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Abstract



XML has emerged as a semantic markup language for documents as well as the de

facto language for data exchange over the World Wide Web. Declarative query languages,

such as XPath and XQuery, are proposed for querying over large volumes of XML data.

A number of techniques have been proposed to evaluate XML queries more efficiently.

Many of these techniques assume a tree model of XML documents and are, therefore, also

applicable to other data sources that can be explicitly or implicitly translated into a similar

data model.

The focus of this thesis is on efficient evaluation and optimization of path expressions

in native XML databases. Specifically, the following issues are considered: storage system

design, design of physical operators and efficient execution algorithms, and the cost-based

query optimizer.

The proposed storage system linearizes the tree structure into strings that can be de-

composed into disk pages. Simple statistics are kept in the page headers to facilitate

I/O-efficient navigation. Based on this storage system, a hybrid approach is developed

to evaluate path expressions that exploit the advantages of navigational and join-based

approaches. Path expressions that only contain “local” axes (child, parent, attribute, self,

following-sibling, and preceding-sibling) are evaluated by means of the proposed “Next-of-

Kin” (NoK) operator. A general path expression that contains both local axes and global

ones (ancestor, descendant, ancestor-or-self, descendant-or-self, following, and preceding) is

decomposed into NoK subtrees whose intermediate results are structurally joined to pro-

duce the final result. Experiments show that the navigational operator can be an order

of magnitude faster than join-based approaches in some cases, but slower in others. Thus

a cost-based query optimizer is necessary to choose the optimal execution plan based on

estimates of the cost of each operator.

The cost of an operator heavily depends on the cost model and its input. The inputs to

the cost model are usually the cardinalities of path expressions. In this thesis, a synopsis

structure called XSeed is proposed to estimate the cardinality of a path expression. An

XSeed synopsis can be constructed by compressing an XML document to a small kernel

first, and then more information can be added to the synopsis. XSeed results in more

accurate cardinality estimation than previous approaches and is easier to construct, easier

to update, and can incorporate query feedback.
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Efficient query execution exploits indexes. The last component of the thesis is a feature-

based structural index, called FIX, to expedite tree matching on a large tree. This is based

on the observation that the navigational operation is expensive and applying it to every

tree node is very inefficient. FIX extracts distinctive features from subtrees and uses them

as the index keys. Similarly, for each incoming query, the features of the query tree are

extracted and used as search keys to retrieve the candidate results. Thus, it is sufficient

to match only on these candidate results. The experimental results show that the pruning

power of FIX is very high – more than 99% for structure-rich data sets, and more than

20% for data sets with less structural variety.

3



4



List of Tables

1.1 Thirteen axes and their abbreviations . . . . . . . . . . . . . . . . . . . . . 11

2.1 Feature comparisons between different storage techniques . . . . . . . . . . 39

2.2 Feature comparison between different synopses . . . . . . . . . . . . . . . . 54

3.1 Statistics of testing data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Testing query categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Runtime comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Index construction time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Implementation-independent metrics . . . . . . . . . . . . . . . . . . . . . 118

5.1 Hyper-edge table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Synopses construction time . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Performance in estimation accuracy . . . . . . . . . . . . . . . . . . . . . . 152

5.4 Estimation vs. Evaluation ratios . . . . . . . . . . . . . . . . . . . . . . . . 154

1



List of Figures

1.1 Web services workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 a snippet of HTTP log file . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 An example XML snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Example pattern tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 XDB modules and workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 DTD for XML file in Figure 1.3 . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The DTD Graph for the DTD in Figure 2.1 . . . . . . . . . . . . . . . . . 25

2.3 XML-to-relational mapping: Shanmugasundaram et al. [122] . . . . . . . . 26

2.4 XML-to-relational mapping: STORED . . . . . . . . . . . . . . . . . . . . 27

2.5 XML-to-relational mapping: the Edge-based Approach . . . . . . . . . . . 30

2.6 XML-to-relational mapping: Interval Encoding . . . . . . . . . . . . . . . . 31

2.7 XML-to-relational mapping: XRel . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Relational-to-XML mapping: XPath Accelerator . . . . . . . . . . . . . . . 36

2.9 Native XML storage: Natix . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Native XML storage: Arb . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 An automaton corresponding to a path expression . . . . . . . . . . . . . . 44

3.1 Axes statistics from XQuery Use Cases . . . . . . . . . . . . . . . . . . . . 58

3.2 Converting axes to {., /, //, J} . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Converting axes to {., /, //, C} . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 NoK Decomposition and relation of NoK pattern matching . . . . . . . . 65

3.5 An XML file and a pattern tree . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Subject tree representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2



3.7 Data file and auxiliary indexes . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 The string representation of an XML tree . . . . . . . . . . . . . . . . . . . 74

3.9 Page layout for structural information . . . . . . . . . . . . . . . . . . . . . 76

4.1 An XML document and its F&B bisimulation graph . . . . . . . . . . . . . 91

4.2 Bisimulation graph for Figure 4.1a . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Edge-weighted and matrix representations of bisimulation graph in Figure 4.2 99

4.4 Building and querying indexes . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Clustered and Unclustered FIX Indexes . . . . . . . . . . . . . . . . . . . 104

4.6 Data Structures: BiSimGraph and Signatures. . . . . . . . . . . . . . . . . 106

4.7 Average implementation independent metrics . . . . . . . . . . . . . . . . . 118

4.8 Runtime comparisons on XMark, Treebank, and DBLP . . . . . . . . . . . 119

4.9 DBLP with values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Cardinality estimation process using XSeed . . . . . . . . . . . . . . . . . 128

5.2 An example XML tree and its XSeed kernel . . . . . . . . . . . . . . . . . 131

5.3 Counter stacks for efficient recursion level calculation . . . . . . . . . . . . 135

5.4 Update synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Example of ancestor independence assumption breaks . . . . . . . . . . . 144

5.6 Estimation errors for different query types on DBLP . . . . . . . . . . . . 152

5.7 Different MBP settings on DBLP . . . . . . . . . . . . . . . . . . . . . . . 153

3



List of Algorithms

1 Decomposing a pattern tree into NoK pattern trees . . . . . . . . . . . . . 64

2 NoK Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Primitive Tree Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Constructing FIX for a Collection of Documents . . . . . . . . . . . . . . . 107

5 Index Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Constructing the XSeed Kernel . . . . . . . . . . . . . . . . . . . . . . . 134

7 Synopsis Traveler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Synopsis Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4



Chapter 1

Introduction

The Extensible Markup Language (XML) [10] has attracted significant research interest

due to its expanding use in various applications. Proposed as a simple syntax with flex-

ibility, human-readability, and machine-readability in mind, XML has been adopted as a

standard representation language for data on the Web. Hundreds of XML schemata (e.g.,

XHTML [9], DocBook [2], and MPEG-7 [4]) are defined to encode data into XML format

for specific application domains. Implementing database functionalities over collections

of XML documents greatly extends our power to manipulate these data. For example, a

search engine equipped with such functionalities will be able to answer complex queries such

as “find the lowest priced book titled ‘Advanced Unix Programming’ written by Richard

Stevens in all Canadian book stores”.

In addition to be a data representation language, XML also plays an important role

in data exchange between Web-based applications such as Web services. Web services are

Web-based autonomous applications that use XML as a lingua franca to communicate.

A Web service provider describes services using the Web Service Description Language

(WSDL) [40], registers services using the Universal Description, Discovery, and the In-

tegration (UDDI) protocol [6], and exchanges data with the service requesters using the

Simple Object Access Protocol (SOAP) [5] (a typical workflow can be found in Figure 1.1).

All these techniques (WSDL, UDDI, and SOAP) use XML to encode data. Database tech-

niques are also beneficial in this scenario. For example, an XML database can be installed

on a UDDI server to store all registered service descriptions. A high-level declarative XML

5
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AgentAgent

Requester
Human

Provider
Human

Discovery

Provider

1. Service Registration

Provider EntityRequest Entity

2. Service Discovery Service

3. Semantics Aggrement

4. Sem + WSD4. Sem + WSD

5. Request & Provide ServicesRequester

Figure 1.1: A typical Web Service workflow suggested by the W3C Web Services Architec-

ture [8]

query language, such as XPath [22] or XQuery [24], can be used to match specific patterns

described by a service discovery request.

XML is also used to encode (or annotate) non-Web data. These non-Web data are

usually semistructured or unstructured. Annotating unstructured data with semantic tags

to facilitate queries has been studied in the text community for a long time (e.g., the

OED project [65]). In this scenario, the primary objective is not to share data with others

(although one can still do so), but to take advantage of the declarative query language

developed for XML to query the structure that is discovered through the annotation. For

example, Figure 1.2 shows a snippet of network log file for HTTP requests. Each line in the

log file includes different types of information (e.g., IP address, time, and request status

etc.). When these types of information are parsed, annotated with XML tags, and stored

in an XML database, a database query can be posed to help finding potential denial-of-

service intrusions: find the IP addresses that requested more than 100 failed requests in a
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125.250.248.130 −− [11/Mar/2006:16:06:53 −0500] "POST /xmlrpc.php HTTP/1.1" 404 284
125.250.248.130 −− [11/Mar/2006:16:06:57 −0500] "POST /wordpress/xmlrpc.php HTTP/1.1" 404 294
64.151.107.252 −− [12/Mar/2006:00:11:47 −0500] "GET /phpmyadmin/index.php HTTP/1.0" 404 282
217.35.79.90 −− [12/Mar/2006:03:56:02 −0500] "GET /w00tw00t.at.ISC.SANS.DFind:) HTTP/1.1" 400 403
129.97.128.230 −− [12/Mar/2006:04:02:14 −0500] "HEAD / HTTP/1.0" 200 0
124.0.225.70 −− [12/Mar/2006:09:32:35 −0500] "GET /cacti//graph_image.php HTTP/1.1" 404 296

Figure 1.2: a snippet of HTTP log file

continuous 5 second period.

All the above examples demonstrate some of the potential benefits that database func-

tionality on XML data can bring to these applications. As more and more data are encoded

into XML format, the demands of managing XML data in an XML database are increased.

This thesis develops techniques for storage, query processing, and query optimization over

XML databases.

1.1 Background

This section first introduces the basic definitions for the XML data model and XML query

languages. A detailed discussion of related work is included in Chapter 2.

Database systems organize data in an abstract data model, which forms the basis for

expressing queries. XML documents are usually modeled as trees [54]. This data model is

used in a simplified version to suit the objectives of this thesis, since many features, such

as typing and schema validation, are not the focus of the thesis.

XML markups (or tags) divide data into pieces called elements, with the objective to

provide more semantics to the data. Elements can be nested but they cannot be overlapped.

Nesting of elements represents hierarchical relationships between them. As an example,

Figure 1.3 is a snippet of bibliography data with XML markup.

Definition 1.1 (XML Document) An XML document contains a root element, which

has zero or more nested subelements (or child elements), which can recursively contain

subelements. For each element, there are zero or more attributes with atomic values (or

CDATA) assigned to them. An element also contains an optional value (or PCDATA). A
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<bib>

<book year = "1999">

<title> Principles of Distributed Database Systems </title>

<author> M. Tamer Ozsu </author>

<author> Patrick Valduriez </author>

<price currency = "USD"> 98.00 </price>

</book>

<article year = "1987">

<title> Mind Your Grammar: a New Approach to Modeling Text </title>

<author> Gaston H. Gonnet </author>

<author> Frank Wm. Tompa </author>

<published_in> VLDB’87 </published_in>

</article>

</bib>

Figure 1.3: An example XML snippet

total order, called document order, is defined on all elements and attributes1 correspond-

ing to the order in which the first character of the elements or attributes occurs in the

document. 2

For instance, the root element in Figure 1.3 is bib, which has two child elements: book

and article. The book element has an attribute year with atomic value “1999”. Element

book also contains subelements (e.g., the title element), and an element can contain a

value (e.g., “Principles of Distributed Database Systems” for the element title).

The above definition simplifies the original XML definition [10] by removing auxiliary

information such as comments, namespaces (NS), and processing instructions (PI). An-

other omitted feature is IDREFs, which define references between elements. IDREFs are

not widely used in practice (see XQuery Use Cases [32]), and they make XML a more

complex graph data model, which is much harder to manage. Following other XML data

management system prototypes (e.g., Niagara [102] and TIMBER [79]), this thesis imple-

ments a system prototype for a core subset of XML data and queries. IDREFs and other

1In the XQuery and XPath data model [54], the document order is undefined on attributes and it is
implementation dependent. This thesis defines document order on attributes as well.
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auxiliary or advanced features are considered for future work.

Definition 1.2 (XML Tree) An XML document is modeled as a ordered, node-labeled

tree T = (V, E), where there is a special node root corresponding to the document itself.

Each non-root node v ∈ V corresponds to an element/attribute/text and is characterized

by:

• a unique identifier denoted by ID(v);

• a unique kind property, denoted as kind(v), assigned from the set {element, attribute, text};

• a label, denoted by label(v), assigned from some alphabet Σ.

A directed edge e = (u, v) is included in E if and only if:

• kind(u) = kind(v) = element, and v is a subelement of u; or

• kind(u) = element ∧ kind(v) = attribute, and v is an attribute of u; or

• kind(u) ∈ {element, attribute} ∧ kind(v) = text, and v is the text value of u. 2

As in Definition 1.1, the above definition omits the comment nodes, namespace nodes,

and PI nodes from the XQuery Data Model [54].

Definition 1.3 (XML Data Model) An instance of XML data model is an ordered col-

lection (sequence) of XML tree nodes or atomic values. 2

Using the definition of XML data model and instances of this data model, it is now

possible to define the query languages. Expressions in XML query languages take an

instance of XML data as input and produce an instance of XML data as output. XPath [22]

and XQuery [24] are two important query languages proposed by W3C. Path expressions

are present in both query languages and are arguably the most natural way to query the

hierarchial XML data. In this thesis, the focus is on path expressions. Other constructs

such as FLWOR expressions or user-defined functions are beyond the scope of this thesis.
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Definition 1.4 (Path Expression) A path expression consists of a list of steps, each

of which consists of an axis, a name test, and zero or more qualifiers. There are in to-

tal thirteen axes, which are listed in Table 1.1 together with their abbreviations if any.

Throughout the rest of the thesis, the abbreviations will be used whenever applicable. A

name test filters nodes by their element or attribute names. Qualifiers are filters test-

ing more complex conditions. The brackets-enclosed expression (which is usually called

a branching predicate) can be another path expression or a comparison between a path

expression and an atomic value (which is a string). The syntax of path expression is listed

as follows:

Path ::= Step (“/”Step)∗

Step ::= axis“ :: ”NameTest (Qualifier)∗

NameTest ::= ElementName | AttributeName | “ ∗ ”

Qualifier ::= ‘‘[”Expr“]”

Expr ::= Path (Comp Atomic)?

Comp ::= “ = ”|“ > ”|“ < ”|“ >= ”|“ <= ”|“! = ”

Atomic ::= “′”String“′”

The last step in the list is called a return step. 2

According to the W3C XQuery Working Draft [24], a “‘//”) at the beginning of a path

expression is an abbreviation for the initial steps document-node()/ descendant-or-self::node()/.

A “//” in the middle of a path expression, such as A//B, is an abbreviation for /descendant-or-self::node()/.

Since this thesis uses a simplified data model that only deals with tree nodes, a ::node() is

redundant and thus a “//” is simply treated as an abbreviation for the descendant-or-self

axis (as listed in Table 1.1).

While the path expression defined here is a fragment of the one defined in XQuery [24]

(by omitting features related to comments, namespaces, PIs, IDs, and IDREFs), this defi-

nition still covers a significant subset and can express complex queries. As an example, the

path expression //book[author/last = "Stevens"][price < 100] find all books writ-

ten by Stevens with the book price less than 100.
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Axes Abbreviations of /axis::
child /
descendant
parent
attribute /@
self .
descendant-or-self //
ancestor
following-sibling
following
preceding-sibling
preceding
ancestor-or-self
namespace

Table 1.1: Thirteen axes and their abbreviations, if any

As seen from the above definition, path expressions have three types of constraints:

the tag name constraints, the structural relationship constraints, and the value constraints.

The tag name, structural relationship, and value constraints correspond to the name tests,

axes, and value comparisons in the path expression, respectively. A path expression can

be modeled as a tree, called a pattern tree, which captures all three types of constraints.

Definition 1.5 (Pattern Tree) A path expression can be mapped into a pattern tree

G(V, E) as follows, where V and E are sets of vertices and edges, respectively:

• each step is mapped to a node in V ;

• a special root node is defined as the parent of the tree node corresponding to the first

step;

• if one step m immediately follows another step n, then the node corresponding to m

is a child of the node corresponding to n;

• if step m is the first step in the branching predicate of step n, then the node corre-

sponding to m is a child of the node corresponding to n;
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//

last="Stevens"

root

book

author price<100

/

//

Figure 1.4: A pattern tree of expression //book[author/last = "Stevens"][price <

100]

• if two nodes represent a parent-child relationship, then the edge in E between them

is labeled with the axis between their corresponding steps;

• the node corresponding to the return step is marked as the return node;

• if a branching predicate has a value comparison, then the node corresponding to

the last step of the branching predicate is associated with an atomic value and a

comparison operator. 2

For example, the pattern tree of the path expression //book[author/last = "Stevens"]

[price < 100] is shown in Figure 1.4. In this figure, the node root is the root node and

the return node is underlined. This path expression specifies the three types of constraints
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in the following formula2:

{ b | tag(b) = “book” ∧ ∃a, l, p tag(a) = “author” ∧
tag(l) = “last” ∧ tag(p) = “price” ∧
value(l) = “Stevens” ∧ value(p) < 100 ∧
descendant(root, b) ∧ child(b, a) ∧ child(a, l) ∧
child(b, p)}

where tag() defines the tag-name constraint, value() defines the value constraint, and

child() and descendant() define the structural relationship constraints.

In order to test the proposed techniques, this thesis further defines three special cases

of path expressions.

Definition 1.6 (Simple, Branching, and Complex Path Expressions) A simple path

expression is a special path expression without branching predicates. Furthermore, all axes

in a simple path expression are /-axes. A branching path expression relaxes simple path

expression by allowing an arbitrary number of branching predicates, but all axes are still

/-axes and no value comparisons in the branching predicates. A complex path expression

further relaxes branching path expressions by allowing //-axes for any steps, but still no

value comparisons. 2

1.2 Thesis Scope

The focus of this thesis is on efficient evaluation and optimization of path expressions in

native XML databases. The reasons for this focus are the following: (1) path expressions

are expressive and new to database management systems; path expressions specify special

regular expressions on trees that are awkward or inefficient using relational or object-

oriented query languages (SQL or OQL); (2) path expressions are ubiquitous in many XML

query languages (e.g., XPath [22], XQuery [24], and XSLT [42]); and (3) path expression

processing is complex. Näıve processing strategies result in exponential blowup [66] in

2This formula employs a set semantics and the returning b elements are ordered in document order.
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terms of the query size. Therefore, efficient evaluation and query optimization techniques

are crucial and are studied in this thesis.

There are three important problems related to the processing and optimization of path

expressions:

1. What is the storage system for XML documents to support efficient evaluation as

well as storing and updating XML documents?

2. How to evaluate path expressions efficiently for different types of queries?

3. How to choose which physical operators are the best ones given a path expression

and an XML database?

There are several desirable features for the XML database storage systems. First the

storage system should be robust enough to store any XML documents with arbitrary tree

depth or width, with any element-name alphabet, and with or without associated schemata.

Furthermore, the system should store sufficient auxiliary information to support efficient

path query processing. This is in contrast to the unindexed BLOB or CLOB storage

scheme which needs to parse the document before every query. Moreover, local update to

the document should not cause drastic changes to the whole storage system. Therefore, the

design of the storage system should trade off between the query performance and update

costs.

One of such possible tradeoffs is to design a “multipurpose” storage system that per-

forms reasonably well on both query and update, and to design an optional index for

more efficient query processing. Accordingly, in the query processing module, a baseline

path query processor should be developed solely on the storage system in case the index

is not available. The index needs to support updates, concurrency control and recovery.

The index processor should take into account both tree structures and values, since both

structure and value could be the most selective constraints for some workloads.

At the query optimization side, a cost model for each of the physical operators is

necessary for a query optimizer to choose the optimal execution plan. The formulae in

cost models usually consist of cardinalities of subqueries, therefore, accurate cardinality

estimations are crucial. Cardinality estimation should be based only on a prior knowledge,
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i.e., synopses and statistics that are constructed and collected before queries are processed.

There are also many desirable features for the synopsis: robustness, ease-of-construction,

accuracy, adaptiveness to memory budget, and efficiency of estimation. Sometimes, these

features may interact with each other, so we also need to trade off between them and design

a synopsis suitable for practical use.

1.3 Motivation and Contributions

Significant research has been carried out on XML data management, particularly in the

XML storage systems, query processing, and query optimization.

There are basically two approaches for storing XML documents: the extended relational

approach [49, 122, 58, 137, 139, 70, 72] that converts XML documents to relational tables;

and the native approach which XML documents are stored in a special purpose data

structure [86, 90, 23]. Several techniques in the extended relational approach are schema-

aware in that the conversion of XML documents to relational tables is dependent on the

schema of the XML documents [122, 49]. Other techniques are schemaless in that they

store XML documents in relational tables regardless of their schemata [58, 137, 139, 79,

95, 28, 48, 70]. In this approach, XML documents are usually abstracted as node labeled

trees or graphs. General encoding techniques are developed to convert the labeled trees or

graphs to relational tables. For example, if the XML documents are modeled as labeled

graphs, the edge-oriented approach [58] can be used to store every edge as a tuple consisting

of the source and target nodes as columns. If, on the other hand, the XML documents are

modeled as labeled trees, the node-oriented approach [139, 70] can be used to store every

node as a tuple consisting of the orders during some tree traversal (preorder or postorder).

Both of these techniques, however, have some problems: the edge-oriented technique is

inefficient in evaluating path expressions containing //-axes, because recursive operators

are needed on the edge table; and the node-oriented technique is inefficient in update since

inserting a new element may change the encodings of a large number of elements.

On the other hand, techniques in the native approach [86, 90, 23] are designed for

special purpose storage systems that balance query performance and updatability. The

storage system can be designed so that inserting or deleting an element does not affect the
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global structure. As an example, Natix [86] partitions large XML trees into small subtrees

which can fit into a disk page. Inserting a node usually only affects the subtree in which

the node is inserted. However, native storage systems may not be efficient in answering

certain types of queries (e.g., //bib//author) since they require at least one scan of the

whole tree (introduced later). The extended relational storage, on the other hand, may

be more efficient due to the special properties of the node encodings. Therefore, a storage

system that balances the evaluation and update costs still remains a challenge.

Processing of path queries can also be classified into two categories: join-based ap-

proach [139, 15, 28, 66, 71] and navigational approach [21, 84, 90, 27]. As mentioned

above, storage systems and query processing techniques are closely related in that the

join-based processing techniques are usually based on extended relational storage systems

and the navigational approach is based on native storage systems. All techniques in the

join-based approach are based on the same idea: each location step in the expression is

associated with an input list of elements whose names match with the name test of the

step. Two lists of adjacent location steps are joined based on their structural relationships.

The differences between different techniques are in their join algorithms, which take into

account the special properties of the relational encoding of XML trees. For example, the

Multi-Predicates Merge Join (MPMGJN) [139] modifies the merge join algorithm to reduce

unnecessary comparisons during the backtracking in the merge process. The stack-based

structural join [15] eliminates backtracking in the MPMGJN algorithm by keeping the

ancestors in a stack. The holistic twig join [28] further improves the binary stack-based

structural join to allow multiple input lists, which eliminates the needs to store temporary

intermediate results.

The navigational processing techniques, built on top of the native storage systems,

match the pattern tree by traversing the XML tree. Some navigational techniques (e.g., [27])

are query-driven in that each location step in the path expressions is translated into an

algebraic operator which performs the navigation. A data-driven navigational approach

(e.g., [21, 84, 90]) builds an automaton for a path expression and executes the automaton

by navigating the XML tree. Techniques in the data-driven approach guarantee worst case

I/O complexity: depending on the expressiveness of the query that can be handled, some

techniques [21, 84] require only one scan of the data, and the others [90] require two scans.
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Both the join-based and navigational approaches have advantages and disadvantages.

The join-based approach, while efficient in evaluating expressions having //-axes, may not

be as efficient as the navigational approach in answering expressions only having /-axes.

A specific example is /*/*, where all children of the root are returned. As mentioned

earlier, each name test (*) is associated with an input list, both of which contain all nodes

in the XML document (since all element names match with a wildcard). Therefore, the

I/O cost of the join-based approach is 2n, where n is the number of elements. This cost is

much higher than the cost of the navigational operator, which only traverses the root and

its children. On the other hand, the navigational approach may not be as efficient as the

join-based approach for a query such as //book//author, since the join-based approach

only needs to read those elements whose names are book or author, but the navigational

approach needs to traversal all elements in the tree. Therefore, a technique that combines

the best of both approaches is needed.

In addition to the join-based and navigational approaches, many XML indexes [28, 81,

82, 20, 129, 116, 128, 64, 99, 87, 131] are proposed to process path expressions efficiently.

Some of the indexing techniques are proposed to expedite the execution of existing join-

based or navigational approaches. Examples include the XB-tree [28] and XR-tree [81] for

the holistic twig joins. Both techniques extend B+ trees and build indexes on the input lists

to skip unnecessary comparisons in the join. Since these are special purpose indexes that

are designed for a particular baseline operator, their application is quite limited. Another

line of research focuses on string-based indexes [129, 138, 116, 128]. The basic idea is

to convert the XML trees as well as the pattern trees into strings and reduce the tree

pattern matching problem to string pattern matching. Although their string conversion

methods are different, one common problem lies in this approach: since the pattern tree is

unordered (no order between predicates), when the pattern tree is converted to a string,

an arbitrary order is forced on the siblings. Therefore, the index evaluation algorithm

may lose answers (false-negatives). Their solution is to enumerate all possible strings by

reordering the siblings in the query tree and pose an index query for each of the string.

This, however, will result in an exponential number of query strings and greatly deteriorate

the overall query performance.

More recent XML indexing techniques focus on the structural similarity based in-
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dexes [99, 64, 87, 131, 88, 33, 75]. Techniques in this approach group XML tree nodes

by their structural similarity. Although different indexes may be based on different no-

tions of similarity, they are all based on the same idea: similar tree nodes are clustered into

equivalence classes (or index nodes), which are connected to form a tree or graph. One

common problem of these techniques is that although structural indexes are reasonably

small for regular data sets, they could grow very large for structure-rich data. The index

operator, which is developed to traverse the index tree or graph, is therefore inefficient

in these data sets. Various techniques are developed to cope with this situation: e.g.,

materializing the index on disk [131], or limiting the similarity definition by tree depth to

trade off between the covered query set and the space requirement (e.g., A(k)-index [88],

D(k)-index [33] and M(k)- and M(k)*-index [75]). However, index evaluation still requires

complex pattern matching on the whole graph. Another problem with these techniques

is that these indexes omitted values. In many cases, value constraints are more selective

than structural constraints. Therefore, pure structural indexes do not fully exploit the

constraints in the query. Therefore, a unified structural and value indexing technique that

avoids searching the entire index remains a challenge.

Finally, a cost-based optimizer is crucial to the query performance. The accuracy of cost

estimation is usually dependent on the cardinality estimation. Therefore, many techniques

have been proposed to estimate cardinality of path expressions [64, 13, 37, 59, 132, 110, 111,

14, 113, 112, 130]. All of these techniques first summarize an XML tree (corresponding to

a document) into a small synopsis that contains structural information and statistics. The

synopsis is usually stored in the database catalog and is used as the basis for estimating

cardinality. Depending on how much information is reserved, different synopses cover

different types of queries. DataGuide [64] is first designed for semistructured data (graph-

based OEM data model [109]). It records all distinct paths from a data set and compress

them into a compact graph. Path tree [13] is designed for XML trees and also captures

all distinct paths. Furthermore, path trees can be further decompressed if the resulting

synopsis is too large. Markov tables [13], on the other hand, do not capture the full paths

but sub-paths under a certain length limit. Selectivity of longer paths are calculated using

fragments of sub-paths similar to the Markov process. All the above synopsis structures

only support simple linear path queries that may or may not contain //-axes.
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Figure 1.5: The modules and workflow of XDB data management

Structural similarity-based synopsis techniques (XSketch [110] and TreeSketch [112])

are proposed to support branching path queries. These techniques are very similar to the

structural similarity-based indexing techniques: clustering structurally similar nodes into

equivalence classes. An extra step is needed for the synopsis: summarize the similarity

graph under some memory budget. Different synopses develop different heuristics for the

summarization since obtaining the optimal summarization is NP-hard. Examples include

a bottom-up heuristic that expand from a label-split graph [110] and a top-down heuristic

that summarizes a count-stable graph [112]. A common problem of these heuristics is

that the synopsis construction (expansion or summarization) time is still prohibitive for

structure-rich data. Therefore, a synopsis technique that balances between the construction

time and estimation accuracy is needed.

In this thesis, all of the above problems are studied and the following solutions are

proposed:
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1. A succinct storage scheme is proposed to store a large number of arbitrarily complex

XML documents. The storage system supports efficient evaluation of path expres-

sions as well as update.

2. A hybrid join-based and navigational based path query processing strategy is pro-

posed. This hybrid evaluation technique takes advantages of both the join-based and

navigational approaches.

3. A baseline navigational operator, called NoK, is developed based on the proposed

storage system. By focusing on a special fragment of path expressions, the proposed

navigational operator is simpler and more efficient than the previous navigational

operators.

4. A feature-based index, called FIX, is proposed to index the numerical features of

subtrees in the data. FIX avoids searching the whole graph and provides significant

pruning power.

5. A synopsis, called XSeed, is proposed to summarize the XML documents into small

graphs for cardinality estimation. The XSeed synopsis can be efficiently constructed,

and it provides accurate cardinality estimation.

The proposed techniques have been implemented in a prototype system called XDB

(Figure 1.5). The fully developed modules are the shaded boxes at the bottom level. The

XDB system follows the two-phase processing model: (1) in the preprocessing phase, XML

documents are stored in native storage format, a FIX index could be built based on the

storage, and the XSeed synopsis and statistics about the documents are also stored in

the system catalog; (2) in the query processing phase, the query optimizer consults the

synopsis previously stored in the catalog to estimate the cost of a set of plans and to select

the best one. The evaluation engine takes the selected plan and invokes the appropriate

physical operators: a FIX index operator or a NoK navigational operator.

In summary, the contributions of this thesis are as follows:

• A native storage system for XML documents is proposed to support efficient eval-

uation of path queries and update of the XML documents. The proposed storage
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system linearizes the tree structure into strings that can be decomposed into disk

pages. Simple statistics are kept in page headers to facilitate I/O-efficient naviga-

tion.

• A baseline navigational evaluation operator, called Next-of-Kin (NoK) operator, is

designed to evaluate a fragment of path expressions in one pass of the native storage.

A hybrid approach is proposed to evaluate a general path expression: the path expres-

sion is decomposed into NoK expressions, which are evaluated using NoK processor.

The intermediate results are structurally joined to produce the final results.

• A novel XML indexing technique, called FIX, is proposed to expedite the evaluation

by extracting the distinctive features from the XML trees. Features are used as the

index keys to a mature index such as B+ tree. For each incoming query, the features of

the query tree are extracted and used as search keys to retrieve the candidate results.

Experiments show that FIX provides great pruning power to both structures and

values in the original data tree.

• An XML synopsis structure, called XSeed, is proposed to estimated the cardinality

of path expressions. An XSeed synopsis can be constructed by compressing an

XML document to a small kernel first, and then more information can be added to

the synopsis. Comparing to previous approaches, XSeed results in more accurate

cardinality estimation, is easier to construct and update, and can incorporate query

feedback.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 covers the related work on

storing and querying XML documents. Chapter 3 describes the hybrid evaluation strategy

for a path expression, the XML native storage system and the NoK navigational operator

based on it. Chapter 4 introduces the feature-based indexing technique FIX. Chapter 5

presents the XSeed synopsis structure and cardinality estimation. Chapter 6 concludes

the thesis and discusses some topics for future study.
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Related Work

XML data management has attracted significant research interest from both the theoretical

(e.g., [65, 12, 45, 100, 55, 52, 80, 16, 17, 61, 121, 67, 140, 19, 68, 91]) and the systems

(e.g., [98, 63, 102, 79, 57, 1, 30, 23, 104, 96, 107]) points of view. Research on theoretical

aspects of XML data management focuses on the decidability of typechecking, the validity

of XML over a schema language (e.g., DTD [3], XML Schema [11] or a fragment of them),

integrity constraints and normal forms for XML data, logical level query rewriting, and

the time and space complexities of evaluation specific query languages (e.g., XPath [22],

XQuery [24]). Excellent surveys on these topics are available [97, 127, 103, 29], therefore

detailed discussion of theoretical aspects of XML data management is omitted in this

chapter.

