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Abstract

Top-k processing in uncertain databases is semantically
and computationally different from traditional top-k pro-
cessing. The interplay between score and uncertainty in-
formation makes traditional top-k processing techniques in-
applicable to uncertain databases. In this paper we intro-
duce new probabilistic formulations for top-k queries. Our
formulations are based on marriage of traditional top-k se-
mantics with possible worlds semantics. In the light of these
formulations, we construct a framework that encapsulates
a novel probabilistic model and efficient query processing
techniques to tackle the challenges raised by uncertain data
settings. We prove that our techniques minimize the number
of accessed tuples, and the number of materialized possible
query answers. Our experiments show the efficiency of our
techniques under different data distributions with orders of
magnitude improvement over naı̈ve materialization of pos-
sible worlds.

1 Introduction

Efficient processing of uncertain (probabilistic) data is
a crucial requirement in different domains including sen-
sor networks [18, 22, 8], moving objects tracking [7, 9] and
data cleaning [12, 3]. Several probabilistic data models have
been proposed, e.g., [10, 11, 4, 15, 16, 20, 2], to capture
data uncertainty on different levels. According to most of
these models, tuples can be uncertain database members,

∗This technical report is based on the paper [23]. The aim of this tech-
nical report is to elaborate on the uncertainty model issues, and the as-
sumptions we make in the design of our processing framework.

attributed by membership probabilities, e.g., based on data
source reliability [13], or fuzzy query predicates, as ad-
dressed in [19]. Tuple attributes can also be defined proba-
bilistically over discrete or continuous domains [20, 6], e.g.,
a set of possible customer names in a dirty database, or an
interval of possible sensor readings.

Several uncertain data models, e.g., [15, 2, 20], adopt
possible worlds semantics, where a probabilistic database
is viewed as a set of possible instances (worlds) associated
with their probabilities. The possible worlds space repre-
sents an enumeration of all possible views of the database,
where each world is a subset of database tuples. The princi-
ples of probability theory are used to treat tuples as prob-
abilistic events. Specifically, each tuple t is associated
with a corresponding event t.e, such that t exists in the
database with a probability of Pr(t.e), and does not exist in
the database with the complement probability Pr(¬t.e) =
1 − Pr(t.e). Possible worlds can thus be viewed as con-
junctions of tuple events. Under possible worlds seman-
tics, the probability of tuple t that belongs to the answer of
some query Q is, conceptually, computed by aggregating
the probabilities of all possible worlds where t is an answer
to Q. Since each possible world is effectively a determin-
istic database, the operational semantics of relational query
operators directly apply to possible worlds.

The structure and probabilities of possible worlds are po-
tentially affected by probabilistic correlations among tuples,
e.g., mutual exclusion of tuples that map to the same real
world entity [20]. We call such correlations space gener-
ation rules. Such rules could arise naturally with unclean
data [3], or could be customized to enforce application re-
quirements, reflect domain semantics or maintain data de-
pendencies and lineage [25, 20, 5]. Moreover, the relational
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Figure 1. Uncertain Database and Possible Worlds Space

processing of probabilistic tuples can induce additional cor-
relations among intermediate query answers, even when the
base tuples are uncorrelated [19, 21]. For example, joining
the tuple pairs (r1, s1), and (r1, s2) results in two corre-
lated join results, since they share the base tuple r1, even if
all base tuples are uncorrelated.

The huge size of possible worlds space, and the potential
complexity of the underlying space generation rules, hin-
der instantiating and processing worlds explicitly. How-
ever, thinking in terms of possible worlds allows for defin-
ing proper query semantics. Consider the following exam-
ple to illustrate the concept of possible worlds.

Example 1 Consider a radar-controlled traffic, where car
speed readings are stored in a database. Radar units de-
tect speed automatically, while car identification ,e.g., by
plate number, is usually performed by a human operator. In
this database, multiple sources of errors (uncertainty) ex-
ist. For example, radar readings can be interfered with by
high voltage lines, close by cars cannot be precisely dis-
tinguished, or human operators might make identification
mistakes. Figure 1(a) is a snapshot of a radar database
in the last hour. Each reading is associated with a confi-
dence field “conf” indicating its correctness. Application-
specific space generation rules, captured by the indicated
exclusiveness rules, are designed to satisfy the following re-
quirement: Based on radar locations, the same car cannot
be detected by two different radar units within 1 hour inter-
val.

Figure 1 (b) shows the possible worlds space for the
database in Example 1. Each possible world is one valid
subset of the database tuples. The probability of each
world is computed as the joint probability of the existence
events of world’s tuples, and the absence events of all other
database tuples. This joint probability is computed based
on the probabilities of tuple events, and the generation rules
that define their correlations. To visualize this computation,
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with a Different Rule Set

we can think of tuple events as bubbles in a Venn diagram,
where the size of each bubble reflects tuple’s probability. In
this visualization, the generation rules would be constraints
that define the areas and the manner with which these bub-
bles intersect. For example, the rule (t2⊕ t3) in Example 1
constraints the two bubbles of t2 and t3 to be disjoint. Each
possible world can be visualized as an intersection of some
bubbles, while possibly avoiding other bubbles. Figure 1
(b) shows all possible worlds that can be realized in this
manner.

To illustrate, assume that we would like to compute the
probability of the possible world PW 1. This probability
can be expressed as Pr(PW 1) = Pr(t1.e ∧ t2.e ∧ t6.e ∧
t4.e ∧ ¬t3.e ∧ ¬t5.e). Based on the tuples’s probabili-
ties, and rules’ semantics, the existence of t2 implies the
absence of t3, which means that (t2.e ∧ ¬t3.e) ≡ (t2.e).
Similarly, the existence of t4 implies the absence of t5,
which means that (t4.e ∧ ¬t5.e) ≡ (t4.e). All other tu-
ple events are uncorrelated (independent). We can there-
fore simplify Pr(PW 1) as Pr(t1.e∧ t2.e∧ t6.e∧ t4.e) =
0.4 × 0.7 × 1.0 × 0.4 = 0.112. The probabilities of other
worlds are computed similarly.

Example 2 Assume the same database from Example 1,
with the following additional rule (t1 → t2), which means
that t1 implies t2. Figure 2 shows the new possible worlds
space, based on the new rule set.

Example 2 illustrates how possible worlds and their
probabilities are affected by changing the underlying rule
set. Specifically, the new rule (t1 → t2) constraints the
bubble of t1 to be contained inside the bubble of t2, which
also implies that the bubbles of t1 and t3 are disjoint since
(t2 ⊕ t3). This new constraint affects the structure and
probabilities of all possible worlds. For example, based
on the new rule we have (t1.e ∧ t2.e ∧ ¬t3.e) ≡ (t1.e),
which modifies the way we compute Pr(PW 1) as follows:
Pr(PW 1) = Pr(t1.e∧t2.e∧t6.e∧t4.e∧¬t3.e∧¬t5.e) =
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Pr(t1.e∧ t6.e∧ t4.e) = 0.4×1.0×0.4 = 0.16. Moreover,
there are no possible worlds containing t1, without contain-
ing t2.

