
LOT: Fast, Efficient and Robust In-Network Computation

André Allavena∗ and Srinivasan Keshav
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
{aallaven,keshav}@uwaterloo.ca

Technical Report CS-2006-22

Last modified July 18, 2006 – 23:16

10 + 4 pages = 14 pages

Keywords: robust, duplicate-insensitive, in-network computation, fault-tolerant, gossip/epidemic
algorithms, tree abstraction.

Abstract

Today, companies such as eBay, Amazon, Google, and IBM routinely operate clusters with
more than 10,000 servers located in data centres around the world. Developing applications that
efficiently use the resources of such a distributed cluster is challenging. This task is made eased
by a middleware layer that provides application programmers with the illusion of dynamically
updated "global state". Maintaining global state can be viewed as repeatedly computing an
arbitrary function over a set of time-varying values, where the values are held at each node,
and every node needs to know the resultant function. Many well-known problems in distributed
systems, such as load balancing, leader election, barrier synchronisation, distributed file system
maintenance, and coordinated intrusion detection can be cast in this form.

We present and rigorously analyse an algorithm that uses a a tree of virtual nodes to compute
nearly arbitrary functions of global state. Our scheme is fast: running time is Θ(ln n). It is
efficient: nodes exchange O(n lnn) messages. Most of these messages are within a data centre
and therefore are relatively cheap. It is accurate: the computed value does not have inherent
errors either due to double-counting, as with standard gossip, or due to stochastic counting, as in
the Flajolet-Martin approach. Finally, it is fault tolerant: The algorithm fails with probability
O

(
1

nc(1+ρ)

)
where c is a constant and 0 ≤ ρ ≤ (lnn)Cst a user-chosen reliability parameter. We

therefore believe that our work is the basis for building robust and efficient distributed systems
in a variety of problem domains.

∗alternate email address: andre@cs.cornell.edu

1 Background and Related Work
Rapidly dropping hardware prices and the proliferation of data centres has made it possible to
build multi-data centre clusters with thousands or even tens of thousands of machines managed by
a single administrative entity. Today, companies such as eBay, Amazon, Google, and IBM routinely
operate clusters with more than 10,000 servers each. Such clusters have three important properties:

• All servers, which we call nodes in this paper, are roughly equal in their processing capabilities.
• Every server can talk to every other server using an underlying network.
• Server failure is common: at any given time, up to 5 % of the servers may be unavailable.

Developing applications that efficiently use the resources of a distributed cluster is challenging.
This task is eased by a middleware layer that provides application programmers with the illusion
of dynamically updated “global state”. Examples of such state are: the set of servers that currently
provide a particular service; the load at each server; and the “scoreboard” set of servers that have
completed a given task. In general, maintaining global state can be viewed as repeatedly computing
an arbitrary function over a set of time-varying values, where the values are held at each node,
and every node needs to know the resultant function. Many well-known problems in distributed
systems, such as load balancing, leader election, barrier synchronisation, distributed file system
maintenance, and coordinated intrusion detection can be cast in this form [8].

We now make the problem more precise. Consider a distributed system that has n(t) live nodes
at time t (node failures and additions may change this set over time). Let v(t) be a global state
vector of time-varying values vf (t) held at the nodes indexed by f , and let g(v(t)) be a function
defined over this vector. The goal of our work is to define a distributed computation initiated at
time t0 such that, at the end of the computation, every live node in the system knows g(v(t0).

Past work in this area falls into three categories. The first approach induces a tree on the set
of nodes and computation proceeds along the tree from leaves towards the root. Trees are efficient,
requiring only O(lnn) time steps, and only O(n) messages, the least necessary. Unfortunately, tree
topologies are inherently brittle because the failure of a single node can disrupt the computation.
Therefore, the research focus has been to make the tree computation more robust. This is also the
approach taken in our work.

The work most closely related to ours is Astrolabe [13]. In this system, an administrator-
managed tree hierarchy uses a complex monitoring and leader election process at each level of
the tree to make it robust. Despite this, Astrolabe is unable to tolerate even moderate failure
rates, because a double failure in a single Astrolabe zone can cause temporary tree partitioning.
Moreover, the system only makes weak consistency guarantees.

