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Abstract. The common way to search large indexed databases is through conjunctive queries on binary
relations, such as those associating keywords to web page references. We extend this model by adding
positive weights to the terms of the query. In this context we give and analyze two algorithms to answer
such queries in a pertinent way. We extend this approach to solve weighted queries on tree-structured
objects such as file-systems or XML documents.
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1 Introduction

Consider the task of a search engine answering conjunctive queries: given a set of keywords, it should return
a list of references to the objects relevant to all those keywords. These objects can be web pages as in
the case of a web search engine like Google, or documents as in a search engine on a file system, or any
kind of data searched by keywords. Rather than roam the set of all objects (which is usually very large –
think about the set of web pages indexed by Google), a good search engine uses a precomputed index, which
represents the binary relation between the set of objects {1, . . . , n} = [n] and the set of admissible keywords
{1, . . . , σ} = [σ], so that it can be easily searched.

Each keyword α ∈ [σ] of a query corresponds to a set S ⊆ [n] of objects, and the answer to a conjunctive
query is the intersection S1∩ . . .∩Sk of the sets S1, . . . , Sk corresponding to the labels α1, . . . , αk composing
the query. The intersection problem has been largely studied when the sets are represented by sorted arrays,
in which case variants of binary search or interpolation search allows to computer intersection efficiently, both
in theory [2, 3, 6, 14] and in practice [8, 15]. For certain applications it is known that there are alternative
representations with better performance, e.g. Barbay et al. [2, 3, 6, 14] showed that encoding directly the
binary relation improves performance. Most intersection algorithms can be adapted to this setting, and even
the search in labeled trees such as file-systems and XML documents benefits from their results.

Conjunctive queries are attractive by their simplicity, but their efficiency is reduced as the amount of data
indexed by search engines is rapidly growing: more and more keywords are required to reach an answer of
size manageable by the user, with an increasing risk of over-constraining the query, in which case the answer
to the query is empty. A solution to this problem, made famous by the Google search engine, is to rank the
objects (web pages, in this context): users type only a few keywords, the size of the answer is massive, but
hopefully the best results are among the first offered to the user. We consider an alternate solution, where
the user types as many keywords as desired, some being eventually added automatically from his profile, and
where the search engine returns the most pertinent answer, which is never empty but whose size can always
be made reasonable by adding more keywords.

The concept, based on the threshold set problem, as studied by Barbay and Kenyon [6], is a generalization
of the intersection problem, where one requires the set of objects that matches t labels out of the k composing
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the query. For t = 1 the answer is the union of the corresponding sets, for t = k their intersection, and for
t between 1 and k a relaxation of the intersection that is especially interesting when the query is over-
constrained and the intersection is empty. Our results are twofold:

– First, we generalize the adaptive algorithm for the threshold set problem from Barbay and Kenyon [6]
to weighted queries on binary relations. We introduce a variant of threshold set queries, the pertinent
set queries, whose answer corresponds to the smallest non-empty threshold set and we give a partial
adaptive analysis of its computational complexity.

– Second, we transpose these two problems, their algorithms and their analysis to the context of the search
in labeled trees: we consider unordered subset path weighted queries.

To make our complexity results simpler, we express them in terms of the number of “object searches” –
searches for a particular object in an indexed set. Object searches in binary relations can be supported either
using the encoding for binary relations defined by Barbay et al. [5] or through a binary search, doubling
search, interpolation or extrapolation search in a sorted array [8]. Node searches in a labeled tree for nodes
matching an ancestor, descendant, or follower relation can be supported either using the encoding for labeled
trees from Barbay et al. [9], or through doubling searches using a complex index structure [4]. When using
indexed encodings [5, 9] in Random Access Memory (RAM) of word size θ(max{σ, n}), we deduce the
complexity in term of number of accesses by multiplying the number of object searches by their constant
cost. In the case of sorted arrays, we deduce the complexity in the comparison model from the expression of
the number of object searches using the concavity of the logarithm, as done previously in [3, 6].

We organize our presentation as follows. Section 2 deals with weighted queries on binary relations: Sec-
tion 2.1 gives some preliminary knowledge and results, Section 2.2 considers threshold set queries and Sec-
tion 2.3 transposes the results to pertinent set queries. Section 3 deals with weighted queries on multi-labeled
trees in the same manner: Section 3.1 considers threshold set of the unordered subset path weighted queries,
while Section 3.2 transpose the results to the pertinent set of the unordered subset path weighted queries.
Finally, we conclude with a discussion of the impact of our results and some perspectives of future research
in Section 4.

