) =

∑

α∈[σ]

Q[α] max
y des
endant of x

R(y, α)

• the answer to a Threshold Labeled LCA query (TLLCA) is the set of nodes x su
h that x'ss
ore is at least t and no des
endant of x mat
hes the previous 
ondition.By de�nition, when the weights are all equal to zero or one, the answer to su
h a query
orresponds to the answer of a MLCA query for t = 2, and to the answer of a SLCA query for t = k.This extension of the query-type to its weighted variant 
an be used to automati
ally personalizeuser queries: given a set of labels input by the user, assign them a normal weight and add to themseveral labels of small weights de�ning the pro�le of the user.3 Streamed Do
umentsIn the 
ontext of streamed do
uments, instead of a

essing the input do
ument T dire
tly, we areallowed to read π(T ) only in one pass, where π(T ) denotes the preorder sequen
e of the nodes of Twith parentheses around all the nodes (see Figure 1 for an example). We seek for sub-linear spa
ealgorithms. In the following two se
tions, we present two linear time algorithms for the weightedquery problem.3.1 Re
ursive AlgorithmLet Q = (α1, α2, . . . , αk) be the weighted query with weights W = (w1, w2, . . . , wk). A naivealgorithm 
an be stated as follows. We 
rawl the tree re
ursively starting from the root. For ea
hnode, we 
he
k whether it 
an be an answer to the weighted query, namely, if the following two
onditions are satis�ed:
• none of its des
endants is an answer, and
• the weight of the union of the labels of all its des
endants is above the given threshold.

ab

cd e

(ab(cd)(e)).
a

b

ad cf

c

aef ac

(a(b(ad)(cf))(c(ae)(ac))).Figure 1: Examples of streamed trees. Nodes in LCA(a, b, c) are denoted in bold.4



On
e these 
onditions are 
he
ked for a node v, we return the union of the labels of all thedes
endants of v to its parent u (u performed a re
ursive 
all to v). However, theAlgorithm 1 Weighted_query(v)returns: L ∩ Q, where L is the set of all labels o

urring in the v's subtree and a Boolean valuefoundv that indi
ates whether v or any of its des
endants is an answer to the weighted query1: S ← ∅2: foundv ← false3: for all u is a 
hild of v do4: (St, foundu)←Weighted_query(u)5: S ← S ∪ St { S holds the set of labels up to and in
luding the 
urrent 
hild u in the loop }6: foundv ← foundv ∨ foundu7: end for8: S ← S ∪ (labels(v) ∩Q)9: if (¬foundu) ∧ (weight(S) ≥ w) then10: output(v)11: end if12: return (S, foundv)straightforward implementation of Algorithm 1 is not very e�
ient, sin
e we need to maintain aset of labels for ea
h level of re
ursion. The goal is to give a more e�
ient implementation. Westart by modifying the algorithm slightly so that any two sets of labels 
orresponding to di�erentre
ursion levels will have empty interse
tion. We a
hieve this by modifying line 8 so that wheneverwe add a label to the set of the 
urrent level, we also remove it from all the an
estor's sets. Su
han operation 
an be implemented e�
iently by a union-�nd data stru
ture [9℄. A union-�nd datastru
ture maintains a family of sets of elements subje
t to the following two operations: union(u, v)
reates a new set that is union of the sets u and v (the side e�e
t of this operation is that the sets
u and v are destroyed), and �nd(v) �nds the set that 
ontains element v. We allow some sloppinessof the notation by denoting an element and a set by letters u and v. In fa
t, the implementationby Tarjan [9℄ pi
ks an elements from ea
h set, and this elements be
omes the representative of thisset. In our implementation, the levels of re
ursion will play the role of the representatives of thesets, and the labels in the query will play the role of the elements in the sets, see Algorithm 2. Thisalgorithm is a streamed and improved version of Algorithm 1. Ea
h level of re
ursion stores fourlo
al variables: found, p, r[d] (weight of the 
urrent node), and S[d] (the pointer to the 
orrespondingset in the union-�nd data stru
ture). So that the total spa
e is O(depth of the tree). Lines 22-28pro
ess the labels of the 
urrent node one by one: for label a, we �rst �nd the index i in the queryso that a = αi then �nd the level where the label αi is stored, and perform the path 
ompressionin the union-�nd data stru
ture as ne
essary [9℄; line 25 sets αi's pointer to the 
urrent set S[d].Thus, the modi�ed algorithm stores ea
h label only at the deepest possible level to whi
h the labelbelongs. To implement the 
he
k weight(S) ≥ w on the line 9 of Algorithm 1, we store a weight
r[d] for all the re
ursion levels d and update it as ne
essary. We have an invariant that when thenode at the level d is being pro
essed, r[d] equals to weight(S), the total weight of the union of thelabels of all the des
endants of v. These weights 
an be updated as follows: in line 11 we 
an sumthe two 
orresponding weights sin
e all the sets in the union-�nd data stru
ture are disjoint; line26 subtra
ts the weight from the 
orresponding set where the label a is stored, and line 27 adds it5