An alternative approach, also in this category, is to use k trees in parallel, with each node
value replicated k times, hoping that at least one of the tree computation succeeds. However, this
approach fails with even k well-chosen (or simply unlucky) failures because a single failure in each
tree partitions it.

The second line of work is to use a gossip-based computation. Epidemic (or gossip) algorithms
are known to be the most robust and efficient way to disseminate information in a network, and
recent work has used a gossip-based approach for in-network computation as well. In a gossip, at
each round of computation, a node randomly chooses some other node and exchanges a partially
evaluated function value with it. The aggregate of the partial values is then gossipped in the next
computation round. This results in a high degree of fault-tolerance. Essentially, once a node has
gossipped its value to a few other nodes, its subsequent failure does not affect the final result.
Moreover, the computation completes in O(lnn) rounds.

1/14 July 18, 2006 – 23:16

The main problem with gossip-style approaches is double-counting, that is, the problem that
some node value may be incorporated into the function value more than once. Tree-style compu-
tation does not have this problem because there are no cycles in the evaluation graph. We can
avoid double counting in gossip systems by converting non-extremal functions (such as sum) to
functions that only depend on extremal values (such as max). A popular approach uses Flajolet-
Martin [5] stochastic counting, which converts sum to max [4, 11]. However, the intrinsic nature
of the Flajolet-Martin algorithm (probabilistic computation of the logarithm) results in errors of
up to 50 %. To increase accuracy, further work [9] uses this approach only in faulty regions of the
network and uses an (accurate) spanning tree in the non-faulty regions. Reference [10] studies the
running time for arbitrary graphs. Nevertheless, the Flajolet-Martin approach is not general, and
only applies to a fairly narrow range of functions.

The third line of past work gets around the double counting problem, while still preserving
accuracy, by associating weights with partial function values [7]. As long as the weights sum
to unity, double counting is avoided. Reference [2] characterises the convergence speed of such
algorithms. This style of computation has also been recently used by [6], which shows that the
message overhead can be reduced to O(n ln lnn). Although this approach is tolerant to link failures,
it is not tolerant to node failures during computation because the failure of a single node during
the computation causes the sum of node weights to not sum to unity, perturbing the final result.

To sum up, existing solutions do not simultaneously provide accuracy and fault tolerance. In
contrast, our approach, which essentially provides robust trees, is as accurate as a tree, but as
fault-tolerant as a gossip.

Contributions We present a fast, efficient, accurate and fault-tolerant algorithm for computation
of functions of global state.

• Fast: The running time of our scheme is Θ(ln n).
• Efficient: Nodes exchange O(n lnn) messages. Most of these messages are within a data centre

and therefore are relatively cheap. The number of costly messages between data centres is,
with high probability: O

(
n + n ln ln n

1+ρ

)
, where 0 ≤ ρ ≤ (lnn)Cst is a reliability parameter.

Let Agg denote the size of the partial result of the aggregation function g, typically O(1).
Then, almost all messages are of size O(Agg + m), where m = O((1 + ρ) ln n ln lnn). For
functions that need to be distorted to be embedded in the tree, the additional cost is an
increase in message size proportional to the distortion.

• Accurate: The computed value does not have inherent errors either due to double-counting,
as with standard gossip, or due to stochastic counting, as in the Flajolet-Martin approach.

• Fault-tolerant: The algorithm fails with probability O
(

1
nc(1+ρ)

)
where c is a constant.

Our scheme can also provide every node with several spatially-decaying aggregates [3], i.e.,
evaluations of the function on the nodes within tree distance d, for varying d.

The paper is organised as follows: in Section 2 we present our algorithm which essentially
performs computation on a virtual tree. In Section 3 we show how to map virtual nodes to physical
nodes in the face of node failures and arrivals. Section 4 analyses the performance of our scheme,
Section 6 concludes.

2 Approach
To fix ideas, consider a computation of g on a full binary tree. Each leaf f initially holds a value
vf . In the first round, the level 1 nodes, i.e. the nodes that are parents of the leaves, compute the

2/14 July 18, 2006 – 23:16

partial function values g(vf , vf+1) for f = 1, 2, 3, ..., n/2. At the end of the first round, the level
1 nodes have computed n/2 partial values of g. In the second round, the level 2 nodes compute g
from the values computed in the first round, i.e. compute the partial values g(vf , vf+1, vf+2, vf+3)
= g(g(vf , vf+1), g(vf+2, vf+3)) for f = 4j, j = 1, 2, 3..., n/4.