System aspects of XML data management concentrate on the storage system for XML

documents, query processing techniques for XML queries, indexing techniques for XML

documents, and query optimization techniques for XML queries. All of these topics are

addressed in this thesis. The following sections survey existing techniques in each of these

topics.

2.1 XML Storage

There are generally two approaches to storing XML documents: the extended relational ap-

proach and the native approach. In the extended relational approach, XML documents are

22
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<!ELEMENT bib (article|book)*>

<!ELEMENT article (title, author*, published_in)>

<!ATTLIST article year CDATA #REQUIRED>

<!ELEMENT book (title, author*, price)>

<!ATTLIST book year CDATA #REQUIRED>

<!ATTLIST price currency CDATA #REQUIRED>

Figure 2.1: DTD for XML file in Figure 1.3

converted to relational tables and are stored in relational databases or in object repositories

(e.g., Shore [31]). In the native approach, XML documents are stored using a specially de-

signed native format. Each of these techniques has advantages and disadvantages, although

both techniques are feasible for supporting XML queries.

In this section, existing storage techniques are introduced based on the example shown

in Figure 1.3, whose DTD is given in Figure 2.1. The discussion focuses on a comparison

of these approaches according to the following desirable features:

S1: Is the system able to store arbitrarily complex XML documents in terms of width,

height, and number of elements?

S2: Is the system able to store documents with or without schema?

S3: Does the system preserve orders in XML documents?

S4: Does the system provide support for efficient query evaluation?

S5: Does the system support efficient incremental update? In particular local updates1

should not cause drastic changes to the whole storage.

S6: Is the storage cost small compared to the original XML document?

The last requirement is included because XML documents are intended to be human-

readable, and therefore they are usually verbose and contain redundant information. Note

1Local updates are updates that only affect a small subset of the XML document. Particular examples
are inserting or deleting a node in the XML tree.
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that these features are mainly related to supporting query and update. Features related to

access control, concurrency control, and recovery etc. are omitted since they are beyond

the scope of this thesis.

2.1.1 Extended Relational Storage

In the extended relational approach, an XML document is shredded into pieces and these

pieces are reassembled into relational tables [49, 122, 58, 137, 139, 70, 72]. One way of

achieving this is to map the XML structure (DTD or XML Schema) to a corresponding

relational schema. Another approach is to design a generic relational schema to which

any XML document can be mapped. The former is known as schema-aware mapping [49,

122] and the latter schemaless mapping [58, 137, 139, 70]. Some related work (e.g., [25,

126]) are omitted from this chapter since they focus on some specific subproblems in

the XML-to-relational conversion. For example, LegoDB [25] focuses on the selection

of the optimal XML-to-relational schema mapping according to cost estimation; and [126]

compares different ways of representing orders using relational encodings.

Schema-aware XML-to-Relational Mapping

Techniques that fall into this category require prior knowledge of the structure of the

XML documents. The structure (element names and their parent-child relationships) can

be discovered from the XML documents, or it can be provided by the associated schema

(DTD or XML Schema). Thus, there may be different relational schemata for different

sets of XML documents.

Shanmugasundaram et al. [122] propose to map XML documents to relational tables

given a DTD. They first simplify the DTD to a special format and then perform the

mapping from the simplified DTD to a relational schema. The mapping is based on the

DTD graph (see, e.g., Figure 2.2) converted from the DTD. Regular unmarked edges in

the DTD graph represent one-to-one parent-child relationship; while edges labeled with

“*” represent one-to-many parent-child relationship.

Given a DTD graph, the relational mapping is carried out as follows: (1) a table is

created for each vertex in the DTD graph; (2) all descendants reachable from regular edges
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*

bib

book

price @year title author

article

published_in

*

Figure 2.2: The DTD Graph for the DTD in Figure 2.1

are inlined into the table; (3) each element has a unique ID. Based on these rules, the

mapping of the XML document in Figure 1.3 results in four tables as shown in Figure 2.3.

The table bib is created for the root element only since all its children (article and book)

are connected by “*” edges. Some vertices, e.g., title and price, have no corresponding

tables since they are inlined to the book and article tables. The author table is created

since it connects edges labeled with “*”. Each row in the table corresponds to an element

in the XML document. The ID and PID columns correspond to the IDs for the element

and its parent, respectively, representing the primary key and foreign key in the tables.

Shanmugasundaram et al. also define other inlining techniques that try to reduce the

number of tables and space overhead.

The advantages of this approach are that the XML-to-relational mapping is quite sim-

ple and easy to implement. It can handle arbitrarily complex XML documents. Although

during DTD simplification the ordering of siblings is lost in the relational schema, the or-

der can be preserved by adding a position column in the table and assigning each element

an appropriate position in the siblings while the document is loaded. Inserting (or delet-

ing) elements in the XML document can be translated into inserting (or deleting) tuples

in the corresponding tables as long as the updates do not make the document inconsis-

tent with the DTD. Therefore updating can also be performed quite efficiently. However,

there are some disadvantages. Firstly, this technique does not support schemaless docu-

ments. Secondly, if the DTD evolves, the relational schema needs to be updated, which

is expensive. Finally, as also pointed out by the authors, current relational technology
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ID PID

1 0

(a) the bib table

ID PID author

6 2 “M. Tamer Ozsu”

7 2 “Patrick Valduriez”

11 3 “Gaston H. Gonnet”

12 3 “Frank Wm. Tompa”

(b) the author table

ID PID book.@year book.title book.price book.price.currency

2 1 “1999” “Principles of Dis-

tributed Database

Systems”

“98.00” “USD”

(c) the book table

ID PID article.@year article.title article.published in

3 1 “1987” “Mind Your Grammar: a New

Approach to Modeling Text”

“VLDB’87”

(d) the article table

Figure 2.3: Relational tables mapped from Figure 1.3 using Shanmugasundaram et al. [122]

proves awkward or inefficient for some XML queries. For example, to answer the query

//bib//*[@year="1999"][author="M. Tamer Ozsu"], one needs to join all the tables

bib, book, article, and author. If there are more children for the bib vertex in the DTD

graph, all corresponding tables must be joined.

Deutsch et al. [49] propose to deal with schemaless documents by mining the structure

(which can be expressed by a fragment of DTD) from XML documents. The mapping

from XML structure to relational schemata is defined in a declarative language called

STORED. The basic idea of the mapping is as following: objects with different “types”

are first identified. A type is similar to the complex element (which has child elements)

definition in DTD (e.g., article in Figure 2.1). Each type is converted to a relational
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ID @year title author1 author2 price

1 “1999” “Principles of Distributed Database

Systems”

“M. Tamer

Ozsu”

“Patrick

Valduriez”

“98.00”

(a) the bib.book table

ID @year title author1 author2 published in

2 “1987” “Mind Your Grammar: a

New Approach to Modeling

Text”

“Gaston H.

Gonnet”

“Frank Wm.

Tompa”

“VLDB’87”

(b) the bib.article table

Figure 2.4: Relational tables mapped from Figure 1.3 using STORED

table, where the subelements are mapped to columns. An object of a particular type is

then translated into a tuple in the table. For example, the XML file in Figure 1.3 is

translated into two tables bib.book and bib.article as shown in Figure 2.4.

Different from the previous mapping technique, author is not identified as a type, but

is stored as column(s) in the table. The number of author columns is determined by the

maximum number of authors in all book or article objects. Therefore, there are possibly

many NULL values in the tables. The advantages of this mapping technique is that it can

deal with schemaless documents as well as semi-structured graph data instances. However,

since some structural information is coded in the relational schema, e.g., the table name

bib.book, path query processing needs manipulation of the schema information as well.

For example, answering path expression /*/book needs to find all tables with the name that

has a postfix “.book”. Another problem with the mapping is that updates to the XML

document may cause the relational schema to change. For example, if another author

element is inserted to the book element, the table bib.book needs to insert a new column

author3.
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Schemaless XML-to-Relational Mappings

Schemaless mappings do not require prior knowledge about DTD or XML structure. Tech-

niques in this category design a generic relational schema for all XML documents regardless

of whether or not they have a schema.

Florescu and Kossman [58] propose to store an XML tree into an edge table, where each

node has an ID and name. In the edge table, the IDs of the parent and child nodes are

recorded in one tuple, along with other information such as the type and reference of the

possible text node associated with the child. In addition to the edge table, one table is

created for each data type and they are referenced from the edge table. For example, the

XML document in Figure 1.3 can be converted to an edge table, a Vint table, a Vstring, and

a Vdouble table as shown in Figure 2.5.

Each tuple in the Edge table represents an edge (either a tree edge or an IDREF

edge). The source and target columns record the object ID of the source and target

nodes. Specifically the document root has a special ID—0, and the value nodes (CDATA

or PCDATA) have special value IDs vi. The name and ordinal are the target’s name and

the order it appears in its siblings, respectively. The flag column indicates the type of the

edge: ref indicates that the edge is a tree edge between two element nodes or an IDREF

edge; other keywords indicate the data type of the target node if it is a value node. Each

data type has a separate table (e.g, the Vint table) that records the value ID and the value.

The advantages of the edge table approach is that it can convert any XML document,

with or without schema, to relational tables. IDREFs, which are usually omitted or need

special treatment by many other storage systems, can be naturally stored in the edge ta-

ble. Inserting or deleting an element can be performed efficiently by inserting or deleting

edges in the edge table. The order of siblings is also preserved in the edge table; however,

it is hard to determine the ordering of two arbitrary nodes that are not siblings. Fur-

thermore, it is clear that simple path queries that contain only /-axes can be evaluated

using multiple joins on the same edge table: each /-axis is translated into a self-join on

the edge table. The deficiency of this approach, however, is the inability or inefficiency to

answer queries containing //-axes in the path expressions using SQL only. For example, to

answer query //bib//author, one needs to find all author elements as the descendant of

bib element following paths of any length. Therefore, it is necessary to use the recursion
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source ordinal name flag target

0 1 bib ref 1

1 1 book ref 2

1 2 article ref 3

2 0 @year ref 4

2 1 title ref 5

2 2 author ref 6

2 3 author ref 7

2 4 price ref 8

3 0 @year ref 9

3 1 title ref 10

3 2 author ref 11

3 3 author ref 12

3 4 published in ref 13

4 1 TEXT int v1

5 1 TEXT string v2

6 1 TEXT string v3

7 1 TEXT string v4

8 0 @currency ref 14

8 1 TEXT double v5

9 1 TEXT int v6

10 1 TEXT string v7

11 1 TEXT string v8

12 1 TEXT string v9

13 1 TEXT string v10

14 1 TEXT string v11

(a) the Edge table

vid value

v1 1999

v6 1987

(b) the Vint table

vid value

v5 98.00

(c) the Vdouble table

Figure 2.5: Relational tables mapped from Figure 1.3 using the edge-based approach
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vid value

v2 “Principles of Distributed Database Systems”

v3 “M. Tamer Ozsu”

v4 “Patrick Valduriez”

v7 “Mind Your Grammars: a New Approach to Modeling Text”

v8 “Gaston H. Gonnet”

v9 “Frank Wm. Tompa”

v10 “VLDB’87”

v11 “USD”

(d) the Vstring table

Figure 2.5: Relational tables mapped from Figure 1.3 using the edge-based approach (con-

tinued)

mechanism defined in SQL 1999 standard which is not well supported in many RDBMS

implementations.

Interval encoding is a widely adopted XML-to-relational mapping technique [139, 79,

95, 28, 48]. In interval encoding, each tree node is assigned three numbers: begin, end,

and level, which can be obtained by depth first traversal of the XML tree. During the

traversal, a counter is incremented each time the visit of a tree node is started and finished.

Each tree node is visited twice, and the counter values associated with the two visits are

assigned to begin and end. The level of a node is the depth from the root node. Figure 2.6

shows the interval encoding of the XML file in Figure 1.3.

Along with the document ID, begin and end uniquely identify the location of a node

in an XML tree. The level is kept for efficient checking of the parent-child relation-

ship. These four integers are sufficient for testing any structural relationship (parent-child,

ancestor-descendant, etc.) between two nodes by containment conditions. For example,

a node x is a descendant of node y if and only if: (1) x.docID = y.docID; and (2)

y.begin < x.begin < x.end < y.end. Testing parent-child relationship only needs one

additional condition x.level = y.level + 1.

The advantages of this mapping technique are that any XML documents can be trans-
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docID name type begin end level

1 bib element 1 39 1

1 book element 2 21 2

1 year attribute 3 5 3

1 “1999” int 4 4 4

1 title element 6 8 3

1 “Principles of Distributed Database Systems” string 7 7 4

1 author element 9 11 3

1 “M. Tamer Ozsu” string 10 10 4

1 author element 12 14 3

1 “Patrick Valduriez” string 13 13 4

1 price element 15 20 3

1 currency attribute 16 18 4

1 “USD” string 17 17 5

1 “98.00” double 19 19 4

1 article element 22 38 3

1 year attribute 23 25 3

1 “1995” int 24 24 4

1 title element 26 38 3

1 “Mind Your Grammars: a New Approach to

Modeling Text”

string 27 27 4

1 author element 29 31 3

1 “Gaston H. Gonnet” string 30 30 4

1 author element 32 34 3

1 “Frank Wm. Tompa” string 33 33 4

1 published in element 35 37 3

1 “VLDB’87” string 36 36 4

Figure 2.6: Interval Encoding for XML file in Figure 1.3
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lated into interval encoding (except the integration of IDREFs). The interval encoding

also preserves the document order since it coincides with the order on the begin column.

Given the interval encoding of any two nodes, checking all the structural constraints can be

answered in constant time. However, updating could be expensive. For example, inserting

a new element will change the begin and end encodings of all elements after it in doc-

ument order. Although more update-friendly interval encoding techniques are proposed

(e.g., [35]), the updating cost is still O(log n), where n is the total number of elements. For

a large document consisting of millions of elements, the cost is still expensive.

Yoshikawa et al. [137] proposed XRel, a path-based approach to storing XML docu-

ments in relational databases. XRel maintains four tables for any XML document: the

element table, the attribute table, the text table, and the path table. The first three tables

contain tuples corresponding to element, attribute and text nodes in an XML tree. The

start (or end) column in these tables represents the start (or end) position (byte offset

from the beginning of the document) of the corresponding element, attribute, or text,

respectively. The path table contains distinct paths in the XML tree and each path is

assigned a unique ID. Steps in the path are delimited by ‘#/’ rather than ‘/’. The reason

is to be able to evaluate queries with //-axes using the LIKE predicate in SQL (introduced

later). Since many paths have common prefixes, the path table contains significant redun-

dant information. Each tuple in the element, attribute, and text tables contains a foreign

key to the path table indicating the path from root to this node. If there are multiple

elements that share the same rooted paths, their start and end columns will tell the

difference and their relative position. In order to expedite evaluation of path expressions

containing position predicates (e.g., /bib/book/author[2]), the element table also keeps

two extra columns—index and reindex—which indicate the element’s relative position

among its siblings with the same name. As an example, Figure 2.7 shows the XRel table

converted from the XML file in Figure 1.3.

The relational schema of the path-based technique is similar to interval encoding except

that the rooted paths of each element is kept in the path table. In order to answer queries

such as /bib//author, one needs to find in the path table all tuples with author as the

element name and where there is a bib element in the rooted path. This is implemented by

the LIKE predicate ‘#/bib#%/author’, where ‘/’ is replaced by ’#/’ and ‘//’ by ‘#%/’. The
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docID pathID start end index reindex NodeID

1 1 0 428 1 1 1

1 2 5 184 1 1 2

1 4 23 47 1 1 4

1 5 55 80 1 1 5

1 5 89 112 2 1 6

1 6 149 177 1 1 7

1 8 191 414 1 1 9

1 10 212 260 1 1 11

1 11 268 299 1 1 12

1 11 308 337 2 1 13

1 12 379 402 1 1 14

(a) The Element table

docID pathID start end value NodeID

1 3 6 6 “1999” 3

1 7 150 150 “USD” 8

1 9 192 192 “1987” 10

(b) The Attribute table

docID pathID start end value NodeID

1 4 30 46 “Principles of Distributed Database Systems” 15

1 5 63 79 “M. Tamer Ozsu” 16

1 5 97 111 “Patrick Valduriez” 17

1 6 170 176 “98.00” 18

1 10 219 259 “Mind Your Grammar: a New Approach to

Modeling Text”

19

1 11 276 298 “Gaston H. Gonnet” 20

1 11 316 336 “Frank Wm. Tompa” 21

1 12 393 401 “VLDB’87” 22

(c) The Text table

Figure 2.7: Relational tables mapped from Figure 1.3 by XRel
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pathID pathexp

1 #/bib

2 #/bib#/book

3 #/bib#/book#/@year

4 #/bib#/book#/title

5 #/bib#/book#/author

6 #/bib#/book#/price

7 #/bib#/book#/price#/@currency

8 #/bib#/article

9 #/bib#/article#/@year

10 #/bib#/article#/title

11 #/bib#/article#/author

12 #/bib#/article#/published in

(d) The Path table

Figure 2.7: Relational tables mapped from Figure 1.3 by XRel (continued)

regular expression ‘#%/’ is able to express the descendant-or-self semantics of //-axis, where

‘/%/’ expresses descendant semantics. Answering a branching path expression is much more

complex. For example, the path expression /article[author="M. Tamer Ozsu"]//title

is translated into three string pattern matching ‘#/article’, ‘#/article#/author’, and

‘#/article#%/title’ and nine joins between element tables, path tables, and text tables:

SELECT e2.docID, e2.start, e2.end

FROM Path p1, Path p2, Path p3,

Element e1, Element e2,

Text t3

WHERE p1.pathexp LIKE ‘#/article’

AND p2.pathexp LIKE ‘#/article#%/title’

AND p3.pathexp LIKE ‘#/article#/author’

AND e1.pathID = p1.pathID

AND e2.pathID = p2.pathID
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AND t3.pathID = p3.pathID

AND e1.start < e2.start

AND e1.end > e2.end

AND e1.docID = e2.docID

AND e1.start < t3.start

AND e1.end > t3.end

AND e1.docID = t3.docID

AND t3.value = ’M. Tamer Ozsu’

ORDER BY e2.docID, e2.start, e2.end

This complex SQL statement is hard to optimize. Another disadvantage of this path-

based technique is that updating the XML document is even more expensive than the

interval encoding because inserting an element may cause all tables to be updated (start,

end, index, reindex, and pathexp may be changed).

Grust [70] has developed another encoding scheme, XPath Accelerator, using preorder

and postorder traversals to identify any node in a tree. The relational schema includes five

columns: pre, post, par, att, tag, where pre and post are the preorder and postorder

of the node, respectively; par represents the parent’s preorder; att is a boolean value

indicating whether the node is an attribute; and tag is the element/attribute tag name.

Grust et al. [72] extends this schema to support other kinds of nodes (text, PI, etc.) by

changing the boolean att column to a categorical kind column. The ancestor-descendant

relationship can be easily tested using the pre and post values: v′ is a descendant of v

if and only if prev(v) < prev(v′) ∧ post(v′) < post(v). The par value can be used to

test the parent-child and sibling relationships. Figure 2.8 shows the table for the XML

document in Figure 1.3.

This storage technique has similar characteristics to interval encoding, e.g., inefficiency

in updating. However, it has an advantage that it can exploit an efficient spatial index on

the pre-post plane to evaluate path expressions.

2.1.2 Native Storage

Native XML storage techniques treat XML trees as first class citizens and develop special

purpose storage schemes without relying on the existence of an underlying database system.
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pre post par att tag

1 14 0 F bib

2 7 1 F book

3 1 2 T year

4 2 2 F title

5 3 2 F author

6 4 2 F author

7 6 2 F price

8 5 7 T currency

9 13 1 F article

10 8 9 T year

11 9 9 F title

12 10 9 F author

13 11 9 F author

14 12 9 F published in

Figure 2.8: The XPath Accelerator table

Kanne and Moerkotte propose the Natix storage system [86, 57] that partitions a large

XML tree into subtrees, each of which is stored in a record. The partition is designed such

that the record is small enough to fit into a disk page. By introducing proxy nodes and

aggregate nodes, it is possible to connect subtrees in different records, which enables the

navigation of in the original XML tree. Figure 2.9 depicts a possible record partition of

the XML tree in Figure 1.3. In this figure, the XML tree is partitioned into three records

R1, R2, and R3. p1 and p2 are proxy nodes that point to different records. h1 and h2

are aggregate nodes that are inner nodes of the tree and are used to connect subtrees in

different records.

Natix clusters tree nodes by their structural locality. This may significantly reduce the

I/O cost while navigating the tree. Updating is relatively easy since insertions and deletions

are usually local operations to a record. Therefore, the update cost mainly depends on the

size of the subtree that fits into one record. When a record overflows a page, what needs to
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Figure 2.9: A possible Natix record decomposition of the XML tree in Figure 1.3

be done is simply splitting the record into two pages. Deletions may result in merging two

adjacent records, which can also be performed efficiently. In general, this approach is more

flexible than the interval encoding or preorder-postorder encoding in handling frequent

updates.

Koch proposes the Arb storage model [90] to store a tree in its binary tree representation

on disk. It is well known that any ordered tree T can be translated into a binary tree B by

translating the first child of a node in T to the left child of the corresponding node in B

and the following sibling in T to the right child in B. Figure 2.10a shows the binary tree

representation of elements and attributes in Figure 1.3. Arb stores tree nodes in document
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Figure 2.10: Arb Storage of Figure 1.3, (a) logical binary tree representation; (b) physical

storage

order. Each node uses two bits to represent whether it has a left child and/or a right child.

As an example, the Arb physical storage for Figure 1.3 is shown in Figure 2.10b.

Arb efficiently supports updates since inserting (or deleting) a node is equivalent to

inserting (or deleting) an item in the ordered list. The only extra work is to update the

left or right child bits of the parent of the updated node. Arb also supports efficient top-

down and bottom-up navigation in the tree. However, navigating between siblings, e.g.,

following-sibling, is not efficient, because jumping to the following sibling of a non-leaf

node requires traversal of the whole subtree. Supporting efficient sibling level navigation

is crucial to some navigational evaluation algorithms introduced in Section 2.2.

Commercial DBMS vendors have also developed storage systems for supporting XML

data [23, 60, 108, 92]. However due to the lack of sufficient information on how the data

are stored, updated, and queried, they are not included in this chapter.
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Storage System category S1 S2 S3 S4 S5 S6

Shanmugasundaram et al. [122] relational yes no no yes no yes

STORED relational yes yes no no no no

edge-table relational yes yes partly no yes moderate

interval-encoding relational yes yes yes yes no moderate

XRel relational yes yes yes no no no

XPath-Accelerator relational yes yes yes yes no moderate

Natix native yes yes yes yes yes moderate

Arb native yes yes yes partly yes yes

Schkolnick [118] native yes no yes yes yes moderate

Table 2.1: Feature comparison between different techniques (Recall that S1=robustness;

S2=schema-independence; S3=order-preserving; S4=supporting efficient evaluation;

S5=supporting efficient update; S6=succinctness)

The problem of efficiently storing hierarchical data has been studied in the context of

hierarchical databases in 1970’s. Schkolnick [118] proposed a technique to store trees with

types in a paged I/O model. At the logical level, Schkolnick’s technique uses a parenthe-

sis representation for type trees, which is analogous to the DTD or XML Schema in the

context of XML databases. For example, an example type tree is represented as: T =

(NAME, (ADDRESS), (PAYROLL), (SKILL, (EXPERIENCE), (EDUCATION))). Each node

in the type tree is a type, and if node i is the parent of node j then type i is a su-

per type of type j. For each type tree node, there are instances associated with the type.

Schkolnick proposed a clustering algorithm that is based on two principles: (1) all instances

of the same type are clustered together, and (2) type tree is partitioned into subtrees and

all instances of the sub type trees can be clustered together. Given a type tree, there are

2n−1 different ways to partition it. Therefore, the objective is to find the optimal partition.

The optimality of partitioning is determined by the expected page I/Os when performing

a hierarchical scan, which allows three types of transitions: parent-child transition (PCT),

twig transition (TT), and child-parent transition (CPT). Given the frequencies of these

transitions, the paper proposes a base-line algorithm in O(2n) to find the optimal parti-
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tion. For a special case where every node in the type tree has a fixed k degree, the paper

then proposes a more efficient algorithm in O(nkαk), where n is the number of nodes in the

type tree, k is the fanout for each node, and α is some constant. Compared to the other

native storage schemes, Schkolnick’s partitioning algorithm is schema-dependent. The op-

timality of the partitioning is dependent on the frequencies of the three types of transitions,

which may be unavailable in some real world situations. Moreover, in the general case, the

clustering algorithm is still exponential in the size of the schema.

In summary, Table 2.1 presents the feature comparison between the existing storage

systems, where S1 to S6 are the six desirable features listed at the beginning of Section 2.1.

2.2 Path Query Processing

Processing of path queries can mainly be classified into two categories: join-based ap-

proach [137, 139, 15, 28, 48, 71] based on extended relational storage, and navigational

approach [90, 21, 84] based on the native storage. A hybrid approach [74] is also developed

to take advantages of both join-based and navigational approaches.

The rest of the section focuses on the algorithmic aspects of the query processing

techniques, rather than comparing techniques based on different criteria as in the previous

section. The reason is that there is only one primary interest of the processing techniques:

the runtime efficiency of the algorithms.

2.2.1 Join-based Approach

Techniques in this category [137, 139, 15, 28, 48, 71] focus on designing specific relational

join operators that take into account the special properties of the relational schema of

XML trees.

Most of the join-based techniques are based on the same processing strategy: given a

path expression, every NameTest is associated with a list of input elements with the same

name that match with the NameTest. The axis between two NameTests are translated into

a structural join operator that returns pairs of elements that satisfy the structural relation-

ship. For example, the path expression //article//author can be translated into a join

between two lists of article and author elements [article1, article2, . . . , articlem]
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and [author1, author2, . . . , authorn] respectively. Pairs of (articlei, authorj) are re-

turned if they have a ancestor-descendant relationship. Depending on different XML-to-

relational mapping, different techniques may use different join conditions on the relational

encodings.

As introduced in Section 2.1, XRel [137] translates a path expressions into a SQL

statement, which consists of a conjunction of LIKE predicates and comparison (=, <, >)

predicates. How to evaluate this statement is, therefore, left to the relational database

systems. The Dynamic Interval (DI) system [48] is also built on pure relational database

systems without relying on specific designed operators. DI first translates a path expression

into a nested FLWOR expression, which is then compiled into an execution plan. Since

DI uses interval encoding to represent documents, the translated FLWOR expression is

compiled into joins on the begin, end, and level columns with the following condition for

//article//author:

article.start < author.start

AND article.end > author.end

Two physical join operators, nested-loop join and sort-merge join, are adopted from the re-

lational database systems. Experiments show that sort-merge join outperforms the nested-

loop join significantly.

The Multi-Predicate Merge Join (MPMGJN) algorithm [139], also based on interval

encoding, modifies the merge join algorithm with the objective of reducing unnecessary

comparisons during the merge process. The difference from the DI’s sort-merge join is that

MPMGJN considers multiple documents, therefore, an equi-predicate between docIDs are

added to the join condition for //article//author:

article.docID = author.docID

AND article.start < author.start

AND article.end > author.end

When the input lists are sorted by docID and use start to break ties, the näıve merge join

is not efficient since it will compare all pairs of article and author elements from the

same document (because their docIDs are equal). The key observation of the MPMGJN

algorithm is that if an item articlei in the ancestor input list satisfies the structural
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relationship with the items in the range [authorj, authorj+k], then, when attempting to

join the next item articlei+1, the algorithm only needs to compare it with authorj and

onward because all items before authorj are guaranteed not to be the descendants of

articlei thus articlei+1.

The stack-based structural join [15] algorithm is based on a similar observation, but

improves the performance of MPMGJN in the case of recursive data. For example, consider

the following XML document:

<a>

<a>

<b> ... </b>

<b> ... </b>

</a>

</a>

Denoting the first and second occurrences of elements a and b as a1, a2, b1, and b2,

respectively, the MPMGJN algorithm will compare the pairs (a1, b1), (a1, b2), (a2, b1), and

(a2, b2). The stack-based structural join algorithm optimizes this case by exploiting the

transitivity of the descendant relationship: the fact that b1 and b2 being descendants of a2

and the fact that a2 being descendant of a1 imply b1 and b2 being descendants of a1.

To avoid backtracking, the stack-based structural join algorithm keeps a stack of ele-

ments ai such that any element on the stack is an ancestor of all elements on top of it.

Therefore, to answer //a//b, a1 and a2 are first pushed onto the ancestor stack in that

order. Then b1 and b2 only need to compare with the top of the stack a2. Any successful

join to the top of the stack indicates successful joins to all nodes in the stack. With the

assumption that XML trees are usually shallow, the memory requirement for maintaining

the stacks is reasonably small.

The holistic twig join [28] generalizes the stack-based structural join to allow more than

two inputs. The objective is to reduce the number of intermediate results from the binary

structural joins that do not contribute to the final results. The holistic twig join algorithm

maintains a stack of elements for each input list and output a result only if the top elements

of all stacks satisfy all the structural constraints. Therefore, there is no need to output

and deal with intermediate results. The memory requirement of holistic twig join is even
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larger than the binary stack-based structural join, but the former significantly improves

the query performance over binary structural join and MPMGJN [28]. In fact, the holistic

twig join is proven to be I/O optimal for queries containing only //-axes [28].

2.2.2 Navigational Approach

Path query processing techniques in the navigational approach are usually based on native

storage systems. Basically there are two types of navigational approaches: query-driven

and data-driven. In the query-driven navigational operators (e.g., Natix [27]), each location

step in the path expression is translated into a transition from one set of XML tree nodes to

another set. In the data-driven operators (e.g., XNav [84]), the query is translated into an

automaton and the data tree is traversed according to the current state of the automaton.

The query-driven approach is easier to implement, but it may need multiple scans of the

input. On the other hand, the data-driven approach only needs one scan of the data, but

its implementation is much complex.

The Natix query processing engine translates a path query into a native XML algebraic

expression [27]. Each location step in the path expression is translated into an Unnest-Map

operator that effectively replaces an input list with an output list satisfying structural re-

lationship specified by the axis. A path expression is then translated into a chain of

Unnest-Map operators connected by dependency joins (d-joins). Since each Unnest-Map

operator is translated into a physical operator that follows the links in the Natix storage

system, navigation can be determined statically by the query. Kanne et al. [85] optimize

the Natix I/O performance by considering multiple Unnest-Map operators as a whole and

schedule I/O accordingly (introduced in more detail in Section 2.4). New physical oper-

ators optimize I/O for both asynchronous and sequential access patterns by dynamically

determining the navigation in the data storage.

XNav [21, 84] is a navigational processing technique based on finite state automata.

Since XNav is proposed in the context of streaming XML processing2, the algorithm re-

quires only one pass of the input XML data, possibly skipping some tree nodes. Therefore,

it is analogous to the sequential scan operator in relational database systems. The dif-

ference is that XNav has a more complex data access pattern. The automaton can be

2There is nothing to prevent XNav from being used in the stored-and-query XML processing context.
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Figure 2.11: A static automaton for path expression /a[b][c]/d

constructed from the path expression, but it is built dynamically to reduce memory con-

sumption. The reason is that the number of states in a statically constructed automaton is

exponential in the number of branches in the pattern tree (just as the deterministic finite

automaton of a regular expression can take exponential space with respect to the query

size [78]). This can be best illustrated by the following example. Figure 2.11 depicts a

static automaton that tests the existence of the tree pattern specified by /a[b][c]/d3.