2 Weighted Queries on Binary Relations

2.1 Binary Relations

Definition 1. Consider an ordered set of objects {1, . . . , n} = [n] and an ordered set of labels {1, . . . , σ} =
[σ]. A binary relation R is a function R : [σ]× [n]→ {0, 1}, which associates a boolean value R(α, x) to each
pair formed by a label α ∈ [σ] and an object x ∈ [n].

Note that a binary relation can be encoded as a list of posting lists (which lists all the objects associated
to a label in increasing order).

R 1 2 3 4 5 6 . . . n

1 0 0 1 0 0 1 . . .

2 1 0 0 1 0 0 . . .

...
σ 0 1 0 0 0 1 . . .

=⇒

1 3 6 . . .

2 1 4 . . .

α · · · · · · · · ·

σ 2 6 . . .

Fig. 1. An example of posting lists representation of a binary relation.

Also note that a list of posting lists is not necessarily the best way to encode a binary relation: Barbay et
al. [5] suggested another encoding for binary relations, which permits faster searches. For any two objects
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x, y ∈ [n] we say that x precedes (succeeds) y if x < y (x > y) in the order defined on [n]. We express
our results in term of the number of searches performed on the binary relation. We define these searches as
follows:

Definition 2. Consider a binary relation R : [σ]× [n]→ {0, 1}, a label α ∈ [σ] and an object x ∈ [n].

– The label α successor of x, denoted by label− successor(α, x), is the first object y succeeding or equal
to x, such that R(α, x) = 1.

– The label α strict successor of x, denoted by label−ssuccessor(α, x), is the first object y succeeding x,
such than R(α, x) = 1.

– The label α predecessor of x, denoted by label− predecessor(α, x), is the last object y preceding or
equal to x, such that R(α, x) = 1.

– The label α strict predecessor of x, denoted by label−spredecessor(α, x), is the last object y preceding
x, such that R(α, x) = 1.

Those searches are supported in different times depending on a particular encoding of the binary relation.
An encoding based on posting lists supports them in time that depends on the number of objects associated
to each label:

Lemma 1. Consider a binary relation R : [σ] × [n] → {0, 1} implemented as a list of posting lists, a label
α ∈ [σ] and an object x ∈ [n]. And let nα be the number of objects associated to each label α.

– The search for the label α successor of x is supported in time O(lg nα) in the comparison model.
– The search for the label α successors of d objects in increasing order is supported in time O(d lg(nα/d))

in the comparison model.

The searches for the label α strict successor, the label α predecessor, and the label α strict predecessor of x
are supported in the same time.

Proof. A simple binary search finds the label α successor of x in O(lg nα) comparisons. A sequence of doubling
searches finds a sequence of label α successors of d consecutive objects in O(d lg(nα/d)) comparisons, by
concavity of the logarithm. The other searches are supported using the same techniques. ut

An encoding that takes advantage of the word parallelism of the RAM model supports these operators
in time which depends only on the smallest dimension of the binary relation, usually σ:

Lemma 2. Consider a binary relation R : [σ] × [n]→ {0, 1}, implemented as a multi-labeled string, a label
α ∈ [σ] and an object x ∈ [n]. Without loss of generality, suppose σ ≤ n. The search for the label α successor
of x is supported in time O(lg lg σ) in the RAM model, with word size Θ(lg max{σ, n}). The searches for the
label α strict successor of x, label α predecessor of x, and label α strict predecessor of x are supported in
O(lg lg σ) as well.

Proof. The encoding described by Barbay et al. [5] supports the rank and select operators on the positive
entries in the rows of the matrix representing binary relation in time O(lg lg σ). One can do search for label
α successor in the same time by using these operators. The other searches are supported using the same
techniques. ut

2.2 Weighted Queries and Threshold Set

Although in common settings conjunctive queries don’t make any difference between the keywords composing
the query, its variant that associates a weight to each keyword was suggested by Barbay and Kenyon [7,
Perspectives]. We define it here more formally:

Definition 3. Consider a positive integer µ and an ordered set of labels {1, . . . , σ} = [σ]. A weighted query
is a function Q : [σ]→ {0, . . . , µ}, which associates a non-negative weight Q(α) to each label α.
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These weights allow, for instance, to differentiate between some important keywords typed by the user
and some less important ones added automatically by the system to personalize the search. The definition of
a conjunctive query has to be extended to take into account the additional information from the weightiness
of the query. We propose the first extension that generalize the threshold set to weighted queries.