Note that Examples 1 and 2 illustrate simple settings,
where possible worlds’ probabilities can be computed di-
rectly using membership probabilities, and the semantics of
the space generation rules. We discuss more elaborate set-
tings in Section 2.1, where we show how these probabilities
can be generally computed. In the following, we refer to the
value of Pr(t.e) as t.confidence.

1.1 Motivation and Challenges

Current query processing techniques for uncertain data
[6, 7, 12, 3] focus on Boolean queries. However, uncer-
tainty usually arises in data exploration, decision making,
and data cleaning scenarios which all involve aggregation
and ranking. Top–k queries are dominant type of queries
in such applications. A traditional top–k query returns the
k objects with the maximum scores based on some scoring
function. When uncertainty comes into the picture, such a
clean definition does not exist anymore; reporting a tuple in
a top–k answer does not depend only on its score, but also
on its probability, and the scores and probabilities of other
tuples. Tuple scores and probabilities interplay to decide
on meaningful top–k answers. Consider Example 1. Two
interesting top–k queries are to report:

• the top–k speeding cars in the last hour.

• a ranking over the models of the top–k speeding cars.

While the above queries are semantically clear in determin-
istic databases, their interpretation in uncertain databases
is challenging. For example, it might be desirable that the
answer to the first query be a set of cars that can appear
together in valid possible world(s), to avoid answers incon-
sistent with generation rules and other database constraints.
While in the second query, we might not have this restric-
tion. In uncertain databases, we are usually after the most
probable query answers. The interaction between the con-
cepts of “most probable” and “top–k” gives rise to different
possible interpretations of uncertain top–k queries:

• The “top–k” tuples in the “most probable” world.

• The “most probable top–k” tuples that belong to valid
possible world(s).

• The set of “most probable top–ith” tuples across all
possible worlds, where i = 1 . . . k.

While the first interpretation reduces to a top–k query
on a deterministic database, it does not conform with pos-
sible worlds semantics. In contrast, the second and third

interpretations are compliant with possible worlds seman-
tics, however they involve processing challenges, since they
involve both ranking and aggregation across worlds. We
formally define and elaborate on the differences between
these queries in Section 2.2.

A naı̈ve approach to obtain answers to the above queries
is to materialize the whole possible worlds space, find top–
k answer in each world, and aggregate the probabilities of
identical answers. Flattening the database into all its worlds
is prohibitively expensive because of the huge number of
possible worlds and the potential complexity of generation
rules. Processing the “compact” database, i.e., without ma-
terializing its world space, is the main focus of this paper.

1.2 Contributions

Our approach in this paper is to process score and uncer-
tainty within one framework that leverage current DBMS
storage and query processing capabilities. Our contribu-
tions, towards this goal, are summarized as follows:

• New Query Definitions: “Top-k processing in uncer-
tain relational databases” is to the best of our knowl-
edge a previously unstudied problem with unclear se-
mantics. We propose new formulations for top–k
queries in uncertain databases.

• Search Space Model: We model uncertain top–k pro-
cessing as a state space search problem, and introduce
several space navigation algorithms with optimality
guarantees, on the number of accessed tuples, to find
the most probable top–k answers.

• Processing Framework: We construct a framework in-
tegrating space navigation algorithms and data access
methods leveraging existing DBMS technologies.

• Experimental study: We conduct an extensive experi-
mental study to evaluate our techniques under different
data distributions.

2 Uncertainty model and Problem Definition

In this section, we describe the uncertainty model we as-
sume in this paper, followed by our formal problem defini-
tion.

2.1 Uncertainty Model

We assume a general uncertainty model that allows for
computing the joint probability of an arbitrary combination
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of tuple events. Computing this probability is the only in-
terface 1 between the uncertainty model, and our processing
framework (we elaborate on this point in Section 3). This
separation of model details and processing allows for great
flexibility in adopting different models that describe the un-
certainty in the underlying data in different forms. In the
following, we describe example models, conforming with
our requirements, with different specifications and imple-
mentations:

• Model I (Independent Tuples): When all tuples
events are independent (including intermediate query
answers), e.g., key-join queries over independent base
tuples, the model is simply the membership probabili-
ties of base tuples. Using such simple model, the joint
probability of any combination of tuple events is com-
puted by multiplying the probabilities of the involved
tuple events.

• Model II (Correlated Tuples with Simple Rules):
When tuple events are correlated with simple rules,
e.g., implication or exclusiveness, the model maintains
these rules, in addition to tuples’ probabilities. The
joint probability of any combination of tuple events is
computed based on tuples’ probabilities, and rules se-
mantics. For example, for a rule (t1 ⊕ t2) that states
that t1 is mutually exclusive with t2 (e.g., Example 1),
we have Pr(t1.e∧t2.e) = 0, while Pr(t1.e∧¬t2.e) =
Pr(t1.e). Similarly, for a rule (t1 → t2) that states
that t1 implies t2 (e.g., RFID data where a tuple repre-
senting an inventory item implies the tuple represent-
ing the item’s packing cell), we have Pr(t1.e∧t2.e) =
Pr(t1.e), while Pr(t1.e ∧ ¬t2.e) = 0. Please re-
fer to Examples 1 and 2 for more concrete exam-
ples. Similar types of rules have been used in cur-
rently proposed uncertainty models, e.g., [20, 21], to
capture different tuples’ correlations. Note that tuples’
probabilities have to be consistent with rules seman-
tics, otherwise possible worlds semantics would be vi-
olated. For example, if (t1 ⊕ t2), then we must have
Pr(t1.e)+Pr(t2.e) ≤ 1. Similarly, if (t1 → t2), then
we must have Pr(t1.e) ≤ Pr(t2.e). Studying such
consistency issues is out of the scope of our study. We
thus assume that tuples’ probabilities are always con-
sistent with tuples’ correlations. Note also that tuples’
marginal probabilities and rules semantics may not be
sufficient to compute the joint probability of combina-
tions of tuple events in all cases, as noted in [26]. For
example, for a rule (t1 ∨ t2) that states that at least
one of t1 and t2 must appear in each possible world,
we cannot derive the joint probability distribution of t1

1We assume the specifications of the underlying model can be used to
compute joint probabilities, without having specific restrictions on these
specifications, as shown in the following examples

and t2 based on their marginal probabilities, and the
semantics of the rule.

• Model III (General Inference Model): The two above
models are limited in their scope to special cases.
Hence, such models may be insufficient to represent
and reason about probabilistic data in more general
scenarios. A more general model, subsuming the
above simple models, is to maintain the explicit joint
probability distribution of all database tuples. One
compact representation of such huge joint distribution
is a Bayesian network, as used in [21], where tuples are
the network nodes, and tuples’ correlations are main-
tained in the form of conditional probability tables, al-
lowing representing arbitrary tuples’ correlations. Fig-
ure 3 illustrates how such model can be used for our
purposes, where we show the Bayesian network for the
database in Example 2. In the shown network, con-
nected tuples are conditionally dependent, while dis-
connected tuples are independent. Each tuple main-
tains a conditional probability table representing its
conditional probability distribution given its parents.
For example, the third row in the table of tuple t1 main-
tains the two conditional probabilities Pr(t1.e|t2.e ∧
¬t3.e), and Pr(¬t1.e|t2.e∧¬t3.e). The dependencies
and conditional probability tables are inferred from the
semantics of the rules. However, this model is quite
general, since it can compactly encode arbitrary depen-
dencies among tuple events. We show how to compute
the probability of an arbitrary combination of tuple
events using the following example: Assume that we
would like to compute Pr(t1.e∧ t2.e∧¬t3.e). Based
on chain rule, this probability can be expressed as
Pr(¬t3.e)×Pr(t2.e|¬t3.e)×Pr(t1.e|t2.e∧¬t3.e) =
0.7 × 1.0 × 0.4

0.7 = 0.4, which is the same as Pr(t2.e)
as implied by the semantics of the rules.

