
Succinct Indexes for Strings,

Binary Relations and Multi-labeled Trees

Jérémy Barbay ∗, Meng He ∗,

J. Ian Munro ∗, and S. Srinivasa Rao †

∗David R. Cheriton School of Computer Science,

University of Waterloo, Canada

{jbarbay, mhe, imunro}@uwaterloo.ca
†Computational Logic and Algorithms group,

IT University of Copenhagen, Denmark

ssrao@itu.dk

Technical Report CS-2006-24
of the David R. Cheriton School of Computer Science

Abstract

We define and design succinct indexes for several abstract data types (ADTs). The concept
is to design auxiliary data structures called succinct indexes that occupy asymptotically less
space than the information-theoretic lower bound on the space required to encode the given
data, and support an extended set of operations using the basic operators defined in the ADT.
As opposed to succinct encodings, The main advantage of succinct indexes is that we make
assumptions only on the ADT through which the main data is accessed, rather than the way
in which the data is encoded. This allows more freedom in the encoding of the main data. In
this paper, we present succinct indexes for various data types, namely strings, binary relations
and multi-labeled trees. Given the support for the interface of the ADTs of these data types,
we can support various useful operations efficiently by constructing succinct indexes for them.
When the operators in the ADTs are supported in constant time, our results are comparable to
previous results, while allowing more flexibility in the encoding of the given data.

Using our techniques, we design the first succinct encoding that represents a string of length
n over alphabet [σ] using nHk + o(n lg σ) bits 1 that support access / rank / select operations
in o((lg lg σ)3) time. We also design the first succinct text index using nHk + o(n lg σ) bits that
supports pattern matching queries in O(m lg lg σ + occ lg1+ε n lg lg σ) time, for a given pattern
of length m. Previous results on these two problems either have a lg σ factor instead of lg lg σ
in terms of running time, or are not compressible, but our results do not have such problems.
More results are reported in the paper.

1We use lg n to denote dlog2 ne.

1 Introduction

As a result of the rapid growth of large electronic data sets, a new trend of the design of data struc-
tures is to represent them succinctly. Succinct data structures were first proposed by Jacobson [12]
to encode bit vectors, (unlabeled) trees and planar graphs in space close to the information-theoretic
lower bound, while supporting efficient navigational operations. This technique was successfully
applied to various other abstract data types, such as dictionaries, strings, binary relations [2] and
labeled trees [2, 8]. In most of the previous results, researchers usually encode the given data, and
use both the encoding and auxiliary data structures to support various operations. Therefore, these
techniques usually require the given data to be stored in specific formats. We thus call this type of
design succinct encodings of data structures.

The concept of succinct indexes was originally proposed to prove the lower bounds on the space
required to encode some data structures: it constrains the definition of the encoding to the index
[5, 13]. In this paper, we apply the idea to the design of succinct data structures. Given an ADT,
our goal is to design auxiliary data structures (i.e. succinct indexes) that occupy asymptotically
less space than the information-theoretic lower bound on the space required to encode the given
data, and support an extended set of operations using the basic operators defined in the ADT.
Although succinct indexes and succinct encodings are closely related, they are different concepts.
Succinct indexes make assumptions only on the ADT through which the given data is accessed,
while succinct encodings represent data in specific formats. Succinct indexes are also more difficult
to design: one can design a succinct encoding from a succinct index, but the converse is not true.

Although succinct indexes were previously presented only as a technical restriction to prove
lower bounds, we argue than in fact they are more adequate to the design of a library of succinct
tools for multiple usages than succinct encodings, and that they are even directly required in certain
applications. Some of the advantages of succinct indexes over succinct encodings are:

1. A succinct encoding requires the given data to be stored in a specific format. However, a
succinct index applies to any encoding of the given data that supports the ADT. Thus for
succinct indexes, the given data can be either stored to achieve compression or to achieve
optimal support of the operations defined in the ADT.

2. The existence of two succinct encodings supporting two non-identical sets of operations over
the same ADT does not imply the existence of a single encoding supporting the union of the
two sets of operations without storing the given data twice, because they may not store it
in the same format. However, we can always combine two different succinct indexes for the
same ADT to yield one index that supports the union of the two sets of the operations.

3. In some cases, we do not need to store the given data explicitly because they can be computed
from different but related data and still support the operations defined in the ADT. Hence a
succinct index is the only additional memory cost.

In this paper, we design succinct indexes for strings, binary relations and multi-labeled trees.
Given the support for the interface of these ADTs, we can support an extended set of operations
within a o((lg lg σ)3) factor of the running time of the operators in ADTs, where σ is the size of the
alphabet of the characters or labels (See Section 2 for definitions). The succinct indexes occupy
negligible space compared to the information-theoretic lower bound for representing the given data.

Based on the succinct indexes for strings, we design the first succinct encoding that represents a
string of length n over alphabet [σ] using nHk+o(n lg σ) bits 2, which supports access / rank / select

2Hk denotes the kth order entropy of a given string [10].

1

operations in o((lg lg σ)3) time. We also design the first succinct text index using nHk + o(n lg σ)
bits that supports searching for a pattern of length m in O(m lg lg σ + occ lg1+ε n lg lg σ) time.

2 Background

Here we outline the design of succinct data structures for several abstract data types. We cite the
results that we use in the design of succinct indexes, and the results which we improve upon.