The states of the automaton are labeled with partial path expressions that have been sat-

isfied up to that point. The transition edges are labeled with the structural relationship

to the previous state as well as the element name, separated by the symbol ‘::’. It is clear

from the automaton that for a simple two-level pattern tree with n branches (n = 3 in

this example), the number of states in the automata equals to
∑n

i=0

(
n
i

)
= 2n since every

combination of branches corresponds to a state.

As in most automata implementations, XNav traverses the data tree and generates

events that trigger the state transitions. After each state transition, a set of possible states

that are reachable from the current state is dynamically constructed. Besides state tran-

sition, the automaton also navigates the traversal in the tree. For example, depending on

3An automaton that produces results will be much more complex.



Related Work 45

the current state, the automaton can instruct the traversal to jump from the current node

to its following sibling. Therefore, navigation in this technique is determined dynamically

while reading the data tree.

Koch [90] proposes a navigational processing approach based on tree automaton—

Selecting Tree Automaton (STA)—to process path queries based on the Arb storage model.

This approach scans the XML tree twice for each path expression. Each scan can be

modeled as a deterministic tree automaton. The first scan is by means of a bottom-up

deterministic tree automaton to determine which states are reachable. The second scan

is by means of a top-down tree automaton to prune the reachable states and compute

predicates that occur in all remaining states. Based on the Arb secondary storage, both

scans can be implemented efficiently. However, two scans of the input is too expensive for

some simple queries, such as /bib/book, which can be evaluated by XNav with a single

scan.

2.2.3 Hybrid Join-based and Navigational Approach

Halverson et al. [74] proposed a mixed mode query processing technique for path expres-

sions. A navigational operator Unnest and a join-based operator Zig-Zag Join are proposed

to evaluate the path expression. While the Unnest operator can handle a general path ex-

pression, the Zig-Zag join operator can only deal with one location step similar to the

binary structural join. The Unnest operator is a direct translation from a path expression

to a finite state automaton, where each state is associated with a cursor of two types:

child axis (CA) cursor and descendant axis (DA) cursor. The CA and DA cursors take an

XML node as input and enumerate all children or descendants, respectively. This Unnest

operator is in essence a static automaton version of XNav, but it does not guarantee a

single-pass of the input.

The Zig-Zag join is a natural extension to the MPMGJN algorithm by making use of

the index on the interval encodings (a similar indexing technique is proposed in [38]). The

basic ideas of Zig-Zag join are two-fold: (1) it enables advancing the pointers in both input

lists; and (2) it utilizes the interval encoding of the last item that failed the join condition

to gauge the step to obtain the next input item. When advancing the pointers, an index

is used to skip the input lists in sublinear time.



Related Work 46

The mixed model query processing technique is to combine these two operators for

evaluating a single path expression. To be able to compare the costs of different evaluation

plans, Halverson et al. [74] define analytical cost models for both Unnest and Zig-Zag

Join operators. An optimizer is also developed to enumerate left-deep plans from which

to choose the optimal one based on the cost models. An interesting observation from the

experiments is that the optimal plan coincides with the BlossomTree evaluation heuristic

proposed in Chapter 3.

2.3 XML Indexing

Many XML indexing techniques have been proposed over the past few years. These indexes

can also be roughly classified as extended relational approach and native approach. The

extended relational indexes are usually developed for the extended relational storage, since

it is natural to extend existing relational indexes, such as B+ tree and R-tree, on the

relational tables to which the XML documents are mapped. The native indexing techniques

(which are further classified as string-based and structural similarity based approaches)

are usually independent from other XML storage systems (regardless whether they are

extended relational or native). To some extent, native indexes can be treated as native

storage systems themselves. The difference is on the design goal: native indexes mostly

concentrate on efficient evaluation of usually a small fragment of the path expression, while

the storage systems need to balance between multiple criteria, such as ease-of-update and

maintaining orders among nodes. As a consequence of storage independence, evaluating

path expressions using native indexes usually requires new index operators. The rest of

this section concentrates on the algorithmic aspects of the techniques in each of these

approaches.

2.3.1 Extended Relational Index

Many mature relational indexing techniques can be applied directly or extended easily to

the XML context. These indexing techniques are usually based on the extended relational

storage systems. For example, a B+ tree can be built on relational tables based on interval
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encoding to perform an indexed nested-loop structural join [139, 105]. A B+ tree or a R-

tree can be built on the table based on pre-order and post-order encoding [70] to retrieve

child or descendant nodes efficiently. System RX [23] uses a path index and a value index

(both are B+ trees) to efficiently answer queries, e.g., //name="Maggie", that have both

path and value constraints. The advantages of using these existing indexing techniques are

straightforward: they are implemented by most database systems and they support various

desired functionalities—scalability, concurrency control, and recovery, just to name a few.

Native path query processing techniques introduced in the previous section can also

be extended with existing indexing techniques to boost their performance [28, 81, 82,

20]. These indexes, built with the deep understanding of the underlying path processing

techniques, prune the input lists of the join operators. For example, XB-tree [28], a variant

of B+ tree, improves the performance of holistic twig join on parent-child axes. XB-tree

extends B+ tree by adding a bounding segment [N. min, N. max] to every non-leaf index

node N . The bounding segment is selected such that N. min and N. max are the minimum

begin and maximum end encodings, respectively, of all descendant index nodes of N . With

the help of XB-tree, the holistic twig join algorithm can skip some input items by only

selecting non-leaf nodes whose bounding segment contains a certain [begin, end] interval.

XR-tree [81] also extends B+ tree with stab lists and bookkeeping information in the

internal nodes. Stab lists are selected integers in the range [bmin, emax], where bmin and emax

are the minimum begin and maximum end over all indexed elements, respectively. An

integer s “stabs” an interval [b, e] if b ≤ s ≤ e. In the XR-tree, stab lists are the keys in the

non-leaf index nodes and interval encoded elements are at the leaf index nodes. The stab

list effectively partitions the intervals into a tree. Jiang et al. [82] proposed to modify the

holistic twig join based on the knowledge of XR-tree. In addition to the index evaluation

operator, one of the key issues is the heuristics for selecting the next pattern tree edge to

“join” in order to skip as many input elements as possible.

Chen et al. [34] proposed to partition the holistic twig join input lists based on more

structural information (e.g., level, and path prefix) in addition to element names. The

refinement of the input lists brings potential benefits for queries containing parent-child

constraints.

All these indexing techniques are tightly coupled with the supporting processor and
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usually require modifications of both the existing indexes and the path query processing

operators.

2.3.2 String-based Index

Another line of XML indexing techniques reduce the tree pattern matching problem to

string pattern matching problem [129, 116, 128]. Wang et al. propose ViST index [129]

to convert an XML tree into a sequence of tree nodes represented by the element name

and its rooted path prefix. This encoding scheme is very similar to XRel [137] in that

they both record the rooted path of each node as a string to match against a regular

expression representation of a path expression. The difference is that ViST translates a

branching path query into a regular expression on strings so that branching path queries

can also be evaluated without joins. However, due to the unordered nature of branching

predicates (i.e., //a[b][c] has the same semantic meaning as //a[c][b]), the number of

regular expressions translated from a multi-branch query is exponential in the number of

branches. This may significantly deteriorate the overall query performance.

Rao and Moon propose PRIX [116] to use Prüfer sequence [115] as a more compact

representation for XML trees. Prüfer sequence can be generated by iteratively deleting the

least labeled (the authors use post-order) leaf and appending its parent label to the list.

This approach still needs to enumerate all possible sequences for a branching path query.

Wang and Meng [128] propose another sequencing technique by incorporating more

structural information (e.g., the interval encoding) with the tree node and adding pointers

between siblings. By adding more information to the index, query performance is improved.

However, the query processing algorithm grows very complex and it is unclear whether the

main memory based storage is scalable to large documents.

2.3.3 Structural Similarity-based Index

A large body of XML indexing research focuses on structural clustering indexes, which

group the XML tree nodes by their structural similarity. Although they may be based

on different notions of similarity (e.g., common path prefix [64], bisimilarity [99], and

F&B bisimilarity [87]), the basic idea is the same: similar tree nodes are clustered into
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equivalence classes (or index nodes), which are connected to form a tree or graph. For

example, [87] defines the forward bisimilarity relation on the set of XML tree nodes X as

follows: u, v ∈ X is bisimilar (u ≈ v), if and only if

1. u and v have the same name;

2. parent(u) ≈ parent(v);

3. if there is an IDREF reference edge from some node u′ to u, then there is a reference

node from some node v′ to v such that u′ ≈ v′.

Forward bisimilar vertices are clustered together into an equivalence class called bisimu-

lation vertex. Two bisimulation vertices are connected by directed edges if some vertices

from each of the two equivalence classes have a parent-child relationship in the XML tree.

The result is a bisimulation graph which is the structural index itself. The F&B bisimi-

larity can be obtained by refining the bisimulation graph: splitting a bisimulation vertex

into multiple ones if XML tree nodes in the equivalence class are not backward bisimilar.

The backward bisimilarity is defined similarly as the forward bisimilarity by reversing the

directions of all edges in the XML tree first.

Since the structural clustering indexes are graphs, existing XML query processing tech-

niques cannot be directly applied. Therefore, new index evaluation operators need to be

developed for each of the index graphs. Different navigational operators (e.g., those based

on DFS, BFS [131]) are proposed for the structural indexes. These index processing tech-

niques can be thought of as navigational operators on indexed graphs. Therefore, they bear

similar properties of the navigational operators on XML trees, e.g., it is efficient to evaluate

path expressions with only /-axes, but relatively inefficient for expressions containing //-

axes, particularly on large index graphs. Although structural indexes are reasonably small

for regular data sets, they could grow very large for structure-rich data. Various techniques

are developed to cope with this situation: e.g., materializing the index on disk [131], or

limiting the similarity definition by tree depth to tradeoff the covered query set against the

space requirement (e.g., A(k)-index [88], D(k)-index [33] and M(k)- and M(k)*-index [75]).

However, index evaluation still requires complex pattern matching on the whole graph.
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2.4 Path Query Optimization

There are many fundamental problems in database query optimization, e.g., query rewrite,

execution plan enumeration, and plan cost estimation. Since the accuracy of cost estima-

tion is usually heavily dependent on the accuracy of cardinality estimation of subqueries,

many techniques are proposed to deal with cardinality estimation. Section 2.4.1 introduces

prior work on plan enumeration, and Section 2.4.2 focuses on the cardinality estimation.

2.4.1 Plan Enumeration and Selection

In the extended relational approach, where XML queries are translated into SQL state-

ments, query optimization mostly relies on the underlying relational database systems.

Previous research focuses on query mappings that preserve the semantics rather than effi-

ciency [137, 48].

In the join-based native query processing approach, execution plan enumeration usu-

ally amounts to enumerating the join orders. Wu et al. [133] examine multiple strategies

of exploring the space of execution plans with different join orders. A dynamic program-

ming with pruning algorithm and a heuristics that only considers fully pipelined plans are

proposed to quickly find the optimal join order.

Kanne et al. [85] compare the performance of different navigational primitives: a Sim-

ple method that translates each location step to an Unnested-Map operator, a more I/O

friendly XSchedule operator that optimizes inter-cluster navigation, and a XScan operator

that sequentially scans all the data. The last operator usually involves sequential I/O while

the other two involve asynchronous I/O. Experiments show that: (1) XSchedule almost

always outperforms the Simple method due to the better I/O locality, and (2) XSchedule

and XScan can outperform one another depending on the selectivity of the queries. If most

of the data need to be examined during the query evaluation, XScan is better due to its

sequential access pattern. XSchedule wins if the query is highly selective.

As introduced in Section 2.2.3, another plan enumeration and selection framework is

developed by Halverson et al. [74]. In this framework, plans consisting of a navigational

operator and a join-based operator are enumerated and costed. However, the cardinality

or selectivity estimation is a missing piece in that work.
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2.4.2 Cardinality Estimation

A large body of research focus on cardinality estimation [64, 13, 37, 59, 132, 110, 111,

14, 113, 112, 130], where most of them concentrate on queries that consist of structural

constraints only [64, 13, 37, 59, 110, 113, 112]. All these techniques first summarize the

XML trees into a small synopsis that contains structural information and statistics. The

synopsis is usually stored in the database catalog and is used as the basis for estimating

cardinality. Depending on how much information is reserved, different synopses cover

different types of queries. To be able the compare different synopses, the following criteria

are considered:

C1: Does the synopsis support branching path queries as well as simple path queries?

C2: Does the synopsis produce accurate estimation results for the queries that they sup-

port?

C3: Is the synopsis efficient to construct?

C4: Is the synopsis adaptive to memory budget?

C5: Does the synopsis support structural and value constraints?

C6: Is the synopsis recursion-aware?

C7: Does the synopsis support incremental update if the XML documents are updated?

These features are all important for a synopsis to be practical in real world database

systems.

Chen et al. [37] proposed to reduce the problem of cardinality estimation on twigs to the

estimation problem on substrings. Their definition of twig matching, however, is different

than the semantics of path expressions. Therefore, their work cannot be directly used for

estimating cardinality of path expressions.

DataGuide [64] was first designed for semistructured data (graph-based OEM data

model [109]). It records all distinct paths from a data set and compresses them into a com-

pact graph. Aboulnaga et al. [13] proposed two synopses—path trees and Markov tables—

to compress many XML documents to small synopses. Path tree, similar to DataGuide,
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also captures all distinct paths in the XML trees, along with the cardinality statistics

associated with the synopsis vertices. When the path trees are too large, vertices are

compressed into one specially labeled wildcard (*) vertex, with the aggregated cardinality

statistics. Markov tables, on the other hand, capture the sub-paths under a certain length

limit. Selectivity of longer paths are calculated using fragments of sub-paths similar to

Markov process. Markov tables can also be compressed using suffix wildcards (*). Freire

et al.proposed StatiX [59] to keep statistics—children count and value histograms—with

the XML schemata. Their focus is on transforming the schema such that statistics with

multiple granularities can be collected. Wu et al. [132] proposed a two-dimensional his-

togram synopsis based on the start and end positions in the interval encoding. Wang

et al. [130] proposed a Bloom histogram synopsis that supports efficient cardinality esti-

mation as well as update of the underlying XML data. All of these synopsis structures

only support simple linear path queries that may or may not contain //-axes. Therefore,

estimating cardinality for branching path queries remained a challenge until the recent

development of structural clustering techniques, reviewed next.

XSketch [110] and TreeSketch [112] are two synopses that are based on structural

clustering techniques. XSketch is based on forward- and backward-stability, and TreeSketch

is based on count-stability, which is a refinement of forward-stability. The clustered graph is

too large for structure-rich data for the same reason that F&B index is too large. Therefore,

XSketch and TreeSketch develop different heuristics to summarize these graphs under a

memory budget. Since obtaining the optimal summarization is NP-hard for both types

of clustered graphs, the estimation accuracy is largely dependent on the how well the

heuristics preserves the structural information in the original XML trees. XSketch employs

a bottom-up heuristics and TreeSketch embraces a top-down heuristics.

XSketch [110] starts from a small label-split graph, which is generated from the XML

tree by merging all XML nodes with the same label to one synopsis vertex and keeping the

tree edges (if there are multiple edges between two synopsis vertices after the merging, just

keep one) in the graph. Therefore, a vertex in the XSketch synopsis graph is associated

with a set of XML nodes, called extent of the synopsis vertex. Since a vertex implies a

unique path from the root, every vertex is labeled with the count of elements that can

be reached by the corresponding rooted path in the XML tree. Furthermore, the edge
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of XSketch synopsis is labeled with two boolean variables indicating whether this edge

is forward and/or backward stable. An edge (U, V ) in the XSketch synopsis is backward

stable (B-stable) if and only if for every v ∈ extent(V ), there exists a u ∈ extent(U)

such that edge (u, v) is in the XML tree. Forward stability (F-stable) is defined similarly

by reversing the synopsis edge direction. Forward and Backward stability properties are

critical to estimate cardinalities of branching path expressions. The original XML tree and

the label-split graph are at the two extremes of the spectrum of F- and B-stability. It is

not hard to see that all edges in the XML tree are F- and B-stable, but many edges in the

label-split graph may not be F- and B-stable. Therefore, the heuristics developed in [110]

is to decide, under the memory constraints, how to split (or refine) vertices in the label-

split graph with the objective to eliminate the uniformity and independence assumptions

that are the basis for cardinality estimation, or at least make such assumptions more

realistic. Three vertex refinement operations (b-stabilize, f-stabilize, and b-split)

are developed for the heuristics to choose which one to apply for splitting a specific vertex.

TreeSketch [112] is based on the notion of count-stability: a synopsis edge (U, V ) is

k-stable if and only if for every u ∈ extent(U), there are exactly k nodes v1, . . . , vk ∈ V

such that (u, vi), i ∈ {1, . . . , k} is an edge in the XML tree. Count stability is a refinement

of F-stability in that every count stable edge is also an F-stable edge, but not the other

way around. A synopsis is count-stable if every edge is k-stable for some k. Different from

XSketch, TreeSketch first constructs a count-stable graph from an XML tree and merge (or

summarize) vertices until the memory budget is met. The objective of the merging is to

minimize the overall squared error introduced by the merging. Performance study shows

that TreeSketch has orders of magnitude better estimation accuracy with even less time

for construction time than XSketch. However, the construction time for TreeSketch is still

prohibitive for structure-rich data. Another disadvantage with XSketch and TreeSketch is

that updating the synopsis is also expensive if the XML documents are updated.

In summary, Table 2.2 listed the synopses and their features. One problem that is

associated with all these techniques is that they are not recursion-aware. Recursive XML

documents abound in real life data sets [39], and they represent the hardest case for

cardinality estimation. Making the synopses recursion-aware may greatly improve the

estimation accuracy.
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Synopses C1 C2 C3 C4 C5 C6 C7

DataGuide no yes yes no no no yes

Path tree no yes yes yes no no no

Markov table no yes yes yes no no no

StatiX no yes yes partly yes no no

Wu et al. [132] no yes yes yes no no no

Bloom Histogram no yes yes no no no yes

Chen et al. [37] yes yes yes no no no no

XSketch yes yes no yes yes no no

TreeSketch yes yes no yes no no no

Table 2.2: Comparisons of different synopses (Recall that C1=supporting branching path;

C2=accurate estimation; C3=ease-of-construction; C4=adaptivity to memory budget;

C5=supporting value constraints; C6=recursion-aware; C7=updatability)



Chapter 3

Processing of Path Expressions and

Succinct Native Storage Scheme

3.1 Introduction

This chapter presents a path expression evaluation strategy that exploits the advantages

of several existing approaches. This strategy first rewrites a general path expression into

an expression using a minimum subset of axes. Then a heuristic evaluation technique de-

composes the path expression into subexpressions and applies a navigational approach to

evaluating the subexpressions followed by a join-based approach to merging the interme-

diate results. The chapter then focuses on a specific problem of how to design the XML

storage system that supports the evaluation strategy and balances query and update costs.

As introduced in Chapter 2, previous research on the evaluation of path expressions

mainly fall into two approaches. The navigational approach traverses the tree structure and

tests whether a tree node satisfies the constraints specified by the path expression [125, 27,

21, 84, 90]. The join-based approach first selects a list of XML tree nodes that satisfy the

node-associated constraints for each pattern tree node, and then pairwise joins the lists

based on their structural relationships (e.g., parent-child, ancestor-descendant, etc.) [139,

15, 28, 123, 66, 71]. Using proper labeling techniques [43, 36, 126], tree pattern matching

(TPM) can be evaluated reasonably efficiently by various join techniques (multi-predicate

merge joins [139], stack-based structural joins [15], or holistic twig joins [28]).

55
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Compared to the navigational techniques, join-based approaches are more scalable and

enjoy optimization techniques from the relational database technology. However, there are

inevitable difficulties:

1. Since choosing the optimal structural join order is NP-hard, the query optimizer relies

heavily on heuristics [133]. When the query size is reasonably large, the optimization

time may dominate the execution time. Thus, it is hard for the query optimizer to

compromise between optimization and execution.

2. The selection-then-join methodology is not adaptive to streaming XML data (e.g.,

SAX events) where the input streams could be considered as infinite and selection

on the infinite input will not terminate.

In this chapter, a novel path expression processing approach is proposed to combine the

advantages of both navigational and join-based approaches [143]. The rationale is based

on the observation that some of the structural relationships imply higher degree of locality

in the XML document than others, and thus may be evaluated more efficiently using the

navigational approach. On the other hand, others represent more global relationships,

and thus may be evaluated more efficiently using the join-based approach. For example,

parent-child is a more local relationship than ancestor-descendant since finding the parent

or child of a node requires only one navigation along the edge, but finding ancestor or

descendant requires traversing a path or the whole subtree. If XML elements are clustered

at the physical level based on one of the “local” structural relationships (say parent-child),

the evaluation of a subset of the path expression consisting of only those local structural

relationships can be performed more efficiently using a navigational technique without the

need for structural joins. Therefore, clustering by structural relationship is an important

requirement for native storage systems.

Based on this idea, a special type of path expression, called the next-of-kin (NoK) pat-

tern tree, is identified to reflect the locality concept. A NoK pattern tree is a pattern tree

whose nodes are connected by parent-child and following-/preceeding-sibling (abbreviated by

�) relationships only. These axes are called local axes. It is straightforward to partition a

general pattern tree into NoK pattern trees, which are interconnected by arcs labeled with

// or other “global” structural relationships such as following/preceeding. The evaluation
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strategy based on this idea is as follows: a general path expression is first rewritten as a

pattern tree that consists of a minimum subset of axes. The pattern tree is then parti-

tioned into interconnected NoK pattern trees, to which the navigational pattern matching

operators are applied. Finally, the intermediate results of the NoK pattern matching are

joined based on their structural relationships, just as in the join-based approach. Note

that the complexity for evaluating a path expression consisting of /, //, [], and * is P-hard

with respect to combined data and query complexity [67]. Gottlob et al. [66] proposed an

O(mn) algorithm, where m and n are the sizes of the query and data, respectively. The

NoK pattern matching can also be evaluated in O(mn), but it only needs a single scan of

the document while the Gottlob’s algorithm needs multiple scans.

The effectiveness of this approach depends on the answers to the following two ques-

tions: (1) How many local relationships are there compared to global relationships in the

actual queries? (2) How to efficiently evaluate NoK pattern matching so that its perfor-

mance is comparable to or better than structural joins? The first question is hard to answer

since it depends on the actual usage domain of the query, but a simple statistical analysis

of the queries in the XQuery Use Cases [32] reveals that approximately 66% of structural

relationships are /’s, 33% are //’s, and the rest are self axes (“.”) [144]. Figure 3.1 shows

the detailed distribution of axes in each sample query from the XQuery Use Cases. This

fact partly justifies that using NoK pattern matching first will significantly reduce the

number of structural joins later.

The answer to the second question relies on how well the physical storage system satis-

fies the clustering criteria. To justify this conjecture, a simple and succinct physical storage

scheme is proposed to support efficient navigational NoK pattern matching. Since the stor-

age scheme has the locality property, an update of the XML document (insertion/deletion

of an element) only affects part of the whole structure, making it more amenable to update

than other techniques (e.g., the interval encoding [48]).

The rest of the chapter is organized as follows: Section 3.2 introduces the rewriting

rules that translate the whole set of axes into a minimum subset. Section 3.3 presents

a decomposition-based heuristic approach to evaluating path expressions. Section 3.4

presents the algorithm for NoK pattern matching at a logical level. Section 3.5 presents

the design of the physical storage scheme. Section 3.6 introduces how to realize the logical
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level NoK pattern matching algorithm over this physical storage. Section 3.7 presents the

implementation and experimental results. Section 3.8 compares related work to the NoK

approach.

3.2 Rewriting Axes

Given a general path expression consisting of any types of axes, the query compiler first

rewrites the axes using a minimum subset. There are many benefits for the rewriting. For

example, the rewriting reduces the types of axes that need to deal with. More importantly,

backward axes, such as parent, can be rewritten using forward axes such that an one-pass

evaluation algorithm, such as the one introduced in Section 3.4, can be applied. Olteanu

et al. [106] proposed a similar technique to rewrite backward axes to forward axes. The

rewriting technique introduced in this thesis goes one step further to rewrite the forward

axes to a minimum subset of axes. A more detailed comparison is presented in Section 3.8.

As discussed in Chapter 1, path expressions have thirteen axes. Among these, attribute

and namespace are two that specify types of the nodes rather than the structural relation-

ships between two steps. Therefore, they are not included in the following rewriting. In

the rest of the chapter, let J and C denote following and following-sibling axes, respectively.

The set of axes defined in the path expression is redundant in the sense that all of

them can be rewritten using a small subset. In fact, the minimum set is not unique. For

example, both {., /, //, J} and {., /, //, C} can be used to rewrite the other axes. The

following theorem presents the rewrite rules for each of the two sets.

Theorem 3.1 (Rewriting Rules for Axes I) Given any pattern tree G(V, E) as de-

fined in Definition 1.5, it can always be converted to a graph whose edge labels are in the

set {., /, //, J}. Assume that (p, c) is an edge and λ(p, c) denotes that the axis associated

with the edge is “λ”, and labele and labeln represent edge label and node label, respectively.

The rewriting rules are as follows:

(a) child(p, c) ⇐⇒ labele(p, c) = “/”

(b) parent(p, c) ⇐⇒ labele(c, p) = “/”



Processing of Path Expressions and Succinct Native Storage Scheme 60

(c) descendant(p, c) ⇐⇒ ∃x labele(p, x) = “/” ∧ labele(x, c) = “//” ∧ labeln(x) = “ ∗ ”

(d) ancestor(p, c) ⇐⇒ ∃x labele(x, p) = “/” ∧ labele(c, x) = “//” ∧ labeln(x) = “ ∗ ”

(e) self(p, c) ⇐⇒ p = c

(f) descendant-or-self(p, c) ⇐⇒ labele(p, c) = “//”

(g) ancestor-or-self(p, c) ⇐⇒ labele(c, p) = “//”

(h) following-sibling(p, c) ⇐⇒ ∃x labele(x, p) = “/” ∧ labele(x, c) = “/” ∧ labele(p, c) =

“ J ” ∧ labeln(x) = “ ∗ ”

(i) preceding-sibling(p, c) ⇐⇒ ∃x labele(x, p) = “/” ∧ labele(x, c) = “/” ∧ labele(c, p) =

“ J ” ∧ labeln(x) = “ ∗ ”

(j) following(p, c) ⇐⇒ labele(p, c) = “ J ”

(k) preceding(p, c) ⇐⇒ labele(c, p) = “ J ”

Their graphical representations are in Figure 3.2(a)–(k) in that order.
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Figure 3.2: Converting axes to {., /, //, J}. (a) child(p,c) (b) parent(p,c) (c) descen-

dant(p,c) (d) ancestor(p,c) (e) self(p,c) (f) descendant-or-self(p,c) (g) ancestor-or-self(p,c)

(h) following-sibling(p,c) (i) preceding-sibling(p,c) (j) following(p,c) (k) preceding(p,c)
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Proof The child, parent, descendant-or-self, ancestor-or-self, self, following, and preceding

axes are straightforward based on the semantics of edge labels “/”, “//”, “.” and “J”.

Since ancestor is the reverse of descendant, and preceding-sibling is the reverse of following-

sibling, we prove descendant and following-sibling only. For rule (c), by the semantics of

descendant-or-self axis, descendant-or-self(x, c) ≡ descendant(x, c) ∨ x = c. Therefore, the

right-hand-side of (c) can be rewritten to

∃x child(p, x) ∧ descendant-of-self(x, c) ∨ child(p, x) ∧ x = c

⇐⇒ descendant(p, c) ∨ child(p, c)

⇐⇒ descendant(p, c)

�

which is the left hand side.

Rule (h) is straightforward since the right-hand-side is exactly the semantics of following-

sibling axis: p and c have the same parent and c is following p in document order.

Theorem 3.2 (Rewriting Rules for Axes II) All of the eleven axes in Theorem 3.1

can be rewritten to the set {., /, //, C}. The rewriting for child, parent, descendant, ancestor,

self, descendant-or-self, and ancestor-of-self are exactly the same as the corresponding rewrite

rules in Theorem 3.1 since they do not use C. The rewrite rules for the remaining axes

are as follows:

(a) following-sibling(p, c) ⇐⇒ labele(p, c) = “ C ”

(b) preceding-sibling(p, c) ⇐⇒ labele(c, p) = “ C ”

(c) following(p, c) ⇐⇒ ∃y, z labeln(y) = “ ∗ ” ∧ labeln(z) = “ ∗ ” ∧ labele(y, p) =

“//” ∧ labele(z, c) = “//” ∧ labele(y, z) = “ C ”

(d) preceding(p, c) ⇐⇒ ∃y, z labeln(y) = “ ∗ ” ∧ labeln(z) = “ ∗ ” ∧ labele(y, c) =

“//” ∧ labele(z, p) = “//” ∧ labele(y, z) = “ C ”

Their graphical representations are in Figure 3.3(a)–(d) in that order.
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Figure 3.3: Converting axes to {., /, //, C}. (a) following-sibling(p,c) (b) preceding-

sibling(p,c) (c) following(p,c) (d) preceding(p,c)

Proof (a) and (b) are straightforward and (d) is just reverse of (c). So a proof of (c) is

sufficient.

From the formal semantics of path expression [53], if two nodes p and c satisfy following(p, c),

there must exist two nodes y and z such that they are ancestor-or-self of p and c, respec-

tively, and z is a following sibling of y. Therefore, the result of the rewriting is a union of

two pattern trees. �

Since the above two sets are possible targets for the rewrite, the query compiler can

rewrite a path query into two equivalent pattern trees (corresponding to logical plans) and

let the query optimizer choose the pattern tree that leads to the optimal physical plan.

Section 3.3 presents a heuristic evaluation strategy that takes a pattern tree and translates

it into a physical plan. This heuristic is based on the observations of the advantages and

disadvantages of different physical operators. A better solution is to develop a cost model

for each of the operator. In Chapter 5, a synopsis structure and cardinality estimation

algorithm for a cost-based optimizer is presented. Its possible application in a cost model

is discussed in Chapter 6.

3.3 BlossomTree Decomposition

Given a pattern tree after rewriting, the hybrid BlossomTree heuristics [143, 141] first

decomposes it into interconnected NoK pattern trees. Each NoK pattern tree is evaluated

by a navigational pattern matching operator. The intermediate results are then joined

together using the join-based approach.
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Algorithm 1 gives the pseudo-code to decompose a pattern tree based on depth-first

traversal. In the parameters, pt is a pattern tree, S is a set containing the roots of the

decomposed NoK pattern trees, and T is a set containing the non-root nodes in the current

NoK pattern trees. Initially, S is a singleton set containing the root of pt (line 1). From

line 6 to 14, the algorithm adds child nodes reached by a local (respectively global) axis to

T (respectively S). Since every vertex in T is a non-root node, the algorithm calls the DFS

function (line 15) to build a complete NoK tree. This function traverses the pattern tree

in depth-first search from vertices in T . During the traversal, it separates non-root nodes

and NoK root nodes in T and S, respectively (lines 6–8). The function DFS calls itself

recursively to traverse the whole subtree (line 12). Line 12 in function Decompose and

line 9 in function DFS mark the incident nodes to a global-axis-labeled edge as join nodes,

which indicates that they belong to different NoK pattern trees and their matched nodes

need to be joined later (explained latter). It is straightforward to see that the pattern tree

decomposition algorithm is O(n) where n is the number of vertices of the pattern tree.