We discuss some details regarding the implementation
of our adopted uncertainty model in Section 3.1. However,
we emphasize that model specifications, expressiveness and
implementation are not the main focus of our study.

2.2 Problem Definition

Based on possible worlds semantics, and assuming some
scoring (ranking) function to order tuples, the probability of
a k-length tuple vector T to be the top–k is the summation
of possible worlds probabilities where T is the top–k. Sim-
ilarly, the probability of a tuple t to be at rank i is the sum-
mation of possible worlds probabilities where t is at rank i.
We now formally define uncertain top–k queries based on
“marriage” of possible worlds and traditional top–k seman-
tics.
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Definition 1 Uncertain Top–k Query (U-Topk): Let
D be an uncertain database with possible worlds space
PW = {PW 1, . . . , PWn}. Let T = {T 1, . . . , Tm} be
a set of k-length tuple vectors, where for each T i ∈ T :
(1) Tuples of T i are ordered according to scoring func-
tion F , and (2) T i is the top–k answer for a non empty
set of possible worlds PW (T i) ⊆ PW . U-Topk query
over D, based on F , returns T ∗ ∈ T , where T ∗ =
argmaxT i∈T (

∑
w∈PW (T i)(Pr(w))) �

U-Topk query answer is a tuple vector with the maxi-
mum aggregated probability of being top–k across all pos-
sible worlds. This type of queries fits in scenarios where
we restrict all top–k tuples to belong together to the same
world(s), e.g., for compliance requirements with model
rules. Consider Figure 1 again. U-Top2 query answer is
{t1, t2} with probability 0.28, which is the summation of
PW 1 and PW 2 probabilities.

Definition 2 Uncertain k Ranks Query (U-kRanks): Let
D be an uncertain database with possible worlds space
PW = {PW 1, . . . , PWn}. For i = 1 . . . k, let
{x1

i , . . . , x
m
i } be a set of tuples, where each tuple xj

i ap-
pears at rank i in a non empty set of possible worlds
PW (xj

i ) ⊆ PW based on scoring function F . U-kRanks
query over D, based on F , returns {x∗i ; i = 1 . . . k}, where
x∗i = argmaxxj

i
(
∑

w∈PW (xj
i )

(Pr(w))) �

U-kRanks query answer is a set of tuples that might not
be the most probable top–k as a set. However, each tuple is
a clear winner in its rank over all possible worlds regardless
other tuples. This type of queries fits in data exploration
scenarios, where the most probable tuples at the top ranks
are required without restricting them to belong to the same

world(s). Consider Figure 1 again. U-2Ranks query answer
is {t2 : 0.42, t6 : 0.324}, since t2 appears in rank 1 in
PW 5 and PW 6 with aggregated probability 0.42, while t6
appears in rank 2 in PW 3, PW 5, and PW 8 with aggre-
gated probability 0.324.

In the above definitions, we focus on the “most probable”
top-k query answers, for the sake of clarity. However, our
definitions extend to probability-ordered answers, i.e., a set
of possible answers ranked on probability (the most prob-
able answer, the second most probable answer, etc.). Our
methods are thus not restricted to only a single (the most
probable) query answer. This is explained in more details
in our space navigation algorithms in Section 4.

3 Processing Framework

Since uncertain data is likely to be stored in a traditional
database, most of current uncertain database system proto-
types rely on relational DBMSs for efficient retrieval and
query processing, e.g., Trio [5], uses an underlying DBMS
to store and process uncertain data and lineage information.

In this section, we propose a novel uncertain top–k pro-
cessing framework (depicted in Figure 4) that leverages
RDBMS storage, indexing and query processing techniques
to compute the most probable top–k answers in an uncer-
tain database. The main motivations behind the design of
our framework are summarized in terms of the following
design principles:

• DP1: To build on top of an RDBMS as our tuple ac-
cess layer. We use an underlying RDBMS to store and
query probabilistic data and uncertainty information.
Our processing framework leverages RDBMS storage,
indexing and query processing capabilities to com-
pute probabilistic top-k queries. Similar arguments are
made in the design of the TRIO system [25, 5].

• DP2: To leverage current algorithms for top-k query
processing of deterministic data. In particular, our
framework takes advantage of rank-aware query pro-
cessing (if supported by the underlying DBMS), e.g.,
[14, 17], to minimize the number of needed-to-access
tuples.

• DP3: To implement efficient probability-guided
search algorithms to realize query answers. The al-
gorithms lazily materialize the search space, by main-
taining only ordered prefixes of possible worlds with
the highest chances to be among query answers.

These design principles are realized by the two-layer ar-
chitecture in Figure 4. We next give a detailed description
for framework components and describe their interactions
(Section 3.1), followed by discussing our tuple retrieval
model (Section 3.2), and our problem space (Section 3.3).
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3.1 Framework Details

Tuple Access Layer. Tuple retrieval, indexing and tra-
ditional query processing (including score-based ranking)
are the main functionalities supported by the Tuple Access
Layer. The Tuple Access Layer executes an SPJ query,
which acts as the tuple source to the upper layer. We show
in Section 3.2 that sorted score access for output tuples of
such query is essential for efficient processing.

While our techniques can benefit largely from efficient
support to ranking in the Tuple Access Layer, we emphasize
that our framework is still valid if such support is limited
or lacking. However in this case, more tuples would need
to be accessed to realize query answers. For example, a
complete sorting of query results may be required if rank-
aware processing is not supported.

Rule Engine. This module is responsible for computing
the probabilities of arbitrary combinations of tuple events.
We assume an interface to the Rule Engine receiving, as
input, an arbitrary combination of tuple events, and produc-
ing, as output, the probability of such combination. The de-
tails of the Rule Engine is not the focus of our study, since
they vary according to how sophisticated the underlying un-
certainty model is, as discussed in Section 2.1. To give an
example, reference [19] shows how to generate safe plans
for some class of SPJ queries, where the independence of
involved tuple events is exploited to facilitate the probability
computation of query output tuples. A simple Rule Engine
that maintains the membership probabilities of base tuples
can be sufficient in this case. Alternatively, reference [21]

proposes using a full-fledged Bayesian network to materi-
alize the conditional probability distributions of dependant
tuples. A much more sophisticated Rule Engine needs to be
built in this case to query the network for arbitrary combina-
tions of tuple events. Hence, we believe that “black-boxing”
the Rule Engine adds versatility to our framework, since it
does not restrict our techniques to a specific implementation
of probabilistic inference techniques.