Algorithm 2 Pro
edure Weighted_query()returns true, if the 
urrent node in the stream or one of its des
endants mat
h the query1: d← d + 1 { d is a global variable indi
ating the level of re
ursion}2: p← 
urrent position in the stream { p is lo
al variable indi
ating the �rst position of the 
urrentnode }3: r[d]← 0 {Create a new root with weight 0}4: found← false5: while true do6: read a { Read the next element in the input stream }7: if a =`(' then8: {Child of the 
urrent node, re
urse}9: found← found ∨Weighted_query() {The re
ursive 
all to Weighted_query 
reated a newroot at the level d + 1}10: Union (S[d], S[d + 1]) {Union the two roots: the newly 
reated one and the 
urrent}11: r[d]← r[d] + r[d + 1] {Correspondingly update the weight of the 
urrent root}12: end if13: if a =`)' then14: {Finished pro
essing the 
urrent node, exit the re
ursion}15: if (¬found) ∧ (r[d] ≥ w) then16: q ← 
urrent position in the stream { the last position of the 
urrent node }17: output (p, q) {None of the des
endants is an answer and su�
ient weight}18: found← true19: end if20: d← d− 121: return found22: end if23: if a ∈ {α1, . . . , αk} then24: i← index su
h that a = αi25: z ← Find(i) { The label a is stored in the set at the level z }26: set a's pointer to S[d] { The union-�nd implementation in [9℄ is pointer based }27: r[z]← r[z]− wi28: r[d]← r[d] + wi { Move the label a down to the 
urrent level and update the root weights
orrespondingly}29: end if30: end while
6



to the weight of the 
urrent set. Initially, all k query labels point to a dummy root at the level 0with the weight ∑
i wi, and the level variable is set to 0.Although the running time for the n − 1 union operations and m �nd operations is O((n +

m)α(m)) [9℄, where α denotes the inverse A
kerman fun
tion; we 
an show that in our spe
i�
 
asethese operations only take O(n+m) time. We �rst simplify the original union-�nd data stru
ture, sothat when it performs union of two roots, it always link the deepest level of the tree to the se
onddeepest level (this is the only type of unions we perform in the algorithm), the �nd operationperforms the standard path 
ompression as usual. Clearly, the total 
ost of the union operations is
O(m). Note that every edge in the union-�nd data stru
ture, ex
ept for the edges that are adja
entto a label, 
orresponds to an edge in the original tree. For ea
h �nd operation, we 
harge the 
ost of
ompressing all the edges ex
ept the �rst and the last one on the path to the 
orresponding edgesin the tree. Note that no edge in the tree gets 
harged twi
e. So that the total number of edge
ompressions is at most n− 1 plus 2m. And hen
e we have O(n + m) run-time.3.2 Sequential AlgorithmThe idea of the algorithm is as follows: while the algorithm reads the input stream, π(T ), it 
omputesthe minimal intervals of the stream that 
ontain enough keywords. For ea
h interval, the algorithm
omputes the 
losest pair of parentheses that 
ontain the interval; this shows the LCA of the nodesof the interval. Finally, the algorithm �lters out the LCA's that have another LCA as a des
endant.The algorithm is shown in Algorithm 3.Algorithm 3 uses an auxiliary data-stru
ture to �nd the minimal intervals with enough keywordsas des
ribed in the following Lemma.Lemma 1 There exists a linear time data-stru
ture that, for any set of keywords α1, . . . , αk andany threshold weight w, supports the following operations:1. insert(a, d): a is a keyword in α1, . . . , αk and d is some data asso
iated with a.2. last: If (a1, d1), . . ., (ak, dk) is the sequen
e of inserted pairs and the weight of keywords thatappear at least on
e in a1, . . . , ak is at least w, then this operation returns dh su
h that(a) the weight of keywords that appear at least on
e in ah, ah+1, . . . , ak is at least w, and(b) for any h′ > h the weight of keywords that appear at least on
e in ah′ , ah′+1, . . . , ak isless than w.Moreover, this data-stru
ture uses O(k) spa
e.Proof: The proof is simple: we use a doubly linked list L, together with an integer wcurrentrepresenting the weight of the keywords that are in L. Initially L is empty. For ea
h keyword
αi, We will keep at most one pair (aj , dj) in L su
h that aj = αi. Also, we keep a pointer for ea
hkeyword αi to the pair (aj , dj) in L su
h that aj = αi. If there is no su
h pair in L, the pointer isNULL. We denote this pointer by p[αi].Whenever a pair (ai, di) is inserted into L, we 
an 
he
k if L already has a pair with label ai by
he
king whether p[ai] is NULL or not. If p[ai] is NULL, we add (ai, di) at the head of L, update
p[ai] to point to the lo
ation of (ai, di) in L, and in
rease w by the weight of ai. Otherwise, weremove the pair that p[ai] points to from L, insert (ai, di) at the head of L, and update p[ai] topoint to the lo
ation of (ai, di) in L. 7