Example 3.1 Figure 3.4a illustrates the BlossomTree decomposition of the expression

/a[b//d][c//e] into three interconnected NoK pattern trees: N1 corresponding to /a[b][c],

and N2 and N3 corresponding to //d and //e, respectively. When N1 is matched to an

XML document, the intermediate results must include XML nodes that matched with b and

c since they need to be joined with d and e, respectively. Therefore, a relation N1(a, b, c)

is introduced to store intermediate results generated by the NoK pattern matching. Simi-

larly, the matching results for N2 and N3 are both relations containing one column N2(d)

and N3(e). Figure 3.4c shows the relations as the matching results of N1, N2, and N3

on the XML document in Figure 3.4b. Relational operators, such as projection, selection,

and joins, can be applied to the relational intermediate results. A logical structural join

operator that is similar to the ones discussed in Chapter 2 can combine the intermediate

results into the final result. In this example, the final result can be obtained by joining

the three relations:
(
(N1 1b//d N2) 1c//e N3

)
or

(
(N1 1c//e N3) 1b//d N2

)
. Therefore, the

remaining question is how to efficiently evaluate NoK pattern matchings. 2
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Algorithm 1 Decomposing a pattern tree into NoK pattern trees

Decompose(pt : PatternTree, S : Set, T : Set)

1 S ← root of pt;
2 while S 6= ∅ do
3 extract an item u from S;
4 T ← ∅;
5 initialize t as empty NoK tree;
6 for each out-edge (u, v) s.t. v has not been visited do
7 if the label of (u, v) is a local axis then
8 set v as visited;
9 T ← T ∪ {v};

10 add v and edge (u, v) in t;
11 else S ← S ∪ {v};
12 mark u and v as join nodes;
13 end
14 end
15 DFS(t, S, T );
16 output t;
17 end

DFS(t : NoKBlossomTree, S : Set, T : Set)

1 while T 6= ∅ do
2 extract an item u from T ;
3 for each out-edge (u, v) s.t. v has not been visited do
4 if the label of (u, v) is a local axis then
5 set v as visited;
6 T ← T ∪ {v};
7 add v and edge (u, v) in t;
8 else S ← S ∪ {v};
9 mark u and v as join nodes;

10 end
11 end
12 DFS(t, S, T );
13 end
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Figure 3.4: NoK Decomposition and relation of NoK pattern matching

3.4 Logical Level NoK Pattern Matching

Throughout the rest of the chapter, the XML document in Figure 3.5a and the path

expression //book[author/last="Stevens"][price<100] (its pattern tree is shown in

Figure 3.5b) are used to illustrate the storage and query processing.
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    <publisher>Addison−Wesley</publisher>

  <book year="1994">

    <title>TCP/IP Illustrated</title>

    <author><last>Stevens</last><first>W.</first></author>

    <price>65.95</price>

  </book>

  <book year="1992">

    <title>Advanced Programming in the Unix Environment</title>

    <author><last>Stevens</last><first>W.</first></author>

    <publisher>Addison−Wesley</publisher>

    <price>65.95</price>

  </book>

  <book year="2000">

    <title>Data on the Web</title>

    <author><last>Abiteboul</last><first>Serge</first></author>

    <author><last>Buneman</last><first>Peter</first></author>

    <author><last>Suciu</lst><first>Dan</first></author>

    <publisher>Morgan Kaufmann Publishers</publisher>

    <price>39.95</price>

  </book>

  <book year="1999">

    <title>The Economics of Technology and Content for Digital TV</title>

    <editor>

      <last>Gerbarg</last><first>Darcy</first>

      <affiliation>CITI</affiliation>

    </editor>

    <publisher>Kluwer Academic Publishers</publisher>

    <price>129.95</price>

  </book>

</bib>

<bib>

(a) An XML bibliography file

/

price<100

last="Stevens"

root

book

author

//

/ /

(b) An example pattern tree for
//book[author/last="Stevens"][price<100]

Figure 3.5: An XML file and a pattern tree

To efficiently store the tree, tag names are first mapped to the characters—the short

representations of tag names—in an alphabet Σ. For example, one possible mapping of
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a

f g f gf gf gf gf g

z e c i j z e c i j jideez cc c i j z

b b b b

Figure 3.6: Subject tree representation of the bibliography XML document

tag names in Figure 3.5a to the alphabet Σ = {a, b, c, e, f, g, i, j, z} could be as follows:

bib→ a book→ b @year→ z

author→ c title→ e publisher→ i

price→ j first→ f last→ g

Following this mapping, the XML document in Figure 3.5a can be represented as a tree,

called subject tree or XML tree (Figure 3.6). In the subject tree, only tag names and their

structural relationships are preserved. The value of each tree node is detached from the

structure and stored separately. The reason is discussed in Section 3.5.

There are two steps in the process of matching NoK pattern trees to the subject tree:

locating the nodes in the subject tree to start pattern matching, and NoK pattern matching

from that starting node. The first step is needed since a NoK pattern tree b/c could be

obtained from the path expression /a//b/c in which case any descendant of /a could be

a starting point for NoK pattern matching.

In string pattern matching, the major concern is how to efficiently locate the starting

points, while matching the string itself is straightforward. In the case of NoK pattern

matching, both steps are nontrivial. There could be many options to locate the starting

point:

Näıve approach: Traverse the whole subject tree in document order and try to match

each node with the root of the NoK pattern tree. If a matching node is found, then
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start the NoK pattern tree matching process from that node. This is exactly what

might be done in the streaming XML context.

Index on tag names: If a B+ tree on tag names is available, an index lookup for the

root of the NoK pattern tree will generate all possible starting points.

Index on data values: If there are value constraints in the NoK pattern tree (such as

last=“Stevens” in Figure 3.5b), and a B+ tree is constructed for all values in the

XML document, the value-based index can be used to locate all nodes having the

particular value. For each node, a root-lookup operation is performed to find the

XML node that matches with the root of the pattern tree. Each of these nodes is

then used as a starting point for a NoK pattern matching.

All three strategies are implemented and evaluated in Section 3.7. In the experiments, the

best method is manually chosen assuming a perfect optimizer. Note that there is another

evaluation strategy that traverses the tree from bottom-up. This strategy is very similar

to the bottom-up tree automaton technique [90] that is introduced in Section 2.2.

The function NoK-Main in Algorithm 2 is the main function that takes a pattern tree

node pnode and a subject tree node snode as inputs and produces a list of subject nodes R

as output. As described above, the pnode may or may not be the root of the pattern tree.

In either case, the function Root-Lookup is invoked to find the subject tree nodes that

matches with the root of the pattern tree. Root-Lookup is a straightforward recursive

function: it first checks whether the labels of the pattern tree node and the subject tree

node matches (lines 1–3). If they match, the same function is recursively called with the

parameters of the parents of the pattern tree node and the subject tree nodes, respectively.

The Parent function in line 7 is an interface to the storage system, which is introduced

in Section 3.6. When the function Root-Lookup returns true, the snode is the starting

point for the NoK pattern matching, which is codified by the function NPM.

Having established the starting points, NoK pattern matching needs to deal with the

unordered nature of siblings. That brings up the complexity that there could be more

than one pattern tree node that matches a subject tree node. Moreover, the partial order

constraints on siblings specified by the following/preceeding-sibling axes also need to be taken

care of (recall that, in general, the children of a pattern tree node is a DAG connected by �

arcs). We call the children of a pattern tree node frontiers if their sibling-indegree is 0, i.e.,
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no sibling occurs before them according to the following/preceeding-sibling constraints. The

frontiers represent the current ready-to-match nodes, and the set should be dynamically

maintained since a matched frontier should be deleted (if it is not the returning node)

and its “following siblings” in the pattern tree should be added if their sibling-indegree

is now zero. This process is codified in Algorithm 2, which is a logical-level NoK tree

pattern matching algorithm that returns true if the pattern tree rooted at proot matches

the subject subtree rooted at snode (the starting node) in the subject tree. Initially, the

third parameter R is set to ∅, and it will contain a list of subject tree nodes (in document

order) that match the returning node. The precondition of the algorithm is that the label

of proot matches that of snode.

In lines 1–3 of Algorithm 2, if proot is found to be the returning node in the pattern tree,

its matching snode is put in the result list R. Since there could be multiple subject tree

nodes that match the returning node in different recursive calls, snode must be appended

to the resulting list. Lines 6 and 16 contain the only two operations on the subject tree.

Together they implement the traversal of all children of snode from left to right. During the

traversal, if a subject tree node u matches a frontier node s, satisfying both tag-name and

value constraints, it recursively matches the subtrees rooted at u and s (line 8–9). If the

whole subtrees match, s should not be considered as a candidate for matching subsequent

subject tree nodes and its following-siblings in the pattern tree should be inserted into the

frontier set if they qualify when deleting s and its incident arcs (line 10–14). The rest of

the pseudo-code cleans up the resulting list R if only part of the pattern tree was matched

when traversing the children of snode is exhausted—Following-Sibling returns nil in

line 16.

Note that Algorithm 2 accesses subject tree nodes in a depth-first manner. This means

that subject tree nodes are accessed in the document order. This property is crucial to the

proof of Theorem 3.3 given in Section 3.6.

Example 3.2 Consider the subject tree in Figure 3.6 and the NoK pattern tree in Fig-

ure 3.5b with tag names properly translated (b[c/g="Stevens"][j<100]). Suppose the

starting point snode is the first b in the subject tree, which matches the proot and is ap-

pended to R, the algorithm iterates over b’s children to check whether they match with

any node in the frontier set {c,j}. When the third child of snode matches with c, a re-
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Algorithm 2 NoK Pattern Matching

NoK-Main(pnode, snode)

1 R← ∅;
2 if Root-Lookup(pnode, snode) then
3 NPM(pnode, snode, R);
4 end
5 return R;

Root-Lookup(pnode, snode)

1 if label(pnode) 6= label(snode) then
2 return false;
3 end
4 while pnode is not the root of pattern tree do
5 pnode← pnode.parent;
6 snode← Parent(snode);
7 Root-Lookup(pnode, snode);
8 end
9 return true;

NPM(proot, snode,R)

1 if proot is the returning node or join node then
2 construct or update a relation for the candidate result;
3 append snode to R;
4 end
5 S ← all frontier children of proot ;
6 u← First-Child(snode);
7 repeat
8 for each s ∈ S that matches u with both tag name and value constraints do
9 b← NPM(s, u, R);

10 if b = true then
11 S ← S \ {s};
12 delete s and its incident arcs from the pattern tree;
13 insert new frontiers caused by deleting s;
14 end
15 end
16 u← Following-Sibling(u);
17 until u = nil or S = ∅
18 if S 6= ∅ and proot is a returning node then
19 remove all matches to proot in R;
20 return false;
21 end
22 return true;
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cursive call is invoked to match the NoK pattern c/g="Stevens" with the subtree rooted

at snode /c. When the recursive call returns true, the algorithm continues to check the

other children and eventually j is matched, causing the frontier set to be ∅. After that,

the result R contains the starting point b. 2

Complexity It is clear from the algorithm that every snode’s child will be visited exactly

once, but in some special cases, its grandchildren (and great-grandchildren and so on) could

be visited multiple times through multiple recursive calls. For example, in /a[b/c][b/d],

a has two children b’s and they should be both in the frontier when a is matched with

snode. Since every snode/b node matches both b’s in the frontier, two recursive calls will

be invoked to match the two branches (b/c and b/d), so every grandchild of snode will be

visited exactly twice for matching c and d. In the worst case, there will be |S| recursive

calls at each level (when all frontiers nodes match with the current node of subject tree).

Assume there are l levels in the pattern tree, si and pi denote the number of nodes at level

i in the subject tree and pattern tree, respectively, the maximum number of recursive calls

at each level will be O(si · pi). The worst case complexity of the whole algorithm is simply

the sum of the number of recursive calls at each level
∑l

i=1 O(si · pi) = O(mn), where∑l
i=1 si = m and

∑l
i=1 pi = n, and m and n are the number of nodes in the pattern tree

and subject tree, respectively.

3.5 Physical Storage

The design desiderata for the native physical storage scheme are listed as follows:

1. The XML structural information (subject tree) should be stored separately from the

value information. The reason for this is explained in Section 3.5.1.

2. The subject tree should be “materialized” to fit into the paged I/O model. Here

materialization means the two-dimensional tree structure should be represented by

a one-dimensional “string”. The materialized string representation should be as

succinct as possible, yet still maintain enough information for reconstructing the tree

structure. The justification for this is given in Section 3.5.2.
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3. The storage scheme should have enough auxiliary information (e.g., indexes on values

and tag names) to speed up NoK pattern matching.

4. The storage scheme should be adaptable to support updates.

The subsequent two subsections introduce how to manage the value information and struc-

tural information, respectively.

3.5.1 Value Information Storage

The first issue in the desiderata is based on two observations: Firstly, an XML document is

a mixture of schema information (tag names and their structural relationships) and value

information (element contents). The irregularity of contents (variability of lengths) makes

it hard (inefficient) for the query engine to search for certain schema/content information.

Secondly, any path query can be divided into two subqueries: pattern matching on the

tree structure and selection based on values. For example, the structural constraints and

value constraints in the path expression in Figure 3.5b are //book[author/last][price]

and last="Stevens" ∧ price<100, respectively. The final result could be joined by the

results returned by the subqueries. Separating the structural information and the value

information allows us to separate different concerns and address each appropriately. For

example, a B+ tree can be built on the value information and a path index (suffix tree,

for example) can be built on the structural information without worrying about the other

part.

After the separation, one needs to somehow maintain the connection between structural

information and value information. Dewey ID [73] is used here as the key of tree nodes to

reconnect the two parts of information, e.g., the Dewey IDs of the root a and its second

child b are 0, and 0.2, and so on. The reason to use Dewey ID instead of giving each

node a permanent ID is that Dewey ID contains the structure information and can be

derived automatically during the tree traversal. That eliminates the need to keep the ID

information in the tree structure (cf. Section 3.5.2). Given a Dewey ID, another B+ tree

keyed on Dewey ID can quickly locate the value of the node in the data file. This data file

and its auxiliary data are shown in Figure 3.7.

Each text node also has a Dewey ID. For example, in the following
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HashedValue−−>

Data File

B+ tree B+ tree

pointer to value in the data file
DeweyID−−>

   DeweyID

Figure 3.7: Data file and auxiliary indexes

<section> text1 <figure @url="figure.pdf"/> test2 </section>

the section element two text nodes which are separated by a figure element. Suppose

the Dewey ID of section is 1, then the Dewey IDs for the two text nodes are 1.1 and 1.3,

respectively. The Dewey ID and value pairs of the text nodes are stored sequentially in a

data file ordered by their Dewey IDs. To evaluate the value-based constraints efficiently, a

B+ tree is constructed on the data file keyed on the hashed data values and a lookup in the

index will return a set of Dewey IDs whose nodes contain that value. The purpose of the

hash function here is to map any data value (could be variable length string) to an integer

that can be compared quickly. Different values that are hashed to the same key can be

distinguished by looking up the data file directly. Careful selection of the hash function

would significantly reduce this type of conflict.

Example 3.3 In the data file, each element content could be represented by a binary

tuple (len, value), where len is the length of the value. The value information for the XML

document in Figure 3.5a can be organized as a list of records: (4,“1994”), (18,“TCP/IP

Illustrated”), (14,“Addison-Wesley”), (7,“Stevens”), (5,“65.95”), and so on. The position

of these records in the data file are kept in the Dewey ID B+ tree. If there are more

than one node with the same value, only one copy is kept and all nodes point to the same

position in the data file. 2

If the XML file is updated, the value can be easily appended to the end of the data

file. However, both indexes need to be updated. The value-based B+ tree can be updated
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Figure 3.8: The string representation of an XML tree

incrementally based on insertion/deletion of keys. Due to the nature of Dewey IDs, the

node ID B+ tree may need to be reconstructed if many IDs have been updated.

3.5.2 Structural Information Storage

One way to materialize the tree is to store the nodes in pre-order and keep the tree structure

by properly inserting pairs of parentheses as introduced in [89]. For example, (a(b)(c)) is

a string representation of the tree that has a root a and two children b and c. The “(” pre-

ceding a indicates the beginning of a subtree rooted at a; its corresponding “)” indicates

the end of the subtree. It is straightforward that such a string representation contains

enough information to reconstruct the tree. However, it is not a succinct representation

because each node (a character in the string) actually implies an open parenthesis. There-

fore, all open parentheses can be safely removed and only closing parentheses are retained

as in a b)c)). Note that this representation can be further compressed by replacing any

series of closing parentheses with a number indicating how many of those closing parenthe-

ses there are. However, this introduces the difficulty that it is unknown how many bits are

needed for encoding the number, unless the XML document is parsed beforehand. How-

ever, parsing beforehand is impossible in the context of streaming XML where we have

no knowledge of the upcoming events (closing tag or deeper nesting). Thus the closing

parentheses “)” is kept.

Example 3.4 Figure 3.8 shows the string representations of the subject tree in Figure 3.6

(At the physical level, the pointers in the figure are not stored. They only serve to easily

identify the end of a subtree to the reader.). If the string is too long to fit in one page,
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it can be broken up into substrings at any point and stored in different pages. Assume

each character in Σ is 2 bytes long, “)” is 1 byte long, and each page is 20 bytes long (the

number is chosen for illustration only), the string can be divided into six pages separated

by the dashed lines in the figure. 2

Extra information is stored in each page to speed up the query process. The most

useful information for locating children, siblings and parent is the node level information,

i.e., the depth of the node from the root. For example, assuming the level of the root is

1 in Figure 3.8, the level information for each node is represented by a point in the 2-D

space under the string representation (the x-axis represents nodes and the y-axis represents

level). For each page, an extra tuple (st, lo, hi) is stored, where st is the level of the last

node in the previous page, lo and hi are the minimum and maximum levels of all nodes in

that page, respectively (Note that st could be outside the range [lo, hi].). This tuple can

be thought of as a feather-weight index for guessing the page where the following sibling

or parent is located. Its usage is introduced in Section 3.6. In order to expedite the speed

for loading the page headers, all [lo, hi] tuples can be extracted from the pages into a

separate file, so that it is not necessary to scan all pages to find the header at the query

processing phase.

Note that when streaming XML (e.g., SAX events) are parsed so that every open tag

of an element is translated to a character in Σ and every closing tag is translated to a

“)”, the result is exactly the same as the NoK physical string representation. Therefore,

the single-pass NoK pattern matching algorithm (presented in Section 3.6) based on this

physical string representation can be adapted to the streaming XML context, except that

page headers (which help to skip page I/O’s) are not necessary in the streaming context

since each page needs to be read into main memory anyway.

In addition to these advantages, it is also fairly easy to insert and delete nodes from

the string representation of the tree. Attaching a subtree to a leaf can be done by inserting

the string representation of the subtree between the left character and its corresponding

“)”. For example, if ab)c)) is inserted as a subtree of the first f node in page 1, one can

allocate a new page with the content ab)c)), cut-and-paste the content after f in page 1

to the end of content of the new page, and insert the new page into the page link between

pages 1 and 2. The (st, lo, hi) information for page 1 should be changed accordingly.
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Inserting a subtree to a non-leaf node is slightly more complicated. For example, if a is

inserted in between the root a and its second child b, this requires the insertion of an

additional “)” after the rightmost descendant of b. This can be handled by controlling the

load factor of each page, thereby reserving some of the page for insertion and by keeping a

next page pointer in the header in case a new page is inserted. The page layout is shown

in Figure 3.9.

According to the page layout, the number of nodes in each page can be calculated

easily: assume that each page is 4KB, of which 20% of the space is reserved for update;

each character in Σ is 2 bytes long and “)” is 1 byte long. Then each node occupies 3 bytes

(because each node consists of a character in Σ and a “)” character); each parameter in

the vector (st, lo, hi) occupies 1 byte, and the page index occupies 4 bytes. Consequently,

the number of nodes in a page is around 1000. This number is called the capacity, C, of

the page. It can be calculated by the formula: C = B×(1−r)−V−I
S+P

, where B is the page size,

r is the ratio for space reserved for update, V is the size of vector (st, lo, hi), I is the

page index length, S is the length of character in Σ, and P is the length for encoding of

“)”. As calculated above, the value of C is around 1000 to 3000 by substituting reasonable

values to these parameters. The experiments show that the string representation of the

tree structure is only about 1/20 to 1/100 of the size of the XML document.

Now assume that the subject tree has 10 billion nodes (the size of the original XML

document is about 200GB to 1TB according to the statistics), then one needs about 3 to

10 million pages to store the string representation of the tree structure. If loading the page

headers (assuming each is 7 bytes long) to main memory, the system only needs 21 to 70

MB. In modern computer systems, this is reasonably small for handling up to 1 terabyte

of data.

(st,lo,hi)

����
����
����

����
����
����header string representation

nextpage abz)e)cf)g))i)j))bz)e)cf

for update
reserved

Figure 3.9: Page layout for structural information
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The subsequent section answer the natural question: if the header information is loaded

into main memory beforehand, how does it help in speeding up the path queries?

3.6 Physical Level NoK Pattern Matching

In the NoK pattern matching algorithm (Algorithm 2), the only operation on the subject

tree is the iteration over children of a specific node in their document order. Using the

physical storage technique proposed in the previous section, this operation is divided into

two primitive operations: First-Child to find the first child of a node, and Following-

Sibling to find the following sibling of a node. The physical level NoK pattern matching

algorithm simply uses the physical level First-Child and Following-Sibling opera-

tions to perform the iteration in lines 6 and 16 in Algorithm 2.

According to the pre-order property of the string representation, these two operations

can be performed by looking at the node level information of each page from left to right

without reconstructing the tree structure. The basic idea is illustrated in the following

example.

Example 3.5 Consider the string representation in Figure 3.8. Suppose the query is to

find the first child of character b in the first page. Since the nodes are pre-ordered, the

first child of b must be the next character if it’s not a “)”. This condition is equivalent to

saying that the first child of a node at level l is the next character if its level is l + 1. In

Figure 3.8 the answer is b’s immediate right neighbor z.

Now, suppose the query wants to find b’s following sibling. Again, since the nodes are

pre-ordered, the following sibling must be located to the right of b in the string and its

level must be the same. Moreover, the target character must not be too far to the right

since, in this case, it could be b’s cousin (share the same grandparent but not the parent).

Therefore, there must be another constraint: no intermediate character (i.e., cousin) whose

level is 2 less than b’s level should be in the string between b and b’s following sibling. In

Figure 3.8, the answer is b in page 2, but there is no following sibling of j in the second

page. 2

Given a page, it is straightforward to calculate the level information for each node:

initially the level is set to st in the page header (st in the first page is always 0), the
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string is scanned from left to right, if the character is in Σ, its level is incremented by

1, otherwise (i.e., a closing parenthesis) its level information is decremented by 1. For

example, the levels for the nodes in the first page are 0123232343432.

Algorithm 3 gives a straightforward implementation of the First-Child and Following-

Sibling operations.

The Read-Page subroutine reads a page from disk to main memory and calculates

the level information described above. It takes the page number p as the input parameter,

and returns the page content and level information to the next two parameters A and L,

which are two-dimensional arrays, where A[p] and L[p] are strings (e.g., abz)e)cf)g))

and 0123232343432 for page 1) representing the content and level information of page p,

respectively.

The First-Child and Following-Sibling subroutines call Read-Page to read a

page and calculate the level information when necessary. They take two parameters p and

o that are the page number and the offset in the page, respectively. They check the string

representation and level information stored in A and L and return a character representing

the tag name of first child or following sibling.

The I/O complexity of the First-Child is straightforward: two page I/O’s in the

worst case to get the next character in the string. The Following-Sibling operation

may scan the whole file before finding the next character with the same level information.

In fact, this is the case for finding the following sibling of root a in Figure 3.8. To avoid

unnecessary page I/O’s, the algorithm should exploit the maximum and minimum level

information in each page as described in the page header. The idea is based on the fact

that if the current node u with level l has a following sibling, the page that contains this

following sibling must have a character “)” with level l− 1 (this is the closing parenthesis

corresponding to u). If l− 1 is not in the range [lo, hi] of a page, it is clear that this page

should not be loaded. As described in the previous section, all the page headers can be

kept in main memory with very low cost, and greatly reduce the number of page I/O’s. In

the case of locating a’s following sibling, only two page I/O’s are needed (pages 1 and 6).

This optimization can be easily implemented by modifying the Read-Page subroutine in

Algorithm 3.

The First-Child and Following-Sibling subroutines correspond to the child and
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Algorithm 3 Primitive Tree Operations

Read-Page(p,A,L)

1 if page p is invalid then
2 return false;
3 end
4 if page p is not in main memory then
5 read page p in array A[p];
6 calculate level array L[p] for page p;
7 end
8 return true;

First-Child(p, o)

1 if Read-Page(p,A,L) = false then
2 return nil;
3 end
4 if o = A. len then
5 return First-Child(p + 1, 0);
6 elseif L[p][o + 1] = L[p][o] + 1 then
7 return A[p][o + 1];
8 else return nil;
9 end

Following-Sibling(p, o)

1 l← L[p][o];
2 j ← o + 1;
3 while Read-Page(p,A,L) = true do
4 while j < A. len do
5 if L[p][j] = l − 2 then
6 return nil;
7 elseif L[p][j] = l and A[p][j] 6=′)′ then
8 return A[p][j];
9 end

10 j ← j + 1;
11 end
12 p← p + 1;
13 j ← 0;
14 end
15 return nil;
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following-sibling axes in a path expression. Other axes (e.g., parent, // and following)

can be easily composed by using these two operations. For example, given a node u

in the string representation, its descendants are those characters located in between u

and its following sibling (more precisely it should be all characters in between u and

its first right-side character whose level is level(u) − 1). This implies that the interval

〈p1 ∗ C + o1, p2 ∗ C + o2〉, where p1, p2, c1, c2 are the page number (pi) and offset (ci) of a

character and its corresponding “)”, respectively, can be used in the condition for structural

joins just as in the interval encoding approach.

Theorem 3.3 Given a string representation of the subject tree S and a NoK pattern tree

P, suppose the maximum number of descendants of the second level nodes (e.g., nodes

labeled with b in Figure 3.6) in S is n. The physical level NoK pattern matching algorithm

reads every page at most once (single-pass), and requires only n/C pages in main memory

(where C is the capacity of the page).

Proof From the analysis of Algorithm 2, it is known that in a special case, the algorithm

might access a subject tree node u more than once if level(u) > 2. In the NoK physical stor-

age scheme, the descendants of u are stored before its following sibling. Since Algorithm 2

matches subject tree nodes in a depth-first manner (matches all of u’s descendants first

before following sibling and never reads back), in the worst case one only needs to read all

the pages that contain u’s descendants in main memory, which requires a buffer size of n/C
pages, and match them against all pattern tree branches. After the Following-Sibling

is called, this buffer can be freed and those pages are read only once. �

Since usually XML files are flat and the page capacity is around 1000, the number of

pages needed in main memory is small in practice.

3.7 Experimental Evaluation

To assess the effectiveness of the proposed approach, extensive experiments are conducted

and the performance is compared with existing systems or prototypes that are based on

interval encoding or other native physical storage schemes. Both the data and the queries
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data set size #nodes davg dmax |tags| |tree| |B+
t | |B+

v | |B+
i |

author 1.2 15, 006 3 3 8 0.035 0.18 0.33 0.4

address 17 403, 201 3 3 7 0.5 5 12 11

catalog 30 620, 604 5 8 51 1.2 8 15 13

TreeBank 82 2, 437, 666 8 36 250 5.3 58 80 72

dblp 133 3, 332, 130 3 6 35 8 62 150 180

Table 3.1: Statistic information of data sets . Note: davg and dmax represent average and

maximum depths, respectively. The sizes of data set, |tree|, |B+
t |, |B+

v |, and |B+
i | are all

in MB.

are classified into categories so that the efficiency of all approaches in different environments

can be tested.

3.7.1 Experimental Settings

The algorithms and physical storage prototype are implemented in Java with JDK 1.4. All

the experiments were conducted on a PC with Pentium III 997MHz CPU, 512MB RAM,

and 40GB hard disk running Windows XP.

Both synthetic and real data sets are tested. The synthetic data sets (author, address,

and catalog) are selected from the XBench benchmark [136] in the data-centric category.

The real data sets (Treebank and dblp) are selected from University of Washington XML

Data Repository [7]. These data files are selected because they are either bushy (author,

address, dblp) or deep (catalog, Treebank). Table 3.1 shows the statistical information of

the data sets and B+ tree indexes, in which tree,B+
t ,B+

v ,B+
i denote the string representa-

tion of the tree structure, the B+ trees for tag names, values, and Dewey IDs, respectively.

Queries were carefully selected for the experiments to cover different aspects of path

queries on the XML data. The selection is based on the following three properties of path

expressions:

Selectivity: A path expression returning a small number of results should be evaluated

faster than those returning a large number of results. To evaluate whether the NoK
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Query Category Example query

Q1 hpy /a/b[c="hi"]

Q2 hpn /a/b/c/d

Q3 hby /a/b[c="hi"][d="hi"]/e

Q4 hbn /a/b[c][d][e][f]

Q5 mpy /a/b[z="mod"]/d/e

Q6 mpn /a/b/e

Q7 mby /a/b[c="mod"][d="mod"]

Q8 mbn /a/b[c][d][e]

Q9 lpy /a/b[c="low"]/d

Q10 lpn /a/b/c

Q11 lby /a/b[c="low"][d="low"]

Q12 lbn /a/b[c][d]

Table 3.2: Query categories

pattern matching algorithm is sensitive to selectivity, queries are divided into three

categories based on their selectivity: high (several results), moderate (greater than

10 but less than 100 results), and low (greater than 100 results).

Topology: The shape of the pattern tree could be a single-path or bushy (two or more

leaf nodes) and may contain //-arcs. Some systems may have different performance

in these cases, but the I/O cost of the NoK algorithm should be the same, except

that the main memory operations in the bushy case could be greater.

Value constraints: The existence of value constraints and index on values may be used

for fast locating the starting point for NoK pattern matching, especially when the

selectivity is high. Therefore, queries having value constraints may be used to justify

the effectiveness of value-based indexes.

With these three criteria, queries are classified in twelve categories shown in Table 3.2.

Each category is denoted by a string of length three, where each position denotes one of

the above criterion. The character in each position stands for: low (l), moderate (m), or

high (h) for selectivity; path (p), or bushy (b) for topology; and yes (y), or no (n) for
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existence of value constraints. The tag names and constants in the example queries are

dummy and they should be replaced by appropriate values in different test files. Queries

with // are also tested by randomly substituting // for a / axis.

3.7.2 Performance Evaluation and Analysis

The NoK pattern matching algorithm is tested against two join-based algorithms based

on interval encoding—dynamic interval (DI) [48] and TwigStack [28], as well as a state-

of-the-art native XML database system X-Hive/DB version 4.1.1. For each data set, a

representative path expression is chosen in each of the twelve categories. The performance

evaluation results are shown in Table 3.3. Each running time is the average over three

executions. Some categories are not applicable (denoted as “NA” in the table) to the data

sets (e.g., author and address data sets do not have moderate selectivity queries without

value constraints), or the selected queries for the category contain some features that were

not implemented (denoted as “NI” in the table) by a particular system (e.g., DI does

not support value comparisons other than equality as of the date the experiments were

performed).

All the indexes (ID, tag-name, and value) are created for the data sets. To conduct

fair comparisons, indexes (ID, tag-name, and value) for X-Hive are also created. The

TwigStack algorithm is implemented in a way such that different tree nodes with different

tag names are stored separately in a file sorted by document order. Each file contains the

nodes constituting an input stream associated with a node in the twig. In order to speed

up value comparisons, a B+ tree for the value nodes is also created. DI has only limited

support for tag-name index at this time, so the tests do not use index for DI. This is one

of the reasons that DI did not perform as well as other systems. A very simple rule-based

heuristic is applied to choose which index to use:

1. Whenever there are value constraints, the value index is always chosen to locate the

starting point for NoK pattern matching.

2. If there are more than one value constraints, the most selective one is chosen. The

selectivity is estimated by “peeking” at the cardinalities of distinct values maintained

in the value-based B+ tree index.
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3. If there are no value constraints and the selectivity of the query is “high”, the tag

name which has the highest selectivity is chosen as the key to search in the tag-name

index.

4. If all the above rules do not apply, a sequential scan is used.

This heuristic allows us to test the effectiveness of value and tag-name indexes. Experi-

ments show that sometimes a value index is more effective than a tag-name index (e.g.,

in Treebank high selective categories), and sometimes a tag-name index is more effective

(e.g., in catalog). This is because values in Treebank were randomly generated and has

higher selectivity than tag names. Without doubt, this heuristic may not choose the opti-

mal method. A cost model that estimates the cost of each method based on pre-collected

statistics is more desirable. In Chapter 5, one of the most important components of cost-

based optimization, cardinality estimation, is presented; and Chapter 6 introduces how

to use the cardinality estimation technique to modeling cost using an established cost

modeling technique.

Another reason for the good performance of NoK (as well as TwigStack) is that it does

not need to materialize intermediate results for multiple joins. Materializing intermediate

results or recomputing partial results is inevitable in bushy path expressions for DI. For

example, in the path expression /a/b[c][d]/e, element b needs to be tested for children

c and d, and then return children e. Each of the three operations need a join with nodes

returned by /a/b, while in a single-path query, DI could use a pipelined plan and avoid

materialization. Therefore, DI is topology sensitive, but NoK is not, as shown in Table 3.3.