In our prototype, we experimented with different imple-
mentations of the Rule Engine module including: (1) a sim-
ple engine that supports probability computation over inde-
pendent tuple events; (2) an engine compliant with the x-
tuple model [20, 5], where tuples are correlated with exclu-
siveness rules only; and (3) a sophisticated engine that im-
plements and indexes a Bayesian network that is used pro-
gressively during query processing to load relevant depen-
dency information on demand, and compute the probabili-
ties of tuple combinations through Bayesian inference tech-
niques. The Bayesian network implementation is adopted
in our system demonstration [24]. We refrain from exten-
sively discussing the implementation details of the Rule En-
gine module in this paper, and abstract such details using
our interface to the underlying uncertainty model.

Processing Layer. The processing layer retrieves un-
certain tuples from the underlying Tuple Access Layer,
and efficiently navigates the possible worlds space to com-
pute query answers. The components of this layer are the
State Formulation module, which formulates search states
as combinations of tuple events; and the Space Navigation
module, which uses search algorithms to partially material-
ize the necessary parts in the possible worlds space, while
looking for query answers. We give the formal definition of
the problem space in Section 3.3.
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Assumptions. We make the following assumptions in our
framework design:

• Assumption 1 (Sequential Access): We assume that tu-
ples are consumed sequentially, i.e., one by one, from
the output of a query plan running in the Tuple Access
Layer. That is, the Processing Layer does not have
random access to some tuple t unless all the tuples pre-
ceding t in the output of the Tuple Access Layer are
already produced. This assumption implies that we do
not have prior information on the total number of out-
put tuples from the Tuple Access Layer. Such lack of
information is an important justification for our tuple
retrieval model discussed in Section 3.2.

• Assumption 2 (Unknown Future Dependencies): We
assume that the dependencies among query output tu-
ples are computed lazily only when these tuples are
produced from the Tuple Access Layer. This assump-
tion implies that we do not know whether the current
output tuple would be correlated with other future out-
put tuples or not.

The justification for our Sequential Access assumption is
that we build on top of a query plan running in the Tuple
Access Layer. These settings do not allow for random ac-
cess to arbitrary tuples, unless all query output tuples are
fully computed. Clearly, computing the full query output
should be avoided in our settings, since top-k queries can be
usually computed by seeing only a small fraction of query
output tuples. We thus assume an iterator interface, widely
used in RDBMS’s, to retrieve tuples from the Tuple Access
Layer on demand, and pass them to the Processing Layer.
Since processing each tuple request by the Tuple Access
Layer can be costly, we aim at pipelining tuple requests so
that we consume only the necessary tuples to compute prob-
abilistic top-k queries. We elaborate on the implication of
this requirement on our retrieval model in Section 3.2.

The justification for our Unknown Future Dependencies
assumption is that dependencies among currently consumed
tuples from the Tuple Access Layer, and future tuples can-
not be known a priori, since dependencies may arise during
query execution. For example, assume a simple query plan
(R ./ S). Assume a rule (s1 → s2) that applies to tu-
ples s1 and s2 in S. Let j1 = (r1, s1), j2 = (r1, s2),
and j3 = (r3, s3) be three different join results. Then, j1
and j3 are independent, while j1 and j2 are correlated by
the rule (j1 → j2) that is induced from the existing rule
(s1 → s2). Therefore, by the time we consume j1, we can-
not predict whether it would be correlated with other future
tuples or not, unless we compute the full join results.

3.2 Retrieval Model

Since we would like to minimize the number of tuple re-
quests to the Tuple Access Layer, we need to incrementally
consume the necessary tuples to compute query answers. A
tuple t is necessary if it satisfies at least one of the two fol-
lowing conditions: (1) t modifies the set of currently known
top-k answers, and (2) t modifies our information about the
yet unknown top-k answers. To illustrate, consider the next
example.

Example 3 Assume t1 is the output tuple from the Tuple
Access Layer with the highest score, and probability p1.
Alternatively, assume t2 is the output tuple with the highest
probability p2. Consider a U-Top1 query.

In Example 3, t1 is necessary since its retrieval reveals
two pieces of information: (1) < t1 > is a candidate U-
Top1 answer with probability p1, and (2) 1-p1 is an upper
bound over the probability of any other possible U-Top1
answer. Consider alternatively t2. We cannot create a new
candidate U-Top1 answer based only on t2, since we do not
know the tuples higher in score than t2 (Sequential Access
assumption). In fact, a bound on the number of such tuples
is the same as the number of all non-retrieved tuples, which
is not known in advance (without completely executing the
query in the Tuple Access Layer). Estimating such bound
boils down to selectivity estimation of the underlying query,
which cannot guarantee accurate bounding. Moreover, even
if such bound is available, e.g., based on worst case esti-
mation, we still cannot compute the probability that t2 is a
U-Top1 answer, since we are unaware of any potential de-
pendencies between t2 and non-retrieved tuples with higher
scores (Unknown Future Dependencies assumption). The
only safe probability bounds we can derive for < t2 >, be-
ing a U-Top1 answer, are thus [0, p2]. For the same reason,
t2 does not modify our information about the yet unknown
top-k answers. We thus conclude that retrieving t2 is not
necessary as long as it is out of score order.

Based on the above discussion, we prove that consum-
ing tuples from the Tuple Access Layer one by one in score
order minimizes the number of retrieved tuples to answer
probabilistic top-k queries. That is, retrieving tuples in any
other sequential order is useless, and cannot be used to ob-
tain query answers unless all tuples are seen. Rank-aware
query processing techniques, e.g., [14, 17], could be used
in the Tuple Access Layer to pipeline tuples in score order
efficiently.

Theorem 1 Without having information about the total
number tuples that would be produced by the underlying
relational engine, and the potential dependencies between
the current and future tuples, sorted score order yields the
minimum number of retrieved tuples to answer probabilistic
top-k queries, while retrieving tuples sequentially.
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Proof: Assume an algorithm A that retrieves tuples se-
quentially out of both score order and confidence order.
A cannot decide whether a seen tuple t belongs to any pos-
sible top-k answer or not. This is because there could be a
sufficient number of unseen tuples, whose events are inde-
pendent with t.e and scores are higher than t, to make the
probability that t belongs to any possible top-k answer ar-
bitrarily small. Algorithm A cannot assert this fact unless
it sees all tuples. Then, A cannot answer uncertain top-k
queries while consuming less tuples than a sorted score ac-
cess method.

Assume alternatively that A retrieves tuples out of score
order, but in confidence order. In this case A cannot
also compute the probability of some seen tuple t to be-
long to any possible top-k answer. This is because A can-
not guarantee that it has seen all tuples with higher scores
than t. The yet unknown potential dependencies between t,
and the non-retrieved tuples with higher scores, do not al-
low computing non-trivial bounds over the probability that
t belongs to any top-k answer. �

Note that if further information is available, score order
may not be the optimal order. Specifically, knowing the
total number of tuples in query output, and that all output
tuples are independent, we may retrieve a smaller number
of tuples using probability order [26]. For example, assume
the number of output tuples is 10, and that the two top tu-
ples in probability order are t1 and t2 with probabilities 1.0
and 0.1, and scores 1 and 10, respectively. Then, at this
point we can find the U-Top1 answer, since the probability
of t1 to be the U-Top1 is at least (1 − 0.1)9 > 0.1, while
any other tuple would have a maximum probability of 0.1
to be the U-Top1. However, as discussed earlier, knowing
the number of output tuples in advance defeats the essence
of optimization of top-k processing, which is limiting the
number of accessed tuples. Furthermore, assuming inde-
pendence among query output tuples applies only to simple
queries (please refer to our discussion in Section 2.1).