2.1 Bit Vectors

A key structure we use is a bit vector B of size n that supports rank and select operations. We as-
sume that the positions in B are numbered 1, 2, ..., n. For α ∈ {0, 1}, the operator bin rankB(α, x)
returns the number of occurrences of α in B before position x, and the operator bin selectB(α, r)
returns the position of rth α in B. We omit the subscript B when it is clear from the context.
Lemma 1 addresses the problem, in which part (a) is from [4, 12], and part (b) is from [16].

Lemma 1. For a bit vector B of length n, we can support the access to each bit, bin rank, and
bin select in O(1) time using either: (a) n+o(n) bits, or (b) lg

(

n
v

)

+O(n lg lg n/ lg n) bits, where
v is the number of 1s in B .

A less powerful version of bin rank(1, x), denoted bin rank′(1, x), returns the number of 1s in
B before position x only if B[x] = 1. The following lemma addresses this problem.

Lemma 2 ([16]). A bit vector B of length n with v 1s can be represented using lg
(n
v

)

+ o(v) +
O(lg lg n) bits to support access to each bit, bin rank′(1, x), and bin select(1, r) in O(1) time.

2.2 Strings and Binary Relations

Grossi et al. [10] generalized bin rank and bin select operators to strings (or sequences) over
alphabets of arbitrary size σ, and the operations include: string rank(α, x), which returns the
number of occurrences of α before position x; string select(α, r), which returns the position of the
rth occurrence of α in the string if any, or ∞; and string access(x), which returns the character
at position x in the string. They gave an encoding that takes (n + o(n)) lg σ bits to support these
three operators in O(lg σ) time, where n is the length of the string. Golynski et al. [9] gave an
encodings that uses n (lg σ + o(lg σ)) bits and supports string rank(α, x) and string access(x)
in O(lg lg σ) time, and string select(α, r) in constant time.

Barbay et al. [2] extended the problem to the encoding of sequences of n objects where each
object can be associated a subset of labels from [σ], this association being defined by a binary
relation of t pairs from [n]×[σ]. The operations include: label rank(α, x), which returns the
number of objects labeled α preceding x; label select(α, r), which returns the position of the r th

object labeled α if any, or ∞; and label access(x, α), which checks whether object x is associated
with label α. Their representation supports label rank and label access in O(lg lg σ) time, and
label select in constant time using t(lg σ + o(lg σ)) bits 3.

2.3 Ordinal Trees

An ordinal tree is a rooted tree in which the children of a node are ordered and specified by their
rank. The preorder and postorder traversals of trees are well-known. We introduce in this paper
a different order on the traversal of tree nodes, namely DFUDS, which is the order associated with

3In this paper, we assume that each object is associated with at least one label (thus t ≥ n), and that n ≥ σ. It
is shown in [2] how to extend the results to other cases by simple reductions.

2

the depth first unary degree sequence [3] representation, where all the children of a node are listed
before its other descendants (see Figure 2 in Appendix A for an example).

Various succinct data structures have been designed to represent ordinal trees ([3, 8, 12, 15]).
Among them we list the most recent result by Geary et al. [8]. They proposed a structure that uses
2n + o(n) bits, which is close to the lower bound suggested by information theory (2n − Θ(lg n)
bits), and supports a rich set of navigational operations (we refer to each node by its preorder
number):

• child(x, i), the ith child of node x for i ≥ 1;
• child rank(x), the number of left siblings of node x;
• depth(x), the depth of x, i.e. the number of edges in the rooted path to x;
• level anc(x, i), the ith ancestor of node x for i ≥ 0 (given a node x at depth d, its ith ancestor

is the ancestor of x at depth d − i);
• nbdesc(x), the number of descendants of x;
• degree(x), the degree of x, i.e. the number of its children.

2.4 Labeled and Multi-Labeled Trees

A Labeled tree is a tree in which each node is associated with a label from a given alphabet [σ],
while in a multi-labeled tree, each node is associated with at least one label 4. We use n to denote
the number of nodes in a labeled / multi-labeled tree, and t to denote the total number of node-
label pairs in a multi-labeled tree 5. As we only consider ordinal trees, we assume that labeled /
multi-labeled trees are ordinal trees in the rest of the paper.

Geary et al. extended the operators in Section 2.3 to support some operations on labeled trees
in constant time, but their data structure uses 2n + n(lg σ + O(σ lg lg lg n/ lg lg n)) bits, which is
much more than the asymptotic lower bound of n (lg σ − o(lg σ)) suggested by information theory
when σ is large. Ferragina et al. [6] proposed another structure for labeled trees that locates the
first child6 of a given node x labeled α in constant time, but this structure does not support the
retrieval of the ancestors or descendants by labels efficiently. It also uses 2n lg σ +O(n) bits, which
is almost twice the minimum space required to encode the tree. Barbay et al. [2] gave an encoding
for labeled trees using n (lg σ + o(lg σ)) bits to support the retrieval of the ancestors or descendants
by labels in O(lg lg σ) time.

3 Succinct Indexes

In this section, we design succinct indexes for strings, binary relations, and multi-labeled trees. We
present succinct indexes in two general steps: first, we define the interface of the ADTs; second, we
design succinct indexes for the ADTs defined. Note that for some data structures, the definition of
ADTs is trivial (such as strings), while for others, it may be not (such as multi-labeled trees). In
any case, we always try to make our ADT as basic as possible.

3.1 Strings

We first design succinct indexes for a given string S of length n over alphabet [σ]. We adopt the
common assumption that σ ≤ n (otherwise, we can reduce the alphabet size to the number of
characters that occur in the string). We define the ADT of a string through the string access

4We use [n] to denote the set {1, 2, ..., n}.
5In this paper, we assume that each node of the tree is associated with at least one label (thus t ≥ n), and that

n ≥ σ. It is shown in [2] how to extend the results to other cases by simple reductions.
6Ferragina et al.’s encoding also supports finding all the children of x labeled α in constant time per child.