Definition 4. Consider a binary relation R : [σ] × [n] → {0, 1}, a weighted query Q : [σ] → {0, . . . , µ},
and a non-negative integer t. The score of an object x on R and Q is defined as score(R, Q, x) =∑

α∈[σ] Q(α)R(α, x).

Definition 5. The threshold set on R and Q with the threshold t is the set Thres(R, Q, t) = {x ∈
[n], score(R, Q, x) ≥ t} of objects having score of at least t.

In the case where µ is equal to 1, the definition matches the one given by Barbay and Kenyon [6] on
unweighted queries. Note that in this context, if t is equal to the number of labels of positive weight in Q,
the threshold set corresponds to the result of a traditional conjunctive query, the intersection of the sets of
objects associated with the labels from the query.

The analysis in the weighted case is similar to the original one in the unweighted case: any algorithm has
to certify the correctness of its output, hence we measure the complexity of our algorithm as a function of
the size of a certificate, which is a measure of the hardness of the instance. A certificate can be defined in
several ways, we define it as a partition of the universe, from which the result is easy to check.

Definition 6. Consider a binary relation R : [σ]× [n]→ {0, 1}, a weighted query Q : [σ]→ {0, . . . , µ}, and
a non-negative integer t. A partition-certificate of the instance is a partition (Ii)i∈[δ] of the set [n] of objects
such that for any i ∈ [δ], either Ii is a singleton {x} and score(R, Q, x) ≥ t, or Ii is an interval and there
is a set S ⊂ [σ] of labels such that

∑
α/∈S Q(α) < t and

∑
x∈Ii

R(x, α) = 0, ∀α ∈ S.

There are several ways to define the difficulty of an intersection instance, such as the minimal encoding
size of a certificate or the minimal number of comparisons in a certificate [3, 6, 14]. Similarly, there are
several ways to define the difficulty of a threshold set instance. We define one derived from the alternation
measure proposed by Barbay and Kenyon [6] for the intersection problem.

Definition 7. Consider a binary relation R : [σ]× [n]→ {0, 1}, a weighted query Q : [σ]→ {0, . . . , µ}, and
a non-negative integer t. The alternation of the instance is the size δ of the smallest partition-certificate of
the instance.

The alternation corresponds exactly to the non-deterministic complexity, the complexity required from
a non-deterministic algorithm to solve the instance, or equivalently to the number of comparisons required
to check the correction of the output. We use it as our measure of difficulty for the adaptive analysis of the
threshold set computation.

Theorem 1. Given a binary relation R : [σ] × [n] → {0, 1}, a weighted query Q : [σ] → {0, . . . , µ}, and a
non-negative integer t, there is an algorithm which performs O(δk) searches and heap operations to compute
the corresponding threshold set, where δ is the alternation of the instance, and k is the number of labels of
positive weights in Q.

Proof (sketch). We extend the algorithm given by Barbay et al. [7] on binary relations and unweighted queries
in the next way. The algorithm determines iteratively the smallest possible object which can eventually be
in the threshold set, checks it, and proceeds to the next potential object. We decompose the execution of
the algorithm into phases, each corresponding to an interval of the partition-certificate in which all objects
have been considered.

As the algorithm considers the labels in round-robin order, at most k searches are performed in each
phase, after which the algorithm has at least all the objects of the next interval of the partition certificate
eliminated. The algorithm features a heap to determine the smallest possible object that can eventually be
in the threshold set. This heap is updated at most k times per phase, hence the cost of O(k) heap operations
per phase. As there is a partition certificate of length δ, the algorithm terminates after δ phases, thus the
total complexity is O(δk) searches and heap operations. ut
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Corollary 1. Under the same conditions as Theorem 1, there is an algorithm which performs
O(δ

∑
α∈S lg(nα/δ) + δk lg k) comparisons to compute the threshold set, when R is implemented as a list

of posting lists.

Proof. This is a direct combination of the results of Theorem 1 and Lemma 1: at most δ searches are
performed in each posting lists, for objects in increasing order, and each heap operations costs at most
O(lg k) comparisons. ut

Corollary 2. Under the same conditions as Theorem 1, there is an algorithm which computes the threshold
set in time O(δk lg lg σ + δk(lg lg k)2) in the RAM model with word size Θ(lg max{σ, n}), when the heap is
implemented as in [1], and R is implemented as described by Barbay et al. [5].