Cost Metric. Based on problem definition in Section 2.2,
the total number of possible top-k answers that can be ob-

tained from n retrieved tuples is bounded by (
n
k

), which

is in O(nk). Since k is a constant, our primary cost metric
is n, the number of consumed tuples from the Tuple Access
Layer. Additionally, since we aim at searching the space of
possible answers, we would like to minimize the size of the
materialized space.

3.3 Problem Space

We formulate our problem as searching the space of
states that represent all possible top–k answers. Definition 3
gives a formal definition of the search state.

Definition 3 Top-l State: A top–l state sl is a tuple vector
of length l that appears as the top–l answer in one or more
valid possible worlds based on scoring function F . �

A top–l state sl is complete if l = k. Complete states rep-
resent possible top–k answers. The probability of state sl is
the summation of the probabilities of the possible worlds
where sl is the top–l answer. Our search for uncertain top–
k answers starts from an empty state (with length 0) and
ends at a goal state that is a complete state with a probabil-
ity greater than any other state.

Based on the above space definition, we give an overview
of the interaction of framework components using Figure 5,
which describes how to process an uncertain top–k query
for the database in Example 1. In Figure 5, three tuples
are produced by a top–k query plan and submitted to the
Space Navigation module, which materializes all possible
states based on the three seen tuples. In order to compute
the probability of each state, the State Formulation module
formulates that state and compute its probability by contact-
ing the Rule Engine (details are given in Section 4.1). For
example, to formulate a state for the tuple vector < t1, t5 >,
the intermediate tuple t2, based on score order, must be ab-
sent.

In Section 4, we describe our search algorithms that par-
tially materialize the space of top–k answers to compute the
most probable answers by retrieving the least possible num-
ber of tuple, and by materializing the least number of search
states.

4 Navigating the Search Space

In this section we describe how to navigate the state
space to obtain the most probable top–k answers. We start
by describing how to compute state probabilities in Sec-
tion 4.1. We then describe our proposed U-Topk and U-
kRanks query processing algorithms, with optimality guar-
antees, in Sections 4.2 and 4.3, respectively.

4.1 Computing State Probabilities

We consider each tuple t is a source of two events: (1) tu-
ple existence, denoted t, with probability t.confidence,
and (2) tuple absence, denoted ¬t, with probability
1 - t.confidence. The probability of any combina-
tion of tuple existence/absence events is the summation of
the probabilities of the possible worlds where this com-
bination is satisfied. For example in Figure 1, the prob-
ability of the combination (t1 and ¬t2) is the same as
Pr(PW 3) + Pr(PW 4) = 0.12.

We next explain an important property that we exploit
while navigating the search space:
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Property 1 Probability Reduction: When extending any
combination of tuple events by adding another tuple exis-
tence/absence event, the resulting combination will have at
most the same probability �

Property 1 is clear from theoretical set operations, where
a set can never be larger than its intersection with another
set. This property holds under our model since for any
two sets of tuple events En and En+1 (with lengths n and
n + 1, respectively), where En ⊂ En+1, the set of possi-
ble worlds where En+1 is satisfied is ⊆ the set of possible
worlds where En is satisfied.

In the following we use the notation (¬X) where X is
a tuple set/vector to refer to the conjunction of negation
events of tuples in X .

State Probability: Assume an uncertain database D,
and an arbitrary scoring function F . After m accesses to
D in F order, let sl be some search state, and Il,m be the
current set of retrieved tuples from D that are not in sl. The
probability of state sl, denoted P(sl), can be computed as:
P(sl) = Pr(sl ∩ ¬Il,m)

For example in Figure 1, if the current set of retrieved
tuples are {t1, t2, t5}, then for a state s2 =< t1, t5 >, we
have P(s2) = Pr({t1, t5} ∩ ¬{t2}) = 0.072. This result
can be verified from the possible world PW 4.

Search states can be extended as follows. Assume a cur-
rent state sl. After retrieving a new tuple t from D, we
extend sl into two possible states: (1) a modified version
of sl with the same tuple vector, assuming the event ¬t,
and (2) a state sl+1 with the tuple vector of sl appended by
{t}, assuming the event t. Notice that the summation of the
probabilities of the modified sl and sl+1 is the same as the
probability of the old sl state.

4.2 Processing U-Topk Queries

We now describe OPTU-Topk, our query processing al-
gorithm for U-Topk queries. OPTU-Topk keeps all ranked
tuples retrieved from the storage layer in a buffer of seen tu-
ples. OPTU-Topk adopts a lazy materialization scheme to
extend the state space. Hence, a state might not be extended
by all seen tuples. At each step, the algorithm extends the
state with the highest probability of contributing to the final
top–k answer. The extension is performed using the next
tuple drawn either from the buffer or from the underlying
database.

We overload the definition of a search state sl to be
sl,i, where i is the position of the last seen tuple by sl,i

in the score-ranked tuple stream. Note that i can point to a
buffered tuple or to the next tuple to be retrieved from Tuple
Access Layer. Furthermore, we define s0,0 as an empty state
of length 0, where P(s0,0) = 1. The state s0,0 is used to
upper bound the probability of any non-materialized state,

since any non-materialized state must be produced from an
extension of s0,0.

LetQ be a priority queue of states ordered on their prob-
abilities, where ties are broken by state length. We initialize
Q with s0,0. Let d be the number of seen tuples from the
database at any point. OPTU-Topk iteratively retrieves the
top state in Q, say sl,i, extends it into the two next possi-
ble state (Section ??), and inserts the resulting two states
back to Q according to their probabilities. Extending sl,i

will lead to consuming a new tuple from the database only
if i = d, otherwise sl,i can be extended using the buffered
tuple pointed to by i + 1.

The termination condition of OPTU-Topk is when the
top state in Q is a complete state. If a complete state sk,n

is on top of Q, then both materialized and non-materialized
states have smaller probabilities than sk,n. This means that
there is no way to generate another complete state that will
beat sk,n, based on Property 1. Algorithm 1 describes the
details of OPTU-Topk.

Note that in addition to extending the state space
lazily, i.e., only the top state in Q is extended, Algo-
rithm OPTU-Topk also applies the following pruning cri-
terion to significantly reduce the number of buffered states
in Q (line 17): As soon as a complete state sk,n is reached,
all the buffered states, whether complete or not, with prob-
abilities less than P(sk,n) can be safely pruned, based on
Property 1.

We prove the optimality guarantees of OPTU-Topk re-
garding the number of accessed tuples (Theorem 2), and the
number of materialized states (Theorem 3).

Theorem 2 Among all algorithms that retrieve tuples or-
dered on score, Algorithm OptU-Topk retrieves the mini-
mum number of tuples to report U-Topk query answer.