After ea
h insertion, we also do the following: while wcurrent − w is at least the weight of aℓ,where (aℓ, dℓ) is the element at the end of L, we remove (aℓ, dℓ) and de
rease wcurrent by the weightof aℓ.Whenever operation �last� is 
alled, we simply return dℓ, where (aℓ, dℓ) is the pair at the end of
L. It is simple to 
he
k that the running time is linear in terms of the number of insertions and thedata-stru
ture takes O(k) spa
e. ⊓⊔Algorithm 3 Sequential Algorithm1: STACK: a sta
k.2: MY LLIST: the doubly linked list des
ribed in Lemma 1.3: lo
 ← 0.4: last-output ← 0.5: while the input stream is not �nished do6: read a.7: lo
 ← lo
 +1.8: if a =`(' then9: push lo
 into STACK.10: else if a ∈ {α1, . . . , αk} then11: insert (a, lo
) into MY LLIST.12: else if a =`)' then13: open ← pop one element from STACK.14: if the weight of MY LLIST is at least w then15: tail ← the preorder number of the last element of MY LLIST.16: if (open < tail) and (open > last-output) then17: last-output ← lo
.18: output (open, lo
).19: end if20: end if21: end if22: end whileIn the following theorem, we prove that Algorithm 3 works 
orre
tly.Theorem 1 For an input stream π(T ), any set of keywords α1, . . . , αk, and any integer w,Algorithm 3 returns a sequen
e of pairs (ℓ1, r1), (ℓ2, r2) . . . , (ℓk, rk) su
h that1. ℓi and ri are lo
ations of an open parenthesis and its 
orresponding 
losed parenthesis in π(T ),2. the total weight of keywords that appear at least on
e in π(T ) between ℓi and ri is at least w,3. there is no set of parentheses (ℓ′, r′) (that 
orrespond to ea
h other) inside (ℓi, ri) su
h thatthe total weight of keywords that appear at least on
e between ℓ′ and r′ is at least w, and4. there is no pair with the above three properties that is not returned by the algorithm.Note that the pairs that are reported to the output 
orrespond to the nodes of T that are in theanswer of the input TLLCA query. 8



Proof: The proof has two parts: we �rst prove that any pair (ℓ, r) that has properties 1�3 will bereturned, and, se
ond, we prove that if a pair (ℓ, r) is returned, it has properties 1�3.1. Assume that (ℓ, r) is a pair with properties 1�3. Then, when Algorithm 3 reads the rthelement of the input stream (loc = r), whi
h is ')' due to property 1, it goes to lines 13�20.So, open will be set to ℓ. Be
ause of property 2, the 
ondition of line 14 holds and, again dueto property 2, tail will be set to a number greater than ℓ. Therefore, tail will be greaterthan open. Also, be
ause of property 3, last-output will be less than ℓ and thus open. So,(open, lo
), whi
h is equal to (ℓ, r), will be reported to the output.2. Assume that (ℓ, r) is returned. Then, similarly to the above 
ase, it is simple to verify thatall properties 1�3 hold for (ℓ, r).
⊓⊔Note that, by a slight modi�
ation, Algorithm 3 
an output more information like the length ofthe interval that 
ontains enough keywords. This information 
annot be easily extra
ted from there
ursive algorithm.4 Indexed Do
umentsIn 
ontrast to the 
ontext of streamed do
uments, in the 
ontext of indexed do
uments an algorithm
an a

ess the input data in an arbitrary order.Our algorithm works in a similar way as the sequential one, but takes advantage of the index. Its
ans through the nodes in postorder to �nd minimal intervals whose labels 
ontribute at least t tothe s
ore of the 
orresponding subtree. We 
all the set of roots of those subtrees the relaxed answerto the query. Only those nodes that do not have any des
endants in the input pass the �ltering ofthe relaxed answer, whi
h follows.Algorithm 4 starts from the �rst node in postorder. For ea
h node x under 
onsideration,it �nds the smallest node xright larger than x, su
h that all the labels asso
iated with the nodes

