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Abstract

Schema-free queries permit to search XML documents without knowing their schema. Among
them, lowest common ancestor (LCA) queries were introduced in several variants on labeled
trees. We define threshold LCA queries to generalize all those variants, and to extend them to
the case where weights are assigned to each term of the query. We study how to solve those in
the context where access to the document is streamed, and in the context where the document is
accessed through a precomputed index. We propose space-efficient algorithms for both contexts,
using space O(h+0c) independant from the size of the document, where h is the height of the
input document and o is the number of different labels. We describe two distinct algorithms
in the streamed model, both of which read the input stream exactly once and run in linear
time, and one algorithm in the indexed model, which provably runs in sublinear time for many
instances, characterized by a difficulty measure.
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1 Introduction

XML [12] standardizes document tree structures, so that general tools can be developed and used
for the many distinct applications adopting this standard. Each document is mainly composed
of text, which forms its content, and tags, which form its hierarchical structure. It is assumed
that documents of different content but similar semantics will share a similar hierarchical structure,
expressed as a schema which specifies which tags can be used, and constrains the structures that they
can form. Knowing the schema allows to write relevant queries on the structure of the document,
while its content can be searched using traditional techniques. In many cases the schema is not
known or is voluntarily ignored, for instance because documents following many different schemes
must be searched [1]: then the documents are searched using Schema-Free [5, 8] queries. We consider
streamed documents, on which one query must be answered in one single pass over the document
and in linear time; and indered documents, for which an index has been computed in advance in
order to allow faster computations.

Schema-Free |5, 8] queries, which consist only of a set of keywords, are studied for applications
where the queries must be written without any knowledge of the schema of the document, for
instance because many documents with many different schemes must be searched [1], or simply
because the schema is not communicated (as often in the streamed model). In particular, Schmidt,



Kersten and Windhouwer [8] defined Lowest Common Ancestor (LCA) queries, which are answered
with the list of nodes which descendants match at least two keywords. Li, Yu and Jagadish [5],
observing that the answer to those queries is not always relevant, proposed to exclude the nodes
whose descendants also answer the query. Xu and Papakonstantinou [11] went further in restricting
the answer set of the queries, by requesting that the descendants match all the keywords, while still
excluding the nodes with a descendant also answering the query.

We introduce in Section 2 the concept of Threshold LCA queries, which generalizes the previous
definitions of LCA queries into a single one through an additional parameter ¢ and optional weights
associated to the labels of the query. In Section 3 we propose two distinct one-pass algorithms to
search Streamed Documents in linear time: one slightly more general (allowing negative weights) and
the other returning more information (size of corresponding interval in the document). In Section 4
we describe an algorithm to search Indezed Documents in sublinear time for many instances, proved
through an adaptive analysis in function of a measure of the difficulty of the instances. Throughout
the paper we assume that the tree-structured document is accessed as a multi-labeled tree such that
each of the n nodes is associated with some of the labels from an alphabet of size o. The algorithms
proposed are space-efficient: their space usage depends on the height h of the document and on the
size of the alphabet o, but is independant of the size of the document, assuming that a word of the
machine can index a position in the document.

2 Previous Work and Definitions

While XML documents have a great variety of features, only a few are of interest in the context
of schema-free queries. For instance, the distinction between elements and attributes, based on the
semantic meaning of order, is ludicrous in the context of schema-free queries, where this order is
not used at all. As a consequence we focus only on a few features of XML. The original definition of
XML documents [12] is text-based, where each node of the structure of the document is associated
with a string. We propose a view based on a relation between the structure of the document and a
finite set of labels. More precisely, in this work, an XML tree is composed of a set [0] = {1,... 0] of
labels, a tree of n nodes such that each leaf is the only child of its parent, and a relation composed
of ¢ pairs between nodes and labels such that each internal node is assigned a label and each leaf
is assigned a set of labels. The distinction is secondary, as any dictionary structure (such as a trie)
permits to translate back and forth between labels and strings, but it makes the definition of the
queries and algorithms easier. More formally, we say that a node & matches k labels aq, ..., ap if
there is a k-tuple of nodes (z1,...,x) matching (aq,...,ax) in the subtree rooted in x.