3

operator that returns the element of the string at any given location. To generalize the operators
on strings defined in Section 2.2 to include “negative” searches, we define the concept of patterns
on labels as follows (we use the array notation for strings to refer to its characters and substrings):

Definition 1. Consider a string S[1..n] over [σ]. We say a position x ∈ [n] matches a label-pattern
α ∈ [σ] if S[x] = α. A position x ∈ [n] matches a label-pattern ᾱ if S[x] 6= α. We also define [σ̄] to
be the set {1, . . . , σ}.

It would be quite reasonable to extend the notation of a label-pattern to be (at least) an
arbitrary subset of [σ], but we will not. Consider, then, the following operators:

Definition 2. Consider a string S ∈ [σ]n, a label-pattern α ∈ [σ] ∪ [σ̄] and a position x ∈ [n] in
S. The α-predecessor of position x, denoted by string pred(α, x), is the last position matching α
before position x if it exists. Similarly, the α-successor of position x, denoted by string succ(α, x),
is the first position matching α after position x if it exists.

To illustrate the operations above, consider the string bbaaacdd. We have string pred(a, 7) =
5, as position 5 is the last position in the string before position 7 whose character is a. We also
have string pred(a, 5) = 2, as position 2 is the last position before position 5 whose character is
not a. With these definitions, we now begin to state our results.

Lemma 3. Given support for string access in O(f(n, σ)) time on a string S ∈ [σ]n, us-
ing a succinct index of n · o(lg σ) bits, we can support string rank for any label-pattern in
O(lg lg σ lg lg lg σ(f(n, σ) + lg lg σ)) time, and string select for any label-pattern α ∈ [σ], in
O(lg lg lg σ(f(n, σ) + lg lg σ)) time.

Proof. We first observe that for the string rank operator, as string rank(α, x) = x −
string rank(α, x) − 1 for α ∈ [σ], we only need to show how to support it for α ∈ [σ].

We conceptually treat the given string S as an n×σ table E with rows indexed by 1, 2, ..., σ and
columns by 1, 2, ..., n. For any α ∈ [σ] and x ∈ [n], Entry E[α][x] = 1 if S[x] = α, and E[α][x] = 0
otherwise. When reading E in row major order, we have a conceptual bit vector A of length σn
with exactly n 1s in it. As in [9], we divide A into blocks of size σ. The cardinality of a block is
the number of 1s in it. In order to make use of string access to support operators on blocks,
we group blocks into chunks. To be specific, we conceptually divide S into chunks of length σ
(we assume that n is divisible by σ for simplicity), denoted by C1, C2, ..., C[n/σ]. We observe that
Ci[j] = S[(i − 1)σ + j], where i ∈ [n/σ] and j ∈ [σ]. We also observe that each chunk consists of
exactly σ blocks, one for each row of the chunk. We denote the block corresponding to the αth row
of Ci by Ci,α, where α ∈ [σ]. We store the following data structures:

• For the entire string, we construct a bit vector B which stores the cardinalities of all the blocks
in unary, by the order they appear in A, i.e. B = 1l101l20...1ln0, where li is the cardinality of
the ith block of A. The length of B is 2n, as there are exactly n 1s in A, and n blocks. We
store it using Part (a) of Lemma 1 in 2n + o(n) bits.

• For each chunk Ci, we construct a bit vector Xi that stores the cardinalities of the blocks in
Ci in unary from top to bottom, i.e. Xi = 01li,101li,20...1li,σ0, where li,α is the cardinality of
block Ci,α. We store it in in 2σ + o(σ) bits using Part (a) of Lemma 1 as its length is 2σ.

• For each chunk Ci, we construct an array Ri such that Ri[j] = bin rankD(1, j) mod lg σ,
where D is block Ci,Ci[j]. Each element of Ri is an integer in the range [0, lg σ − 1], so Ri can
be stored in σ lg lg σ bits.

4

• For each chunk Ci, we construct an auxiliary structure Pi to support the computation of a
certain permutation defined later in the proof;

• For each block Ci,α, let Fi,α be a conceptual, “sparsified” bit vector for Ci,α, in which only
every lg σth 1 of Ci,α is present (i.e. Fi,α[j] = 1 iff Ci,α[j] = 1 and bin rank(1, j) on Ci,α is
divisible by lg σ). We construct a y-fast trie [19] over Fi,α. This y-fast trie uses O(li,α/ lg σ ×
lg σ) = O(li,α) bits (as the trie is on universe [σ], we use a word size of O(lg σ) for it). The σ
y-fast tries corresponds to all the blocks in a given chunk thus occupies O(σ) bits.

Using the bit vector B, we see that if we can compute bin rank(1, x) and bin select(1, r) for
any given block, we can support string rank and string select operators in additional O(1)
time for α ∈ [σ] (See Section 2 of [9] for details).

To support rank/select on blocks, we first show how to support bin rank(1, j) on block
D = Ci,Ci[j] (i.e. to compute bin rank′(1, j) for a given block). With Fi,α, we can compute
lg αbbin rankCi,α

(1, j)/ lg αc in O(lg lg σ) time using the y-fast trie for Ci,α, and we call it the
approximate rank of j in Ci,α. To support bin rankD(1, j), we first compute Ci[j] in O(f(n, σ))
time. Then we compute the approximate rank of j on D in O(lg lg σ) time using the y-fast trie
corresponding to D, and retrieve Ri[j] in constant time. The sum of the above two is the result.
Thus we can compute bin rank(1, j) on block D in O(f(n, σ) + lg lg σ) time.