Proof: Algorithm OptU-Topk consumes score-ranked
tuples until no state has a higher probability than some com-
plete state. Assume another algorithm, A, that also con-
sumes tuples sequentially ordered on score but reports U-
Topk answer by consuming d ≥ k tuples, where d is strictly
less than the number of tuples consumed by OptU-Topk.
Assume xk is the complete state reported by A. Assume
OptU-Topk runs until it consumes d tuples. At this time,
there exists some state sl where l < k and P(sl) > P(xk).
Assume that there exist k − l tuples with confidence 1,
not yet seen by sl, and independent with tuples in sl. We
can augment sl with these k − l tuples to compose another
complete state sk, where P(sk) = P(sl) > P(xk). Then
xk, the answer reported by A, is incorrect. �

Theorem 3 Algorithm OptU-Topk visits only the neces-
sary states to compute U-Topk query answer.

Proof: Let xk be the answer reported by OptU-Topk.
Assume another algorithm A that also concludes xk as the
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Algorithm 1 OptU-Topk(source,k)
Require:

source: Score-ranked tuple stream
k: Answer length

Ensure: U-Topk query answer
1: Q ← empty priority queue for states ordered on probabilities
2: d← 0
3: Insert s0,0 intoQ {init empty state}
4: while ( source is not exhausted AND Q is not empty) do
5: sl,i ← dequeue (Q)
6: if (l = k) then
7: return sl,i

8: else
9: if (i = d) then

10: t← next tuple from source
11: d← d + 1
12: else
13: t← tuple at pos i + 1 from seen tuples
14: end if
15: Extend sl,i using t into sl,i+1, sl+1,i+1 {Section 4.1}
16: Insert sl,i+1, sl+1,i+1 intoQ
17: if (l + 1 = k) then
18: remove any state s ∈ Q where P(s) < P(sl+1,i+1)
19: end if
20: end if
21: end while
22: return dequeue(Q)

final U-Topk answer. Let sl be a state skipped by A, and
visited by OptU-Topk, and let p = P(sl). By definition
sl has the highest probability among all states accessible to
OptU-Topk and A. Assume there exist k − l tuples with
confidence 1 and independent with tuples in sl. Then,
sl can be extended to a complete state sk with probability p.
Hence, Algorithm OptU-Topk reports xk = sk as its final
answer. However, since A did not visit sl, the final answer
reported by A cannot be any extension of sl, which contra-
dicts the original assumption that both algorithms returned
the same answer. Moreover,A cannot report an answer with
a probability higher than p �

Note that under the assumption that all states probabil-
ities are distinct (e.g., by assuming a unified tie-breaker
mechanism), there is no other algorithm can reach a cor-
rect solution without visiting all the states visited by
OptU-Topk. This observation can be easily derived from
the proof of Therorem 3 since in this case, x is the only
correct answer.

Algorithm 1 can be extended to return the n most prob-
able U-Topk answers by keeping a priority queue of size n,
and inserting any complete state with a probability above
the queue probability lower bound. The termination con-
dition will be changed to “the probability of any state is
strictly less than the queue probability lower bound”.

4.3 Processing U-kRanks Queries

In this section, we describe OPTU-kRanks, our query
processing algorithm for U-kRanks queries. Algorithm
OPTU-kRanks extends maintained states based on each
seen tuple. When a new tuple is retrieved, it is used to ex-
tend all states causing all possible ranks of this tuple to be
recognized. Let t be a tuple seen after retrieving m tuples
from the score-ranked stream. Let Pt,i be the probability
that tuple t appears at rank i, based on scoring function F ,
across all possible worlds. It follows from our state defi-
nition that Pt,i is the summation of the probabilities of all
states with length i whose tuple vectors end with t, pro-
vided that t is the last seen tuple from the database. In other
words, we can compute Pt,i, for i = 1 . . .m, as soon as we
retrieve t from the database.

For each rank i, we need only to remember the most
probable answer obtained so far. This is because any un-
seen tuple u cannot change Pt,i of any seen tuple t, since
u can never appear before t in any possible world. The
remaining question is when can we conclude an answer
for each rank i. To be able to report an answer for rank
i, we need to be sure that any unseen tuple will not beat
the current answer. Let Sj be the current set of states
with length j, and let Zj =

∑
s∈Sj

P(s). Note that for
any rank i, the value of

∑
j<i Zj can never increase when

new tuples are consumed. Therefore, the maximum prob-
ability for an unseen tuple u to be at rank i is

∑
j<i Zj .

We formally prove this bound in Theorem 4. Let t∗ be
the current U-kRanks answer for rank i. The termination
condition of Algorithm OPTU-kRanks, for rank i, is thus
Pt∗,i >

∑
j<i Zj . Algorithm 2 describes the details of Al-

gorithm OPTU-kRanks. Theorem 4 formalizes the opti-
mality of OPTU-kRanks based on the above discussion.

Theorem 4 Among all algorithms that retrieve tuples or-
dered on score, Algorithm OptU-kRanks retrieves the
minimum number of tuples to report U-kRanks query an-
swer.

Proof: Assume another algorithm, A, that also consumes
tuples sequentially ordered on score but reports t as the U-
kRanks answer for rank i while consuming less tuples than
Algorithm OPTU-kRanks. AssumeA has consumed d tu-
ples. Assume OPTU-kRanks runs until it consumes the
same d tuples. At this time, we have Pt,i <

∑
j<i Zj . Let

{u1, . . . , ui−1} be the next i − 1 unseen tuples. Assume
each tuple uj is implied by each state in Sj−1, and is (al-
most) exclusive with any other state sl, where l 6= j − 1.
It follows that uj will extend all states in Sj−1 into states
of length j with exactly the same probabilities, and no state
sj−1 will be remaining. Additionally, the probability and
the length of any other state sl with l 6= j − 1 will not
change. By induction, it follows that Pui−1,i =

∑
j<i Zj .
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Algorithm 2 OptU-kRanks(source,k)
Require:

source: Score-ranked tuple stream
k: Answer length

Ensure: U-kRanks query answer
1: answer[1 . . . k]← φ {Answer vector}
2: ubounds[1 . . . k]← [1, 1 . . . 1] {unseen upper-bound proba-

bilities for different ranks}
3: reported← 0 {No. of reported answers}
4: depth← 1
5: candidates← φ {current set of states}
6: while ( source is not exhausted AND reported < k) do
7: t← next tuple from source
8: Update canididates based on t
9: Update ubounds based on canididates

10: for i=1 to min(k, depth) do
11: if (answer[i] was previously reported) then
12: continue
13: end if
14: Compute Pt,i

15: if (Pt,i > answer[i].prob) then
16: answer[i]← t
17: answer[i].prob← Pt,i

18: if (answer[i].prob > ubounds[i]) then
19: Report answer[i]
20: reported← reported + 1
21: end if
22: end if
23: end for
24: depth← depth + 1
25: end while

Then ui−1 is the correct answer that should have been re-
ported by A. �

5 Cutting Down the Computation

In this section, we introduce other algorithms that make
use of tuple independence to cut down the state material-
ization significantly. Under arbitrary generation rules, the
states materialized by OPTU-Topk and OPTU-kRanks al-
gorithm are generally incomparable even if they have the
same length. This is because each state could be extended
in a different manner to a complete state. For example, the
tuples in one state might imply all other unseen tuples.