Proof. This is a direct combination of the results of Theorem 1, Lemma 2, and priority queues implementation
and analysis in [1]. ut

Similarly, the results of Theorem 1 can be applied to other implementations of binary relations and posting
lists, and in other computational models, such as the cache-oblivious model [16]. Several data-structures have
been proposed to search efficiently in sorted sets while taking advantage of the cache [10, 11].

2.3 Pertinent Set

The beauty of conjunctive queries comes in part from their simplicity. The threshold set on binary relations
and weighted queries is a compromise between the intersection (t = k) and the union (t = 1) of k sets: it
requires the parameter t to specify which compromise is desired. In most applications aimed to the large
public what is desired is only a non-empty answer of maximal precision: we formalize this notion as a new
type of query, corresponding to the smallest non-empty threshold set.

Definition 8. Consider a binary relation R : [σ]× [n] → {0, 1} and a weighted query Q : [σ] → {0, . . . , µ}.
The pertinent score on R and Q is the maximal score pertinent score(R, Q) = maxx∈[n]{score(R, Q, x)}
on R and Q over all objects in [n]. The pertinent set on R and Q is the set Pert(R, Q) = {x ∈
[σ], score(R, Q, x) = pertinent score(R, Q)} of objects that have the maximum score on R and Q.

Theorem 2. Given a binary relation R : [σ]× [n]→ {0, 1} and a weighted query Q : [σ]→ {0, . . . , µ}, there
is an algorithm that computes the pertinent set on R and Q. Once it has found the first object of the pertinent
set, this algorithm performs O(δk) additional object searches and heap operations, where δ is a alternation
of the given instance with t = pertinent score(R, Q).

Proof. Consider an instance I of the pertinent set problem defined by R and Q with
pertinent score(R, Q) = t?. In the contrast to the algorithm for the threshold set problem, the algo-
rithm for the pertinent set problem is not given a definite threshold value t in the very beginning, thus it
initializes it to t = 1 and starts scanning objects in increasing order.

After finding an object x with the score of at least t it does not just add it to the output set, but firstly
checks if the score of x is greater than t. And if it is, the algorithm stores this value as a new threshold
t = score(x) and resets the current output set, because all the objects currently in it have score less than t
and thus are not in the pertinent set on R and Q. Finally, it finds the first object of the pertinent set.

After the first object of the pertinent set is found the algorithm works in the same way as the threshold
set algorithm for the threshold t = t?, except that for each positive interval it continues to verify that the
score of the object x that goes to the output is not greater than the threshold t?. This verification consists
of searching for x in all the sets in #MAYBE. Each of these searches gives negative answer, and while all of
these sets have to be checked by the threshold set algorithm in the worst case as well, this verification does
not take the pertinent set algorithm more operations than what it takes to the threshold set algorithm in
the worst case. Thus the pertinent set algorithm does not increase the upper bound for the threshold set
algorithm, which in couple with the Theorem 1 gives an upper bound of O(δk) object searches and heap
operations for the pertinent set algorithm after it finds the first object of the pertinent set. ut
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3 Weighted Queries on Multi-Labeled Trees

We generalize conjunctive queries on labeled trees to the weighted case in the similar way as we did it for
search queries on binary relations. One can use them for search in file systems or XML documents by setting
large weights to more general labels or by adding labels with low weights from a user-specific profile.

Weighted queries in file systems allow to highlight the most relevant keywords. Weights can be set up
by the user manually or by the system automatically. For example, a file system can set weights to adjust
relevance of the answer for the given query having internal knowledge about its structure and stored data,
or it eventually can put additional keywords with low weights from the user profile to make the search
personalized.

We give an algorithm that finds a threshold set for such kind of weighted queries and analyse it in
Section 3.1. We extend the idea to the pertinent variant of this problem in a similar way as it was done for
the pertinent set in Section 3.2.

3.1 Threshold Set

XML documents as well as structure of file systems can be represented by rooted trees with labels associated
to their nodes [5].

Definition 9. Consider a rooted tree M with a set of nodes [n] enumerated in pre-order and an ordered set
of labels [σ]. A multi-labeled tree is a rooted tree M with associated to it binary relation R : [σ]× [n]→ {0, 1}
between the set of labels [σ] and the set of nodes [n].

We use the notion of weighted query fro the previous section. And we denote the set of all the ancestors
of a given node x of a multi-labeled tree by ancestors(x).