For message sizes to grow sub-linearly, g must be aggregable in some fashion. That is, the
representation of the partial values should grow sub-linearly with the number of arguments. This
is trivially true for functions such as max and sum, but is false for a function like list, which lists
its arguments.

2.1 Virtual Tree

We compute g on a virtual tree where each non-leaf node is a virtual node, emulated by some of the
leaves. In the sequel, we refer to real (or physical) nodes as leaves, and to virtual nodes as vnodes.
Each vnode has between b and 2b children, and we denote by h the height of the tree (Figure 1).

c
f
1

f

Leaves in the
same super-leaf as f

u

Descendent
leaves of u

1

1.1 1.2 1.3

1.1.1 1.1.2
1.1.3

Leaf that f knows

Vnode whose value f knows

Leaf or vode that f doesn’t know

Vnode ancestor that f emulates

c
f
2

Vnodes
in

c
f
3

Vnodes
in

Vnodes
in

af
1

af
3

af
2

Figure 1: Virtual tree from the perspective of leaf f

Each leaf f is responsible for emulating all its (vnode) ancestors. Denote the ith ancestor of f
by ai

f and the set of all ancestors by Af . For example, a1
2 is the parent of leaf 2. Symmetrically,

Du is the set of descendent leaves of vnode u, that is, the set of leaves emulating u.
Define the ith contact set of f as the set of vnodes Ci

f = {c 6= ai−1
f : c is a child of ai

f}. In other
words, Ci

f is the set of children of leaf f ’s ith ancestor, excluding the i − 1thancestor itself (these
vnodes are the i− 1th level). The contact set of f , denoted Cf is the union of these contact sets.

A leaf f has a mapping table MCf
that maps every element c ∈ Cf to a set of m leaves (in Dc)

that emulate c. If c is a vnode at level i in the tree, then each leaf f can choose m leaves from
between bi and (2b)i possible choices to create its mapping table.

2.2 Algorithm

Leaf f computes the partial function value of g at level i, that is, the value at vnode ai
f , by applying

g over ai
f ’s children. These child vnodes are the elements of Ci

f together with ancestor vnode ai−1
f .

3/14 July 18, 2006 – 23:16

Assuming f already knows ai−1
f from a previous round of computation, this amounts to using MCf

to find some nodes that emulate each vnode in Ci
f , contacting them to retrieve their partial function

values, applying g to these values, then saving this value as the partial function value at ai
f .

For example, in Figure 1, in the first round of computation, the leaf marked f uses M1
f to find

its siblings, retrieves values at these siblings, and uses these to compute the value of vnode 1.1.1.
Other leaves in parallel compute the value of vnodes 1.1.2 and 1.1.3. In the second round, leaf f
uses MC2

f
to contact one of the leaves in charge of emulating vnodes 1.1.2 and 1.1.3 and retrieves

these vnode values. Leaf f can now apply g to these values to compute the value of vnode 1.1.
Meanwhile, other leaves compute the values of vnodes 1.2 and 1.3 in parallel. Proceeding in this
fashion, after h rounds of computation, every leaf computes the value of g at the root, as desired.

Main Algorithm

Round 1: do INITIALISATION ; GOSSIP 2
for Round i = 2 to i = h do

INITIALISATION
ACQUISITION 1
GOSSIP 1
ACQUISITION 2
GOSSIP 2

end for

INITIALISATION
do nothing

GOSSIP 1:
epidemic broadcast of the values

GOSSIP 2:
epidemic broadcast of the missing values and
consensus on who contacts whom in next round

ACQUISITION 1: (Round i)
for all vnodes cj in Ci

f do
k1 leaves try to contact a leaf emulating cj

end for

ACQUISITION 2: (Round i)
for all cj whose value we are missing do

k2 leaves try to contact a leaf emulating cj

end for

So far, we assumed that all messages take
a unit time. However, in a real system, some
leaves will be slower than others. We deal with
this by making a leaf block while waiting for a
reply from another leaf. This allows leaves to
make as much progress as is possible, given the
underlying heterogeneity in the system.