2.1 Ordinal LCA

Considering only the structure of the tree, the ordinal Lowest Common Ancestor (LCA) of k nodes
Z1,...,T is the lowest common node LCA(z1, ..., z)) in common between the paths from each node
x; to the root. LCA queries on labeled trees have been studied by the database community in the
context of schema-free queries on XML documents. The techniques used consist in choosing the
encoding of the tree so that the LCA can be computed quickly. One technique often used is based
on Dewey numbers, which represent the path to each node, reduce the LCA Problem to finding the
common prefix of two paths, which takes time linear in the length of the smallest path.

LCA queries on ordinal trees were first studied by Harel and Tarjan [4]., and later on by Schieber
and Vishkin [7], Wen [10], and Bender et al. [2, 3]. They defined the ordinal Lowest Common



Ancestor (LCA) of k nodes z1,...,x, as the lowest common node LCA(x1,...,z)) between the
paths from each node xz; to the root.

It is a fundamental algorithmic problem on trees and has been extensively studied [3, 4, 7, 10].

The technique allowing to compute it quickly consists in choosing an adequate encoding of the
tree: for instance Dewey numbers, which represent the path to each node, reduce the LCA Problem
to finding the common prefix of two paths. Using some more sophisticated off-line precomputation,
the LCA of two nodes can be computed in constant time [3, 10].

The technique introduced by Harel and Tarjan [4] and later refined consists in precomputing
the answer to some queries (an index), and to use those precomputed answers to answer the future
queries in constant time. One of the latest results about LCA is due to Bender, Farach-Colton,
Pemmasani, Skiena, and Sumazin [3], who precompute in linear time a structure of O(n) words (i.e.
O(nlgn) bits) using dynamic programing, so that they support in constant time LCA on a tree of
n nodes. Sadakane [6] improves this to precompute the largest common prefix length of suffixes in
6n + o(n) bits and implicitly defines a tree encoding using 2n + o(n) to support LCA in constant
time.

2.2 Previous Work

Schmidt, Kersten and Windhouwer [8] observe that requiring the user to know the schema
is impractical and unrealistic, and that content queries are insufficient. They suggest instead
unstructured queries interpreted in regard to the structure of the document, and define the Lowest
Common Ancestor set of k labels aq,...,q; as the set LLCA(av, ..., ) such that the subtrees
rooted at each node of this set partition all nodes matching at least two labels without intersecting
each other.

Li, Yu and Jagadish [5] observe that the answer to LCA queries is sometime meaningless, because
the level of relevance of the nodes matching some labels vary too much. They propose to return
only the most relevant nodes matching the query, through the Meaningful Lowest Common Ancestor
set of k labels ayq, ..., ag, defined as the set MLCA(«v, ..., ay) of nodes matching at least two labels
which corresponding subtree does not contain any other node matching at least two labels.

The distinction with the previous queries is that the nodes returned by a LLCA query cover all
nodes matching the labels, while the MLCA query rejects nodes which match the labels but are judged
too general because some of their descendants are already matching those labels.

Xu and Papakonstantinou [11| go further in restricting the answer set of the queries, by
requesting that the nodes match all labels. As Li et al., they don’t consider all such nodes but
reduce the answer to the most meaningful nodes, forming the Smallest Lowest Common Ancestor
set of k labels ai,...,ap: the set SLCA(ay,...,a ) of nodes such that the subtrees rooted at each
node of this set partition all nodes matching aq, ..., ap without intersecting each other.

They also extended their algorithm to compute the list of nodes matching k distinct labels,
hence introducing a new query.

Definition 1 (ASLCA queries [11]) The set of All Lowest Common Ancestors corresponding to k
labels aq, ..., ax is the set ASLCA(«u, ..., ) of nodes matching aq, . .., ak.

2.3 Threshold Labeled LCA

We propose a fourth type of query, generalizing both MLCA and SLCA query-types. Whereas MLCA
queries require two labels to be matched by each node of the answer, and SLCA queries require all



of the labels to be matched, we parametrize the amount of labels that a node of the answer should
match, and consider weights associated to each label to measure the relevance of each label to the
answer.

Definition 2 Consider a tree T labeled by a binary relation R : [n] X [o] — {0,1}, a query Q :
(0] = {0,...,uq}, a node x of the tree, and a positive number t.

e The score of x is the sum of the weights of the labels associated to x or at least to one of its
descendants:

score(z) = Z Qo] max R(y, a)

ocjo] y descendant of z

e the answer to a Threshold Labeled LCA query (TLLCA) is the set of nodes x such that x’s
score s at least t and no descendant of x matches the previous condition.