Definition 10. Consider a multi-labeled tree M with associated binary relation R : [σ] × [n] → {0, 1}, a
weighted query Q : [σ] → {0, . . . , µ}, and a non-negative integer t. An unordered subset path weighted
query Q is a weighted query in the context of multi-labeled trees, where rooted paths are searched for nodes
matching the labels of Q. The path score of a node x on M , R, and Q is the sum of the weights of all labels
associated with any of the ancestors of the node x or with the node x itself, i.e. path score(M, R, Q, x) =∑

α∈[σ] Q(α) maxy∈ancestors(x)∪{x} R(α, y).

The further a node is from the root, the higher path score it gets: any descendant of the node x gets at
least the same path score as x. We are interested in the closest to the root nodes – first ones that get the
path score of at least t, as they are sufficient to determine the set of all such nodes.

Definition 11. Consider a multi-labeled tree M with a set of nodes [n] and an associated binary relation R :
[σ]×[n]→ {0, 1}, an unordered subset path weighted query Q : [σ]→ {0, . . . , µ}, and a non-negative integer t.
The threshold set of an unordered subset path weighted query Q with threshold t is the set of nodes that have
path score at least t and do not have any ancestors with this property. More formally, ThresM(M, R, Q, t) =
{x ∈ [n] : path score(M, R, Q, x) ≥ t and @y ∈ ancestors(x), such that path score(M, R, Q, y) ≥ t}.

Now we present the algorithm that finds the threshold set of an unordered subset path weighted query
Q on M and R with a threshold t. It might use the following operations on the multi-labeled tree M in
addition to the standard ones constant-time ones. For any label α ∈ [σ] and any node x ∈ [n] we use the
same notion of the operations label α successor of x, label α strict successor of x, label α predecessor of x,
and label α strict predecessor of x as it was done for the case of binary relations but with respect to the
pre-order defined on the set of nodes [n].

Definition 12. Consider a multi-labeled tree M with a set of nodes [n] enumerated in pre-order, a set of
labels [σ], and a binary relation R : [σ]× [n]→ {0, 1}. For a node x ∈ [n] and a label α ∈ [σ] define:

– the label α ancestor of x, denoted by label−ancestor(α, x), is the closest to the root ancestor y of the
node x, such that R(α, y) = 1.
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– the label α descendant of x, denoted by label−descendant(α, x), is the first in pre-order descendant y
of the node x, such that R(α, y) = 1.

– the follower of x, denoted by follower(x), is the node with the smallest in pre-order number greater than
x that is not the descendant of x.

– the set labels(S) is the set of labels associated to at least one node from S. Formally, labels(S) = {α ∈
[σ] : ∃x ∈ S, R(α, x) = 1}.

The notion of follower(x) correlates with the notion of following(x) in XPath queries [12, 13]. Basically,
follower(x) is the first node in the set following(x) of all nodes greater than node x in document order,
excluding any descendants, attribute and namespace nodes.

The partition-certificate we use here is similar to the partition-certificate of queries on binary relations.
The difference is that its positive intervals might be non-singletons.

Definition 13. Consider a multi-labeled tree M , binary relation R : [σ] × [n] → {0, 1}, a weighted query
Q : [σ] → {0, . . . , µ}, and a non-negative integer t. A partition-certificate of the instance is a partition
I = (Ii)i∈[δ] of size δ on the set of nodes [n], such that for any i ∈ [δ], either the node in Ii with the smallest
number x = min{∀x ∈ Ii} has path score of at least t and the node y = max{∀y ∈ Ii}+ 1 is the follower of
the node x, or there is a set S ⊆ [σ] of labels such that

∑
α/∈S Q(α) < t and

∑
x∈Ii

∑
y∈ancestors(x) R(α, y) =

0, ∀α ∈ S.

In other words, the partition-certificate consists either of the nodes from the whole sub-tree with the root
x from the subset path or of the subset of consecutive in pre-order nodes that have a subset S ∈ [σ] of the
labels they all miss of the weight enough to guarantee these nodes not to be in the threshold set.

Each instance potentially admits different partition-certificates. We study the performance of the algo-
rithm in function of the size of the smallest one.

Definition 14. Consider a multi-labeled tree M , a binary relation R : [σ] × [n] → {0, 1}, a weighted query
Q : [σ] → {0, . . . , µ}, and a non-negative integer t. The alternation of the instance is the smallest size δ of
all possible partition-certificates of the given instance.

The alternation allows to distinguish between hard and easy instances. We show then that there is an
algorithm that performs well on instances with small alternation.