(x, . . . , xright) 
ontribute at least t to the s
ore of their 
ommon an
estors. Then the algorithm �ndsthe largest node xleft with the same property but starting from xright and progressing ba
kward:this ensures that (xleft, . . . , xright) is the minimal t-interval that starts from xleft and 
ontributesenough weight. The algorithm outputs y = lca(xleft, xright) and pro
eeds further, by setting the
urrent node x to the smallest node larger than xleft that mat
hes at least one label α of positiveweight Q(α) > 0. The algorithm terminates when it 
annot �nd the next node xright.The auxiliary fun
tion weight(xleft, xright) used in Algorithm 4 shows what weight all the nodesin the interval (xleft, . . . , xright) 
ontribute to the the s
ore of the root node y = lca(xleft, xright).weight(xleft, xright) =
∑

α∈[σ]

Q(α)I(∃x ∈ (xleft, . . . , xright), s.t. α is asso
iated to x),where I() is the indi
ator fun
tion.To �nd node xright, the algorithm 
omputes the node xα = label_successor(α, x) for ea
hlabel α,Q(α) > 0, whi
h is the smallest node larger than x asso
iated with the label α. It buildsa min-priority queue from all su
h nodes and retrieves the smallest set of the nodes, su
h that thesum ∑
Q(α) of all asso
iated with them labels is at least t. The algorithm sets xright to the lastnode retrieved from the priority queue. 9



Algorithm 4 Main Algorithm for Answering TLLCA Queries (T , Q, t)
x = x1;loop

xright ← the smallest node larger than x, s.t. weight(x, xright) ≥ t;if xright = +∞ then EXIT;
xleft ← the largest node smaller than xright, s.t. weight(xleft, xright) ≥ t;
output lca(xleft, xright);
x← the smallest node larger than xleft asso
iated with any label α, s.t. Q(α) > 0;end loopAlgorithm 4 �nds xleft in a similar way, ex
ept that it �nds the set from largest nodes xα =

label_predecessor(α, xright) smaller than x and asso
iated with a spe
i�
 label α; and builds amax-priority queue.Our on-line �ltering algorithm is inspired by the one provided impli
itly by Xu andPapakonstantinou [11℄: it re
eives nodes from the main algorithm one by one and leave only thosethat do not have des
endants among inputted ones. The algorithm stores the most re
ent re
eivednode as xr and 
he
k the relationship between xr and the new node x 
oming to the input. If xis an an
estor of xr, x is dis
arded, be
ause an
estors are not in the answer. If x is a des
endantof xr, xr is dis
arded and repla
ed by x. Otherwise, our �ltering algorithm sends xr to the output(i.e. 
on�rms that it is in the answer) and sets xr to the new
omer node x. When there is no morenodes 
oming to the input, the algorithm outputs xr to the answer and �nishes.Algorithm 5 Filtering Algorithm for Answering TLLCA Queries
xr ← the �rst node 
oming to the input;for ea
h x 
oming to the input do
xlca ← lca(xr, x);if xlca = xr then dis
ard x;elseif xlca = x then xr ← x;else output xr; xr ← x;end foroutput xr;Ea
h node in the answer 
orresponds to the minimal t-interval (xleft, xright) that has weight ofat least t and whi
h was used by the algorithm to �nd this node; the inverse is not always true. Asthe number of su
h intervals of minimal size in
reases the number of nodes in the answer in
reasesas well. We take the number of minimal t-intervals as our adaptive measure of di�
ulty.De�nition 3 Consider a labeled tree T , a query Q, and a positive number t. The di�
ulty δ of theproblem instan
e is the number of distin
t minimal t-intervals.In the following lemmas we prove dependen
ies between nodes in the answer and relaxed answer,minimal t-intervals, and iterations of Algorithm 4. We represent them graphi
ally in Figure 2.Lemma 2 Consider a labeled tree T , a query Q, and a positive number t. There is a bije
tion f1between the set of all minimal t-intervals and ea
h main loop iteration of Algorithm 4.10