We construct a permutation πi for each chunk Ci. To obtain the sequence of πi, for α = 1, 2, ..., σ,
if α appears in Ci, we write down the positions (relative to the starting position of the chunk) of
all its occurrences in increasing order. We use π−1

i to denote its inverse. We see that π−1
i (k) is

equal to the sum of the following two values: the number of characters smaller than Ci[k] in Ci,
and bin rank(1, k) + 1 on block D. The first value can be easily computed using Xi in constant
time, and we have already showed how to compute the second value in O(f(n, σ) + lg lg σ) time.
Therefore, we can compute any element of π−1

i in O(f(n, σ)+ lg lg σ) time. For chunk Ci, using the
auxiliary structure (Pi) that occupies O(lg σ/ lg lg lg σ) bits of space, we can compute any element
of πi in O(lg lg lg σ(f(n, σ) + lg lg σ)) time [14] (note that the f(n, σ) + lg lg σ term in the above
claim comes from the time required to retrieve a given element of π−1

i).
Golynski et al. [9] showed how to compute string select by a single access to πi plus a few

constant-time operations. When combined with our approach, we can support string select

for any label α ∈ [σ] in O(lg lg lg σ(f(n, σ) + lg lg σ)) time. It was also shown in [9] how to
compute string rank by calling string select O(lg lg σ) times. Thus we can support operator
string rank in O(lg lg σ lg lg lg σ(f(n, σ) + lg lg σ)) time.

We finally calculate the space cost of our index. As there are n/σ chunks, the sum of space
cost of the auxiliary structures constructed for all the chunks is clearly O(n lg σ/ lg lg σ) bits. The
overall space cost of all the auxiliary structures is therefore n · o(lg σ).

Lemma 4. Using at most 2n+o(n) additional bits, the index of Lemma 3 also supports string pred

and string succ in O(lg lg σ lg lg lg σ(f(n, σ) + lg lg σ)) time for label-pattern α.

Proof. We only show how to support string pred, and string succ can be supported similarly.
As string pred(α, x) = string select(α, string rank(α, x)) for α ∈ [σ], we only need to show
how to support string pred(α, x) when α ∈ [σ̄].

We require another auxiliary structure. In the bit vector A, there are n 1s, so there are at
most n runs of consecutive 1s. Assume that there are u runs and their lengths are p1, p2, ..., pu,
respectively. We store these lengths in unary using a bit vector D, i.e. D = 1p101p20...1pu0. The
length of D is at most 2n, and we store it using Part (a) of Lemma 1 in at most 2n + o(n) bits.

5

COLUMNS = 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1
0 1 0 1 0
0 0 0 1 0
1 0 1 1 0
1 1 0 0 1

E=
ROWS = 3, 4, 1, 4, 3, 1, 2, 3, 4

Figure 1: An example of the encoding of a binary relation.

Now we show how to support string pred(α, x) when α ∈ [σ̄]. Assume that c is the character
such that α = c. We first retrieve S[x − 1] in O(f(n, σ)) time. If S[x − 1] 6= c, then we return
x − 1. Otherwise, we need to compute the number of 1’s before position (c − 1)σ + x − 1 in A
(this position in A corresponds to the (x − 1)th position in the cth row in table E). We denote
the result by j. As j = bin rankB(1, bin selectB(0, (c − 1)n/σ)) + string rank(c, x − 1), we
can compute j in O(lg lg σ lg lg lg σ(f(n, σ) + lg lg σ)) time. v = bin selectD(1, j + 1) is the
position in D that corresponds to the (x − 1)th position in the cth row in table E. Thus q =
v − bin selectD(0, bin rankD(0, v)) is the number of consecutive 1s preceding position v in D
(including the 1 at position v). If q ≥ x− 1, then there is no 0 in front of position x− 1 in row c of
table E, so we return −∞. Otherwise, we return x − q − 1 as the result. All the above operations
take O(lg lg σ lg lg lg σ(f(n, σ) + lg lg σ)) time.

Combining Lemma 3 and Lemma 4, we have our first main result:

Theorem 1. Given support for string access in O(f(n, σ)) time on a string S ∈ [σ]n, using
a succinct index of n · o(lg σ) bits, we can support string rank, string pred and string succ

for any label-pattern in O(lg lg σ lg lg lg σ(f(n, σ)+ lg lg σ)) time, and string select for any label-
pattern α ∈ [σ] in O(lg lg lg σ(f(n, σ) + lg lg σ)) time.

3.2 Binary Relations

We define the interface of the ADT of a binary relation through the following operator:
object access(x, i), which returns the ith label associated with x in lexicographic order, and
returns +∞ if no such label exists. We have the following result:

Theorem 2. Given support for object access in f(n, σ, t) time on a binary relation on t
pairs from an object set [n] and a label set [σ], using a succinct index of t · o(lg σ) bits,
we can support label rank for any label-pattern and label access for any label α ∈ [σ] in
O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time, and label select for any label-pattern α ∈ [σ] in
O(lg lg lg σ(f(n, σ, t) + lg lg σ)) time.

Proof. As with strings, we also conceptually treat a binary relation as an n× σ table E, and entry
E[α][x] = 1 iff object x is associated with label α. A binary relation on t pairs from [n] × [σ] can
be stored as follows as in [2] (See Figure 1 for an example):

• a string ROWS of length t drawn from alphabet [σ], such that the ith label of ROWS is the label
of the ith pair in the column-major order traversal of E;

• a bit vector COLUMNS of length n+ t which encodes the number of labels associated with each
object in unary.