To make the algorithm simpler, we slightly preprocess its input. We add two auxiliary nodes: a node
x = −∞ that is the parent of the initial tree root and does not have any associated labels, i.e. R(α,−∞) =
0, ∀α ∈ [σ], and a node x = +∞ that is a descendant of the first auxiliary node x = −∞ and has all the
labels from [σ] associated to it, i.e. R(α, +∞) = 1, ∀α ∈ [σ]. The algorithm starts its work from by setting
its current node to the new root x = −∞.

Fig. 2. Modified input

At any time the algorithm has a current node x and two structures: the rootSet - a set that contains all
the labels associated with the ancestors of the x and the node x itself; and the heap - a heap that contains
one pair (α′, x′) for all other labels from [σ], where x′ = label−ssuccessor(α′, x), which is the key in this
heap. The skipList is just a temporary list of the labels.
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We define path score of the rootSet and skipList as the sum of the weights of all the labels in them,
i.e. path score(rootSet) =

∑
∀α∈rootSet Q(α) and path score(skipList) =

∑
∀α∈skipList Q(α).

On each step the algorithm determines if the current node x belongs to the threshold set and advances x
to the next node that might be in skipping all the nodes that are guaranteed not to be there (because labels
associated with their ancestors do not have enough weight).

lgorithm 3.1. Search for the Threshold Set of the Unordered Subset Path Weighted Query Q on M, R

with threshold t.

(01) output← ∅
(02) rootSet← ∅
(03) for ∀α ∈ [σ] do heap← (α, label−ssuccessor(α,−∞))
(04) x = −∞
(05) while x 6= +∞ do
(06) if path score(rootSet) ≥ t then
(07) output← x

(08) x← follower(x)
(09) updateRootSet(x)
(10) updateHeap(x)
(11) else
(12) skipList = ∅
(13) xs ← the smallest node x in the heap, s.t. path score(rootSet) + path score(skipList) ≥ t

(14) do
(15) (α′, x′)← heap.pop()
(16) skipList← α′

(17) until x′ ≤ xs

(18) x← xs

(19) updateRootSet(x)
(20) updateSkipList(x)
(21) end if
(22) end while

Function updateHeap(x) for each pair (α′, x′) in the heap updates its value x′ to
label−ssuccessor(α, x), where x is the current node. Basically, one can do this simply by moving
all the pairs from the heap to a temporary list, updating them and placing back to the heap.

Function updateRootSet(x) is more complicated: for each label α′ from the rootSet it checks if α′ is
associated with any ancestor of the x or with the current node x itself. If yes, the label α′ stays in the
rootSet, otherwise it is augmented with the value label−ssuccessor(α′, x) and is put to the heap.

Function updateSkipList(x) does the same check as updateRootSet(x), but with the labels in the
skipList. If a label α is on the rooted path it’s inserted to the rootSet, otherwise – to the heap as a part
of the newly formed pair (α, label−ssuccessor(α, x)).

Lemma 3. The Algorithm 3.1 is correct, i.e. it produces output equal to the ThresM(M, R, Q, t). Moreover,
it supports the next invariants between iterations:

– {∀α ∈ Q, Q(α) > 0} = rootSet∪ labels(heap) and rootSet∩ labels(heap) = ∅.
– rootSet contains all and only the labels with Q(α) > 0 associated with any of the ancestors of the current

node x or with the node x itself.

Proof. First, we prove the invariants that are kept by the Algorithm 3.1 in the order we claim them and
then proceed to the correctness of the algorithm.
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– Initially, all the labels are in the heap. Functions updateRootSet(x) and updateHeap(x) do not remove
any labels from the heap without placing it to the rootSet and vice-versa. If the algorithm on steps
(15)-(16) move any labels from the heap to the skipList, the function updateSkipList will move them
back to the heap or to the rootSet by the end of the iteration. The invariant is preserved.

– Initially, the second invariant is true. At each iteration the current node x is changed that might cause
the violation of the invariant. But in the end of each iteration either a call to the updateRootSet(x)
and updateHeap(x) or call to the updateRootSet(x) and updateSkipList(x) is made. The function
updateRootSet(x) remove all the extra nodes from the rootSet and one of the functions updateHeap(x)
or updateSkipList(x) adds missing nodes. The invariant is preserved.

To prove the correctness we need to prove that all the nodes that the algorithm outputs are in the
threshold set and that no nodes from the threshold set are missing in the output.