Moreover, since both materialization and re-computation are expensive operations when

the intermediate result is large, DI has to perform the same amount of work disregarding

the result size, i.e., DI is not sensitive to the selectivity. Generally, the running time of

NoK decreases when the selectivity of the starting points increases. The experiment shows

that the selectivity of starting points can be a fairly good approximation for selectivity of

final results if the most selective index (value or tag-name-based) is chosen for locating the

starting points.

In comparison to the TwigStack algorithm, the NoK algorithm performs fewer fruitless

scans because it does not need to traverse a subtree if its root does not match a pattern

tree node. However, TwigStack has to scan all streams associated with leaf nodes in the
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pattern tree. Although XB-tree [28] or other index structures [82] might compensate for

this problem, the storage basis (interval encoding) lacks the flexibility for update and for

processing streaming XML.

In summary, the NoK system is comparable to DI, TwigStack, and X-Hive in some

cases and outperforms them in most cases. In particular, NoK is sensitive to the selectivity,

insensitive to the topology of pattern tree, and could take advantage of the existence of

value constraints.

3.8 Comparisons to Related Work

Rewriting backward axes to forward axes makes possible an one-pass evaluation algo-

rithm. This is particularly important for streaming XML processing [21] where the input

XML document is scanned once. Barton et al. [21] proposed a technique to convert an

X-tree (which is a representation of XPath path expression) consisting of forward and

backward axes (parent and ancestor) to an X-dag which consists of only forward axes.

The translation is simple: each edge labeled with a backward axis is replaced by a re-

versed edge labeled with a corresponding forward axis (parent to child, and ancestor to

descendant), and a descendant labeled edge is introduced to any vertex that has no incom-

ing edge. For example, the path expression /descendant::n/parent::m is rewritten to

/descendant::m[child::n == /descendant::n]. This paper, however, focuses on only

four axes: ancestor, parent, child, and descendant.

Olteanu et al. [106] proposed a comprehensive set of rewrite rules for converting all

backward axes to forward axes. The basic idea is the same as above: rewriting a backward

axis to its corresponding forward axis, and adding a descendant edge from the root to

any vertex without an incoming edge. Moreover, this paper introduces more rules for

special cases. For example, the earlier path expression descendant::n/parent::m can be

rewritten to a simpler expression: /descendant-or-self::m[child::n].

The rewriting techniques introduced in this thesis complement previous techniques [21,

106] in that the forward axes after the initial rewriting can be further rewritten to a

minimum subset. This can further reduce the complexity of the processing algorithms.

In general, tree pattern matching can be classified into the ordered tree pattern match-
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ing (OTPM) problem and the unordered tree pattern matching (UTMP) problem depend-

ing on the ordering of siblings in the pattern tree. The OTPM problem can be solved

very efficiently—O(n
√

m polylog m), where m and n are respectively the sizes of pattern

tree and data tree, by using suffix trees or other data structures [77, 50]. However the

pattern tree generated by path expressions are generally unordered since branchings in the

pattern tree are caused by multiple predicates that are unordered. To be more precise,

partially ordered pattern tree should be considered since two nodes can be connected by

the following-sibling or preceding-sibling axes. The UTPM problem is generally tackled by

the join-based approach introduced in Chapter 2. Early implementations follow the formal

semantics and treat a path expression as a sequence of steps, each of which takes input

from the previous step and produces an output to the next step. This can be thought of as

a special case of join-based approach that uses nested-loop join instead of merge join-like

algorithms. Experimental results show that implementations following this approach suffer

from exponential runtime in the size the of path expressions in the worst case [66]. The

XNav algorithm [21, 84] has similar features as NoK pattern matching algorithm does:

they both are single-pass algorithms and both are suitable for streaming XML processing.

The XNav processor also support a fragment of path expressions that only contain child,

parent, ancestor and descendant axes, as well as value constraints. XNav algorithm is very

similar to NoK pattern matching in the streaming XML context, but these two algorithms

are based on different storage systems. Both XNav and NoK can be considered as dy-

namically converting a pattern tree to a finite state automata. But since XNav support

global axes, the implementation of XNav navigational operator is more complex than that

of NoK.

As introduced in Chapter 2, a number of storage systems have been proposed, including

using flat file systems (e.g., Kweelt [117]), extending mature DBMS technologies such as

relational DBMSs or object-oriented DBMS [93], and building native XML repositories

(e.g., Tamino [120], Natix [56], X-Hive, and Xyleme). Natix [56] is a well-known native

storage system. It fits into the paged I/O model by partition the big tree into subtrees,

each of which is small enough to fit into a page. Natix needs extra artificial tree nodes

in order to “glue” subtrees together. NoK does not require artificial nodes, therefore the

space requirement is slightly smaller. Furthermore, since NoK translates a tree into a
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string, which can be cut at any position to fit into a page, NoK is more flexible in that

the string in each page is not required to be a subtree. Update in both Natix and NoK

are easy since they both results in local update: updating a subtree in the case of Natix

and updating substring for NoK. The Arb storage system [90] share many features with

NoK as well: the space it uses is comparable to NoK, but it requires more page I/Os in

the Following-Sibling operation if the tree is very deep since Arb does not maintain

the level information. Interestingly, the Arb storage system can also be extended to the

streaming XML context but the Arb processing algorithm requires two sequential scans.

The NoK pattern matching algorithm uses only one sequential scan in the worst case since

NoK pattern tree is less expressive than the path expression introduced in Arb. The idea of

Schknolnick’s tree partition technique [118] is similar to Natix storage, but with theoretical

guarantees on optimality. However, Schknolnick’s technique requires DTD or XML schema

knowledge and the optimal partitioning algorithm is still exponential in the size of schema

(or type tree in their terminology). In contrast, the NoK storage partitioning algorithm

is simply the problem of partitioning a string into substrings, whose length are under the

page limit. This can be easily performed while parsing the XML documents and storing

it into the string. However, optimality in terms of minimizing I/O is not guaranteed.

Succinct representations for trees are also studied in the data structure and algoirthms

community [83, 101]. In these papers, a binary tree is represented by parenthesized string

of length 2n + o(n) bits to support constant time operations to find the left/right child

and the parent. These techniques are, however, based on the RAM model rather than the

paged I/O model as the NoK storage is. Therefore, the random and sequential access of

data are treated with equivalent cost in the RAM model, while they are different in the

paged I/O model.

3.9 Conclusion

In this chapter, a special type of pattern tree—NoK pattern tree, is identified and a novel

approach is proposed for efficiently evaluating path expressions by NoK pattern matching.

The result of NoK pattern matching greatly reduces the number of structural joins in the

later step. NoK pattern matching can be evaluated highly efficiently (only need a single
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scan of input data) using the native physical storage scheme. Performance evaluation has

shown that the proposed pattern matching algorithm has better or comparable perfor-

mance than the existing extended-relational (based on interval encoding) and native XML

database management systems.



Chapter 4

Feature-based XML Index

4.1 Introduction

The previous chapter presented three ways to locate the starting points for NoK pattern

matchings: sequential scan, tag-name index, and value index. Since the NoK pattern

matching operation is usually expensive (it needs to scan the whole document in the worst

case), indexes are crucial to minimize the number of fruitless NoK pattern matchings and

thus to improve the overall query performance. Among the tag-name and value indexes,

the former can be thought of as the simplest structural index in that the index discrimi-

nates subtrees only by the root node label. In some structure-rich data sets, however, it is

possible to have many distinct (non-isomorphic) subtrees with the same root. Therefore,

an index with more discriminative structural information will provide more pruning power.

Moreover, since values usually exhibit higher degree of heterogeneity than structures [23],

value constraints usually entail higher selectivity. Therefore, an index combining both

structural and value information is even more desirable. This chapter presents such a uni-

fied feature-based index for XML (FIX) [147], that handles both values and tree structures.

As discussed in Chapter 2, existing structural indexes [99, 88, 87, 131] cluster XML

element nodes based on their structural similarity, with the objective of obtaining better

locality and, hence, better query performance. While structural clustering is effective

for data sets that conform to a regular schema (e.g., an order always has an order id

and ship date), the index could grow remarkably large for structure-rich data sets. To

90
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Figure 4.1: An XML document and its F&B bisimulation graph

illustrate the problem, Figure 4.1 shows a bibliography XML document and its clustering

index—F&B bisimulation graph [87]. In this data set, all types of publications (article,

book, etc.) have a child element author, which may have any combination of subelements

address, email, phone, and affiliation. Since each author element has a different

parent or set of children, the author elements are incompressible in this particular example.

In the case of a structure-rich data set such as Treebank [7], the F&B bisimulation graph

has more than 3× 105 vertices and 2× 106 edges. Although particular storage structures

are developed to materialize F&B bisimulation graphs on disk [131], updating as well as

searching in such a large graph could be very expensive. This problem is not unique to the

F&B index, but common to all structural clustering techniques.

The key insight of the FIX index is to break a large document into small pieces of

substructures (which we call twig patterns) to achieve high pruning power without searching

the entire graph. A FIX index is constructed by enumerating all twig patterns in the

document and mapping each of them into a vector of structural characteristics (or features).

The feature vector is a signature of a twig pattern and serves as a key to record the twig

pattern in a mature index such as B+ tree. In the query phase, the features of the query

are computed and candidate twig patterns that conform to these features can be quickly

retrieved from the index without exploring the whole search space. A following refinement

step may be required to obtain the final results.
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Using this approach, answering a twig query amounts to looking up a vector in the

B+ tree. However, two challenges arise: (1) what are the appropriate set of features of

the twig patterns, and (2) how to deal with the fact that the number of twig patterns is

exponential in the number of vertices in the graph? These two questions are correlated in

that if the number of patterns is small, the index can record all of them and use their string

representations (or the hash codes thereof) as the keys. However, in the general case, when

the number of patterns is large, the index has to choose a subset of them. In this general

case, the string representation of a twig pattern is no longer a valid key, since when index

lookup for a query pattern fails, it is unknown whether the pattern is in fact not in the

database, or just missed in the index. Accordingly, the critical issue in this approach relies

on finding the desired features.

FIX employs a set of features based on spectral graph theory [47, 41]. These features

are proven to satisfy the no-false-negative requirement: by examining only the query, the

index is able to fix a complete set of candidate twig patterns that may produce results.The

no-false-positives, i.e., all candidates produce results, is not as important since this can be

handled by a further refinement step. Therefore, FIX is a pruning index that can be built

on top of any existing XPath query processor to achieve better query performance.

The rest of the chapter is organized as follows: Section 4.2 provides the background

that is specific to this chapter. Section 4.3 introduces the translation of a twig pattern

into a matrix and proves certain properties of the eigenvalues of the matrix. Sections 4.4

and 4.5 present the index construction algorithm and index query algorithm, respectively.

Section 4.6 present an experimental evaluation of FIX. Comparisons to related work is

presented in Section 4.7.

4.2 Background

FIX can handle a subset of path expressions called twig queries. The term “twig query”

is defined slightly differently in different papers in the literature. The following definition

defines the usages of the term in this thesis.

Definition 4.1 (Twig Query) A twig query is a path expression whose axes could only

be /, except the axis for the first location step could be //. Moreover, there is no KindTest
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in the expression and no value-based comparison inside the predicates. 2

The restriction in this definition to exclude //-axes and value predicates is not a limitation

of FIX, but makes the presentation easier. Sections 4.4.6 and 4.5 show how to handle

value equality conditions and //-axes in the middle. Section 4.5 also explains how to

answer queries with following-sibling axes, which may be contained in the pattern tree after

the rewrite as discussed in Section 3.2.

A twig query can be thought of as a tree in which each step corresponds to a node in

the tree, and the first step is connected to a special root node. The axes are translated

into edges in the tree. Based on the tree representation, the notion of existential match

(or simply match) between a twig query and an XML tree can be defined.

Definition 4.2 (Existential Matches) A twig query Q matches an XML tree X if there

exists a mapping f from the NameTests of Q to the nodes in X such that the following

hold:

• the root of the twig query always matches the document node (parent of the root

node in the document).

• for any NameTest q ∈ Q, label(q) = label(f(q)).

• if two NameTests u and u′ are connected by an axis α ∈ {“/”, “//”}, then f(u) is a

parent (or ancestor) of f(u′) if α =“/” (or “//”). 2

Match does not specify which XML nodes should be returned, therefore it is used for

existential testing.

4.2.1 Bisimulation Graph

Given an XML tree, there is a unique (subject to graph isomorphism) minimum bisimu-

lation graph that captures all structural constraints in the tree. The bisimulation graph

defined in this chapter is based on the bisimilarity1 notion defined by Henzinger et al. [76].

1Bisimilarity is used to denote the relation between XML nodes and index vertices; and bisimulation
graph is used to denote the resulting index graph after the bisimilarity mappings.
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Figure 4.2: A bisimulation graph of the bibliography document in Figure 4.1a

.

Definition 4.3 Given an XML tree T (Vt, Et) and a labeled graph G(Vg, Eg), an XML tree

node u ∈ Vt is bisimilar to a vertex v ∈ Vg (u ∼= v) if and only if all the following conditions

hold:

• u and v have the same label.

• if there is an edge (u, u′) in Et, then there is an edge (v, v′) in Eg such that u′ ∼= v′.

• if there is an edge (v, v′) in Eg, then there is an edge (u, u′) in Et such that v′ ∼= u′.

Graph G is a bisimulation graph of T if and only if G is the smallest graph such that every

vertex in G is bisimilar to a vertex in T . 2

It is easy to see that the bisimulation graph of a tree is a directed acyclic graph (DAG).

Otherwise, if the bisimulation contains a cycle, the tree must also contain a cycle based on

the definition.

The bisimulation graph of the XML tree in Figure 4.1a is shown in Figure 4.2. The

difference between the bisimulation graph and the F&B bisimulation graph is that the

former requires that two nodes in the XML tree belong to the same equivalence class if

their subtrees are structurally equivalent. The bisimulation graph does not require that

the two indexing vertices have similar ancestors, but the F&B bisimulation graph does.

Consequently, the bisimulation graph clusters the two author vertices from book and

inproceedings into one equivalence class.

The tree representation of a twig query can always be translated into a bisimulation

graph, which is called twig pattern. Similarly to the twig query, matching twig patterns

can also be defined on a bisimulation graph of an XML tree.
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4.2.2 Matrices and Eigenvalues

An undirected unlabeled graph G with n vertices can be represented as an n × n matrix

(e.g., adjacency matrix or Laplacian matrix). Given an n × n matrix M, there exists a

column n-vector v such that

M · v = λv

〈v,v〉 = 1

where λ is a scalar, and 〈v,v〉 is the inner product of two vectors, which is defined as

〈v,v〉 = vTv =
∑n

i=1 vi ∗ vi, for v ∈ Rn×1; or
∑n

i=1 vi ∗ vi for v ∈ Cn×1, where vi is the

complex conjugate operator. The v and λ are called the normalized eigenvector (or simply

eigenvector) and eigenvalue of M, respectively. The eigenvectors need to be normalized

since otherwise there are an infinite number of eigenvalues that are obtained by scaling the

eigenvectors. For an n × n matrix, there are a total of n such eigenvector and eigenvalue

pairs, but they may not be distinct. The eigenvalues are usually denoted by λ1, . . . , λn,

ordered by their magnitude in descending order. Throughout the rest of this chapter, λmax

and λmin denote the maximum and minimum eigenvalues, respectively, and λi(G) denotes

the ith eigenvalue of the matrix representation of G whenever there is no possibility of

confusion.

There is a well-know property about two graphs and their eigenvalues [26], and it is

the basis for the structural feature selection.

Theorem 4.1 Let G and H be two undirected unlabeled graphs, and MG and MH be their

adjacency matrices. If H is an induced subgraph of G, then λmin(MG) ≤ λmin(MH) ≤
λmax(MH) ≤ λmax(MG). 2

Section 4.3.3 presents a proof to a similar theorem for labeled directed graphs after a

certain translation from the graph to matrix.

4.3 Features and Their Properties

Given a twig pattern (labeled directed graph), it is desirable to identify the distinctive

characteristics of the structures contained in it. These characteristics are called features
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of the pattern. Features can be used as a key to index and retrieve those instances that

match a pattern. In FIX, the features are based on a subset of eigenvalues of the matrix

representation of a pattern. Eigenvalues have the desired property that they enable the

pruning of the index search space without losing any results.

4.3.1 Structure Preservation

Before discussing the extraction of features, it is important to understand how to use a

bisimulation graph to test the existence (match) of a pattern. This is necessary because

bisimulation graphs are the input to calculating the features — eigenvalues. The following

theorem guarantees that the match of a twig pattern on a bisimulation graph is equivalent

to the match of its twig query on the XML tree. In other words, bisimulation graph

preserves all the structural information required for existential matching. The reason for

using twig patterns and bisimulation graphs rather than their corresponding tree structures

is that the trees contain many structural repetitions and are too large to extract their

features (eigenvalues).

Theorem 4.2 A twig query Q matches an XML tree X if and only if the twig pattern Q′

matches the bisimulation graph X ′. 2

Proof The proof is quite straightforward after realizing that matching and bisimilarity

are homomorphisms on the edge relation.

The sufficient condition:

Given a twig query Q and an XML tree X, assuming their bisimulation graphs are Q′

and X ′ and the mapping f : Q −→ X is a match, one can define a mapping f ′ : Q′ −→ X ′

and prove that f ′ is a match as depicted in the following diagram.

Let us first prove that for any two vertices u and v in Q, if u and v are bisimilar, i.e.,

they are grouped into one vertex in Q′, then f(u) and f(v) are also bisimilar. This actually

follows directly from the fact that matching and bisimilarity are homomorphisms on the

edge relation. The following is the formal proof.

By definitions of bisimilarity and match, it follows that label(f(u)) = label(u) =

label(v) = label(f(v)). Furthermore, for any u′, v′ ∈ Q, if (u, u′) and (v, v′) are edges

in Q, then (f(u), f(u′)) and (f(v), f(v′)) are edges in X. Since Q′ is a bisimulation graph
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Q′

Q

X ′

X
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f is a match

Is f ′ a match?

∼=

of Q and u ∼= v, it follows that u′ ∼= v′. Similarly, since X ′ is a bisimulation graph of X,

it follows that f(u′) ∼= f(v′). Therefore, by definition of bisimilarity, f(u) and f(v) are

bisimilar.

Based on the above result, one can define the mapping f ′ : Q′ −→ X ′ as follows: for

any q′ ∈ Q′, there always exists qi ∈ Q such that qi
∼= q′. Based on the previous result,

for all such qi, there is a unique q′′ ∈ X ′ such that q′′ ∼= f(qi). Therefore, let us define

f ′(q) = q′′.

Next let us prove that f ′ is a match from Q′ to X ′. Given any q′ ∈ Q′, f ′(q′) satisfies

the following conditions:

• label(q′) = label(f ′(q′)). This directly follows from the definition of f ′.

• for any edge (p′, q′) ∈ Q′, there is an edge (f ′(p′), f ′(q′)) ∈ X ′. This is because the

edge relation is preserved in the match and bisimilarity mappings and f ′ is defined

to be the composition of the two mappings.

Therefore, based on the definition of match, f ′ is a match between Q′ and X ′.

The necessary condition:

This direction follows from the fact that bisimulation is an onto mapping, i.e., bisimu-

lation graph is the minimum graph such that every vertex in Q′ has a bisimilarity vertex

in Q. The proof is similar to the other direction. �

This theorem seems contradictory to the fact that the F&B bisimulation graph is the

smallest covering index for twig queries [87] and bisimulation graph is smaller than the

F&B bisimulation graph. The reason it holds is that here the “structural preservation”
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is defined for testing pattern existence (the notion of match) and the “covering” in F&B

bisimulation is defined in terms of query answering (which needs more information than

existential testing). In fact, the bisimulation graph shown in Figure 4.2 cannot answer the

query //inproceedings[author] since two authors from inproceedings and book are

grouped into one equivalence class. But this graph is sufficient to answer the existence of

authors under inproceedings.

With the structure preserving property, the twig pattern and bisimulation graph of an

XML document can be used as the subject of querying and indexing instead of twig query

and XML tree.

4.3.2 Anti-symmetric Matrices for Twig Patterns

A labeled directed graph (twig pattern) can be translated into a matrix such that the

matrix preserves all structural information in the graph. The structural information refers

to the labels of the vertices and the edge relations (here the orientations of the edges are

important). Ignoring either of them makes the matrix unrepresentative, and, therefore,

reduces the pruning power of any method based on this matrix representation.

To record the vertex label information in the matrix, a distinctive weight is assigned to

each distinctive edge according to the labels of the two incident vertices. This is a one-to-

one mapping, therefore it is always possible to translate the weighted directed graph back

to the original labeled directed graph. For example, the following is one possible weight

assignment for the bisimulation graph in Figure 4.2.

(bib, article) → 2 (bib, book) → 3 (bib, www) → 4

(bib, inproceedings) → 5 (article, author) → 6 (article, title) → 7

(book, author) → 8 (book, title) → 9 (www, author) → 10

(www, title) → 11 (inproceedings, author) → 12 (inproceedings, title) → 13

(author, address) → 14 (author, email) → 15 (author, affiliation) → 16

(author, phone) → 17
By keeping the above mapping, the vertex labels can be removed safely without loss

of structural information. For example, if the vertices in Figure 4.2 is numbered from one

in breadth-first order, the bisimulation graph can be converted to the unlabeled, weighted

graph as shown in Figure 4.3a.
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(a) unlabeled, weighted graph corresponding to Figure 4.2

M =



0 2 2 3 4 5 0 0 0 0 0 0 0 0 0

−2 0 0 0 0 0 6 0 0 7 0 0 0 0 0

−2 0 0 0 0 0 0 6 0 7 0 0 0 0 0
... · · ·
0 0 0 0 0 0 −15 −15 0 0 −15 0 0 0 0

0 0 0 0 0 0 −16 −16 −16 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −17 0 0 0 0


(b) A 15× 15 matrix representation of 4.3a

Figure 4.3: Edge-weighted and matrix representations of bisimulation graph in Figure 4.2

To preserve the direction information, the directed weighted graph is represented as

an anti-symmetric matrix (a.k.a. skew-symmetric matrix [51]) as follows: each vertex v is

numbered arbitrarily from 1 to n and it is mapped to a dimension in the n× n matrix M.

The reason for this is that any assignment can be permuted to some other assignment (and

the permutation results in an isomorphic graph), which is equivalent to a permutation of

the matrix. It is well known that the eigenvalues of a matrix remain invariant under matrix

permutation [47].

If an edge (vi, vj) has weight wi,j after the above edge-label–to–integer translation, the

mapping assigns M[i, j] = wi,j and M[j, i] = −wi,j. If (vi, vj) is not an edge, M[i, j] =
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M[j, i] = 0. In this anti-symmetric matrix, the diagonal elements M[i, i] are always 0 for

an acyclic graph. For example, the matrix representation of the graph in Figure 4.3a is

shown in Figure 4.3b. The reason for the negative weight at M[j, i] is that triangle matrices

with all M[i, i] = 0 have the same set of eigenvalues [0, 0, . . . , 0] (matrices having the same

eigenvalues are called isospectral). A non-zero anti-symmetric matrix is guaranteed to

have at least one non-zero eigenvalue [47]. Two anti-symmetric matrices are isospectral,

if one can be transformed to the other by a non-singular transformation, that is one anti-

symmetric matrix can be obtained by multiplying the other anti-symmetric matrix by a

non-singular matrix (a matrix that has an inverse). If it is common that two anti-symmetric

matrices are isospectral but non-isomorphic, the pruning power will be small. Given that

the number of distinct edge label encodings is small in most XML databases and given

the requirement of M[i, j] = −M[j, i] for anti-symmetric matrices, the probability of two

anti-symmetric matrices being isospectral but non-isomorphic is expected to be very small.

4.3.3 Eigenvalue Containment Property

Given the pairs of λmin and λmax of two anti-symmetric matrices, the similar result to

Theorem 4.1 is proven as follows.

Theorem 4.3 Let G and H be two DAGs, and MG and MH be the anti-symmetric matrix

representations of G and H respectively. If H is an induced subgraph of G (which means

H is isomorphic to a subgraph of G with the isomorphic mapping f and for every edge

(u, v) in H, there is an edge (f(u), f(v)) in G such that their weights are the same), then

λmin(G) ≤ λmin(H) ≤ λmax(H) ≤ λmax(G). 2

Proof Since a similar theorem holds for a symmetric matrix (adjacency matrix for undi-

rected graphs), the idea of the proof is to convert the anti-symmetric matrix to a (some-

what) symmetric matrix and use the same proof idea for symmetric matrix in the anti-

symmetric case.

The rationale of the conversion is based on the fact that the anti-symmetric matrix has

some degree of “symmetry” in that M [i, j] and M [j, i] only differ by a negation. In fact,

if the imaginary unit i =
√
−1 is multiplied with the matrix, the result is a Hermitian

matrix iM, which is a symmetric matrix equivalent in the complex domain Cn×n. A
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Hermitian matrix H is a matrix in Cn×n such that H is equal to its conjugate transpose,

i.e., H[i, j] = H[j, i], where a + bi = a − bi is the complex conjugate for real numbers a

and b.

It is well known that the eigenvalues of a Hermitian matrix are all real numbers and all

eigenvalues of an anti-symmetric matrix are all pure imaginary numbers [51]. It follows that

in order to compare the magnitude of the eigenvalues, it is sufficient to compare the imagi-

nary part (real numbers) only. Furthermore, one needs to prove that the set of eigenvalues

of the anti-symmetric matrix is the same set of eigenvalues of the transformed Hermitian

matrix by multiplying a negative imaginary unit, i.e., λ(M) = −i λ(iM). Therefore, the

magnitudes of λmin and λmax of M is the same as those of λmin(iM) and λmax(iM). Thus

what remains is to prove that the theorem holds on a Hermitian matrix.

(1) λ(M) = −iλ(iM): for any eigenvector xi of iM, the corresponding eigenvalue λi

satisfies: iM · xi = λixi. It follows that M · xi = (−iλi)xi. Based on the definition of

eigenvalue, −iλi is an eigenvalue of M.

(2) Eigenvalue containment property holds for the Hermitian matrix: This proof is

very similar to the proof for symmetric matrix. Since H is an induced subgraph of G, it

is sufficient to prove that the property holds for the largest induced subgraph (denoted as

H ′) of G, i.e., H ′ can be obtained from G by removing an arbitrary vertex and its incident

edges. It can be proven that the same property holds for smaller induced subgraphs by

induction on the number of vertices.

Given a graph G with n vertices and its largest induced subgraph H ′ with (n− 1) ver-

tices, one can always permute MH′ such that MH′ is the sub-matrix of MG in dimensions 1

to (n−1) without changing its eigenvalues. Suppose x is the eigenvector of MH′ correspond-

ing to λmax(MH′), i.e., x = [x1, x2, . . . , xn−1] and 〈x,x〉 =
∑n−1

i=1 xi∗xi = 1, it is proven that

y = [x1, x2, . . . , xn−1, 0] is a normalized eigenvector of MG and its corresponding eigenvalue

is λmax(MH′). It is clear that 〈y,y〉 = 1 and 〈MG · y,y〉 = 〈MH′ · x,x〉 = λmax(MH′).
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Therefore, the following hold:

(MG · y)T y = λmax(MH′)

(MG · y)T y = λmax(MH′) yTy

(MG · y)T = λmax(MH′) yT

MG · y = λmax(MH′) y

From the last equation, λmax(MH′) is an eigenvalue of MG by definition. Therefore, it

follows that λmax(MH′) ∈ [λmin(MG), λmax(MG)]. Similarly, λmin(MH′) can also be proven

to fall in the range [λmin(MG), λmax(MG)]. �

This eigenvalue containment property allows us to choose λmin and λmax as two features

to index. Testing for possible matching amounts to checking eigenvalue containment.

Computational Cost: Eigenvalue computation for a Hermitian matrix is O(n3), where

n is the number of vertices in the bisimulation graph [114]. Since the twig patterns are

usually very small and the large bisimulation graph for XML tree is broken into small

ones in the index construction step, the real-world computation cost is very efficient—sub-

millisecond for a dense 10× 10 matrix and sub-second for a dense 300 × 300 matrix on a

Pentium 4 3GHz PC. Eigenvalue calculation for sparse matrices (which are generated by

most bisimulation graphs) should be even more efficient.

4.3.4 Other Features

In addition to eigenvalues of patterns, there are other possible features that can further

increase the pruning power, such as the root label of the twig pattern or bisimulation graph.

These can easily be included in the key to be indexed in the B+ tree. Any bisimulation

graph in the index that satisfies the eigenvalue range containment requirement but whose

labels do not match with the twig pattern will also be pruned.

Other features may qualify as well, but FIX currently uses the set of {λmin, λmax, rl}
as features, where rl is the root label. These features are the keys of the B+ tree index
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Figure 4.4: Building and querying indexes

described in the next section. The pruning criteria is that the indexed eigenvalue range

does not contain the query eigenvalue range, or the root labels do not match. This is

formally described in the following theorem.

Theorem 4.4 (Necessary conditions) . Given a query Q and an XML tree D, if Q

matches D, then λmin(D) ≤ λmin(Q) ≤ λmax(Q) ≤ λmax(D) ∧ lr(D) = lr(Q), where

λmin, λmax, rl represent the minimum, maximum eigenvalues and root label.

Proof This theorem is straightforward since the first conjunct holds due to Theorem 4.3

and the second conjunct holds by definition of existential match (Definition 4.2). �

This theorem lays the foundation for the FIX pruning index: all subtrees that does

not satisfy the necessary conditions will be pruned out, and the remaining will be the

candidates and subject to the refinement phase.

4.4 Index Construction

During the construction phase, all subtrees under a certain depth limit are first enumerated.

A vector of features is calculated for each subtree. The feature vector and the subtree forms

the key-value pair for inserting to the B+ tree. The overall architecture of constructing and

querying the index is depicted in Figure 4.4. This section concentrates on the construction

of FIX; query processing discussion is left to the next section.
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4.4.1 Types of Indexes

A clustered or unclustered index can be constructed similar to what is done in relational

systems. Unlike relational databases, the clustered index for FIX incurs storage overhead

due to the redundant storage of subelements as explained later. In both cases, the keys

of the B+ tree are the features but the “values” are different. In the unclustered index,

the values are the references/pointers to the primary data storage (see Figure 4.5). The

advantage of an unclustered index is that the primary storage does not need to be changed,

and there is very small overhead for building the B+ tree with pointers as the data entries.

However, query processing may suffer from the fact that it needs to follow many pointers

to perform the query refinement phase, which usually incurs random I/O.

On the other hand, a clustered index can be constructed by copying the contents of the

primary storage pointed by the pointers and storing them sequentially according to their

feature keys (see Figure 4.5). This is different from the relational case since reordering

data units in place is impossible. The reason is that the data units in the XML case are

subtrees and one may contain another as a descendant. Therefore, in order to make the

value sorted in the same order as the keys, the clustered index has to copy each subtree to

another storage, which may incur large space overhead. Thus, there is a tradeoff between

the storage overhead and performance in the query refinement step.

Unclustered indexes are easier to build, and they are the only choice if data has to be



Feature-based XML Index 105

ordered on other criteria. They may be useful when the selectivity of the typical queries

is high so that few pointers are produced as candidates. On the other hand, a clustered

index could provide better performance because the I/O is essentially sequential. In the

case where the database consists of a large collection of relatively small documents and

each of them are inserted into the database as an entry, the clustered index may be the

right choice because it is possible to reorder the documents so that their order coincides

with the order of their feature keys. Furthermore, there is no redundancy in the storage

since every document is treated as a unit. Therefore, the clustered index does not need to

keep a copy of the primary storage and incurs no space overhead.

4.4.2 Index Construction for Collections of Documents

The index construction algorithm takes a collection of XML documents as input, and

constructs a B+ tree index for them. The algorithm works in two phases: in the first

phase, it generates indexable units that are small enough to efficiently extract features

from. An indexable unit could be a small document in the collection, or a substructure of

a large document. In the second phase, the features of the indexable units are computed

and inserted into the B+ tree.