To design a succinct index for binary relations, we explicitly store the bit vector COLUMNS using
Part (a) of Lemma 1 in n + t + o(n + t) bits. We now show how to support string access

on ROWS using object access. To compute the ith character in ROWS, we need to compute the
object it corresponds to (we call it x), and the rank of the label it corresponds to among all

6

the labels associated with x (we call it r). The position of the 0 in COLUMNS corresponds to
the ith character in ROWS is l = bin selectCOLUMNS(0, i), so α = bin rankCOLUMNS(1, l) + 1, and
r = l−bin selectCOLUMNS(1, α−1) if α > 1 (r = l otherwise). Thus we can support string access

by calling object access once, with additional operations in constant time.
We store a succinct index for ROWS using Theorem 1 in t · o(lg σ) bits. As we can sup-

port string access on ROWS using object access, the index can support string rank and
string select on ROWS for any label α ∈ [σ]. Using the approaches in [2] (Barbay et al. [2]
showed how to support label rank, label select, and label access operations on binary rela-
tions using rank / select on ROWS and COLUMNS), we can support the operators listed in this theorem.
The running time of the algorithms can be easily computed from Theorem 1 and [2]. The space of
the index is the sum of space cost of storing COLUMNS and the index for ROWS, which is t ·o(lg σ).

3.3 Multi-Labeled Trees

We define the interface of the ADT of a multi-labeled tree to include the navigational operators
defined in Section 2.3 and the following operator: node label(x, i), which returns the ith label
associated with node x in lexicographic order. Recall that we refer to nodes by their preorder
numbers (i.e. node x is the xth node in the preorder traversal). In this ADT, node label(x, i)
supports operations on labels, while the other operators merely support navigational operations
over the tree structure. One may argue that the ADT includes too many navigational operators
to make the index applicable to various types of tree representation. However, this is not a major
issue. First, for multi-labeled trees, researchers mainly concentrate on supporting more powerful
queries on labels over the trees, rather than pure navigational operations, which makes it reasonable
to assume to have a rich set of navigational operators available. Second, there are ways to represent
ordinal trees and support the above navigational operations using 2n + o(n) bits [8].

We now present the definition of permutations on binary relations and a related lemma that we
need to design succinct indexes for multi-labeled trees.

Definition 3. Given a permutation π on [n] and a binary relation R ∈ [σ] × [n], the permuted
binary relation π(R) is the relation such that (x, α) ∈ π(R) if and only if (π−1(x), α) ∈ R.

Lemma 5. Consider a permutation π on [n], such that access to π(i) and π−1(i) is sup-
ported in O(1) time. Given a binary relation R ∈ [σ] × [n] of cardinality t, and support for
object access on R in f(n, σ, t) time, using a succinct index of t · o(lg σ) bits, we can support
label rank and label access in O(lg lg σ lg lg lg σ(f(n, σ, t)+ lg lg σ)) time, and label select in
O(lg lg lg σ(f(n, σ, t) + lg lg σ)) time, on both R and π(R) for any label-pattern α ∈ [σ].

Proof. In the proof of Theorem 2, we showed how to support string access on ROWS using
object access on R and bin rank / bin select on COLUMNS. We then designed a succinct index
for R using a succinct index for ROWS and the bit vector COLUMNS. We denote ROWS′ and COLUMNS′

to be the string and bit vector corresponding to π(R), and store COLUMNS′ using using Part (a) of
Lemma 1 using n + t + o(n + t) bits. Thus to design a succinct index to support efficient retrieval
for both R and π(R), we only need to show how to support string access on the string ROWS′.

To support string access(i) on ROWS′, We first compute the object x corresponding to the ith

element of ROWS′ using x = bin rankCOLUMNS′(1, i) + 1. For r = i − bin selectCOLUMNS′(1, x) − 1, we
see that the ith element of ROWS′ corresponds to the rth label of x in π(R). As object x corresponds
to object y = π−1(x) in ROWS, we have that string accessROWS′(i) = object accessR(y, r). Thus
we can support string accessROWS′(i) in O(f(n, σ, t)) time.

7

It is not clear how to support the list of the children of a given node based on preorder traversal.
But as seen in Figure 2 in Appendix A, the children of any given node are consecutive in the
DFUDS order traversal of the tree. To make full use of the fact, we present a method to perform
the conversions of the preorder and DFUDS order numbers of a given node (See Appendix A for the
proof):

Lemma 6. Using the DFUDS representation of an ordinal tree (Benoit et al. [3]) in 2n + o(n) bits,
we can support the following operations in O(1) time:

• find dfuds(i), which returns the rank in DFUDS order of the ith node in preorder;
• find pre(i), which returns the rank in preorder of the ith node in DFUDS order.

To efficiently find all the α-ancestors of any given node, for each node and for each of its labels
α we encode the number of α-ancestors of x. To measure the maximum number of such ancestors,
we define the recursivity of a node, motivated by the notion of document recursion level of a given
XML document [20].

Definition 4. The recursivity ρα of a label α in a multi-labeled tree is the maximum number of
occurrences of α on any rooted path of the tree. The average recursivity ρ of a multi-labeled tree
is the average recursivity of the labels weighted by the number of nodes associated with each label α
(denoted by tα): ρ = 1

t

∑

α∈[σ](tαρα).