By definition, when the weights are all equal to zero or one, the answer to such a query
corresponds to the answer of a MLCA query for t = 2, and to the answer of a SLCA query for ¢ = k.
This extension of the query-type to its weighted variant can be used to automatically personalize
user queries: given a set of labels input by the user, assign them a normal weight and add to them
several labels of small weights defining the profile of the user.

3 Streamed Documents

In the context of streamed documents, instead of accessing the input document 7" directly, we are
allowed to read 7(T') only in one pass, where 7(T") denotes the preorder sequence of the nodes of T
with parentheses around all the nodes (see Figure 1 for an example). We seek for sub-linear space
algorithms. In the following two sections, we present two linear time algorithms for the weighted
query problem.

3.1 Recursive Algorithm

Let @ = (a1,2,...,a) be the weighted query with weights W = (wq,ws,...,wg). A naive
algorithm can be stated as follows. We crawl the tree recursively starting from the root. For each
node, we check whether it can be an answer to the weighted query, namely, if the following two
conditions are satisfied:

e none of its descendants is an answer, and

e the weight of the union of the labels of all its descendants is above the given threshold.

a
ab b c
N T N
cd e ad cf aef ac

(ab(cd)(e))- (a(b(ad)(cf))(c(ae)(ac))).

Figure 1: Examples of streamed trees. Nodes in LC' A(a, b, ¢) are denoted in bold.



Once these conditions are checked for a node v, we return the union of the labels of all the
descendants of v to its parent u (u performed a recursive call to v). However, the

Algorithm 1 Weighted query(v)
returns: L N @, where L is the set of all labels occurring in the v’s subtree and a Boolean value
found, that indicates whether v or any of its descendants is an answer to the weighted query

1. S «— @
found,, « false
for all w is a child of v do

(St, found, ) « Weighted query(u)

S «— SU St { S holds the set of labels up to and including the current child u in the loop }

found, « found, V found,,
end for
S «— S U (labels(v) N Q)
if (—found,) A (weight(S) > w) then

output(v)
: end if
: return (5, found,)

—_ = =
N = O

straightforward implementation of Algorithm 1 is not very efficient, since we need to maintain a
set of labels for each level of recursion. The goal is to give a more efficient implementation. We
start by modifying the algorithm slightly so that any two sets of labels corresponding to different
recursion levels will have empty intersection. We achieve this by modifying line 8 so that whenever
we add a label to the set of the current level, we also remove it from all the ancestor’s sets. Such
an operation can be implemented efficiently by a union-find data structure [9]. A union-find data
structure maintains a family of sets of elements subject to the following two operations: union(u,v)
creates a new set that is union of the sets u and v (the side effect of this operation is that the sets
u and v are destroyed), and find(v) finds the set that contains element v. We allow some sloppiness
of the notation by denoting an element and a set by letters u and v. In fact, the implementation
by Tarjan [9] picks an elements from each set, and this elements becomes the representative of this
set. In our implementation, the levels of recursion will play the role of the representatives of the
sets, and the labels in the query will play the role of the elements in the sets, see Algorithm 2. This
algorithm is a streamed and improved version of Algorithm 1. Each level of recursion stores four
local variables: found, p, r[d] (weight of the current node), and S[d] (the pointer to the corresponding
set in the union-find data structure). So that the total space is O(depth of the tree). Lines 22-28
process the labels of the current node one by one: for label a, we first find the index 7 in the query
so that a = «; then find the level where the label «; is stored, and perform the path compression
in the union-find data structure as necessary [9]; line 25 sets a;’s pointer to the current set S[d].
Thus, the modified algorithm stores each label only at the deepest possible level to which the label
belongs. To implement the check weight(S) > w on the line 9 of Algorithm 1, we store a weight
r[d] for all the recursion levels d and update it as necessary. We have an invariant that when the
node at the level d is being processed, r[d] equals to weight(.S), the total weight of the union of the
labels of all the descendants of v. These weights can be updated as follows: in line 11 we can sum
the two corresponding weights since all the sets in the union-find data structure are disjoint; line
26 subtracts the weight from the corresponding set where the label a is stored, and line 27 adds it