The index construction procedure is codified as the method Construct-Index in

Algorithm 4, where input C is a collection of XML documents (possibly singleton), L is

the depth limit, and I is a B+ tree that holds the index entries. The depth limit is a

parameter for a document being qualified as an indexable unit. The following subsection

first introduces how to index an indexable unit, and the subsequent subsection introduces

how to handle large documents.

4.4.3 Construction of an Index Entry for a Small Document

Each small document whose depth is no larger than the depth limit (an application-

dependent threshold) is treated as a unit and converted into a bisimulation graph, which,

in turn, is translated into an anti-symmetric matrix. Eigenvalues for each of these matrices

are calculated and the λmax and λmin together with the root label of the document are

used as the key to be inserted into the B+ tree. The value of the entry inserted into the B+
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Figure 4.6: Data Structures: BiSimGraph and Signatures. vi and ci are references to

vertices in the BiSimGraph.

tree is the document itself when building a clustered index, or the pointer to the primary

storage for an unclustered index. This process is codified in the Construct-Entries

method in Algorithm 4. The third parameter of the methods has to be set to 0 indicating

that the document does not need to be partitioned.

In the input to the Construct-Entries method, X is the input event stream, and

H is a B+ tree index. Parameter L is the pattern depth limit and is set to 0 in this case.

The variable G (line 1) is of type BisimGraph, which is a data structure that contains two

substructures: the root of the bisimulation graph and a mapping from a signature to a

vertex in the bisimulation graph (see Figure 4.6 for an example). It also maintains the

maximum depth of the bisimulation graph. The signature is a data structure that uniquely

identifies a vertex. It consists of the vertex label and a set of child vertices. Two XML

nodes are in the same equivalence class (bisimulation vertex) if and only if their signatures,

namely, labels and children are the same by the definition of bisimilarity.

Construct-Entries works as follows: Whenever an open event (corresponding to

encountering an open tag when parsing the XML document) is received, a new signature

is created and initialized with its label and an empty set of child vertices (line 5). The

pair of signature and pointer to the primary storage corresponding to the event is pushed

onto a stack PathStack (line 6). This pair is popped whenever the corresponding closing

event (corresponding to a closing tag) is received (line 8). Since at this time, all children
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Algorithm 4 Constructing FIX for a Collection of Documents

Construct-Index(C : Collection, L : int, I : BTree)

1 for each XML document d ∈ C
2 doif the depth of d ≤ L then
3 Construct-Entries(I, d, 0);
4 else Construct-Entries(I, d, L);
5 end
6 end

Construct-Entries(H : BTree, X : EventStream, L : int)

1 G← empty graph; � G is of type BisimGraph
2 PathStack ← empty stack;
3 while X generates more event x
4 doif x is an open event then
5 sig ← 〈x.label, ∅〉; � c set initialized to ∅
6 PathStack.push(〈sig, x.start ptr〉);
7 elseif x is a closing event then
8 〈sig, start ptr〉 ← PathStack.pop();
9 u← lookup sig in G;

10 if sig is not in G then
11 create vertex u with label x.label;
12 create edge (u, vi) for each vi ∈ sig.c set;
13 create mapping sig ⇒ u in G;
14 else release sig;
15 end
16 if PathStack is not empty then
17 p sig ← PathStack.top().first;
18 p sig.c set← p sig.c set ∪ {u}
19 else G.root← u;
20 if L = 0 then
21 BTree-Insert(H, u, G.dep, start ptr);
22 end
23 end
24 if L > 0 then
25 Gen-Subpattern(H, v, L, start ptr);
26 end
27 end
28 end

BTree-Insert(H : BTree, u : BisimVertex, L : int, ptr : StoragePointer)

1 if u.eigs is not set then
2 convert u into matrix M up to depth L;
3 〈λmax, λmin〉 ← Eig-Pair(M);
4 u.eigs← 〈λmax, λmin〉;
5 end
6 k ← 〈u.eigs, u.label〉;
7 if H is a clustered index then
8 v ← pattern instance from the primary storage following ptr;
9 insert v in H with key k;

10 else insert ptr in H with key k;
11 end

Gen-Subpattern(H : BTree, v : BisimVertex, L : int, ptr : StoragePointer)

1 if v.eigs is set then
2 BTree-Insert(H, v, 0, ptr);
3 else Tr ← Bisim-Traveler(v, L, ptr);
4 Construct-Entries(H, Tr, 0);
5 end
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(and their descendants) corresponding to the current event have been visited and their

corresponding bisimulation vertices are recorded in the signature that is popped from the

stack (line 18), the algorithm needs to look up the mapping maintained in G to see if the

signature already exists (line 9). If it is not in the mapping, then the algorithm needs to

create a new bisimulation vertex u and insert all bisimulation vertices maintained in the

signature into u’s children list, and then record the new mapping from the signature to u

in G (lines 11–13). If the signature is already in the bisimulation graph, the algorithm only

needs to release the memory acquired for the signature. If the PathStack is not yet empty

(which means the whole tree has not yet been traversed), the algorithm needs to update

the children list of u’s parent in the PathStack (lines 17–18); otherwise, the algorithm sets

u as the root of graph G and calls BTree-Insert to update the database. G.dep is the

maximum depth of the bisimulation graph, which indicates that the whole graph should

be indexed.

The BTree-Insert method is fairly straightforward: it first checks whether the bisim-

ulation vertex has an 〈λmax, λmin〉 pair associated with it. If not, it converts the graph into

an anti-symmetric matrix under the depth limitation, calculates the eigenvalue thereof,

and associates the 〈λmax, λmin〉 pair with u (lines 2–4). Then it uses the pair and the root

label as a key and inserts the pointer in the B+ tree for the unclustered index. If the index

is a clustered index, the algorithm needs to retrieve the XML documents from the primary

storage and store them as values of the B+ tree.

Complexity: Construct-Entries is a single-pass algorithm that reads each incoming

event once. For each closing event, the algorithm searches the bisimulation graph for a

signature, which could be O(1) using an efficient hashing method. Therefore, the CPU

cost of the construction algorithm is O(n + m), where n is the number of events generated

from the input event stream (in case of XML SAX-event stream, it is the number of XML

elements in the whole collection), and m is the number of vertices in the bisimulation

graph.

The major cost of Algorithm 4 is the I/O cost, which depends on the number of B+

tree insertions and number of reads from the primary storage. In the unclustered case,

the number of B+ tree insertions is the same as the number of documents in the collection

since only one bisimulation graph is generated for each document. In the clustered case,
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the B+ tree I/O is the same as the unclustered case but there is additional I/O cost for

retrieving documents from the primary storage, which is proportional to the number of

documents in the collection as well. In summary, the I/O cost is O(N) where N is the

number of documents in the collection.

4.4.4 Constructing Entries for a Large Document

The bisimulation graph of a large document could be very large. Furthermore, no sub-

structures in the large document can be pruned if it is indexed as one entry. Therefore, it

is necessary to enumerate subpatterns inside the document tree and populate the instances

into the B+ tree. If the database consists of multiple large documents, it is necessary to

enumerate subpatterns for each of them.

First, it is necessary to restrict the subpattern size before enumerating its instances

in the XML tree. Based on the same idea of local similarity in prior works [88, 33], the

depth of subpatterns is limited to a small number k (k-patterns). With this construct,

however, the index loses some expressive power: it can only answer a twig pattern up to

depth k. The tradeoff between expressive power and efficiency is common [88] and does

not invalidate the benefit of building the index. It is easy for the query optimizer to test

whether a twig query is covered by an index.

The method for index construction with limited pattern depth is the Construct-

Entries method in Algorithm 4, with a positive argument L as the depth limit. The

Construct-Entries needs to call Gen-Subpattern to enumerate subpatterns given

the root of the subpattern and depth L. The Gen-Subpattern method is based on the

idea that a bisimulation graph “traveler” (Bisim-Traveller) can be created to traverse

the bisimulation graph in depth-first order within the depth limit L. During the traversal,

it generates an open event when traversing to another vertex, or a closing event when it

finishes traversing the subtree of the node or when it traverses to a depth of L. This stream

of events can, in turn, be fed to the Construct-Entries method. The depth limit in the

call to Construct-Entries is set to 0 whenever the whole subpattern is indexed. The

method will generate a new bisimulation graph that is a subgraph of the original one, and

store it into the B+ tree as described in Section 4.4.3. To guarantee that the subpattern

enumeration process is performed only once for each bisimulation vertex, the algorithm also
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associates the bisimulation vertex with the 〈λmax, λmin〉 pair of the subpattern, indicating

that this vertex has already been enumerated and the eigenvalues are calculated (line 1).

The reason that it is necessary to go all the way to define a traveler and call Construct-

Entries again instead of using the subgraph beginning at the current vertex v is that the

subgraph itself usually is not a bisimulation graph. The limit on the depth causes the sub-

graph to contain some repetitions such that the subgraph is no longer a bisimulation graph.

For example, in Figure 4.2, the subgraph of depth 2 rooted at bib is not a bisimulation

graph since article is repeated twice.

The following theorem derives the cost of the enumeration algorithm and is used to

prove the completeness of the index.

Theorem 4.5 For an index with positive depth limit, the number of subpattern instances

that are enumerated by Algorithm 4 is exactly the same as the number of elements in the

document. 2

Proof With the depth limit L > 0 in Algorithm 4, the function Gen-Subpattern is

called once for each closing event. For each invocation of Gen-Subpattern a new entry

corresponding to a subpattern instance is inserted into the B+ tree. Since the number of

closing events equals the number of elements in an XML document, the inserted subpattern

instances equals the number of elements. �

Complexity: The CPU cost of building the index with positive depth limit is the same

as the cost for building the index on the collection of small documents, except that there

is the additional cost for enumerating subpatterns. For each vertex in the bisimulation

graph, the subpattern rooted at this vertex is enumerated once, therefore the additional

CPU cost is the same as the number of vertices in the bisimulation graph. Therefore, the

CPU cost is O(n + m) where n is the number of XML elements and m is the number of

vertices in the bisimulation graph.

The I/O cost is dependent on the number of pattern instances generated, i.e., number

of elements in the XML document. For each pattern instance, there is a B+ tree insertion

operation, and for clustered index, there is an additional read operation in primary storage.

Since the B-tree insertion complexity is logd(n) [44], where d is the fanout and n is the

number of elements, the I/O cost is O(n logd(n)).



Feature-based XML Index 111

4.4.5 Completeness of Index Construction

The index constructed in the previous subsections is complete for any k-pattern query, if

the depth limit of the index is at least k.

Theorem 4.6 If the index is built with depth limit at least k (in the case where depth limit

is 0 for collection of small documents, k is the maximum depth of the all documents in the

collection), a k-pattern is not contained in the XML document, if it is not contained in the

index. 2

Proof It is straightforward to show that completeness holds for the collection of small

documents case. If the twig pattern is of depth k, and it is contained in any of the

documents, the document will be matched in accordance to Theorem 4.3.

In the large document case, since a subpattern for each XML element is generated

(Theorem 4.5), the indexed pattern instances cover all subtrees of depth k. Therefore, if

there is any XML node in the result of the k-pattern, the pattern instance of this node is

already indexed and will be returned as a candidate result. �

4.4.6 Supporting Value Equality Predicates

FIX supports value-based equality predicates such as in the query //article[author =

"John Smith"]/title. Note that the PCDATA in the XML documents, as well as the

atomic value “John Smith” in the query, can be thought of as “labels” of the text nodes,

which are children of element nodes. However, the values cannot be directly used in the

same way as the element node labels are in indexing and querying. The reason is that the

bisimulation graph is converted to a matrix by mapping an edge (identified by the labels of

the two incident vertices) to an integer. If the domain of one of the vertex labels is infinite,

the edge will be mapped to an infinite domain as well, making the matrix computation

impractical.

The solution to this problem is to map or hash the PCDATA or atomic value to an

integer in a small range (α, α + β], where α is the maximum of the element labels, and β

is a small integer parameter. After the mapping, the hashed integer can be treated as the

label of a value node, then the FIX index can be constructed based on the new document
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tree with value nodes. It is straightforward to see that after the value-to-label mapping,

all the properties (including the completeness) still holds for the index with value nodes.

Therefore, FIX index uniformly supports structure and value matching.

One thing to note here is that it may be necessary to carefully choose the β value

to trade off between query processing time and size of the index. With a large β, the

values can be mapped to a large domain, and the bisimulation graph is large. Since the

substructures are enumerated for each vertex in the bisimulation graph, there will be many

substructures enumerated and inserted into the B+ tree. This will result in a much larger

B+ tree compared to the B+ tree containing only structures. On the other hand, with a

small β, the B+ tree will be small, but many different values will be hashed into the same

label. This will introduce more false-positives because of the collisions in hashing. How to

choose a proper β for a given data set is an interesting problem left for the future work.

4.5 Query Processing and Optimization using FIX

Using FIX for query processing has two steps: the pruning phase prunes the input and pro-

duces candidate results, and the refinement phase takes the candidate results and validates

them using a query processor.

Given a twig query of depth k, it is relatively straightforward to perform query pro-

cessing using FIX (Algorithm 5): one needs to first check whether the index covers the

twig query by comparing the depth limit of the index and the depth of the twig query.

If it does, the query tree is converted into a bisimulation graph (twig pattern), then the

pattern is converted into an anti-symmetric matrix, and the λmax and λmin are computed.

This pair of eigenvalues and the root label of the twig pattern are used as a key to perform

range query in the index. For each candidate returned by the range query, the path query

processor is invoked to refine the candidate and get the final results. Before the query

processor takes over, the algorithm needs to replace the leading //-axis with /-axis. This

is because any descendants of the root of an indexed pattern instance are also indexed.

They will be visited eventually if they are returned by the index as candidates. For value

predicates, it is straightforward to see that they can be answered without false-negatives.

The query tree corresponding to a general path expression that contains //-axes in the
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Algorithm 5 Index Query Processing

Index-Processor(Q : TwigQuery, Idx : FIX)

1 check the Idx depth limit is no shorter than Q’s depth;
2 Q′ ← Convert-to-Bisim-Graph(Q);
3 M← Convert-to-Matrix(Q’);
4 〈λmax, λmin〉 ← Eig-Pair(M);
5 k ← 〈λmax, λmin, root label of Q′〉;
6 C ← Idx.search(k);
7 if Idx has non-zero depth limit then
8 replace the leading //-axis with /-axis from Q;
9 end

10 for each c ∈ C
11 doif Idx is clustered then
12 run refinement query processor with Q on c;
13 else run refinement query processor with Q following the pointer c;
14 end

middle can be decomposed into multiple twig queries that are connected by //-edges. For

example, the query //open auction[.//bidder[name][email]]/price can be decom-

posed into two sub-queries: //open auction/price and //bidder[name][email]. If the

database consists of small documents and the depth limit is set to unlimited, the document

whose [λmin, λmax] range contains the [λmin, λmax] ranges of both twig queries should be re-

turned as candidates. If the index is built with a non-zero depth limit on large documents,

only pattern instances that contain the top sub-twig query (//open auction/price in the

above example) are returned as candidates, otherwise even if the candidate may match

the descendant sub-twig query (//bidder[name][email] in the above example), the top

sub-twig query will not be matched thus the whole query is not matched. In this case, the

descendant sub-twig query does not provide any pruning power.

After rewriting a path expression into a pattern tree, as discussed in Section 3.2, the

resulting pattern tree may also contain edges labeled with following-sibling axes. Since the

following-sibling axes specify ordering constraints which are not supported in the index, the

FIX index cannot handle such constraints. Therefore, the evaluation of a pattern tree Q

that contains following-sibling edges consists of three steps: (1) remove the following-sibling
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edges from Q to Q′; (2) evaluate Q′ using the FIX index operator to produce a set of

candidates; and (3) evaluate Q using the NoK pattern matching operator, which is able

to process a pattern tree with following-sibling edges, on the candidates to obtain the final

results. The only difference between the above evaluation procedure and the index operator

in Algorithm 5 is that the first step is added before the index operator is invoked. This will

not change the completeness property as proved in Theorem 4.6, since after removing the

following-sibling edges, the result or Q′ will be a superset of the original query Q. Therefore,

there are no false-negatives.

The cost of FIX index processing consists of three parts: CPU cost of converting a twig

query into its bisimulation graph, converting the graph into a matrix, and computing the

eigenvalues of the matrix. The cost of the first two components is O(m) each, where m is

the size of the query, and the eigenvalue computation is O(m′3), where m′ is the size of the

bisimulation graph and m′ ≤ m. For a reasonable sized query, these costs are negligible.

The I/O cost includes searching the B+ tree and retrieving the document from B+ tree

(for the clustered index) or from the primary storage (for the unclustered index). The

cost of searching the B+ tree is well studied and the missing part in cost estimation is the

number of candidate results. This can be estimated if further knowledge (e.g., histograms

on λmax, λmin, and root labels of pattern instances) is available. A good practice is to build

a histogram on the primary sorting key (e.g., λmax) in the B+ tree. The rest of the cost

is that of refinement of the candidate results. Although the number of candidates may be

the same, clustered and unclustered index may have much different cost due to different

degree of randomness in I/O.

4.6 Experimental Evaluation

This section first reports the performance of structural FIX indexing with respect to three

implementation-independent metrics, as well as its actual run-time speedup against the

state-of-the-art indexing techniques. Then the integrated value and structural index is

evaluated. While the wall clock time speedup is the “net effect” of the benefit of using

FIX index over a specific algorithm implementation, implementation independent metrics

reveal more insights into the design decisions of the FIX index and provide a general
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data sets size # elements ICT |UIdx| |CIdx|
XBench 27.9 MB 115306 17.8 sec 0.2 MB 6.1 MB

DBLP 169 MB 4022548 32.5 sec. 2 MB 77.9 MB

XMark 116 MB 1666315 86 sec. 5.6 MB 143.3 MB

Treebank 86 MB 2437666 375 sec. 37.3 MB 310.6 MB

Table 4.1: Characteristics of experimental data sets, the index construction times (ICT),

and the sizes of the unclustered index (UIdx) and clustered index (CIdx)

guideline of how much improvement the FIX index can achieve for any implementation.

The FIX index is implemented in C++ and uses Berkeley DB for the B+ tree imple-

mentation. The NoK processor [143] is used to perform the refinement step. To compare

with the unclustered FIX index, the implementation of NoK operator is extended with

the support for //-axes. To compare with the clustered FIX index, the disk-based F&B

index [131] is chosen, whose implementation is obtained from the authors. The disk-based

F&B index has been reported to have superior performance over several other indexes, so

it is chosen as a representative state-of-the-art clustering index. All the tests are conducted

on a Pentium 4 PC with 3GHz CPU and 1GB memory running Windows XP.

4.6.1 Test Data Sets and Index Construction

Both synthetic and real data sets are tested. In the category of large collection of small

documents, XBench [136] TCMD (text-centric multi-document) data set is used. The

XBench TCMD data set models the real world text-centric XML data sets such as the

Reuters news corpus and the Springer digital library. This data set contains 2,607 docu-

ments with various sizes from 1KB to 130KB. The document structures have a small degree

of variations, e.g., an article element may or may not have a keywords subelement. Since

all documents in the collection are small, their substructures are not enumerated in each

document when the index is constructed, i.e., the depth limit parameter in Algorithm 4 is

set to zero.

Tests are also conducted with non-zero depth limit on large XML documents: DBLP [94],

XMark [119] with scale factor 1, and Treebank [7], where DBLP and Treebank are the same
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data sets that are used for experimental evaluation in Chapter 3. They are chosen because

of their different structural characteristics. The structure in DBLP is very regular and

the tree is shallow, so the same structure is repeated many times, making each structural

pattern less selective. The XMark data set is structure-rich, fairly deep and very flat (fan-

out of the bisimulation graph is large), therefore, the structures are less repetitive. The

Treebank data set represents highly recursive documents. It is very deep but not as flat as

XMark, and the structures are also very selective.

The basic statistics, index construction time, and index sizes for these data sets are

listed in Table 4.1. The constructed index for XBench TCMD data has no depth limit, and

the indexes for the other data sets are constructed by enumerating subpatterns of depth

limit 6. The construction times for indexes with smaller depth limits are slightly faster.

This depth limit is chosen so that the index can cover fairly complex twig queries. De-

pending on the complexity of the bisimulation graph of the document and the depth limit,

the enumerated subpattern could be too large for calculating eigenvalues (e.g., number of

edges is larger than 3000). In this case, the eigenvalues are not calculated, but an artificial

[λmin, λmax] range [0,∞] is used to guarantee that the instances of this subpattern will

always be returned as a candidate result. This may lose pruning power, but fortunately,

there are very few such cases in all the test data sets for reasonable depth limit of 6 (1 for

DBLP, 11 for XMark, and 1 for Treebank).

4.6.2 Implementation-independent Metrics

Three metrics are defined to evaluate the effectiveness of FIX: pruning power (pp), selec-

tivity (sel), and false-positive ratio (fpr) as follows:

sel = 1− rst / ent

pp = 1− cdt / ent

fpr = 1− rst / cdt

where cdt is the number of entries returned by the index as candidate results, ent is

number of all entries in the index, and rst is the number of entries that actually pro-

duce at least one final result. Note that selectivity is defined differently in some liter-

ature as rst / ent . There are two other metrics that are widely used in the information
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retrieval literature: precision and recall. Precision is defined as {relevant documents} ∩
{retrieved documents}/{retrieved documents}. Recall is defined as {relevant documents}∩
{retrieved documents}/{relevant documents}. In terms of FIX index, the retrieved docu-

ments and relevant documents correspond to cdt and rst respectively. Therefore, precision

for FIX index is 1 − fpr and recall is 100%. For the index with depth limit 0 on a large

collection of small documents, pp is the ratio of number of documents pruned by the index

over the total number of documents in the collection. For the index with non-zero depth

limit k, since each element corresponds to an entry in the index (the subtree of depth k

starting from that element), pp is the ratio of elements pruned over the total number of

elements as a starting pointer for further refinement.

In order to evaluate the real effectiveness of the index, the pruning power metric should

be combined with the selectivity of the query. The low pruning power of a query does

not mean that the index is ineffective if the selectivity is also low (i.e., the query is not

selective). The only bad case is when the selectivity is high but the pruning power is low.

The metric fpr is another indicator of the effectiveness of the pruning of the FIX index

against the “perfect” index, which produces no false-positives.

For each data set, 1000 test queries are randomly generated. Representative queries are

also selected based on their selectivities: low, medium, and high. However, depending on

the characteristics of the data sets (i.e., the distribution of the substructures), these queries

may not cover all 3 selectivity criteria. For example, since each document in the XBench

TCMD have very similar structure, the queries are more likely to fall into the category of

low selectivity. On the other hand, XMark and Treebank data sets are structure-rich, thus

almost all queries fall into the high selectivity category. For these cases, the representative

queries are selected with relatively high or low selectivity2.

TCMD_hi : /article/epilog[acknowledgements]/references/a_id

TCMD_md : /article/prolog[keywords]/authors/author/contact[phone]

TCMD_lo : /article[epilog]/prolog/authors/author

DBLP_hi : //proceedings[booktitle]/title[sup][i]

DBLP_md : //article[number]/author

2Queries that have selectivity 0 and 1 are eliminated since they do not reveal much information about
the index.
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query sel pp fpr

TCMD_hi 79.31% 26.12% 71.99%

TCMD_md 49.23% 5.62% 46.21%

TCMD_lo 16.85% 0.35% 16.29%

DBLP_hi 99.97% 99.79% 84.91%

DBLP_md 72.59% 70.85% 5.91%

DBLP_lo 47.36% 47.35% 0.002%

XMark_hi 99.96% 99.87% 75.13%

XMark_md 99.10% 98.71% 30.14%

XMark_lo 98.89% 98.43% 30.01%

TrBnk_hi 99.97% 95.37% 99.45%

TrBnk_md 99.81% 85.97% 98.67%

TrBnk_lo 97.48% 95.36% 45.79%

Table 4.2: Implementation-independent metrics for representative queries for each data

sets in each category
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Figure 4.8: Runtime comparisons on XMark, Treebank, and DBLP

DBLP_lo : //inproceedings[url]/title

XMark_hi: //category/description[parlist]/parlist/listitem/text

XMark_md: //closed_auction/annotation/description/text

XMark_lo: //open_auction[seller]/annotation/description/text

TrBnk_hi: //EMPTY/S/NP[PP]/NP
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TrBnk_md: //S[VP]/NP/NP/PP/NP

TrBnk_lo: //EMPTY/S[VP]/NP

The selectivity, pruning power, and false-positive ratios for these queries are listed in

Table 4.2. For low selectivity queries (e.g., TCMD_lo), FIX does not show strong pruning

power. However, since only about 16% of the returned candidates are false positives, the

index still performs well in that most of the remaining candidates produce final results.

On the other hand, for highly selective queries, such as (almost) all XMark and Treebank

queries, FIX prunes very well, very close to the selectivity. This means that the features

used in FIX reflect the intrinsic structural characteristics of the patterns. However, the

false-positive ratios for queries in this category could also be high (e.g., TrBnk_hi and

TrBnk_md). This suggests that there may be other features that are unique in this data

set that are missed in the FIX index, which will be considered in the future work. For

the queries in the medium category, the effectiveness of FIX varies. The pruning powers

of FIX on some queries (e.g., DBLP_md and XMark_md) are very close to their selectivities,

and the false-positive ratios are reasonable. On the other hand, some queries have poor

pruning power (e.g., TCMD_md) or the false-positive ratio is high (e.g., TrBnk_lo). This case

represents the grey area that is hard to estimate the cost.

The average of the three metrics over the random 1000 queries for each data set is shown

in Figure 4.7, where Figure 4.7(a) shows the average metrics for 1000 random queries,

and Figure 4.7(b) shows the average metrics for the subset contains positive queries only

(queries that return non-zero results). These two figures show very similar properties,

so only Figure 4.7(a) is explained here. As seen from the figure, the average pruning

power is very close to the selectivity for XMark and Treebank, but there are about 32%

and 14% differences for TCMD and DBLP, respectively. One of the reasons for this is

that, as indicated earlier, unlike XMark and Treebank, XBench TCMD and DBLP are

not structure-rich. Structural indexes that cluster based on structures are not likely to be

effective anyway. The following subsection shows that the integrated structural and value

index can improve the pruning power as well as the query processing time.
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4.6.3 Run-time Performance Evaluation

Although clustered indexes (such as F&B index and clustered FIX index) are more efficient

in query processing, they are less efficient in result subtree construction (due to the loss of

document order). Furthermore, clustering criteria may conflict with other sorting criteria,

making the unclustered FIX index or the original storage preserving document order (such

as the one in [143]) preferable. To conduct fair comparison, the performance are compared

in two scenarios: (1) unclustered FIX index vs. the NoK navigational operator without

index support, and (2) the clustered FIX index vs. clustered F&B index.

To be able to benchmark different types of queries, both simple path (sp) and branching

path (bp) queries are investigated. Together with the selectivity dimension, low (lo) and

high (hi) selectivity, there are four test queries for each data sets: {hi, lo}×{sp, bp}. The

test queries are listed as follows:

XMark_hi_sp: //item/mailbox/mail/text/emph/keyword

XMark_lo_sp: //description/parlist/listitem

XMark_hi_bp: //item[name]/mailbox/mail[to]/text[bold]/emph/bold

XMark_lo_bp: //item[payment][quantity][shipping][mailbox/mail/text]

/description/parlist

Trbnk_hi_sp: //EMPTY/S/NP/NP/PP

Trbnk_lo_sp: //EMPTY/S/VP

Trbnk_hi_bp: //EMPTY/S/NP[PP]/NP

Trbnk_lo_bp: //EMPTY/S[VP]/NP

DBLP_hi_sp : //inproceedings/title/i

DBLP_lo_sp : //dblp/inproceedings/author

DBLP_hi_bp : //inproceedings[url]/title[sub][i]

DBLP_lo_bp : //article[number]/author

Figure 4.8 depicts the speedup of the FIX indexes to the existing techniques in loga-

rithmic scale. As shown in Figures 4.8a and 4.8b, FIX unclustered and clustered indexes

performs considerably better than the NoK or F&B indexes, respectively. However, on

the more regular and simple data set DBLP (Figure4.8c), although the FIX unclustered
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index still outperforms NoK, the F&B index outperforms the FIX clustered index, par-

ticularly in the cases of queries with high selectivity. The reason is that the structure of

DBLP data set is very regular and shallow. The whole F&B index for DBLP is only 180

KB, and could easily fit into main memory due to the caching mechanism of F&B index

implementation. However, it is more likely that queries on simple data sets usually involve

value constraints. For such a general path expression, the majority of processing time is

spent on the value-predicate evaluation.

4.6.4 Performance of Value Indexes

To balance the query performance and the space overhead, β is set to 3 when building the

value index. Since DBLP is the only real data set (the PCDATA in other data sets are all

randomly generated), and since queries with value-predicates are all branching paths, only

branching paths are tested with high selectivity and low selectivity on the DBLP data set.

The test queries are listed as follows:

DBLP_vl_hi: //proceedings[publisher="Springer"][title]

DBLP_vl_hi: //inproceedings[year="1998"][title]/author

Figure 4.9a shows the implementation-independent metrics. For low selective queries,

the FIX index with values performs comparably to the FIX index with no values as

far as the implementation-independent metrics are concerned. For high selective queries,

however, FIX index with values demonstrates a significant improvement over the pure

structural index, with the selectivity and pruning power almost identical, and false-positive

ratio (fpr) around 1.7%. Figure 4.9b shows the runtime speedups compared to F&B index.

The FIX index with values outperforms the F&B index on both queries by more than a

factor of 2. However, the FIX index with values does not come for free, the construction

time and memory requirement are much higher than the pure structural index (around a

factor of 30 and 10 with β = 10, respectively). With careful tuning of the β value, one

can achieve the balance between the cost associated with the index construction and the

savings for the query processing.
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Figure 4.9: DBLP with values

4.7 Comparisons to Related Work

As discussed in Chapter 2, a wide variety of join-based, navigational, and hybrid XPath

processing techniques are now available [139, 15, 28, 74, 143]. Much research has focused on

indexing techniques to improve these existing query processors. For example, XB-tree [28],

XR-tree [82], iTwigStack [34], and ToXin [20] are proposed to prune the input lists for the

holistic twig join operator. FIX is also a pruning index, but it is not designed to work for

a particular operator, but as a generic index that can be coupled with any path processing

operator that can perform query refinement.

Chapter 2 also introduces recent research on clustering indexes [99, 88, 87, 131]. The

common theme of these clustering techniques is that they are all based on some variant of

simulation/bisimulation graph of the XML data tree. FIX does not use the bisimulation

graph itself is as an index, but uses the structural information extracted from the bisimu-

lation graph. By separating a large bisimulation graph into smaller ones, one can quickly

find a substructure as the candidate of a pattern without traversing the whole graph.

Eigenvalues and spectral graph theory have many applications in other areas of com-

puter science. The initial idea of FIX was inspired by the work in computer vision, where
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spectra of shock graphs are used to index visual objects [124]. The shock graph is an

unlabeled directed graph to represent the vision of an object. They use the full set of

eigenvalues as features to approximate query processing, but did not make use or prove

the [λmin, λmax] property for substructure queries. There is also related work in the area

of data mining, in which a large collection of graphs are indexed by identifying “features”

— frequent substructures [134, 135]. Their features are combinatorial in that features are

compared by subgraph isomorphism.

4.8 Conclusion

As more and more documents are stored in XML databases, an index is needed to quickly

retrieve a subset of candidates to do further refinement. Depending on the characteristics of

the data sets, a value-based index or a structural index or both are appropriate for certain

queries. This chapter proposes the feature-based index FIX for indexing substructures as

well as values in a document or collection of documents. The FIX approach is the first XML

indexing technique to take the substructures and values as a whole object and compute

its distinctive features. Unlike many other indexing techniques, FIX can be combined

with an XPath query processor with little or no change in its implementation. FIX has

been successfully applied as a pruning index for an existing highly optimized navigational

operator, resulting in orders of magnitude speedup in running time.



Chapter 5

Cardinality Estimation of Path

Expressions

5.1 Introduction

In Chapters 3 and 4, two physical operators were presented to evaluate a path expression.