Note that ρ is usually small in practice, especially for XML trees. Zhang et al. observed that
in practice the document recursion level (when translated to our more precise definition, it is the
maximum value of all ρα’s minus one, which can be easily used to bound ρ) is often very small: in
their data sets, it was never larger than 10 [20, Table 2]. With this definition, we have:

Theorem 3. Consider a multi-labeled tree on n nodes and σ labels, associated in t relations, of
average recursivity ρ. Given support for the navigational operations in O(1) time, and node label

in O(f(n, σ, t)) time, using a succinct index of t(lg ρ + o(lg(ρσ))) bits, we can support (for a given
node x) the enumeration of:

• the set of α-descendants of x (denoted by D) in O(|D| lg lg σ lg lg lg σ(f(n, σ, t)+lg lg σ)) time;
• the set of α-children of x (denoted by C) in O(|C| lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time;
• the set of α-ancestors of x (denoted by A) in O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ) +

|A|(lg lg ρα + lg lg lg σ(f(n, σ, t) + lg lg σ))) time.

Proof. (sketch) The sequence of nodes referred by their preorder numbers, and the sequence of
nodes referred by their DFUDS numbers form two different binary relations with their associated
label sets respectively. Lemma 6 provides constant-time conversions between these two sequences,
and node label(x, i) supports object access on the binary relation between the set of nodes in
preorder and the set of labels. By Lemma 5, we can construct an succinct index R for these two
binary relations using t · o(lg σ) bits, and support label rank, label select and label access

operations on either of them efficiently.

The support of the relations between nodes in preorder and the labels enables us to enumerate
of all descendants of a node x matching label α in O(|D| lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time
using the techniques in Barbay et al. [2]. The same technique, used with the DFUDS order, enables
us to enumerate all children of a node x matching α in O(|C| lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ))
time, as the DFUDS order traversal lists the children of any given node consecutively.

8

As there is no order in which the ancestors of each node are consecutive, we store for each label α
of a node x the number of ancestors of x matching α. To be specific, for each label α such that ρα >
1, we represent those numbers in one string Sα ∈ [ρα]tα , where the ith number of Sα corresponds
to the ith node labeled α in preorder. As the lengths of the strings (Sα)α∈[σ] are implicitly encoded
in R, we just need to encode for each label α its recursivity ρα in unary, using at most t + σ bits.
We use the encoding of Golynski et al. [9] to encode each string Sα in tα(lg ρα + o(lg ρα)) bits to
support string rank and string access in O(lg lg ρα) time and string select in constant time.
The total space used by these strings is

∑

α∈[σ] tα(lg ρα +o(lg ρα)). By concavity of the lg function,

this is at most
(

∑

α∈[σ] tα

)(

lg
(

P

α∈[σ] tαρα
P

α∈[σ] tα

)

+ o
(

P

α∈[σ] tαρα
P

α∈[σ] tα

))

= t(lg ρ + o(lg ρ)).

To support the enumeration of all the α-ancestors of a node x, we first find from R the number
of α-nodes preceding x in preorder (denoted by px) using label rank. Then we initialize i to 1 and
iterate as follows: find the position pi in Sα of the character i immediately preceding position px: it
corresponds to the pi

th α-node in preorder (this can be located using label select on R). If this
node is an ancestor of x (this can be checked using depth and level anc in constant time), output
it, increment i and iterate, otherwise stop. Each iteration contains a label select on R and some
rank and select operations on Sα, so each is performed in O(lg lg ρα + lg lg lg σ(f(n, σ, t) + lg lg σ))
time. Hence it takes O(lg lg σ lg lg lg σ(f(n, σ, t)+lg lg σ)+|A|(lg lg ρα+lg lg lg σ(f(n, σ, t)+lg lg σ)))
time to enumerate the set A. The overall space used is t(lg ρ + o(lg(ρσ))) bits.

We can also support the retrieval of the first α-descendant (children, or ancestor) of node x
that appears after node y in preorder:

Corollary 1. Using an additional 2n + o(n) bits, we can also support (for any two given nodes x
and y) the selection of:

• the first α-descendant of x after y in preorder in O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time;
• the first α-children of x after y in preorder in O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time;
• the first α-ancestor of x after y in preorder in O(lg lg ρα + lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ))

time.

Proof. (sketch) Using the index in Theorem 3, we can easily support the first two operations. To
support the search for the first α-ancestor of x after y, we encode the structure of the tree and
support the LCA operation (i.e. computing the lowest common ancestor of two given nodes) in
constant time using 2n + o(n) bits [17]. We assume that y precedes x in preorder (otherwise the
operator return ∞), and that y is an ancestor of x (if not, the problem can be reduced to the search
for the first α-ancestor of node x after node LCA(x, y)).

Using rank and select on the relation R and some navigational operators, we can find the first
α-descendant z of y in preorder in O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time. The node z is not
necessarily an ancestor of x, but it has the same number of α-ancestors (we denote the number by
i) as the node we are looking for. We can retrieve i from the string Sα in O(lg lg ρα) time. Finally,
the first α-ancestor of x after y is the α-node corresponding to the value i just before the position
corresponding to x in Sα, found in O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ) + lg lg ρα) time.

Remark: The operations on multi-labeled trees are important for the support of XPath queries
for XML trees [1, 2]. The main idea of our algorithms is to construct indexes for binary relations
for different orders to traverse the trees. Note that without succinct indexes, we need to encode
different binary relations separately and waste a lot of space.