The materialized states by OPTU-Topk and
OPTU-kRanks algorithms could be reduced signifi-
cantly if we have an ability to prune looser states from
our search space early. In general, an incomplete state
s can be pruned if there exists a complete state c with
P(c) > P(s). Hence, for a partial state s, if we can
compute the maximum probability of a valid complete state
generated from s, denoted pmax(s), we can safely prune all
states with probability less than pmax(s). The Rule Engine

might be able to compute pmax(s) of a any given state s
to be used for pruning, however, this operation is sensitive
to the complexity of generation rules, and the Rule Engine
design. Alternatively, we show in the next sections how
to make use of tuple independence to do much efficient
space pruning while keeping the optimality on the number
of accessed tuples.

5.1 U-Topk Queries Under Independence

Under tuple independence, we can aggressively prune
the state space to keep only the states that could lead to
the answer. Algorithm IndepU-Topk exploits this prop-
erty by pruning the space based on the following state-
comparability criterion.

Definition 4 Comparable States: Under tuple indepen-
dence, two states xl and yl, maintained after seeing the
same number of score-ranked tuples, are comparable �

Definition 4 states that under tuple independence, if two
states are maintained after seeing m tuples, and they have
the same length, then they can be compared based on their
probabilities regardless how they will be extended to com-
plete states. This is because for two comparable states x
and y to generate the most probable complete states cx and
cy , from x and y, respectively, the same set of tuples will be
appended to both x and y. The consequence of Definition 4
is that if states x and y are comparable, and P(x) < P(y),
then we can safely prune x from our search space.
IndepU-Topk exploits Definition 4 by grouping

states into equivalence classes based on their lengths.
IndepU-Topk keeps only one state for each length value
0 . . . k in a candidate set. The candidate set is extended on
receiving each new tuple from D. IndepU-Topk termi-
nates when at least k tuples have been retrieved, and the
probability of any current state is not above the probability
of the current complete candidate.

Consider for example the score-ranked stream of in-
dependent tuples shown in Figure 6(fractions indicate
confidence values, and scores are omitted for brevity),
where we are interested in the U-Top3 answer. We repre-
sent each state sl with its tuple vector, and distinguish tu-
ples seen from D but not included in sl by the ¬ symbol. In
step (a), after retrieving the first tuple t1, we construct two
states < ¬t1 > and < t1 > with length values 0 and 1, re-
spectively. In step (b), the candidate set is updated based on
the new tuple t2, where two possible candidates with length
1, < t1,¬t2 > and < ¬t1, t2 >, are generated. How-
ever, we keep only the candidate with the highest probabil-
ity since both candidates are probability comparable. Step
(c) continues in the same manner by updating the candidate
set based on tuple t3, and pruning the less probable can-
didate from each equivalence class. In this step we have
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constructed the first complete candidate, < t1, t2, t3 >, and
the first termination condition is met. In step (d) we up-
date the candidate set based on t4. Notice that we cannot
stop after step (d) because the second termination condition
is not met yet – there are candidates with higher probabili-
ties than the current complete candidate – and so, there is a
chance that < t1, t2, t3 > will be beaten. The search con-
tinues until the second termination condition is met. Space
reduction by exploiting the state comparability property re-
sults in huge performance improvements for large values of
k. We illustrate the scalability of IndepU-Topk in our
experimental section.

5.2 U-kRanks Queries Under Indepen-
dence

Under tuple independence, a U-kRanks query exhibits
the optimal substructure property, i.e. the optimal solu-
tion of the larger problem is constructed from solutions of
smaller problems. This allows using a dynamic program-
ming algorithm. We now describe IndepU-kRanks, our
processing algorithm for U-kRanks queries under indepen-
dence.

We illustrate IndepU-kRanks algorithm using the ex-
ample depicted by Figure 7, where we are interested in U-
3Ranks query answer. In the shown table, a cell at row i and
column x indicates the value of Px,i. The rank 1 probabil-
ity of a tuple x is computed as Pr(x)×

∏
z:F(x)<F(z)(1−

Pr(z)), which is the probability that x exists and all tuples
with higher scores do not exist. The computation of the
probabilities in the remaining rows is based on the follow-
ing property:

Property 2 Under tuple independence and for i > 1,
Px,i = Pr(x) ×

∑
y:F(y)>F(x)(

∏
z:F(x)<F(z)<F(y)(1 −

Pr(z))× Py,i−1 �

The rationale behind Property 2 is that under indepen-
dence for tuple x to appear at rank i, we need only to con-
sider the probability that x is consecutive to every other tu-
ple y at rank i − 1. This probability is computed using the
probability that x exists, each intermediate tuple z between
x and y does not exist, and y appears at rank i− 1.

For example, in Figure 7, Pt2,2 = 0.9 × 0.3 = 0.27,
while Pt3,2 = (0.6 × 0.63) + (0.6 × 0.1 × 0.3) = 0.396.
The shaded cells indicate the U-3Ranks query answers at
each rank. Notice that the summation of the probabilities
of each row will be 1 if we completely exhaust the tuple
stream. This is because each row actually represents a hor-
izontal slice in all the possible worlds. This means that we
can report an answer from any row whenever the maximum
probability in that row is greater than the row probability

remainder. Notice also that the computation in each row
depends solely on the row above.

The above description gives rise to the following dy-
namic programming formulation. We construct a matrix M
with k rows, and a new column is added to M whenever we
retrieve a new tuple from the score-ranked stream. Upon
retrieving a new tuple t, the column of t in M is filled top
to bottom based on the following equation:

M [i, t] =


Pr(t)×

∏
z:F(t)<F(z)(1− Pr(z)) if i = 1

Pr(t)×
∑

y:F(y)>F(t)((
∏

z:F(t)<F(z)<F(y)

(1− Pr(z)))×M [i− 1, y]) if i > 1
(1)

For example in Figure 7, M [2, 3] = Pr(t3)×(M [1, 2]+
(1 − Pr(t2)) × M [1, 1]). Algorithm IndepU-kRanks
returns a set of k tuples {t1 . . . tk}, where ti =
arg Maxx M [i, x].

6 Experiments

We built our framework on top of RankSQL [17]. All ex-
periments were run on a 3GHz Pentium IV PC with 1 GB of
main memory, running Debian GNU/Linux3.1. Space nav-
igation algorithms, and a rule engine prototype were imple-
mented in C, and they interact with database through cur-
sor operations. We conducted extensive experiments eval-
uating the efficiency of our techniques in different settings.
We used synthesized datasets of different data distributions
generated by the R-statistical computing package [1]. Our
primary performance metrics are: (1) query execution time,
and (2) Scan Depth: the number of sequentially accessed
tuples to report uncertain top–k answers. In all our exper-
iments we used rank-aware plans as the source of score-
ranked tuple stream. We emphasize, however, that our tech-
niques are transparent from the underlying top–k algorithm.