Proof: Consider a fun
tion f1 from the set of all minimal t-intervals to the set of all iterations ofAlgorithm 4 that pro
esses these intervals. We prove that f1 is inje
tive and surje
tive.Fun
tion f1 is inje
tive be
ause for ea
h two di�erent minimal t-intervals I1 and I2 the
orresponding iterations f1(I1) and f1(I2) of Algorithm 4 are di�erent: the intervals start fromdi�erent nodes (otherwise they 
annot be di�erent, be
ause they are minimal), and ea
h iterationof the algorithm starts from one of the su

essors of the node the previous iteration started.Moreover, as any interval the algorithm 
omes up with is a minimal t-interval, be
ause it willhave weight less than t without the �rst or the last node, f1 is surje
tive. ⊓⊔Lemma 3 Consider a labeled tree T , a query Q, and a positive number t. There is an inje
tion f2from the answer to the set of all minimal t-intervals.Proof: Consider a fun
tion f2 that for ea
h node y in the answer gives the leftmost minimal t-interval (xleft, . . . , xright), s.t. lca(xleft, xright) = y. We proof this lemma by showing that for ea
hpair of di�erent nodes x1, x2 in the answer, their images f2(x1), f2(x2) are di�erent.As nodes x1 and x2 
annot have an
estor-des
endant dependen
y, be
ause an an
estor is notin the answer in this 
ase, they have totally disjoint subtrees. While the minimal t-interval thatgives the required weight to the node is inside the subtree rooted by this node, the intervals f2(x1),
f2(x2) 
annot be the same. The inje
tivity of f2 follows. ⊓⊔Lemma 4 Consider a labeled tree T , a query Q, and a positive number t. Assuming thatAlgorithm 4 outputs all nodes that are in the answer and some or no nodes that are not in theanswer but are in the relaxed answer, Filtering Algorithm 5 outputs all and only nodes from theanswer.Proof: We show that all the nodes dis
arded by Filtering Algorithm 5 are not in the answer and allthe nodes it outputs are in the answer.The �ltering algorithm dis
ards nodes only in two 
ases: �rst, it dis
ards xr when it �nds thatthe next 
oming node is its des
endant, whi
h means that node xr 
annot be in the answer. Se
ond,it dis
ards the 
oming node x when x is an an
estor of node xr and 
annot be in the answer.All the time the �ltering algorithm is working, it ensures node xr to be not an an
estor of anyof the nodes in the input (here we use the order the Algorithm 4 outputs the nodes to the �lteringalgorithm). The �ltering algorithm outputs xr if the 
oming node belongs to the next "bran
h" ofthe tree and 
annot ban xr from being in the answer as well as all the subsequent nodes that willfollow it. ⊓⊔Theorem 2 Consider a labeled tree T , a query Q, and a positive number t. There is an algorithmthat answers TLLCA query performing O(kδ) priority queue, label-su

essor, label-prede
essoroperations and O(δ) l
a operations.Proof: The 
orre
tness of the algorithm follows from Lemma 2, Lemma 3, and Lemma 4: theminimal t-interval of any node from the answer will be presented in the set of all minimal t-intervals(Lemma 3), will be found by Algorithm 4 and passed to the input of the Filtering Algorithm 5(Lemma 2) that will output it su

essfully to the answer (Lemma 4).Ea
h iteration of Algorithm 4 
osts O(k) label-su

essor and priority queue operations for�nding xright, O(k) label-prede
essor and priority queue operations for �nding xleft, and one
lca(xleft, xright) operation. Filtering Algorithm 5 performs one more lca(xleft, xright) operationfor every node from the input. As the number of iterations of Algorithm 4 is δ the total worst-
ase11



!

relaxed

answer

answer

Main Algorithm relaxed answer 

sub answerminimal t-interval

---

main loop

---

Filtering

answer
postorder enumerationFigure 2: The set of all nodes that 
orrespond to all minimal t-intervals 
ontains answer entirelybut is only a subset of the relaxed answer. The algorithm �nds the 
orresponding node for ea
hminimal t-interval and determines whether it is in the answer or not via �ltering.
omplexity is bounded by O(kδ) of priority queue, label-su