9

4 Applications

4.1 High-Order Entropy-Compressed Succinct Encodings for Strings

Given a string S of length n over alphabet [σ], we now design a high-order entropy-compressed
succinct encoding for it that supports string access, string rank, and string select efficiently.
Theorem 2.2 in [9] claims that one can represent S in nHk + o(n lg σ) bits and support the above
operations. However, the claim was based on the assumption that by storing π−1 for all the chunks,
the string S is stored explicitly. As the substring corresponding to each chunk is not π−1, the above
assumption is false. With our succinct indexes, we can now achieve such a goal.

Theorem 4. Given a string S of length n over alphabet [σ], we can represent it in nHk + o(n lg σ)
bits for any positive integer k such that k+lg σ = o(lg n), and support string access in O(1) time.
The representation also supports string rank, string pred and string succ for any label-pattern
in O((lg lg σ)2 lg lg lg σ), and string select for any label-pattern α ∈ [σ] O(lg lg σ lg lg lg σ)) time.

Proof. We use the approach presented by Grossi and Sadakane [18] to store S in nHk +
O(n lg n lg σ/ lg lg n) (Hk denotes the kth order entropy of S) for any positive integer k such
that k + lg σ = o(lg n). This representation allows us to retrieve S[i] in O(1) time (i.e. op-
erator string access can be supported in O(1) time). We store a succinct index for S us-
ing Theorem 1, and the support for the above operations immediately follows. The over-
all space is nHk + O(n lg σ lg n/ lg lg n) + O(n lg σ/ lg lg lg σ). The last two terms sum up to
O(n lg σ(lg lg n/ lg n + 1/ lg lg lg σ)) = o(n lg σ). 7

Remark: Using similar approaches, we can design succinct encodings for binary relations and
multi-labeled trees based on our succinct indexes, and compress the underlying strings (recall that
we reduce the operations on binary relations and multi-labeled trees to rank/select on strings and
bit vectors) to high-order entropies of the strings.

4.2 High-Order Entropy-Compressed Text Indexes for Large Alphabets

Text indexes are data structures that facilitate text searching. Given a text string T of length n
and a pattern string P of length m, whose symbols are drawn from the same fixed alphabet Σ,
the goal is to look for the occurrences of P in T . We consider three types of queries: existential
queries, cardinality queries, and listing queries. An existential query returns a boolean value that
indicates whether P is contained in T . A cardinality query returns the number of occurrences of P
in T (occ denotes the result). A listing query lists all the positions of occurrences of P in T .

We now apply our index to design space-efficient suffix arrays. We first present the following
lemma to encode strings in 0th order entropy while supporting rank and select:

Lemma 7. Given a string S of length n over alphabet [σ], we can represent it in n(H0 + o(lg σ))
bits to support string access and string rank for any label-pattern α in O(lg lg σ) time, and
string select for any label-pattern α ∈ [σ] in O(1) time.

For the proof of Lemma 7, see Appendix B. It is known that we can represent suffix arrays by
encoding the Burrows-Wheeler transformed string of the raw text (denoted by T bwt) appropriately
[11] [7]. Ferraginaet al. [7] also presented how to design high-order entropy-compressed suffix array
given an encoding of T bwl that occupies space in 0th order entropy plus an appropriate lower order
term. When combine these results with Lemma 7, the following theorem immediately follows:

7If σ <
√

lg n/2, we can support all the operations in constant using table lookups. When σ ≥
√

lg n/2, we can
bound n in terms of σ, and hence this term is o(n lg σ).

10

Theorem 5. A text string T of length n over alphabet [σ] can be stored using nHk + o(n lg σ)) bits
(for any k ≤ β lgσ n and 0 < β < 1), where Hk denotes the kth order entropy of T . Using this, given
a pattern P of length m, we can answer existential and cardinality queries in O(m lg lg σ) time,
list each occurrence in O(lg1+ε n lg lg σ) time for any ε where 0 < ε < 1, and output a substring of
length l in O((l + lg n) lg lg σ) time.

Remark: Grossi et al.[10] designed the first text index that uses nHk+o(n) lg σ bits, and support
existential and cardinality queries in O(m lg σ + polylog(n)) time. However, the lg σ factor is not
good for texts over large alphabets. Golynski et al. [9] reduced this factor to a lg lg σ, but their
index is not compressible. Our text index has the advantages of both these indexes.

5 Concluding Remarks

In this paper, we define succinct indexes for the design of data structures. We show their advantages
(listed in Section 1) by presenting succinct indexes for strings, binary relations and multi-labeled
trees, and applying them to various applications. We expect that the concept of succinct indexes
will influence the design of succinct data structures.

11

References

[1] Jérémy Barbay. Adaptive search algorithm for patterns, in succinctly encoded XML. Technical Report
CS-2006-11, University of Waterloo, Ontario, Canada, 2006.

[2] Jérémy Barbay, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Adaptive searching in suc-
cinctly encoded binary relations and tree-structured documents. In Proceedings of the 17th Annual
Symposium on Combinatorial Pattern Matching, pages 24–35. Springer-Verlag LNCS 4009, 2006.

[3] David Benoit, Erik D. Demaine, J. Ian Munro, and Venkatesh Raman. Representing trees of higher
degree. In Proceedings of the 6th International Workshop on Algorithms and Data Structures, pages
169–180. Springer-Verlag LNCS 1663, 1999.

[4] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. In Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 383–391, 1996.

[5] Erik D. Demaine and Alejandro Lopez-Ortiz. A linear lower bound on index size for text retrieval. In
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete algorithms, pages 289–294, 2001.