Algorithm 2 Procedure Weighted query ()
returns true, if the current node in the stream or one of its descendants match the query

1: d <« d+1{dis a global variable indicating the level of recursion}
2: p < current position in the stream { p is local variable indicating the first position of the current

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:

node }
r[d] < 0 {Create a new root with weight 0}
. found « false
while true do
read a { Read the next element in the input stream }
if a=‘(C" then
{Child of the current node, recurse}
found « found vV Weighted query() {The recursive call to Weighted query created a new
root at the level d + 1}
Union (S[d], S[d + 1]) {Union the two roots: the newly created one and the current}
r[d] < r[d] + r[d 4+ 1] {Correspondingly update the weight of the current root}
end if
if a=‘)" then
{Finished processing the current node, exit the recursion}
if (—found) A (r[d] > w) then
q < current position in the stream { the last position of the current node }
output (p,q) {None of the descendants is an answer and sufficient weight}
found « true
end if
d—d-1
return found
end if
if a € {on,...,a;} then
1 «— index such that a = ¢
z < Find(i) { The label a is stored in the set at the level z }
set a’s pointer to S[d] { The union-find implementation in [9] is pointer based }
r|z] «— rlz] — w;
r[d] < r[d] + w; { Move the label a down to the current level and update the root weights
correspondingly}
end if
end while




to the weight of the current set. Initially, all k query labels point to a dummy root at the level 0
with the weight ). w;, and the level variable is set to 0.

Although the running time for the n — 1 union operations and m find operations is O((n +
m)a(m)) |9], where v denotes the inverse Ackerman function; we can show that in our specific case
these operations only take O(n+m) time. We first simplify the original union-find data structure, so
that when it performs union of two roots, it always link the deepest level of the tree to the second
deepest level (this is the only type of unions we perform in the algorithm), the find operation
performs the standard path compression as usual. Clearly, the total cost of the union operations is
O(m). Note that every edge in the union-find data structure, except for the edges that are adjacent
to a label, corresponds to an edge in the original tree. For each find operation, we charge the cost of
compressing all the edges except the first and the last one on the path to the corresponding edges
in the tree. Note that no edge in the tree gets charged twice. So that the total number of edge
compressions is at most n — 1 plus 2m. And hence we have O(n + m) run-time.

3.2 Sequential Algorithm

The idea of the algorithm is as follows: while the algorithm reads the input stream, 7(7"), it computes
the minimal intervals of the stream that contain enough keywords. For each interval, the algorithm
computes the closest pair of parentheses that contain the interval; this shows the LCA of the nodes
of the interval. Finally, the algorithm filters out the LCA’s that have another LCA as a descendant.
The algorithm is shown in Algorithm 3.

Algorithm 3 uses an auxiliary data-structure to find the minimal intervals with enough keywords
as described in the following Lemma.

Lemma 1 There ezists a linear time data-structure that, for any set of keywords aq,...,ax and
any threshold weight w, supports the following operations:

1. insert(a,d): a is a keyword in a1,...,ax and d is some data associated with a.
2. last: If (a1,dy), ..., (ag,dy) is the sequence of inserted pairs and the weight of keywords that
appear at least once in ai,...,ax 1S at least w, then this operation returns dy, such that
(a) the weight of keywords that appear at least once in ap,aptq,...,ax is at least w, and
(b) for any h' > h the weight of keywords that appear at least once in apr,apii1,-..,ax 18

less than w.

Moreover, this data-structure uses O(k) space.

Proof: The proof is simple: we use a doubly linked list L, together with an integer wecurrent
representing the weight of the keywords that are in L. Initially L is empty. For each keyword
a;, We will keep at most one pair (a;,d;) in L such that a; = o;. Also, we keep a pointer for each
keyword o to the pair (aj,d;) in L such that a; = a4. If there is no such pair in L, the pointer is
NULL. We denote this pointer by p[a;].

Whenever a pair (a;,d;) is inserted into L, we can check if L already has a pair with label a; by
checking whether p[a;] is NULL or not. If p[a;] is NULL, we add (a;,d;) at the head of L, update
pla;] to point to the location of (a;,d;) in L, and increase w by the weight of a;. Otherwise, we
remove the pair that p[a;] points to from L, insert (a;,d;) at the head of L, and update p[a;] to
point to the location of (a;,d;) in L.