essor, label-prede
essor operations and

O(δ) l
a operations. ⊓⊔The high-level operations label_successor(α, x) and label_predecessor(α, xright) 
an besupported in logarithmi
 time by posting lists of the nodes asso
iated with ea
h label. The heapimplementation of a priority queue has logarithmi
 time 
omplexity. The operator lca(xleft, xright)
an be easily supported in 
onstant time [3℄.5 Dis
ussion of ResultsWe 
onsider a family of s
hema-free queries based on the sear
h for lowest an
estor des
endants(LCA queries). Through the addition of a parameter and of a system of weights on the terms ofthe query, we generalize two existing query-types by threshold labeled LCA queries. We providetwo distin
t one-pass spa
e-e�
ient algorithms to sear
h Streamed Do
uments in linear time. Oneis slightly more general, and allows negative weights in the query, while the other 
an return moreinformation, su
h as the size of the interval 
orresponding to the labels mat
hed in the do
ument. Wealso provide a spa
e-e�
ient algorithm to sear
h Indexed Do
uments. We prove that its 
omplexity issublinear for many instan
es, through an adaptive analysis in fun
tion of a measure of the di�
ultyof the instan
es.Beside generalizing existing query-types, threshold labeled LCA queries have appli
ations ontheir own: the addition of weights to the terms of the query 
an be used to automati
ally personalizeuser queries, so that given a set of labels input by the user with a normal weight, several labels ofsmall weights de�ning the pro�le of the user are automati
ally added to the query.Lastly, weights 
an also be assigned to the labels asso
iated to the nodes of the tree, in orderto indi
ate the degree of relevan
e of ea
h distin
t label of a given node (e.g. the size of �les inthe multi-labeled tree representing the �le system, or the number of o

urren
e of a label in aparagraph). The extension of the algorithms presented here to this model is more problemati
, andit is an open question to know if su
h weighted threshold LCA queries on weighted multi-labeledtrees 
an be answered e�
iently, in the streamed or indexed model.A
knowledgments: The authors would like to thank Tamer Oszu for his en
ouragements andsuggestions, Naomi Nishimura, Prabakhar Ragde and Ian Munro for their support, and the12



algorithm and 
omplexity dis
ussion group of the University of Waterloo were the whole proje
tstarted. For any question, 
onta
t Ehsan Chiniforooshan as the 
orresponding author ate
hinifo�uwaterloo.
a.Referen
es[1℄ Sihem Amer-Yahia, SungRan Cho, and Divesh Srivastava. Tree pattern relaxation. In ExtendingDatabase Te
hnology, pages 496�513, 2002.[2℄ Mi
hael A. Bender and Martin Fara
h-Colton. The level an
estor problem simpli�ed. Theor.Comput. S
i., 321(1):5�12, 2004.[3℄ Mi
hael A. Bender, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin. Finding least
ommon an
estors in dire
ted a
y
li
 graphs. In Symposium on Dis
rete Algorithms, pages845�854, 2001.[4℄ Dov Harel and Robert Endre Tarjan. Fast algorithms for �nding nearest 
ommon an
estors.SIAM J. Comput., 13(2):338�355, 1984.[5℄ Yunyao Li, Cong Yu, and H. V. Jagadish. S
hema-free xquery. In VLDB, 2004.[6℄ Kunihiko Sadakane. Su

in
t representations of l
p information and improvements in the
ompressed su�x arrays. In Pro
eedings of the 13th Annual ACM-SIAM Symposium on Dis
retealgorithms, pages 225�232, 2002.[7℄ Baru
h S
hieber and Uzi Vishkin. On �nding lowest 
ommon an
estors: simpli�
ation andparallelization. SIAM J. Comput., 17(6):1253�1262, 1988.[8℄ Albre
ht S
hmidt, Martin L. Kersten, and Menzo Windhouwer. Querying XML do
umentsmade easy: Nearest 
on
ept queries. In ICDE, pages 321�329, 2001.[9℄ Robert Endre Tarjan. E�
ien
y of a good but not linear set union algorithm. Journal of theACM, 22(2):215�225, 1975.[10℄ Zhaofang Wen. New algorithms for the l
a problem and the binary tree re
onstru
tion problem.Inf. Pro
ess. Lett., 51(1):11�16, 1994.[11℄ Yu Xu and Yannis Papakonstantinou. E�
ient keyword sear
h for smallest l
as in xmldatabases. In SIGMOD '05: Pro
eedings of the 2005 ACM SIGMOD international 
onferen
eon Management of data, pages 527�538, New York, NY, USA, 2005. ACM Press.[12℄ François Yergeau, Tim Bray, Jean Paoli, C. M. Sperberg-M
Queen, and Eve Maler. ExtensibleMarkup Language (XML) 1.0 (third edition). Te
hni
al report, W3C Re
ommendation,February 2004.
13