[6] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for optimal
succinctness, and beyond. In Proceedings of the 46th IEEE Symposium on Foundations of Computer
Science, pages 184–196, 2005.

[7] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An alphabet-friendly FM-
index. In Proceedings of the 11th Symposium on String Processing and Information Retrieval, pages
150–160. Springer-Verlag LNCS 3246, 2004.

[8] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with level-ancestor
queries. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1–10,
2004.

[9] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete algorithm,
pages 368–373, 2006.

[10] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes.
In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete algorithms, pages 841–850, 2003.

[11] Meng He, J. Ian Munro, and S. Srinivasa Rao. A categorization theorem on suffix arrays with appli-
cations to space efficient text indexes. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete algorithm, pages 23–32, 2005.

[12] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 549–554, 1989.

[13] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete algorithms, pages 11–12, 2005.

[14] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct representations of
permutations. In Proceedings of the 30th International Colloquium on Automata, Languages and Pro-
gramming, pages 345–356, 2003.

[15] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal on Computing, 31(3):762–776, 2001.

[16] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete algorithms, pages 233–242, 2002.

[17] Kunihiko Sadakane. Succinct representations of lcp information and improvements in the compressed
suffix arrays. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete algorithms, pages
225–232, 2002.

[18] Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data structures into entropy bounds. In
Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithm, pages 1230–1239, 2006.

[19] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Information
Processing Letters, 17(2):81–84, 1983.

[20] Ning Zhang, M. Tamer Özsu, Ashraf Aboulnaga, and Ihab F. Ilyas. XSEED: Accurate and Fast
Cardinality Estimation for XPath Queries. In Proceedings of the 22nd International Conference on

Data Engineering, pages 61–72, 2006.

Appendix A Proof of Lemma 6

In this proof, we use the operators defined in [3].

In the balanced parentheses representation of the tree in [3], each node corresponds to an opening
parenthesis and a closing parenthesis. We observe that in the sequence, the opening parentheses
correspond to DFUDS order, while the closing parentheses correspond to the preorder. For example,
in Figure [3], the 6th node in DFUDS order (which is the 5th node in preorder) corresponds to the
6th opening parenthesis, and the 5th closing parenthesis.

87

2 3

1

DFUDS representation:

((() ((())) (())) ((()))) 11109654

Figure 2: An ordinal tree (where each node is assigned its rank in the DFUDS order) and its DFUDS
representation in [3].

With this observation, find dfuds(i) means that for the node that corresponds to the ith clos-
ing parenthesis (denoted by x), we need to compute the rank of the corresponding opening paren-
thesis among opening parentheses. To compute this value, we first find the opening parenthe-
sis that matches the closing parenthesis that comes before node x. Its position in the sequence
is: j = find open(selectclose(i − 1)). With j, we can compute the position of the parent
of x, which is p = selectclose(rankclose(j)) + 1, and child rank(x) (denoted by r), which is
r = selectclose(rankclose(p) + 1) − j. Finally, rankopen(p + r − 1) is the result.

The computation of find pre(i) is exactly the inverse of the above process.

Appendix B Proof of Lemma 7

We divide string S and its corresponding conceptual table E into chunks and blocks, and store
bit vectors B and Xi as in the proof of Theorem 1. We also store the same set of y-fast tries for
chunks.

Each row of E is a bit vector, and we denote the αth row by E[α] for α ∈ [σ]. For each α ∈ [σ],
we store E[α] using Lemma 2 in lg

(

n
nα

)

+ o(nα) + O(lg lg n) ≈ nα lg en
nα

+ o(nα) + O(lg lg n) bits.
Summing the space cost of these dictionaries, the last two terms clearly sum to n ·o(lg σ). The first
term sums to nH0 + n lg e. Therefore, the total space cost is n(H0 + o(lg σ)) bits.

With the rows of E stored in the above way, string select can be supported in O(1) time, as
string select(α, i) = bin selectE[α](1, i), where α ∈ [σ]. With the support for string select

on S, we can easily support string select on any chunk in O(1) time. Using the method in [9],
we can further support string rank on any chunk in O(lg lg σ) time. Similarly to the proof of
Theorem 1, we can support string rank on S in O(lg lg σ) time.

Now we need to provide support for string access. We first design data structures to support
πi and π−1

i (see the proof of Theorem 1 for the definition of πi and π−1
i). From the definition of

πi, we have that πi(j) = bin selectCi,α
(1, r), where α = bin rankXi

(0, bin selectXi
(1, j)), and

r = bin selectXi
(1, j) − bin selectXi

(0, α). α and r can clearly be computed in O(1) time, and
because bin selectCi,α

(1, r) = bin selectE[α](1, r + z), where z is the number of 1s in the αth

row of E before the (i−1) lg σth position in the row (we can compute z by performing rank / select
operations on B in constant time), we can compute πi(j) in O(1) time. For chunk Ci, by adding
an auxiliary structure that occupies O(lg σ/ lg lg σ) space, we can compute any element of π−1

i in
O(lg lg σ) time [14]. Finally, we use the method in [9] to compute Ci[j] in O(lg lg σ) time, which
in turn can be used to support string access in O(lg lg σ) time as string access[l] = Cv[l − vσ]
where v = bl/σc.

Similar to the proof of Theorem 1, we observe that the above auxiliary data structures (B,
Xi’s, y-fast tries, and auxiliary structures for πi’s) occupy n · o(lg σ) bits, while E[i]’s occupies
n(H0 + o(lg σ)) bits. Therefore, the overall space cost is n(H0 + o(lg σ)) bits.