After each insertion, we also do the following: while weyrrent — w is at least the weight of ay,
where (ag,dy) is the element at the end of L, we remove (ay, d;) and decrease weyrrent by the weight
of ay.

Whenever operation “last” is called, we simply return dy, where (ag,dy) is the pair at the end of
L.

It is simple to check that the running time is linear in terms of the number of insertions and the
data-structure takes O(k) space. O

Algorithm 3 Sequential Algorithm

1: STACK: a stack.

2: MY LLIST: the doubly linked list described in Lemma 1.
3: loc «+ 0.

4: last-output < 0.

5. while the input stream is not finished do

6: read a.

7. loc « loc +1.

8: if a =‘(’ then

9: push loc into STACK.

10:  elseif a € {ayq,...,q;} then

11: insert (a, loc) into MY LLIST.

12:  else if a =)’ then

13: open < pop one element from STACK.

14: if the weight of MY LLIST is at least w then

15: tail < the preorder number of the last element of MY LLIST.
16: if (open < tail) and (open > last-output) then
17: last-output « loc.

18: output (open, loc).

19: end if

20: end if

21:  end if

22: end while

In the following theorem, we prove that Algorithm 3 works correctly.

Theorem 1 For an input stream w(T), any set of keywords o,...,cax, and any integer w,
Algorithm 3 returns a sequence of pairs ({1,71), (l2,72) ..., (U, ) such that

1. 4; and r; are locations of an open parenthesis and its corresponding closed parenthesis in w(T),
2. the total weight of keywords that appear at least once in w(T') between €; and r; is at least w,

3. there is no set of parentheses (¢',r") (that correspond to each other) inside ({;,r;) such that
the total weight of keywords that appear at least once between (' and v’ is at least w, and

4. there is no pair with the above three properties that is not returned by the algorithm.

Note that the pairs that are reported to the output correspond to the nodes of T that are in the
answer of the input TLLCA query.



Proof: The proof has two parts: we first prove that any pair (¢,r) that has properties 1 3 will be
returned, and, second, we prove that if a pair (¢,7) is returned, it has properties 1-3.

1. Assume that (¢,7) is a pair with properties 1-3. Then, when Algorithm 3 reads the rth
element of the input stream (loc = r), which is ’)’ due to property 1, it goes to lines 13 20.
So, open will be set to £. Because of property 2, the condition of line 14 holds and, again due
to property 2, tail will be set to a number greater than £. Therefore, tail will be greater
than open. Also, because of property 3, last-output will be less than ¢ and thus open. So,
(open, loc), which is equal to (¢,7), will be reported to the output.

2. Assume that (¢,r) is returned. Then, similarly to the above case, it is simple to verify that
all properties 1-3 hold for (¢,7).

g

Note that, by a slight modification, Algorithm 3 can output more information like the length of

the interval that contains enough keywords. This information cannot be easily extracted from the
recursive algorithm.

4 Indexed Documents

In contrast to the context of streamed documents, in the context of indexed documents an algorithm
can access the input data in an arbitrary order.

Our algorithm works in a similar way as the sequential one, but takes advantage of the index. It
scans through the nodes in postorder to find minimal intervals whose labels contribute at least ¢ to
the score of the corresponding subtree. We call the set of roots of those subtrees the relazed answer
to the query. Only those nodes that do not have any descendants in the input pass the filtering of
the relaxed answer, which follows.

Algorithm 4 starts from the first node in postorder. For each node x under consideration,
it finds the smallest node w,;g5; larger than x, such that all the labels associated with the nodes
(@, ..., Zpight) contribute at least ¢ to the score of their common ancestors. Then the algorithm finds
the largest node .y with the same property but starting from z,;4,¢ and progressing backward:
this ensures that (g, ..., ZTright) is the minimal t-interval that starts from x5, and contributes
enough weight. The algorithm outputs y = lca(xefs, Tright) and proceeds further, by setting the
current node z to the smallest node larger than z;.7; that matches at least one label a of positive
weight Q(a)) > 0. The algorithm terminates when it cannot find the next node x,;gn.

The auxiliary function weight (xc ¢, Trighe) used in Algorithm 4 shows what weight all the nodes
in the interval (zeft, ..., Tright) contribute to the the score of the root node y = lca(wie s, Tright)-

weight (e ft, Tright) = Z Q(a)I(Fx € (Tiefpt, - - - > Tright), s.t. v is associated to x),
a€lo]

where I() is the indicator function.