Depending on the query selectivity, one operator may be more efficient than the other. For

example, if the selectivity of a query is very low, which means that almost all elements will

be returned as results, the NoK pattern matching operator may be more efficient than an

unclustered (or even clustered) FIX index since the former entails sequential I/O and the

latter random I/O. On the other hand, if the selectivity is high, a FIX index operator is

likely to be more efficient. The query optimizer needs to calculate the cost of each query

operator and select the optimal one. Usually the cost of an operator for a given path query

is heavily dependent on the number of final results returned by the query in question,

and the number of temporary results that are buffered for its sub-queries (see e.g., [142]).

Therefore, accurate cardinality estimation is crucial for a cost-based optimizer.

The problem of cardinality estimation for a path query in XML distinguishes itself from

the problem of cardinality estimation in relational database systems. One of the major

differences is that a path query specifies structural constraints (a.k.a. tree patterns) in

addition to value-based constraints. These structural constraints suggest a combined com-

binatorial and statistical solution. That is, one needs to consider not only the statistical

125
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distribution of the values associated with each element, but also the structural relation-

ships between different elements. Estimating cardinalities of queries involving value-based

constraints has been extensively studied within the context of relational database systems,

where histograms are used to compactly represent the distribution of values. Similar ap-

proaches have also been proposed for XML queries [111]. This chapter focuses on the struc-

tural part of this problem and proposes a novel synopsis structure, called XSeed1 [146], to

estimate the cardinality for path queries that only contain structural constraints. Although

XSeed can be incorporated with the techniques developed for value-based constraints, the

general problem is left for future work.

The XSeed synopsis is inspired by the previous work for estimating cardinalities of

structural constraints [64, 37, 112]. These approaches, usually, first summarize an XML

document into a compact graph structure called a synopsis. Vertices in the synopsis corre-

spond to a set of nodes in the XML tree, and edges correspond to parent-child relationships.

Together with statistical annotations on the vertices and/or edges, the synopsis is used as a

guide to estimate the cardinality using a graph-based estimation algorithm. XSeed follows

this general idea but develops a solution that meets multiple criteria: the accuracy of the

estimations, the types of queries and data sets that this synopsis can cover, the adaptivity

of the synopsis to different memory budgets, the cost of the synopsis to be created and

updated, and the estimation time comparing to the actual querying time. These are all

important factors for a synopsis to be useful in practice.

None of the existing approaches considers all of these criteria. For example, TreeSketch [112]

focuses on the accuracy of the cardinality estimation. It starts off by building a count-

stable graph2 to capture the complete structural information in the tree (i.e., cardinality

estimation can be 100% accurate for all types of queries). The count-stable graph could

be very large (e.g., the count-stable graph for the 100MB XMark [119] data set has 59,015

vertices and 315,011 edges). Then it relies on an optimization algorithm to reduce the

count-stable graph to fit into the memory budget and still retain as much information as

possible. Since the optimization problem is NP-hard, the solutions are usually sub-optimal,

and the construction time could be prohibitive for large and complex data sets (e.g., it takes

1XSeed stands for XML Synopsis based on Edge Encoded Digraph.
2See Section 2.4.2 for the detailed explanation of count-stable graphs.
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more than 13 hours to construct the synopsis for the 100MB XMark [119] data set on a

dedicated machine). Therefore, this synopsis is hardly affordable for a complex data set.

In contrast, XSeed takes the opposite approach: an XSeed structure is constructed

by first building a very small kernel (usually a couple of kilobytes for most tested data

sets), and then incrementally adds/deletes information to/from the synopsis. The kernel

captures the coarse structural information in the data, and can be constructed easily. The

purpose of the small kernel is not to make it optimal in terms of accuracy; it has to work

for all types of queries and data sets, while, at the same time, having several desirable

features such as the ease of construction and update, a small footprint, and the efficiency

of the estimation algorithm. A unique feature of the XSeed kernel is that it recognizes

and captures recursions in the XML documents. Recursive documents usually represent

the most difficult cases for path query processing and cardinality estimation. None of

the existing approaches address recursive documents and the effects of recursion over the

accuracy of cardinality estimation.

Even with the small kernel, XSeed provides good accuracy in many test cases (see

Section 5.5 for details). In some cases, XSeed’s accuracy is an order of magnitude better

than other synopses (e.g., TreeSketch) that use a larger memory budget. The ability to

capture recursion in the kernel is one major contribution to better accuracy. However,

the high compression ratio of the kernel introduces information loss, resulting in greater

estimation errors in some cases. To remedy the accuracy deficiency for these cases, another

layer of information, called a hyper-edge table (HET), is introduced on top of the kernel.

The HET captures the special cases that deviate from the assumptions that the kernel

relies on. The experiments show that even a small amount of this extra information can

greatly improve the accuracy for many cases. The HET can be pre-computed in a similar

or shorter time than other synopses, or it can be dynamically fed by a self-tuning optimizer

using query feedback. This information can be easily maintained, i.e., it can be added to

or deleted from the synopsis whenever the memory budget changes. When the underlying

XML data change, the optimizer can choose to update the information eagerly or lazily.

In this way, XSeed enjoys better accuracy as well as adaptivity.

Figure 5.1 depicts the process of constructing and maintaining the XSeed kernel and

HET and utilizing them to predict the cardinality. In the construction phase, the XML doc-
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Figure 5.1: Cardinality estimation process using XSeed

ument is first parsed to generate the NoK XML storage structure [143], the path tree [13],

and the XSeed kernel. The HET is constructed based on these three data structures if

it is pre-computed. In the estimation phase, the optimizer calls the cardinality estimation

module to predict the cardinality for an input query, with the knowledge acquired from

the XSeed kernel and optionally from the HET. After the execution, the optimizer may

feedback the actual cardinality or selectivity of the query to the HET, which might results

in an update of the data structure.

The rest of the chapter is organized as follows: Section 5.2 introduces the XSeed

kernel. Section 5.3 presents the cardinality estimation algorithm using the XSeed kernel.

Section 5.4 introduces optimization techniques to improve XSeed accuracy. Section 5.5

reports the experimental evaluation. Section 5.6 compares XSeed with related work.

5.2 Basic Synopsis Structures—XSeed Kernel

Throughout the chapter, an n-tuple (u1, u2, . . . , un) is used to denote a path u1 → u2 →
· · · → un in an XML tree or a synopsis structure, and |p| is used to denote the cardinality

of a path expression p (the number of XML elements returned by p).

Example 5.1 The following DTD describes the structure of an article document.

<!ELEMENT article (title, authors, chapter*)>
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<!ELEMENT chapter (title, para*, sect*)>

<!ELEMENT sect (title?, para*, sect*)>

As in the previous chapters, element names in the above DTD are mapped to the alphabet

{a, t, u, c, p, s}:

article --> a title --> t authors --> u

chapter --> c para --> p sect --> s

An example XML tree instance conforming to this DTD and the above element name

mapping is depicted in Figure 5.2a. To avoid possible confusion, a framed character, e.g.,

a , is used to represent the abbreviated XML tree node label whenever possible. 2

An interesting property of the XML document is that it could be recursive, i.e., an

element could be directly or indirectly nested in an element with the same name. For ex-

ample, a sect element could contain another sect subelement. In the XML tree, recursion

represents itself as multiple occurrences of the same label in a rooted path.

Definition 5.1 (Recursion Levels) Given a rooted path in the XML tree, the maximum

number of occurrences of any label minus 1 is the path recursion level (PRL). The recursion

level of a node in the XML tree is defined to be the PRL of the path from root to this

node. The document recursion level (DRL) is defined to be the maximum PRL over all

rooted paths in the XML tree. 2

For example, the recursion level of the path (a, c, s, p) in Figure 5.2a is 0 since each

label only occurs once in the path, and the recursion level of path (a, c, s, s, s, p) is 2 since

there are three s nodes in the path.

Recursion could also exist in a path expression. Recall that a path expression consists

of a list of location steps, each of which consists of an axis, a NodeTest, and zero or more

predicates. Each predicate could be another path expression. When matching with the

nodes in an XML tree, the NodeTests specify the tag name constraints, and the axes

specify the structural constraints. We classify path queries into three classes: simple path

expressions that are linear paths containing /-axes only, branching path expressions that

include branching predicates but also only have /-axes, and complex path expressions that
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contain branching predicates and/or //-axes. Note that a general path expression after the

rewriting introduced in Section 3.2 may also contain following-sibling axes. At this point,

XSeed synopsis does not support this type of axis since it requires keeping the ordering

information between siblings, which may not be efficiently compressible.

Definition 5.2 (Recursive Path Expression) A path expression is recursive with re-

spect to an XML document if an element in the document could be matched to more than

one NodeTest in the expression. 2

For example, a path expression //s//s on the XML tree in Figure 5.2a is recursive

since an s node at recursion level greater than zero could be matched to both NodeTests.

It is straightforward to see that simple and branching path expressions consisting of only

/-axis cannot be recursive. Recursive path queries always contain //-axes, and they usually

present themselves on recursive documents. However, it is also possible to have recursive

path queries on non-recursive documents, when the queries contain the sub-expression

//*//*. Similarly, we define the query recursion level (QRL) of a path expression as the

maximum number of occurrences of the same NodeTests with //-axis along any rooted

path in the query tree. In general, recursive documents are the hardest documents to

summarize, and recursive queries are the hardest queries to evaluate and to estimate.

As discussed in Chapter 2, a structural summary is a graph that summarizes the nodes

and edges in the XML tree. Preferably, the summary graph should preserve all the struc-

tural relations and capture the statistical properties in the XML tree. The following def-

inition introduces one structural summary—the label-split graph [110], which is the basis

of the XSeed kernel.

Definition 5.3 (Label-split Graph) Given an XML tree T (Vt, Et), a label-split graph

G(Vs, Es) can be uniquely derived from a mapping f : Vt → Vs as follows:

• For every u ∈ Vt, there is a f(u) ∈ Vs.

• A node u ∈ Vt is mapped to f(u) ∈ Vs if and only if their labels are the same.

• For every pair of nodes u, v ∈ Vt, if (u, v) ∈ Et, then there is a directed edge

(f(u), f(v)) ∈ Es.

• No other vertices and edges are present in G(Vs, Es). 2
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Figure 5.2: An example XML tree and its XSeed kernel

In comparison, bisimulation graph clusters tree nodes by their subtrees, and label split

graph clusters tree nodes by node label only. Figure 5.2b, without the edge labels, depicts

the label-split graph of the XML document shown in Figure 5.2a. The label-split graph

preserves the node label and edge relation in the XML tree, but not the cardinality of the

relations.

Definition 5.4 (XSeed Kernel) The XSeed kernel for an XML tree is an edge-labeled

label-split graph. Each edge e = (u, v) in the graph is labeled with a vector of integer

pairs (p0:c0, p1:c1, . . . , pn:cn). The i-th integer pair (pi:ci), referred as e[i], indicates that,

at recursion level i, there are a total of pi elements mapped to the synopsis vertex u and ci

elements mapped to the synopsis vertex v. The pi and ci are called parent-count (referred

as e[i][P CNT]) and child-count (referred as e[i][C CNT]), respectively. 2

Example 5.2 The XSeed kernel shown in Figure 5.2b is constructed from the XML tree

in Figure 5.2a. In the XML tree, there is one a node and it has two c children. Thus, the

edge (a, c) of XSeed kernel is labeled with integer pair (1:2). Out of these two c nodes

in the XML tree, there are five s child nodes. Therefore, the edge (c, s) in the kernel is
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labeled with (2:5). Out of the five s nodes, two of them have one s child each (for a

totally two s nodes having two s children). Since the two s child nodes are at recursion

level 1, the integer pair at position 1 of the label of (s, s) is 2:2. Since the recursion level

could not be 0 for any path having an edge (s, s), the integer pair at position 0 for this

edge is 0:0. Furthermore, one of the two s nodes at recursion level 1 has two s children,

which makes the integer pair at position 2 of the edge label (s, s) 1:2. 2

The following observations of XSeed kernel are important for the cardinality estimation

algorithm given in Section 5.3.

Observation 1: For every path (u1, u2, . . . , un) in the XML tree, there is a corresponding

path (vi, v2, . . . , vn) in the kernel, where the label of vi is the same as the label of

ui. Furthermore, for each edge (vi, vi+1), the number of integer pairs in the label is

greater than the recursion level of the path (u1, . . . , ui+1). For example, the path

(a, c, s, s, s, p) in Figure 5.2a has a corresponding path (a, c, s, s, s, p) in the XSeed

kernel in Figure 5.2b. Moreover, the number of integer pairs in the label vector

prevents a path with recursion level larger than 2, e.g., (a, c, s, s, s, s, p), from being

derived from the synopsis.

Observation 2: For every node u in the XML tree, if its children have m distinct labels

(not necessarily different from u’s label), then the corresponding vertex v in the kernel

has at least m out-edges, where the labels of the destination nodes match the labels

of the children of u. This observation directly follows from the first observation. For

example, the children of c nodes in the XML tree in Figure 5.2a have three different

labels, thus the c vertex in the XSeed kernel in Figure 5.2b has three out-edges.

Observation 3: For any edge (u, v) in the kernel, the sum of the child-counts over all

recursive levels i and greater is exactly the total number of elements that should be

returned by the path expression q//u//v, whose recursion level is i and where q is

a path expression that exists in the kernel. As an example, the number of results of

expression //s//s//p on the XML tree in Figure 5.2a is 5, which is exactly the sum

of the child-counts of the label associated with edge (s, p) at recursion level 1 and 2.

The first observation guarantees that the synopsis preserves the complete information

of the simple paths in the XML tree. However, some simple rooted paths that can be
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derived from the synopsis may not exist in the XML tree. That is, the kernel may contain

false positives for a simple path query. For example, if a new node s is added as the

fifth child of a in Figure 5.2a, then there will be a new edge (a, s) with label (1:1) in the

synopsis in Figure 5.2b. A simple path (a, s, t) can be derived from the synopsis but it

does not exist in the XML tree.

The second observation guarantees that, for any branching path query, if it has a match

in the XML tree, it also has a match in the synopsis. Again, false positives for branching

path queries are also possible. This is straightforward to see: after insertion of a node as

described above, the branching path query /a/s[t][p] has a match in the synopsis, but

not in the XML tree.

The third observation connects the recursion levels in the data and in the query. This

is useful in answering complex queries containing //-axes.

Kernel Construction The XSeed kernel can be generated while parsing the XML

document. The pseudo-code in Algorithm 6 can be implemented using a SAX event-driven

XML parser.

The path stk in line 1 is a stack of vertices (and other information) representing the

path while traversing the kernel. Each stack entry (〈u, out edges〉 in line 9) is a binary

tuple, in which the first item indicates which vertex in the kernel corresponds to the current

XML element, and the second item keeps a set of (e, l) pairs, in which e is an outedge of

u, and l is the recursion level of the rooted path ended with the edge e. These pairs are

used to increment the parent-count in the case of a close tag event (line 20).

The rl cnt in line 2 is a data structure, called “counter stacks”, which efficiently calcu-

lates the recursion level of a path in expected O(1). When traversing the XML tree, the

vertices in the XSeed kernel are pushed onto and popped from rl cnt as in a stack (line 7,

11, and 22). The key idea of the data structure to guarantee the efficiency is to partition

the items into different stacks based on their number of occurrences. A hash table is kept

to give the number of occurrences for any item pushed onto the counter stacks. Whenever

an item is pushed onto rl cnt , the hash table is checked, the counter is incremented, and

the item is pushed onto the corresponding stack maintained in the data structure. When

an item is popped from rl cnt , its occurrence is looked up in the hash table, popped from



Cardinality Estimation of Path Expressions 134

Algorithm 6 Constructing the XSeed Kernel

Construct-Kernel(S : Synopsis, X : XMLDoc)

1 path stk ← empty stack;
2 rl cnt ← empty counter stacks;
3 while the parser generates more event x from X do
4 if x is an opening tag event then
5 v ← Get-Vertex(S, x);
6 if path stk is empty then
7 rl cnt.push(v);
8 path stk .push(〈v, ∅〉);
9 else 〈u, out edges〉 ← path stk .pop();

10 e← Get-Edge(S, u, v);
11 l← rl cnt.push(v);
12 e[l][C CNT]← e[l][C CNT] + 1;
13 out edges← out edges ∪ (e, l);
14 path stk .push(〈u, out edges〉);
15 path stk .push(〈v, ∅〉);
16 end
17 elseif x is a closing tag event then
18 〈v, out edges〉 ← path stk .pop();
19 for each pair (e, l) ∈ out edges do
20 e[l][P CNT]← e[l][P CNT] + 1;
21 end
22 rl cnt .pop(v);
23 end
24 end

the corresponding stack indicated by the occurrence, and the occurrence counter in the

hash table is decremented. The recursion level of the whole path is indicated by the num-

ber of non-empty stacks minus 1. As an example, after pushing the sequence of (a, b,

b, c, c, b) the data structure is shown in Figure 5.3. a and b are pushed onto counter

stack 1 since their occurrences are 0 before inserting. When the second b is pushed, the

counter of b is already 1, thus the new b is pushed to stack 2. Similarly, the following c, c,
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Hash table

After inserting
(a,b,b,c,c,b):

Counter Stacks

a
b

b
c

b
1 2 3

ca ==> 1

b ==> 3

c ==> 2

Figure 5.3: Counter stacks for efficient recursion level calculation

and b are pushed onto stacks 1, 2 and 3, respectively. This data structure guarantees effi-

cient calculation of recursion levels and is also used in the cardinality estimation algorithm

introduced in Section 5.3.

The functions Get-Vertex and Get-Edge (lines 5 and 10) search the kernel and

return the vertex or edge indicated by the parameters. If the vertex or edge is not in the

graph then it is created.

Synopsis Update When the underlying XML document is updated, i.e., some elements

are added or deleted, the kernel can be incrementally updated. The basic idea is to

compute, for each subtree that is added or deleted, the kernel structure for the subtree.

Then it can be added or subtracted from the original kernel using an efficient graph merging

or subtracting algorithm [46].

When deleting a subtree, the algorithm constructs a new kernel for the subtree. The

next step is to determine which vertex in the original kernel corresponds to the parent of

the root of the new kernel. Suppose that the new kernel and the original kernel are k′ and

k, respectively, the root of k′ is r′ and its parent in k is p, then subtraction of k′ from k

takes two steps:

1. Get the label of edge (p, r′), subtract 1 from the child-count of the integer pair at the

recursion level of r′. If the child-count is 0, then set the parent-count to 0 as well,

and adjust the size of the vector if necessary.

2. For each edge e′ in k′, locate the same edge e in k, subtract the parent-count and

child-count in e′ from e at each recursion level. The vector size should also be adjusted

accordingly, and if the size of a vector is 0, the edge should be deleted. When adding

a subtree to the XML tree, the way to incrementally update the kernel is similar.
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Figure 5.4: Update synopsis after deleting a subtree sp)p)p)) from the XML tree in

Figure 5.2a

The only difference is to change the minus operation to plus, and to add edges if

necessary.

Figure 5.4 shows an example of deleting the whole subtree rooted at s , whose string

representation is sp)p)p)), as the rightmost child of the second c element. In this exam-

ple, only the label of the edge (s, p) need to be updated.

The hyper-edge table can also be incrementally updated when a subtree is added

(deleted) to (from) the XML tree. One only needs to (re-)compute the errors related

to the paths that are updated by the new kernel. The old entries in the table are deleted

and the new entries with the new errors are added.
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5.3 Cardinality Estimation

The following notions are crucial to understand how cardinalities are estimated using

XSeed.

Definition 5.5 (Forward and Backward Selectivity) For any rooted path

pn+1 = (v1, v2, . . . , vn, vn+1) in the XSeed kernel G(Vs, Es), denote e(i,i+1) as the edge

(vi, vi+1), pi as the sub-path (v1, v2, . . . , vi), and ri as the recursion level of pi, then the

forward selectivity (fsel) and backward selectivity (bsel) of path pn+1 are defined as:

fsel(pn+1) =
|/v1/v2/ · · · /vn/vn+1|

Sn+1

,

bsel(pn+1) =
|/v1/v2/ · · · /vn[vn+1]|
|/v1/v2/ · · · /vn|

,

where Sn+1 is the sum of child-counts at recursion level rn+1 over all in-edges of vertex

vn+1, i.e.,

Sn+1 =
∑

e(i,n+1)[rn+1][C CNT], ∀e(i,n+1) ∈ Es. 2

Intuitively, forward selectivity is the proportion of vn+1 nodes that are contributed by

the path (v1, v2, . . . , vn), and backward selectivity captures the proportion of vn nodes that:

(1) are contributed by the path (v1, v2, . . . , vn−1); and (2) have a child vn+1.

In Definition 5.5, if the probability that vn has a child vn+1 is independent of vn’s

ancestors, then bsel can be approximated as:

bsel(pn+1) ≈
e(n,n+1)[rn+1][P CNT]

Sn

,

where Sn is defined similar to Sn+1. This approximated bsel is the proportion of vn that are

contributed by any path that have a child vn+1. Combining the definition and approxima-

tion, the cardinality of the branching path pn[vn+1] can be estimated using the cardinality

of the simple path pn as follows:

|pn[vn+1]| = |pn| × bsel(pn+1)

≈ |pn| ×
e(n,n+1)[rn+1][P CNT]

Sn

.
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More generally, given a branching path expression p = /v1/v2/ · · · /vn[vn+1] · · · [vn+m], let-

ting q = /v1/v2/ · · · /vn, and assuming that bsel of q/vn+i is independent of bsel of q/vn+j

for any i, j ∈ [1, m], then the cardinality of p is estimated as:

|q/[vn+1] · · · [vn+m]| ≈ |q| × bsel(q/vn+1)× · · ·
× bsel(q/vn+m)

= |q| × absel(p),

where absel(p) denotes the aggregated bsels (products) of the rooted paths that end with

a predicate query tree node. Since the bsel of any simple path can be approximated using

the XSeed kernel, the problem is reduced to how to estimate the cardinality of a simple

path query.

For the simple path query /v1/v2/ · · · /vn/vn+1 in Definition 5.5, if again the probability

of vi having a child vi+1 is independent of vi’s ancestors, the cardinality of /v1/v2/ · · · /vn/vn+1

can be approximated as:

|/v1/v2/ · · · /vn/vn+1| ≈ e(n,n+1)[rn+1][C CNT]× fsel(pn).

Intuitively, the estimated cardinality of /v1/v2/ · · · /vn/vn+1 is the number of vn+1 that are

contributed by vn times the proportion of vn that are contributed by the path /v1/v2/ · · · /vn−1.
Based on this, fsel can be estimated as:

fsel(pn+1) ≈
e(n,n+1)[rn+1][C CNT]× fsel(pn)

Sn+1

.

Since fsel is defined recursively, the calculation of fsel(pn+1) should be bottom-up,

starting with fsel(p1), and then fsel(p2) and so on. At the same time, the estimated

cardinalities of all sub-expressions are also calculated.

Example 5.3 Suppose the optimizer wants to estimate the cardinality of query /a/c/s/s/t

on the kernel shown in Figure 5.2b. The following table shows the vertices in a path while

traversing the kernel, the estimated cardinality, forward selectivity, and backward selectiv-

ity.
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vertex cardinality fsel bsel

a 1 1 1

c 2 1 1

s 5 1 1

s 2 1 0.4

t 1 1 0.5

The first row in the table refers to the path consisting of the single root node a ; the

second row refers to the path of (a, c) in the kernel, and so on. In particular the cardinality

of the last row indicates the estimated cardinality of the path expression /a/c/s/s/t.

When traversing the first vertex a , the cardinality, fsel , and bsel are all set at their

initial values of 1. When traversing the second vertex c , the cardinality is approximated

as |/a/c| = e(a,c)[0][C CNT] × fsel(a) = 2 × 1 = 2, since the recursion level of path (a, c)

is 0. fsel(a, c) is estimated as |/a/c|
S(a,c)

= 2
2

= 1, where Sa,c is the sum of child-counts

of all in-edges of c at recursion level specified by path (a, c). bsel(a, c) is estimated as
e(a,c)[0][P CNT]

S(a)
= 1

1
= 1. When traversing a new vertex, the same calculations will take the

results associated with the old vertices and the edge labels in the XSeed kernel as input,

and produce the cardinality, fsel , and bsel for the new vertex as output. 2

The cardinality of a simple path query can be estimated as above; if the optimizer wants

to estimate the cardinality of a branching query or a complex path query consisting of //-

axes and wildcards (*), a matching algorithm needs to be developed to match the pattern

tree specified by the expression to the kernel. In fact, the XSeed estimation algorithm

defines a traveler (Algorithm 7) and a matcher (Algorithm 8). The matcher calls the

traveler, through the function call Next-Event, to traverse the XSeed kernel in depth-

first order. The rooted path is maintained while traveling. Whenever a vertex is visited,

the traveler generates an open event, which includes the information about the label of the

vertex, the DeweyID of this vertex, the estimated cardinality, the forward selectivity, and

the backward selectivity of the current path. When finishing the visit of a vertex (due to

some criterion introduced later), a close event is generated. In the end, an end-of-stream

(EOS) event is generated when the whole graph is traversed. The matcher accepts this

stream of events and maintains a set of internal states to match the tree pattern specified

by the path expression.
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Algorithm 7 Synopsis Traveler

Next-Event()

1 if pathTrace is empty then
2 if no last event then � current vertex is the root
3 h← hash value of curV ;
4 fp ← 〈curV , 1, 1.0, 1.0, 0, h〉;
5 pathTrace.push(fp);
6 evt ← Open-Event(v, card , fsel , bsel);
7 else evt ← EOS-Event();
8 end
9 else evt ← Visit-Next-Child();

10 end

Visit-Next-Child()

1 〈u, card , fsel , bsel , chdcnt , hsh〉 ← pathTrace.top();
2 kids ← children of curV ;
3 while size of kids is greater than chdcnt do
4 v ← kids[chdcnt ];
5 if ¬End-Traveling(v, chdcnt) then
6 curV ← v;
7 〈v, card , fsel , bsel , hsh〉 ← pathTrace.top();
8 evt ← Open-Event(v, card , fsel , bsel);
9 return evt ;

10 end
11 increment chdcnt in pathTrace.top() by 1;
12 end
13 evt← Close-Event(u);
14 return evt ;

End-Traveling(v : SynopsisVertex, chdCnt : int)

1 old rl ← the recursion level of current path without v;
2 rl ← the recursion level of current path and v;
3 〈stop, card , fsel , bsel , n h〉 ← Est(v, rl , old rl);
4 if stop then
5 return true;
6 end
7 fp ← 〈v, card , fsel , bsel , 0,n h〉;
8 pathTrace.push(fp);
9 return false;

Est(v : SynopsisVertex, rl : int, old rl : int)

1 〈u, card , fsel , bsel , chdcnt , hsh〉 ← pathTrace.top();
2 e← Get-Edge(u, v);
3 if rl < e.label.size() then
4 n card ← e[rl][C CNT] ∗ fsel ;
5 sum cCount ← Total-Children(u, old rl);
6 n bsel ← e[rl][P CNT]/ sum cCount ;
7 else n card ← 0;
8 end
9 sum cCount ← Total-Children(v, rl);

10 n fsel ← n card / sum cCount ;
11 if n card ≤ CARD THRESHOLD then
12 stop ← true;
13 else stop ← false;
14 end
15 return 〈stop,n card ,n fsel ,n bsel ,n hsh〉;
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Algorithm 7 is a simplified pseudo-code for the traveler algorithm. When traversing the

graph, the algorithm maintains a global variable pathTrace, which is a stack of footprint

(line 4). A footprint is a tuple including the current vertex, the estimated cardinality of

the current path, the forward selectivity of the path, the backward selectivity of the path,

the index of the child to be visited next, and the hash value for the current path. If the

next vertex to be visited is the root of the synopsis, an open event with initial values are

generated, otherwise the Next-Event function calls the Visit-Next-Child function to

move to the next vertex in depth-first order. The latter function calls the End-Traveling

function to check whether the traversal should terminate (this is necessary for a synopsis

containing cycles). Whether to stop the traversal is dependent on the estimated cardinality

calculated in the Est function. In the Est function, the cardinality, forward selectivity, and

backward selectivity are calculated as described earlier. If the estimated cardinality is less

than or equal to some threshold (CARD THRESHOLD), the End-Traveling function

returns true, otherwise it returns false. The Open-Event function accepts the vertex,

the estimated cardinality, the forward selectivity, and the backward selectivity as input,

and generates an event including the input parameters and the DeweyID as output. The

DeweyID of the event is maintained by the Open-Event and Close-Event functions

and is not shown in Algorithm 7.

If the sequence of open and close events are treated as open and close tags of XML

elements, with the cardinality and selectivities as attributes, the traveler generates the

following XML document from the XSeed kernel in Figure 5.2b:

<a dID="1." card="1" fsel="1" bsel="1">

<t dID="1.1." card="1" fsel="0.2" bsel="1"/>

<u dID="1.2." card="1" fsel="1" bsel="1"/>

<c dID="1.3." card="2" fsel="1" bsel="1">

<t dID="1.3.1." card="2" fsel="0.4" bsel="1"/>

<p dID="1.3.2." card="3" fsel="0.25" bsel="1"/>

<s dID="1.3.3." card="5" fsel="1" bsel="1">

<t dID="1.3.3.1." card="2" fsel="0.4" bsel="0.4"/>

<p dID="1.3.3.2." card="9" fsel="0.75" bsel="1"/>

<s dID="1.3.3.3." card="2" fsel="1" bsel="0.4">
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<t dID="1.3.3.3.1." card="1" fsel="1" bsel="0.5"/>

<p dID="1.3.3.3.2." card="2" fsel="1" bsel="0.5"/>

<s dID="1.3.3.3.3." card="2" fsel="1" bsel="0.5">

<p dID="1.3.3.3.3.1." card="3" fsel="1" bsel="1"/>

</s> </s> </s> </c> </a>

The tree corresponding to this XML document is dynamically generated and does not

need to be stored. Since it captures all the simple paths that can be generated from

the kernel, it is called the expanded path tree (EPT). In a highly recursive document (e.g.,

Treebank), the EPT could be even larger than the original XML document. This is because

a single path with a high recursion level will result in generating other non-existing paths

during the traversal. In this case, a higher CARD THRESHOLD is needed to limit the

traversal. As demonstrated by the experiments, this heuristic greatly reduces the size of

the EPT without causing much error.

Algorithm 8 shows the pseudo-code for matching a query tree rooted at qroot with the

EPT generated from the kernel K. The algorithm maintains a stack of frontier sets, which

is a set of query tree nodes (QTN) for the current path in the traversal. The QTNs in the

frontier set are the candidates that can be matched with the incoming event. Initially the

stack contains a frontier set consisting of the qroot itself. Whenever a QTN in the frontier

set is matched with an open event, the children of the QTN are inserted into a new frontier

set (line 11). Meanwhile, the matched event is buffered into the output queue of the QTN

as a candidate match (line 12). In addition to the children of the QTN that match the

event, the new frontier set should also include all QTNs whose axis is “//” (line 15). After

that, the new frontier set is ready to be pushed onto the stack for matching with the

incoming open events if any.

Whenever a close event is seen, the matcher first cleans up the unmatched events in

the output queue associated with each QTN (line 20). The call qroot .rmUnmatched()

checks the output queue of each QTN under qroot . If some buffered event does not have

all its children QTN matched, these events are removed from the output queue. After the

cleanup, if the top of the output queue of qroot indicates a total match, the estimated

cardinality is calculated (line 22). Otherwise, if qroot is not a total match, the partial

results should be removed from qroot . Finally, the stack for the frontier set is popped
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Algorithm 8 Synopsis Matcher

Card-Est(K : Kernel, qroot : QueryTreeNode)
1 frtSet ← {qroot};
2 frtStk .push(frtSet);
3 est ← 0;
4 evt ← Next-Event();
5 while evt is not an end-of-stream (EOS) event do
6 if evt is an open event then
7 frtSet ← frtStk .top();
8 new fset ← ∅;
9 for each query tree node q ∈ frtSet do

10 if q .label = evt .label ∨ q .label = “ ∗ ” then
11 insert q’s children into new fset ;
12 insert evt into q’s output queue;
13 end
14 if q .axis = “//” then
15 insert q into new fset ;
16 end
17 end
18 frtStk .push(new fset);
19 else if evt is a close event then
20 qroot .rmUnmatched();
21 if qroot .isTotalMatch() then
22 est ← est +Output(evt .dID , qroot);
23 else if evt is matched to qroot then
24 qroot .rmDescOfSelf (evt .dID);
25 end
26 end
27 frtStk .pop();
28 end
29 end
30 evt← Next-Event();
31 end
32 return est ;

Output(dID : DeweyID, qroot : QueryTreeNode)
1 Q← rstQTN .outQ ;
2 est ← 0;
3 absel ← Aggregated-BSel(qroot);
4 for each evt ∈ Q do
5 est ← est + evt .card ∗ absel ;
6 end
7 Q.clear();
8 rstQTN . rmDescOfSelfSubTree(dID);
9 return est ;
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Figure 5.5: Example of ancestor independence assumption breaks

indicating that the current frontier set is finished matching.