The Algorithm 3.1 can put only current node x to the output set. While the algorithm maintains the
second invariant, it can find the real path score for the current node x. And while it does not process any of
the nodes y that have an ancestor x with path score(x) ≥ t, because it skips such nodes while processing
their ancestor x, we get that all the nodes that the algorithm puts to the output are nodes from the threshold
set.

To prove that no nodes are missing in the output we show that all the skipped nodes are not in the
threshold set. The algorithm skips nodes in two cases: if it just put a node to the output or if the current
node does not go to the output and the algorithm search for the next node in the heap that might go. In
the first case, the algorithm skips only descendants of the node from the threshold set that are not in the
threshold set by definition. In the second case, the path score of the nodes skipped while popping pairs from
the heap up to the sth pair (αs, xs) is less than the threshold t and thus they cannot belong to the threshold
set as well. ut

Theorem 3. Given a multi-labeled tree M with a set of nodes [n], a binary relation R : [σ]× [n] → {0, 1},
a weighted query Q : [σ] → {0, . . . , µ}, and a non-negative integer t. There is an algorithm which performs
O(δk) searches for label ancestor, searches for label strict successor, and heap operations to compute the
corresponding threshold set ThresM(M, R, Q, t) of the unordered subset path weighted query Q, where δ is the
alternation of the instance and k is the number of labels of positive weights in Q.

Proof. The existence of the algorithm follows from the Lemma 3. Now we proof its upper bound.
Consider an arbitrary instance of the threshold set problem and the corresponding smallest partition-

certificate I with δ intervals. At first, we prove that the Algorithm 3.1 spends at most one iteration for
each interval and then we count the number of searches for label ancestor, label strict successor, and heap
operations performed during each iteration.

Consider an arbitrary interval Ii ∈ I . It is either positive or negative. If it is positive, the algorithm has
to process the first node of the interval as the current node. While processing it just outputs the current
node x ∈ Ii and skips all the other nodes from this interval by setting x ← follower(x), i.e. processes the
whole interval in one step.

Imaging the algorithm is processing any node x ∈ Ii as the current node in the negative interval. While by
definition of the partition-certificate there is a subset S ⊆ [σ] of labels whose nodes are not associated with
any of the nodes in the interval Ii, they are all in the heap with key nodes having larger numbers than any
node in the Ii. But while the sum of weights of all the other labels less than the threshold (

∑
α/∈S Q(α) < t),

the last node (αs, xs) popped out from the heap will have the number greater than max{∀x ∈ Ii}.
The number of pairs in the heap and labels in rootSet and skipList is always bounded by k. The

function updateHeap(x) performs one heap deletion, one heap insertion and one label−ssuccessor search
for at most any pair in the heap. This gives the function updateHeap(x) the complexity of O(k) in terms of
these operations.

The function updateRootSet(x) and the function updateSkipList(x) performs one heap insertion, one
label−ancestor search, and one label−ssuccessor search for at most any label in the rootSet or in the
skipList respectively. It’s complexity is O(k).
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If the interval is positive, the algorithm performs a call to updateRootSet(x) and a call to
updateRootSet(x). If the interval is negative, the algorithm makes one call to updateRootSet(x) and one
call to updateSkipList(x) together with performing up to k heap deletions. This implies the complexity of
O(k) for any iteration.

The upper bound of O(δ) on the number of iterations and the upper bound of O(k) in terms of described
operations on the complexity of each iteration imply the upper bound of O(δk) for the Algorithm 3.1. ut

Lemma 4. Consider a multi-labeled tree M with a set of nodes [n], a set of labels [σ], and a binary relation
R : [σ]×[n]→ {0, 1}. Without loss of generality, suppose σ ≤ n. Given a label α ∈ [σ] and a node x ∈ [n], there
is an encoding of this data that supports operations label−ancestor(α, x) and label−ssuccessor(α, x) in
time O(lg lg σ) and follower(x) in time O(1) in the RAM model, with word size of Θ(lg max{σ, n}).

Proof. The encoding for multi-labeled trees described by Barbay et al. [5] supports the
label−ancestor(α, x) and label−ssuccessor(α, x) operators in the time O(lg lg σ) and allows to
implement follower(x) in constant time. ut

Corollary 3. Under the same condition as Theorem 3, there is an algorithm which computes the threshold
set of the unordered subset path weighted query in time O(δk lg lg σ + δk(lg lg k)2) in the RAM model with
word size Θ(lg maxσ, n), when the heap is implemented as in [1], and R is implemented as described by
Barbay et al. [5].