Since the study of efficient dependency evaluation tech-
niques is beyond the scope of this paper, we implemented
an example Rule Engine that computes the probabilities of
partial states under tuple exclusiveness. However, our meth-
ods are not restricted to exclusiveness rules only, as dis-
cussed in Section 2.1. In [24], we demonstrated our meth-
ods with more sophisticated dependencies implemented us-
ing a Bayesian network Rule Engine. We do not discuss the
experimental results of this prototype in this paper.

6.1 The Näıve Approach

We illustrate the infeasibility of applying the naı̈ve ap-
proach of materializing possible worlds space, sorting each
world individually, and merging identical top–k answers.
Due to space explosion, we applied this approach to small
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databases of sizes less than 30 tuples with different sets of
generation rules. The materialization phase was the bottle-
neck in this approach consuming, on average, an order of
magnitude longer times than the merging phase. For exam-
ple, processing a database of 28 tuples and some tuple ex-
clusiveness rules yielded 524,288 possible worlds, and top–
k query answer was returned after 1940 seconds of which
1895 seconds were used to materialize the world space.

6.2 Effect of Confidence Distribution

We evaluate here the effect of confidence distri-
bution on execution time and scan depth. We used
datasets with the following (score,confidence) distribu-
tion pairs: (1)uu: score and confidence are uniformly
distributed, (2)un (mean x): score is uniformly distributed,
and confidence is normally distributed with mean x,
where x = 0.5, 0.9, and standard deviation 0.2, and (3)uexp
(x): score is uniformly distributed, and confidence is
exponentially distributed with mean x, where x = 0.2, 0.5.

Figures 8, 9 show the time and scan depth of
IndepU-Topk, respectively, while Figures 10, 11 show
the time and scan depth of IndepU-kRanks, respectively
with k values up to 1000. The best case for both algorithms
is to find highly probable tuples frequently in the score-
ranked stream. This allows obtaining strong candidates to
prune other candidates aggressively, and thus terminate the
search quickly. This scenario applies to un(mean 0.9) dis-
tribution pair where a considerable number of tuples are
highly probable. The counter scenario applies to uexp(0.2)
whose mean value forces confidence to decay relatively
fast leading to small number of highly probable tuples.
IndepU-Topk execution time is under 10 seconds for all
data distributions, and it consumes a maximum of 15,000
tuples for k=1000 under exponentially-skewed distribution.
The maximum scan depth of IndepU-kRanks is 4800 tu-
ple, however the execution time is generally larger (a max-
imum of 2 minutes). This can be attributed to the design of
both algorithms where bookkeeping and candidate mainte-
nance operations are more extensive in IndepU-kRanks.

6.3 Score-Confidence Correlations

We evaluate here the effect of score-confidence cor-
relation. We generated bivariate gaussian data over score
and confidence, and controlled correlation coefficient
by adjusting bivariate covariance matrix. Positive correla-
tions result in large savings since in this case high scored
tuples are attributed with high confidence, which allows
reducing the number of needed-to-see tuples to answer un-
certain top–k queries. Figures 12 and 13 show the effect of
correlation coefficient on the scan depth of IndepU-Topk
and IndepU-kRanks, respectively. Increasing the corre-
lation coefficient from 0.1 to 0.8 reduced the scan depth of
IndepU-Topk and IndepU-kRanks by an average of
20% and 26%, respectively. On the other hand, reversed
correlation has negative effects on the performance since it
leads to consuming more tuples to report answers. Decreas-
ing the correlation coefficient from -0.5 to -1 resulted in an
average of 1.5 order of magnitude increase in scan depth
for IndepU-Topk, and 1 order of magnitude increase for
IndepU-kRanks. The effect on execution time is similar.

6.4 Evaluating the General Algorithms

In this experiment, we evaluate the efficiency of
OPTU-Topk algorithm. We used databases of exclusive tu-
ples with uncorrelated, positively correlated, and negatively
correlated score and confidence values. Figures 14 and
15 show the scan depth and execution time of OPTU-Topk
algorithm. The execution time is under 100 seconds for val-
ues of k reaching 30. The time is spent by the algorithm
in maintaining the materialized states in the priority queue
before concluding an answer. However, for positively cor-
related data, the time is only under 1 second for all k values.
The scan depth of OPTU-Topk increased by an average of
1 order of magnitude when going from positively to nega-
tively correlated datasets. This can be explained based on
the fact that for positively correlated data, highly probable
states are obtained quickly after retrieving a small number
of tuples, while for negatively correlated data more tuples
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Figure 16. Rule set complexity

need to be seen before concluding an answer leading to ma-
terializing more states in the priority queue. We omit the
results of OPTU-kRanks due to space constraints.

6.5 Rule Set Complexity

We evaluated the effect of potential complexity of model
rules on the performance. We experimented with different
rule sets with different XOR degrees; which is the num-
ber of tuples that are exclusive with some given tuple.
Figure 16 shows the execution times of OPTU-Topk and
OPTU-kRanks with different XOR degrees. Increasing
the XOR degree results generally in increasing the execu-
tion time with an average of one order of magnitude when

going from XOR=2 to XOR=4, or XOR=4 to XOR=8 at the
same value of k. Increasing XOR degrees raises the cost in-
volved in each request to the rule engine since it increases
the possibility that a newly seen tuple is exclusive with other
tuples in the currently processed state, which leads to larger
computational overhead.

7 Related Work

Uncertain data management [15, 4, 16, 19] has received
an increasing importance with the emergence of different
practical applications in domains like sensor networks, data
cleaning, and location tracking. The Trio system [25, 20, 5]
introduced different working models to capture data uncer-
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tainty at different levels, and presented an elegant perspec-
tive of relating uncertainty with lineage and leveraging ex-
isting DBMSs, with an emphasis on uncertain data model-
ing. The Orion project [6, 7], deals with constantly evolving
data as continuous intervals and presents query processing
and indexing techniques to manage uncertainty over con-
tinuous intervals. However, it does not address possible
worlds semantics under membership uncertainty and gen-
eration rules. The Conquer project [12, 3] introduced query
rewriting algorithms to extract clean and consistent answers
from unclean data under possible worlds semantics, and
proposed methods to derive probabilities of uncertain data
items. The difficulties of top–k processing in sensor net-
works was addressed in [22] by introducing sampling tech-
niques to guide the acquisition of data from promising sen-
sors, while illustrating the infeasibility of applying tradi-
tional top–k techniques in this domain because of the inter-
play of uncertainty and score information.

A recent work in [26] builds on our query definitions,
and presents efficient algorithms to handle special cases of
our general search algorithms, where tuples are either inde-
pendent, or mutually exclusive, and only the most probable
U-Topk or U-kRanks answer is required. The work in [26]
adopts sorted score access to allow for probability compu-
tation, and uses special properties of independent and ex-
clusive tuples to heavily prune the answer space achieving
efficient execution.

8 Conclusions

To the best of our knowledge, this is the first paper to
address top–k query processing under possible worlds se-
mantics. We introduced new formulations interpreting the
semantics of top–k queries under uncertainty. We formu-
lated the problem as a state space search, and introduced
several query processing algorithms with optimality guar-
antees on the number of accessed tuples and materialized
search states. Our processing framework leverages existing
storage and query processing techniques and can be easily
integrated with existing DBMSs. our experiments show the
efficiency and scalability of our proposed algorithms.
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