In the Output function, the algorithm needs to sum the cardinalities of all the events

cached in the resulting QTN. If there are predicates, the function Aggregated-BSel

calculates the product of backward selectivities of all events matched with predicate QTNs.

After the summation, the output queue of the resulting QTN and all its descendant QTNs

should be cleaned up.

5.4 Optimization for Accuracy—HET

The whole idea of the cardinality estimation using the XSeed kernel is to first compress the

XML tree, in the construction phase, into a graph structure that contains a small amount of

statistical annotations, and then, in the estimation phase, decompress the graph into a tree

(EPT) based on the independence assumption (explained in detail later). The accuracy

of cardinality estimation, therefore, depends upon how well the independence assumption

holds on a particular XML document. Intuitively, the independence assumption refers to

whether u having a child v is independent of whether u has a particular parent/ancestor or

other children. To capture the cases that violate the independence assumption, additional

information is collected and kept.

There are two cases where the estimation algorithm relies on the independence assump-

tion. The first case happens when there are multiple in-edges and out-edges to a vertex

v. The probability of v having a child, say w, is independent of which node is the parent
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of v. This assumption ignores the possible correlations between ancestor and descendants.

This case is best illustrated by the following example.

Example 5.4 Given the XSeed kernel depicted in Figure 5.5, the optimizer wants to

estimate the cardinality of b/d/e. Since vertex d in the graph has two in-edges incident

to b and c , the estimation algorithm assumes that the total number of e nodes (20)

from d nodes is independent of whether d ’s parents are b nodes or c nodes. Under this

assumption, the cardinality of b/d/e is the cardinality of d/e times the proportion of d

nodes that are contributed by b nodes, namely the forward selectivity of path p = b/d/e:

|p| = |d/e| × fsel(b/d/e)

= e(d,e)[0][C CNT]×
e(b,d)[0][C CNT]

e(b,d)[0][C CNT] + e(c,d)[0][C CNT]

= 20× 5

14
≈ 7.14.

The estimate of |b/d/e| is not accurate, due to the ancestor independence assumption. 2

The second type of independence assumption is in the case of branching path queries.

If a vertex u in the kernel has two children v and w, estimation algorithm assumes that

the number of u nodes that have a child node v is independent of whether or not u also

has a child w, ignoring the possible correlations between two siblings.

Example 5.5 Consider the XSeed kernel in Figure 5.5, and the path expression b/d[f]/e.

Based on the independence assumption, the cardinality of the path expression b/d[f]/e is

the cardinality of b/d/e times the proportion of d elements that have a f child, namely

the backward selectivity of f in the path p = b/d/f:

|p| = |b/d/e| × bsel(b/d/f)

= |b/d/e| ×
e(d,f)[0][P CNT]

e(b,d)[0][C CNT] + e(c,d)[0][C CNT]

= 20× 5

14
× 4

14
≈ 2.04.

Again, this estimate is not accurate. 2
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A simple solution to this problem is to keep, in what is called the hyper-edge table

(HET), the actual cardinalities of the simple paths (e.g., b/d/e) and the “correlated back-

ward selectivity” of the branching paths (e.g., the backward selectivity of f correlated with

its sibling e that is contributed by the path b/d in Example 5.5) when they induce large

errors, so that it does not need to be estimated. In principle, the HET serves the same

role as a histogram in relational database systems.

HET Construction HET can be pre-computed or populated by the optimizer through

query feedback. While constructing the HET through query feedback is relatively straight-

forward, there are two issues related to pre-computation: (1) although the optimizer can

estimate the cardinality using the XSeed kernel, it needs an efficient way to evaluate the

actual cardinalities to calculate the errors; and (2) the number of simple paths is usually

small, but the number of branching paths is exponential in the number of simple paths.

Thus, a heuristic is needed to select a subset of the branching paths to evaluate.

To solve the first issue, the construction algorithm generates the path tree [13] while

parsing the XML document (see Figure 5.1). The path tree captures the set of all possible

simple paths in the XML tree. While constructing the path tree, the algorithm associates

each node with the cardinality and backward selectivity of the rooted simple path leading

to this node. Therefore, the actual cardinality of a simple path can be computed efficiently

by traversing the path tree. To evaluate the actual cardinality of a branching path, the

system uses the Next-of-Kin (NoK) operator [143], which performs tree pattern matching

while scanning the data storage (see Figure 5.1) once, and returns the actual cardinality

of a branching path.

In order to solve the second issue, two thresholds are introduced to effectively con-

trol the number of candidate branching paths. The first threshold is the maximum

number of branching predicates MBP in the candidate path expressions. This thresh-

old is the most effective one, since if the only cases considered are those whose branch-

ing are restricted at the leaf level, the number of candidate branching paths could be∑n
i=1

∑min(fi,MBP +1)
j=1

(
fi

j

)
, where n is the number of nodes in the path tree, and fi is the

fan-out of node vi in the path tree. MBP should be set to a very small number, say 2 (in

which case it is called a 2BP HET ), in order to obtain a reasonable number of candidate
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paths. In order to further reduce the candidates, another threshold (BSEL THRESHOLD)

is introduced for the backward selectivity of the path tree node to be examined, i.e., if

bsel(v) < BSEL THRESHOLD , the algorithm evaluates the actual backward selectivity of

the branching paths that have v as a predicate; otherwise v is omitted.

Accordingly, the construction of the hyper-edge table is straightforward: for every node

v in the path tree, the estimated cardinality and actual cardinality are calculated. The

path is put into a priority queue keyed by the absolute estimation error. If bsel(v) <

BSEL THRESHOLD , all branching paths (only at the leaf level) with this node as one of

the predicates are enumerated, and the paths are put into the priority queue. To limit the

memory consumption of the hyper-edge table, a hashed integer (32 bits) is used to represent

the string of path expression. When the hash function is reasonably good, the number of

collisions is negligible. The hashed integer serves as a key to the actual cardinality and the

correlated backward selectivity of the path expression. Table 5.1 is an example HET for

the XSeed kernel in Figure 5.5, where actual hyper-edges rather than hashed values are

shown.

hyper-edges cardinality correlated bsel

/a/b/d/e 14 0.1

/a/c/d/e 6 0.14

/a/b/d/f 21 0.25

/a/c/d/f 29 0.52

d[e]/f 4 0.35

Table 5.1: Hyper-Edge Table

The HET is managed simply: all the hyper-edges are sorted in descending order of

their errors on secondary storage and only the top k entries which have the largest errors

are kept in main memory to fill the memory budget. In the experiments, a 1BP hyper-

edge table does not take a lot of disk space (less than 500,000 entries in the most complex

Treebank data set and less than 1,000 entries for all the other tested data sets), but 2BP

and 3BP could be very large for complex data sets.
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Cardinality estimation. If the HET is available, the traveler and matcher algorithms

need to be modified to exploit the extra information. The following changes apply to the

1BP HET. In the traveler algorithm, the lines 2 to 7 are modified in function Est as

follows:

1 if HET is available then

2 then n hsh ← incHash(hsh, v);

3 if n hsh is in HET then

4 end

5 else

6 e← Get-Edge(u, v);

7 if rl < e.label.size() then

8 then n card ← e[rl][C CNT] ∗ fsel ;

9 sum cCount ← Total-Children(u, old rl);

10 n bsel ← e[rl][P CNT]/ sum cCount ;

11 end

This snippet of code guarantees that the actual cardinalities of simple paths are re-

trieved from the HET. The incHash function incrementally computes the hash value of a

path: given an old hash value for the path up to the new vertex and the new vertex to be

added, the function returns the hash value for the path including the new vertex.

The matcher also needs to be modified to retrieve the correlated backward selectivity

from the HET. The following should be inserted after line 11 in function Card-Est:

1 if HET is available and q is a predicate QTN then

2 then p← q’s parent QTN;

3 r ← p’s non-predicate child QTN;

4 hsh ← incHash(“p[q]/r”);

5 if hsh is in HET then

6 then 〈card , bsel〉 ← HET .lookup(hsh);

7 end
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In this code, the correlated backward selectivity of q and its non-predicate sibling QTN

is checked. The parameter to the incHash function is the string representation of the

branching path p[q]/r.

5.5 Experimental Results

The performance of the XSeed synopsis is evaluated in terms of the following: (1) com-

pression ratio of the synopsis on different types of data sets, and (2) accuracy of cardinality

estimation for different types of queries.

To evaluate the combined effects of the above two properties, accuracies are compared

with different space budgets against a state-of-the-art synopsis structure, TreeSketch [112].

TreeSketch is considered the best synopsis in terms of accuracy for branching path queries,

and it subsumes XSketch [110] for structure-only summarization.

Another aspect of the experiments is to investigate the efficiency of the cost estimation

function using the synopsis. The running time of the estimation algorithm is reported

for different types of queries. The ratios of the estimation times and the actual query

processing times are also reported.

These experiments are performed on a dedicated machine with 2GHz Pentium 4 CPU

and 1GB memory. The synopsis construction and cardinality estimation are implemented

in C++. The TreeSketch code is obtained from its developers. The reported running times

for the estimation algorithms are the averages of five runs.

5.5.1 Data sets and workload

Both synthetic and real data sets are tested: DBLP, XMark10 and XMark100 (XMark

with 10MB and 100MB of sizes, respectively), and Treebank.05 (randomly chosen 5% of

Treebank) as well as the full Treebank, whose structural characteristics are introduced in

previous chapters. The basic statistics about the data sets are listed in Table 5.2.

The workload is divided into three categories: simple path (SP), branching path (BP),

and complex path (CP), whose definition can be found in Chapter 1. For each data set, a

workload generator generates all possible SP queries, and 1, 000 random BP and CP queries.

To test the effectiveness of HET with different MBP configurations, the generator also
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Data sets
Data characteristics

|kernel|
construction time (mins)

total size # of nodes rlavg/rlmax XSeed TreeSketch

DBLP 169 MB 4022548 0 / 1 2.8KB 0.24 + 27 11

XMark10 11 MB 167865 0.04 / 1 2.7KB 0.01 + 0.27 31

XMark100 116 MB 1666315 0.04 / 1 2.7KB 0.1 + 2.7 815

Treebank.05 3.4 MB 121332 1.3 / 8 24.2KB 0.008 + 52 839

Treebank 86 MB 2437666 1.3 / 10 72.7KB 0.168 + 261 DNF

Table 5.2: Characteristics of experimental data sets, their XSeed kernel size, and construc-

tion times. (rlavg and rlmax represent average and maximum recursion levels, respectively.

The construction time of XS is composed of kernel construction time + HET construction

time. )

generates workload that have up to 2 branching predicates (2BP and 2CP) and 3 branching

predicates (3BP and 3CP) in each step. The randomly generated queries are non-trivial.

A sample CP query looks like //regions/australia/item[shipping]/location. The full

test workload can be found elsewhere [145].

5.5.2 Construction time

For each data set, the time to construct the kernel and HET are measured separately.

As described in Section 5.4, branching paths are estimated only for those path tree nodes

whose backward selectivity is less than BSEL THRESHOLD . The threshold is set to 0.1

for all the data sets except Treebank, for which it is set to 0.001. The thresholds are

manually chosen to trade off between HET construction time and accuracy improvement.

The construction time for XSeed and TreeSketch are given in Table 5.2. In this table,

“DNF” indicates that the construction did not finish in 24 hours. The construction time

for XSeed consists of the kernel construction time and the 1BP HET construction time

(first and second part, respectively). The total construction time is the sum of these two

numbers. As shown in the table, XSeed kernel construction time is negligible for all data

sets, and the HET construction time is reasonable; overall they are much smaller than

TreeSketch.
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5.5.3 Accuracy of the synopsis

To evaluate the accuracy of XSeed synopsis, XSeed is again compared with TreeSketch

on different types of queries (SP, BP, and CP). Several error metrics are calculated but two

are reported here3: Root-Mean-Squared Error (RMSE) and Normalized RMSE (NRMSE),

to evaluate the quality of the estimations. The RMSE is defined as
√

(
∑n

i=1(ei − ai)2)/n,

where ei and ai are the estimated and actual result sizes, respectively, for the i-th query

in the workload. The RMSE measures the average error over all queries in the workload.

The NRMSE is adopted from [142] and is defined as RMSE/ā, where ā = (
∑n

i=1 ai)/n.

NRMSE is a measure of the average error per unit of accurate result size.

Since TreeSketch synopses cannot be constructed in the time limit on Treebank, Ta-

ble 5.3 only lists the error metrics on the DBLP, XMark10, XMark100, and Treebank.05.

These data sets represent all three data categories: simple, complex with small degree of

recursion, and complex with high degree of recursion. The workload is the combined SP,

BP, and CP queries. Both programs are tested using 25KB and 50KB memory budgets.

XSeed kernel is also tested without HET. For the DBLP and XMark data sets, XSeed

only uses 20KB and 25KB memory respectively for the total of kernel and HET, thus

their error metrics on 25KB and 50KB are the same. Even without help from the HET,

the XSeed kernel outperforms TreeSketch with 50KB memory budget on the XMark and

Treebank.05 data sets. The reason is that the TreeSketch synopsis does not recognize

recursions in the document, so even though it uses much more memory, the performance

is not as good as the recursion-aware XSeed synopsis. When the document is not recur-

sive, TreeSketch has better performance than the bare XSeed kernel. However, spending

a small amount of memory on the HET greatly improves performance. The RMSE for

XSeed with 25KB (i.e., a small HET) is almost half of the RMSE for TreeSketch with

50KB memory.

There is only one case—BP queries on DBLP (see Figure 5.6)—where TreeSketch out-

performs XSeed even with the help of HET. In this case, XSeed errors are caused by

the correlations between siblings that are not captured by the HET. For example, the

query /dblp/article[pages]/publisher causes a large error on XSeed. The reason is

3The Coefficient of Determination (R-squared) and Order Preserving Degree (OPD) are also calculated,
but the values are very close to the perfect score for almost all datasets, so these results are omitted here.
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Figure 5.6: Estimation errors for different query types on DBLP

DBLP XMark10 XMark100 Treebank.05
settings

RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE

XS kernel 1960.5 15.4% 39.6 15.1% 276.15 5.06% 22.7 169%

25KB
XS 103 0.81% 3.737 1.43% 256.3258 4.71% 22.7 169%

TS 221.5 1.67% 62.738 23.7% 638.1908 11.7% 229.5823 877.14%

50KB
XS 103 0.81% 3.737 1.43% 256.3258 4.71% 12.82 95.61%

TS 203.09 1.59% 58.3946 22.09% 635.5347 11.65% 227.1157 867.71%

Table 5.3: Error metrics for XSeed (XS) and TreeSketch (TS) in different memory budgets

that the backward selectivity (0.8) of pages under /dblp/article is above the default

BSEL THRESHOLD (0.1), so the hyper-edge article[pages]/publisher was omitted

in the HET construction step, thus the correlation between pages and publisher is not

captured. It is possible to use better heuristics to address this problem, although it is not

investigated further.
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Figure 5.7: Different MBP settings on DBLP

The accuracy of different types of workload (1BP, 2BP and 3BP) are also tested on

HETs with different MBP settings (BSEL THRESHOLD is set to 0.8). The observation

is that 1BP HET is usually the best tradeoff between construction time and accuracy.

Figure 5.7 shows the HET construction times (on the right y-axis) using different MBP

settings for the DBLP dataset, and the estimation errors (on the left y-axis) for each setting

on the 2BP workload. The error is reduced significantly (66%) going from no HET to 1BP

HET, but the reduction in error from 1BP HET to 2BP HET diminishes to 8%. On the

other hand, the construction time of 2BP HET is about 10 times that of 1BP HET.
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Performance DBLP XMark10 XMark100 Treebank.05 Treebank

EPT to XML

tree ratio

0.0035% 0.036% 0.05% 6.9% 5.5%

estimation time

to actual run-

ning time ratio

0.018% 0.57% 0.0916% 2% 1.5%

Table 5.4: The ratios of EPT to XML tree and estimation time to actual query evaluation

time.

5.5.4 Efficiency of cardinality estimation algorithm

To evaluate the efficiency of the cardinality estimation algorithm, the ratio of the time

spent on estimating the cardinality and the time spent on actually evaluating the path

expression are listed. The path expression evaluator is the NoK operator [143] extended

to support //-axes.

The efficiency of the cardinality estimation algorithm depends on how many tree nodes

there are in the expanded path tree (EPT) that can be generated from traversing the

XSeed kernel. For DBLP, XMark10 and XMark100 data sets, the generated EPT is very

small—0.0035%, 0.036%, and 0.05% of the original XML tree, respectively. As mentioned

previously, the EPT could be large for highly recursive documents such as Treebank.05 and

Treebank. To limit the size of EPT, as mentioned earlier, a threshold is established for the

estimated cardinality of the next vertex to visit. In these experiments, the threshold is set

to 20 (i.e., if the estimated cardinality of the next vertex in depth-first order is less than

20, it will not be visited), and the ratio of EPT size to XML tree size is 6.9% and 5.5%.

The average ratios of the estimation time to the actual query running time on DBLP,

XMark10, XMark100, Treebank.05, and Treebank are 0.018%, 0.57%, 0.0916%, 2%, and

1.5%. The detailed EPT to XML tree ratio and the estimation running time vs. actual

query evaluation time ratios are listed in Table 5.4. The ratios for XMark10 and XMark100

differ significantly because their XSeed kernels are very similar, but the size of the XML

documents differs by a factor of 10.
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5.6 Comparisons to Related Work

As discussed in Chapter 2, there are many approaches dealing with cardinality estimation

for path queries (e.g., [64, 37, 13, 110, 132, 14, 112, 130]). Some of them [64, 13, 132, 130]

focus only on a subset of the possible path expressions, e.g., simple paths (linear chain of

steps that are connected by /-axis) or linear paths containing //-axes. Moreover, none of

them directly addresses recursive data sets, and only [64] and [130] support incremental

maintenance of the synopsis structures.

TreeSketch [112], an extension to XSketch [110], can estimate the cardinality of branch-

ing path queries very accurately in many cases. However, it does not perform as well on re-

cursive data sets. Also, due to the complexity of the construction process, TreeSketch is not

practical for structure-rich data such as Treebank. XSeed has similarities to TreeSketch,

but the major difference is that XSeed preserves structural information in two layers of

granularity (kernel and HET); while TreeSketch tries to preserve this information in a

complex and unified structure.

The hyper-edge table has been inspired by previous proposals [14, 130]. In [14], the

actual statistics of previous queries are recorded into a table and reused later. In [130],

a Bloom Filter is used to store cardinality information about simple paths compactly. In

this chapter, one hash value is used for that purpose, since practice shows that a good hash

function produces very few collisions for thousands of paths.

5.7 Conclusion

This chapter presents a compact synopsis structure to estimate the cardinalities of path

queries. XSeed is the first to support accurate estimation for all types of queries and

data, incremental update of the synopsis when the underlying XML document is changed,

dynamic reconfiguration of the synopsis according to the memory budget, and the ability

to exploit query feedback. The simplicity and flexibility of XSeed make it well suited for

implementation in a real DBMS optimizer.
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Conclusion and Future Work

6.1 Summary and Contributions

This thesis studies three important issues in managing large volumes of XML data. Novel

techniques are proposed for the storage system, query evaluation engine, and cost-based

optimizer.

The first issue that is studied is the storage system for large volumes of arbitrarily

complex XML documents. The storage system should be able to handle documents with

or without a schema and preserve the orders in the documents. These are the basic require-

ments for a general purpose XML storage system. Furthermore, the storage system should

support efficient evaluation and update. I/O performance is crucial to query evaluation

and update. Therefore, the storage system should be designed and optimized towards more

efficient query evaluation and update. Another desirable feature for the storage system is

the space efficiency (succinctness). This is particularly important when the amount of

data is significantly large. Previous approaches focus some of the above requirements. The

proposed storage scheme addresses all of them [143]. The novelties of the storage system

are the following:

• The proposed storage scheme can store any XML document tree, regardless of whether

it has a schema or not. In this storage scheme, the tree structural and value informa-

tion are separately stored and indexes are built to maintain their connections. This

156
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design decision is followed by the principle of separation of concerns and results in

efficient evaluation and update.

• The structural information is converted into a string which is guaranteed to be re-

constructible to the XML tree. This conversion makes the tree data model easily

fit into paged I/O model. Simple statistics kept in the page header can significantly

reduce I/O for tree traversing during query evaluation. Furthermore, updating the

tree can also be translated into updating the string, for which efficient algorithms

are well studied.

• Values of all elements are stored sequentially and ordered by their structural ID

(Dewey ID). The Dewey IDs can be easily derived from the structural storage. There-

fore, Dewey IDs serve as the serve as the keys to connect a value to a certain XML

tree node.

Building on the storage system, the thesis proposes a heuristic evaluation strategy for

a general path expression. The heuristics is based on the observation that different types

of axes can be evaluated by different approaches: local axes by the navigational approach

and global axes by the join-based approach. A hybrid evaluation strategy is proposed to

first convert a path expression consisting of backward axes to an expression having only

forward axes. Then the path expression is decomposed into NoK pattern trees that consists

of only local axes. Finally, each NoK expression is evaluated and their intermediate results

are structurally joined. The novelties of this strategy and the NoK pattern matching

algorithms are as follows:

• The thesis proves that any backward axis can be translated into a pattern tree that

consists of only forward axes. This translation makes a one-pass algorithm possible

on the input XML data.

• The definition of NoK pattern tree and the heuristics of decomposing a query tree

into NoK pattern trees are novel. With this decomposition-and-join approach, it

is possible to take the best of both worlds. Experiments justify that the heuristics

results in efficient evaluation plans in most cases.
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• The NoK pattern matching algorithm is a novel data-driven navigational query pro-

cessing operator. With the support of the storage system, NoK pattern matching can

be evaluated efficiently. Comparing to previous navigational approach, NoK pattern

matching algorithm results in simpler and more efficient implementation due to the

constraints on the path expressions.

Indexing techniques are proposed to prune the input before applying the NoK pattern

matching. As discussed in Chapter 2, path expressions contain both structural and value

constraints. Previous research concentrates on either structural indexes or value indexes.

In this work, a feature-based index, FIX, is proposed to combine both structural and value

information. The contributions in this regard are as follows:

• A list of features consisting of real numbers are identified. The features can be

extracted automatically from sub-patterns in database and query trees.

• The thesis proves a sufficient condition for the pattern tree begin an inducted sub-

graph of sub-patterns in the index. This condition is the basis for the pruning power

of the index, and they do not introduce false-positives.

• The FIX index provides a natural and effective way to index values in the XML

documents. Integrating values into the structural index eliminates the need for two

index look-up operations and intersection of the temporary results.

The FIX index proposes a general technique to prune the input subtree. Although it

is tested by combining with the NoK processor as the refinement operator, it is possible to

be combined with other path expression evaluation operators.

The last part of the thesis addresses cardinality estimation of path expressions. Car-

dinality estimation is crucial in cost-based optimization. Previous approaches concentrate

on one or two criteria such as accuracy, or adaptiveness. In addition, a synopsis should

address multiple criteria, including efficiency in construction and estimation, updatability,

and robustness. This thesis proposes XSeed to address all these criteria:

• XSeed follows a two-layer design that enables it to be adaptable to memory budget.

A small kernel can be constructed very efficiently and it captures the basic structural
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information. On top of that layer, hyper-edge table (HET), provides additional

information about the tree structure. It enhances the accuracy of the synopsis and

makes it adaptive to different memory budgets.

• The simplicity of the kernel makes the synopsis robust, space efficient, and easy to

construct and update.

• XSeed presents a novel and efficient algorithm for traversing the synopsis structure

to calculate the estimates. The algorithm is highly efficient and is well suited to be

embedded in a cost-based optimizer.

Due to its robustness, efficiency, adaptivity, and accuracy, XSeed is a practical synopsis

well-suited to a database systems.

6.2 Integrating the Techniques into a System

As depicted in Figure 1.5, all the individual modules introduced in previous chapters need

to be integrated into a system. This section introduces, from bottom-up, the integration

of the existing modules and possible solutions to the missing pieces.

The preprocessing phase of the XDB consists of parsing the XML documents into native

storage, constructing indexes, and summarizing the documents into synopses. The detailed

construction steps are already introduced in Chapters 3–5. This section introduces how

all these techniques are tied together in a system. The native storage and synopses are

constructed by parsing the XML documents once, since both construction algorithms are

based on the SAX-event API. Indexes are optional and they are constructed based on the

native storage. As presented in Chapter 3, the storage is separated into a structural part

and a value part. Constructing a pure structural FIX index needs to scan the structural

part only once, while a unified structural and value index needs the input from both parts.

Scans on two parts are synchronized so that they both read the input only once.

In the querying phase, while the navigational operator only scans the native storage, the

index operator may read input from both the native storage and the index. As discussed

earlier, the non-leaf nodes in FIX index contain the feature lists (eigenvalues and root

labels) while the leaf nodes are pointers to the native storage for the unclustered indexes,

or pointers to the clustered subtrees for the clustered indexes. The pruning phase only
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involves the index, and once a set of candidate pointers are obtained from the index, the

execution is handed over to the navigational operator. Then it is up to the navigational

operator to decide which part(s) of the native storage—structural only or structural and

value parts—need to be referenced.

On top of the execution engine, the optimizer needs to decide, from among the multiple

operators, which operator is the optimal one. While cardinalities of the expression or its

subexpressions are important parameters, some intelligence is needed for the optimizer to

make the right decision.

One type of intelligence is that the optimizer needs to know how to map the input

parameters to the cost (i.e., the cost model), since the cost is the fundamental metric

for the optimizer to compare different execution plans. More precisely, a cost model is

a function mapping from the a priori parameters to a number—the estimated execution

time. The a priori parameters are usually the number of certain expensive operations. For

relational operators, the most expensive operations are usually I/O operations, e.g., page

reads and writes. Therefore, developing cost models for the relational operators usually

involves analyzing the source code and determining the number of I/O calls based on the

knowledge of statistics maintained in the system catalogue. Unfortunately, developing cost

models of XML query processing is much harder than developing cost models of relational

query processing. The reason is that the data access patterns for these relational operators

can often be predicted and modeled in a fairly straightforward way. The data access

patterns of complex XML query operators, on the other hand, tend to be markedly non-

sequential and therefore quite difficult to model. For these reasons, a statistical learning

approach, such as Comet [142], can be used to model the cost of complex XML operators

(XNav in [142]). The basic idea is to identify a set of query and data “features” (input

parameters to the cost model) that determine the operator cost. Using training data,

Comet then automatically learns the functional relationship between the feature values

and the cost—the resulting cost function is then applied at optimization time to estimate

the cost of XML operators for incoming production queries.

Although Comet is not implemented in the XDB project, the basic idea can be applied

to develop the cost models of the physical operators in XDB. There are two key issues in

developing cost models using the Comet methodology: (1) proposing the right features
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for the cost model, and (2) proposing the right statistics for estimating the feature values.

Both issues require deep understanding of the operators’ algorithms: features are usually

discovered and approximated by analyzing the algorithms. Although the algorithm of the

NoK pattern matching operator is different from that of the XNav operator, they are based

on similar ideas: both are input-driven automata whose states are constructed dynamically.

Therefore, the features and feature value estimations for NoK should be very similar to

those for XNav.

Developing a cost model for the FIX index operator could be more complex. As

discussed in Chapter 4, the FIX evaluation algorithm can be decomposed into two phases:

the index pruning phase based on B+ tree and the refinement phase using the NoK operator.

Assuming the cost model for the NoK operator is available, the cost of the FIX index

operator is dependent on the cost model of the index searching in B+ tree and the number

of NoK pattern matching operations. The cost model for a B+ tree is well-studied (see,

e.g., [44]). The challenge lies in the refinement phase: i.e., how to estimate the number of

NoK pattern matchings and what is the cost of each of them. It seems straightforward if

the cost model for NoK is already developed. However, the I/O access pattern of the index

operator is different from that of the non-indexed NoK operator. As a result, the statistics

proposed for the non-index NoK operator is insufficient to estimate the feature values. The

reason is that some subtrees are pruned from the index and there are no sufficient statistics

to estimate the cost of NoK pattern matchings on the remaining ones. Fortunately, the

number of remaining subtrees can be estimated fairly easily by using existing techniques

such as a histogram on the features indexed in the B+ tree. A rough estimation of the

cost of the refinement phase would be using the proportion of remaining subtrees as the

indicator to the savings in cost from that of the non-indexed NoK operator. It is still open,

however, whether this estimation is accurate enough, and a more precise cost estimation,

particularly the right statistics, remains a challenge.

Besides cost models, other missing pieces in the optimizer are the plan generation

and exploration. These, however, have little difference from those found in the relational

database systems. Mature techniques (see, e.g., [69]) can be applied here.
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6.3 Future Work

There is much work that needs to be done for XDB to be a properly working system. Besides

the issues mentioned in the previous section, several techniques need further investigation.

• Currently the XDB system only supports a subset of the XML data model and XML

query languages. The important missing features are IDs and IDREFs in the XML

documents, and value and positional constraints in the path expressions. The system

and the techniques should be extended to support these features.

• Any storage system should consider how to employ concurrency control and how it

affects the update process. As the update semantics become defined, the storage

system should be enhanced to support updates and concurrent access.

• FIX is designed to be working as a general pruning index. In addition to the nav-

igational operator, a join-based operator should also be able to act as a refinement

operator.

• Since the key of FIX index is a list of numbers, a high-dimensional index rather than

a B+ tree could be more beneficial.

• XSeed synopsis currently only supports structural constraints, an extension to sup-

port value constraints is highly desirable.

• The XSeed kernel is currently of fixed size once it is constructed. When the memory

budget is higher, additional information is stored in the hyper-edge table. Maintain-

ing these two data structures is complex, therefore it may be desirable to change the

kernel itself when additional knowledge about the data is added to the synopsis.

The emergence and increasing applications of Web services have generated many inter-

esting problems and has attracted significant interests from both academic and industrial

communities. As mentioned in Chapter 1, messages or data exchanged between Web ser-

vices are XML documents. These documents may have a small size and simple structure,

but may have a very high arrival rate at a popular Web service server. Furthermore, the
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stream of XML messages sent by the network tend to be infinite, which is completely differ-

ent from the scenario where XML data are archived before querying. These problems are

typically studied in the context of stream data management [18, 62]. Some constraints are

posed on the stream processing model: (1) join-based evaluation techniques is not desir-

able anymore since they require preprocessing the XML document to encode the elements

before the joins; (2) indexing techniques that require preprocessing also do not work since

the construction time and update cost will diminish the benefit of using indexes; and (3)

synopsis structures need to be changed to facilitate the fact that data are updated fre-

quently. Based on the proposed techniques in this thesis, the following possible solutions

should be investigated:

• The storage structure needs to be modified so that it can handle high arrival rate of

XML documents. The current storage system separates structural and value infor-

mation for archiving. This may not be desirable if the documents cannot be archived

and the arrival rate does not allow a server to do so. A new string-based storage

model (in the stream case, it should be main memory based instead of disk based)

should be designed for supporting efficient evaluation.

• The navigational operator developed in this thesis is well-suited to the streaming

processing environment. However, the FIX index is no longer available in this sce-

nario. Designing an index for more efficient evaluation, particularly when many

online queries are submitted to the system.

• Under the assumption that XML documents in Web services have simple structures,

the ability to deal with complex structures is no longer the first priority. The major

problem is how to support frequent updates. While the XSeed synopsis supports

update, it is not designed for frequent update. The performance and tradeoff between

update and accuracy is a major concern.
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[143] N. Zhang, V. Kacholia, and M. T. Özsu. A Succinct Physical Storage Scheme for

Efficient Evaluation of Path Queries in XML. In Proc. 20th Int. Conf. on Data

Engineering, pages 54 – 65, 2004.
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