Proof. This is a direct combination of the results of the Theorem 3, Lemma 4, and priority queue implemen-
tation and analysis in [1]. ut

3.2 Pertinent Set

In the similar way to what we have done for weighted queries on binary relations, we extend threshold set
queries to pertinent set queries on multi-labeled trees.

Definition 15. Consider a multi-labeled tree M , a binary relation R : [σ] × [n] → {0, 1}, and a weighted
query Q : [σ] → {0, . . . , µ}. The pertinent path score on M , R, and Q is the maximum path score
pertinent path score(M, R, Q) = maxx∈[n]{path score(M, R, Q, x)} of any node in [n] on M , R, and
Q. The pertinent set of the unordered subset path weighted query Q on M , R is the set PertM(M, R, Q) =
{x ∈ [σ], path score(M, R, Q, x) = pertinent path score(M, R, Q)} of nodes that have the maximum path
score on M , R, and Q.

Theorem 4. Given a multi-labeled tree M with a set of nodes [n], a binary relation R : [σ]× [n] → {0, 1},
and a weighted query Q : [σ] → {0, . . . , µ}. There is an algorithm that computes the pertinent set of the
unordered subset path weighted query Q on M , R. Once it has found the first object of the pertinent set, this
algorithm performs O(δk) additional searches for label ancestor, searches for label strict successor, and heap
operations, where δ is a alternation on this instance with t = pertinent path score(M, R, Q).

Proof. Consider an instance I of the pertinent set problem defined by M, R and Q with
pertinent path score(M, R, Q) = t?.

In the contrast to the algorithm for the threshold set problem, the algorithm for the pertinent set problem
is not given a definite threshold value t in the very beginning, thus it initializes it to t = 1 and starts scanning
nodes.

After finding the node x with the path score path score(x) greater than the current threshold t the
algorithm stores the new value of t = path score(x) and reset current output set as it was done by the
algorithm for the pertinent set on binary relation.

Moreover, after finding the node x that goes to the output set the algorithm proceeds not to the follower
of the x as it was done by the algorithm for the threshold set, but to the smallest node in the heap, because
if it resides in the subtree of x it will have greater threshold.

Formally, we make the next changes to the Algorithm 3.1:
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(00) t = 1
(06) if path score(x) ≥ t then
(07) if path score(x) > t then

t = path score(x)
output = ∅

end if
output← x

(08) (α′, x′)← heap.pop()
rootSet← α′

x← x′

After the first node of the pertinent set is found, each time the algorithm proceeds to the smallest node
in the heap after it puts one more node x to the output set, it get new current node that is at least follower
of x in pre-order, because otherwise the new current node would reside in the subtree of x and would have
path score greater than t?, which contradicts the assumption that t? is the maximum threshold. Considering
this, we do the same analysis as we did in the Theorem 3 that implies the upper bound of the pertinent set
algorithm.

ut

4 Conclusion

In this paper we generalize threshold set queries on binary relations, the corresponding algorithms and
adaptive analysis to weighted queries. We introduce pertinent set queries, whose answers correspond to the
smallest non-empty threshold sets and represent the most relevant subsets of the objects to the given query.
We transpose threshold and pertinent set queries, their algorithms and their analysis to the context of search
in multi-labeled trees.

This work opens many new directions for future research. Here we mention the most prominent ones.
Although we give algorithms to solve pertinent set queries in the contexts of binary relations and multi-

labeled trees, we do only its partial adaptive analysis. We cannot do a complete analysis because the current
definitions of the partition-certificates for these two problems do not fully represents the algorithms’ com-
plexity in the pertinent case: for a specific partition-certificate there might be a lot of different instances of
the problem on which the algorithm proposed would have drastically different running time, depending on
how fast it reveals the maximum score or path score value for the instance. To solve this problem one may
define another partition-certificate that will take into account this issue.

While we extended the threshold set problem by adding weights to the keywords of the query, one more
very natural extension is to give weights to the objects of the binary relations, i.e. to introduce weighted
binary relations. This is useful for gradation between objects of binary relation and describing of more
sophisticated dependences between them, but it is complicate to implement efficiently as well. The structure
of the problem instance becomes too unpredictable and our algorithms cannot get benefit in object intervals
skipping without checking them inside for possible answers.

While in this paper we study the nodes of a tree closest to the root that have enough labels from the
given query on their rooted paths, in some applications one may care about the deepest nodes having enough
labels associated with their descendants. Although this problem looks similar to the subset path problem,
the algorithm for the latter must be changed greatly to deal with the former.
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