To find node z,;gn¢, the algorithm computes the node z, = label successor(a,x) for each
label «, Q(«) > 0, which is the smallest node larger than = associated with the label . It builds
a min-priority queue from all such nodes and retrieves the smallest set of the nodes, such that the
sum » Q(a) of all associated with them labels is at least . The algorithm sets ;45 to the last
node retrieved from the priority queue.



Algorithm 4 Main Algorithm for Answering TLLCA Queries (T, Q, t)
T =T,
loop
Tyight < the smallest node larger than x, s.t. weight(x, Z,ignt) > t;
if 2,590t = +oo then EXIT;
Ziefr < the largest node smaller than x,;gne, s.t. weight (zie e, Tright) > t;

output lca(Zieft, Tright);
x « the smallest node larger than x;.¢; associated with any label o, s.t. Q(a) > 0;
end loop

Algorithm 4 finds 2.y in a similar way, except that it finds the set from largest nodes z, =
label_predecessor(a, Zrign:) smaller than x and associated with a specific label o; and builds a
max-priority queue.

Our on-line filtering algorithm is inspired by the one provided implicitly by Xu and
Papakonstantinou [11]: it receives nodes from the main algorithm one by one and leave only those
that do not have descendants among inputted ones. The algorithm stores the most recent received
node as x, and check the relationship between x, and the new node x coming to the input. If x
is an ancestor of x,, x is discarded, because ancestors are not in the answer. If z is a descendant
of x;, x, is discarded and replaced by z. Otherwise, our filtering algorithm sends x, to the output
(i.e. confirms that it is in the answer) and sets x, to the newcomer node . When there is no more
nodes coming to the input, the algorithm outputs x, to the answer and finishes.

Algorithm 5 Filtering Algorithm for Answering TLLCA Queries
%y < the first node coming to the input;
for each x coming to the input do

X1ca < lca(xy, z);
if X1ca = X, then discard x;
elseif x1., = x then x, « x;
else output xy; xp < x;
end for
output xy;

Each node in the answer corresponds to the minimal ¢-interval (e s, right) that has weight of
at least ¢t and which was used by the algorithm to find this node; the inverse is not always true. As
the number of such intervals of minimal size increases the number of nodes in the answer increases
as well. We take the number of minimal t-intervals as our adaptive measure of difficulty.

Definition 3 Consider a labeled tree T, a query Q, and a positive number t. The difficulty § of the
problem instance is the number of distinct minimal t-intervals.

In the following lemmas we prove dependencies between nodes in the answer and relaxed answer,
minimal t-intervals, and iterations of Algorithm 4. We represent them graphically in Figure 2.

Lemma 2 Consider a labeled tree T, a query @, and a positive number t. There is a bijection fi
between the set of all minimal t-intervals and each main loop iteration of Algorithm 4.

10



Proof: Consider a function f; from the set of all minimal ¢-intervals to the set of all iterations of
Algorithm 4 that processes these intervals. We prove that f; is injective and surjective.

Function f; is injective because for each two different minimal ¢-intervals Iy and Iy the
corresponding iterations f1(I7) and f1(I2) of Algorithm 4 are different: the intervals start from
different nodes (otherwise they cannot be different, because they are minimal), and each iteration
of the algorithm starts from one of the successors of the node the previous iteration started.

Moreover, as any interval the algorithm comes up with is a minimal ¢-interval, because it will
have weight less than ¢ without the first or the last node, f is surjective. O

Lemma 3 Consider a labeled tree T, a query Q, and a positive number t. There is an injection fo
from the answer to the set of all minimal t-intervals.

Proof: Consider a function fo that for each node y in the answer gives the leftmost minimal ¢-
interval (Ziet, ..., Tright), S.t. 1ca(Zieft, Tright) = y. We proof this lemma by showing that for each
pair of different nodes x1, zo in the answer, their images fa(x1), fo(x2) are different.

As nodes x1 and xo cannot have ancestor-descendant dependency, because an ancestor is not
in the answer in this case, they have totally disjoint subtrees. While the minimal ¢-interval that
gives the required weight to the node is inside the subtree rooted by this node, the intervals fo(z1),
fa(x2) cannot be the same. The injectivity of fo follows. O

Lemma 4 Consider a labeled tree T, a query Q, and a positive number t. Assuming that
Algorithm 4 outputs all nodes that are in the answer and some or no nodes that are not in the
answer but are in the relazed answer, Filtering Algorithm 5 outputs all and only nodes from the
answer.

Proof: We show that all the nodes discarded by Filtering Algorithm 5 are not in the answer and all
the nodes it outputs are in the answer.

The filtering algorithm discards nodes only in two cases: first, it discards x, when it finds that
the next coming node is its descendant, which means that node x, cannot be in the answer. Second,
it discards the coming node x when x is an ancestor of node x, and cannot be in the answer.

All the time the filtering algorithm is working, it ensures node x, to be not an ancestor of any
of the nodes in the input (here we use the order the Algorithm 4 outputs the nodes to the filtering
algorithm). The filtering algorithm outputs x, if the coming node belongs to the next "branch" of
the tree and cannot ban x, from being in the answer as well as all the subsequent nodes that will
follow it. O

Theorem 2 Consider a labeled tree T, a query Q, and a positive number t. There is an algorithm,
that answers TLLCA query performing O(kd) priority queue, label-successor, label-predecessor
operations and O(9) lca operations.

Proof: The correctness of the algorithm follows from Lemma 2, Lemma 3, and Lemma 4: the
minimal ¢-interval of any node from the answer will be presented in the set of all minimal ¢-intervals
(Lemma 3), will be found by Algorithm 4 and passed to the input of the Filtering Algorithm 5
(Lemma 2) that will output it successfully to the answer (Lemma 4).

Each iteration of Algorithm 4 costs O(k) label-successor and priority queue operations for
finding @,igne, O(k) label-predecessor and priority queue operations for finding 2.4, and one
1ca(wiefe, Trignt) operation. Filtering Algorithm 5 performs one more lca(xeft, Tright) Operation
for every node from the input. As the number of iterations of Algorithm 4 is § the total worst-case
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relaxed

' Main Algorithm relaxed answer
answer ! minimal t-interval sub answer
- A Yy . & /
— . main loop Filtering

. answer
postorder enumeration

Figure 2: The set of all nodes that correspond to all minimal ¢-intervals contains answer entirely
but is only a subset of the relaxed answer. The algorithm finds the corresponding node for each
minimal ¢-interval and determines whether it is in the answer or not via filtering.

complexity is bounded by O(kd) of priority queue, label-successor, label-predecessor operations and
O(0) lca operations. O

The high-level operations label successor(a,z) and label_predecessor(a,Z,ignt) can be
supported in logarithmic time by posting lists of the nodes associated with each label. The heap
implementation of a priority queue has logarithmic time complexity. The operator 1ca(wie e, Tright)
can be easily supported in constant time [3].

5 Discussion of Results

We consider a family of schema-free queries based on the search for lowest ancestor descendants
(LCA queries). Through the addition of a parameter and of a system of weights on the terms of
the query, we generalize two existing query-types by threshold labeled LCA queries. We provide
two distinct one-pass space-efficient algorithms to search Streamed Documents in linear time. One
is slightly more general, and allows negative weights in the query, while the other can return more
information, such as the size of the interval corresponding to the labels matched in the document. We
also provide a space-efficient algorithm to search Indexed Documents. We prove that its complexity is
sublinear for many instances, through an adaptive analysis in function of a measure of the difficulty
of the instances.

Beside generalizing existing query-types, threshold labeled LCA queries have applications on
their own: the addition of weights to the terms of the query can be used to automatically personalize
user queries, so that given a set of labels input by the user with a normal weight, several labels of
small weights defining the profile of the user are automatically added to the query.

Lastly, weights can also be assigned to the labels associated to the nodes of the tree, in order
to indicate the degree of relevance of each distinct label of a given node (e.g. the size of files in
the multi-labeled tree representing the file system, or the number of occurrence of a label in a
paragraph). The extension of the algorithms presented here to this model is more problematic, and
it is an open question to know if such weighted threshold LCA queries on weighted multi-labeled
trees can be answered efficiently, in the streamed or indexed model.

Acknowledgments: The authors would like to thank Tamer Oszu for his encouragements and
suggestions, Naomi Nishimura, Prabakhar Ragde and Tan Munro for their support, and the
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