2.3 Super-leaves

The algorithm in Section 2.2 is suitable for sys-
tems where all leaves are “close” to each other,
so that inter-leaf message communication costs
are uniformly small. In reality, some links will
cost less than others. Future massively parallel
distributed systems are likely to span the globe,
consisting of clusters of servers co-located in
the same data centre. Communication within
a cluster (i.e. within a data centre) would in-
cur a delay of less than 1 ms. In contrast, com-
munication between data centres can take tens
or hundreds of milliseconds. To achieve good
performance, this link heterogeneity has to be
incorporated into our algorithm.

We do so by grouping between l and 2l
“nearby” leaves into a super-leaf. Leaves in the
same super-leaf are expected to be in the clus-
ter or same data centre. Because they have very
low communication costs, leaves in the super-leaf can use epidemic or gossip style algorithms to
maintain a consistent view of each other’s state. Therefore, in the sequel, we will assume that they
use a standard group communication protocol to achieve group consensus. This group communi-
cation takes O(ln l) time, with a small constant multiplier.

We choose b = (lnn)1/λ and l = (1+ρ) · (lnn)1+1/λ where λ is a constant whose choice is left to
the implementor and is typically 2 or 3. The parameter ρ characterises reliability and is such that
0 ≤ ρ ≤ lnc n where c is a constant. These values are necessary to derive the bounds of Section 4.

All leaves in a super-leaf share the same vnode parent, so they all have the same ancestor set
A and the same contact set C. Moreover, they use a consensus algorithm to agree on consistent

4/14 July 18, 2006 – 23:16

values of MCf
as described in Section 3.

As before, leaves in a super-leaf need to fetch values in C to compute g. However, instead of
having every leaf retrieve all values in C, at each round super-leaves save communication costs by
distributing the work of fetching values across leaves, then sharing the result.

The algorithm works in two phases. In the first phase of each round, leaves use a consensus
algorithm to select k1 = Θ(ln ln n) leaves (see Section 4 for the exact value of k1) for each of the
up to 2b − 1 contacts whose values need to be acquired. These values are then broadcast to all
leaves within the super-leaf in O(ln l) time. Due to leaf failures, some values may not have been
retrieved. If so, in the second phase k2 = (1+ρ)

2 lnn ≈ lnn leaves are assigned to fetch values from
each of the missing contacts. These values are then broadcast to all the leaves.

Due to randomness in M across different leaves, some leaves will get more value retrieval requests
than others. Because request handling is serialised, an overloaded leaf could potentially slow down
the entire system. To avoid this, we define a parameter max_load = ln lnn. If a leaf receives
more then max_load requests per phase, it drops all excess requests. We show in Section 4 that
this guarantees that no leaf is overloaded, yet, with high probability, the function computation
successfully completes because all super-leaves are able to get all necessary values.

3 Creating and Maintaining Mapping Tables
Define set M =

⋃
f MCf

to be the aggregate of all the leaf mapping tables. M should satisfy two
properties:

• Every leaf should appear in M an equal number of times: leaves that appear more frequently
than others are likely to get proportionately more requests, and the resulting load imbalance
can slow down the overall computation.

• Failed leaves should be weeded out from M .

Our solution meets these goals by providing every leaf that needs to contact vnode u with a
uniform and mostly uncorrelated random sample of live leaves in Du . This is done by piggybacking
a sample of representative leaves emulating vnode u when returning the partial function value at
u. These samples are used to update M , and the updated version of M is used in the next run of
the distributed computation. Only those leaves that are alive at the beginning of the run at time t
will be included in the mapping tables used by the algorithm at run t + 1. Hence, dead leaves are
removed at the end of every invocation of the distributed computation.

The mapping from vnodes to a set of representative leaves using the mapping table M is similar
to an IP anycast address being mapped to a set of representatives [1]. Indeed, we could have used
IP anycast addresses for vnodes, and made the descendent leaves members of the appropriate sets
of anycast groups. However, existing anycast approaches do not, to our knowledge, have the fault
tolerance and load balancing properties of our approach. Similarly, Astrolabe [13] also requires a
mapping from a “zone” to its representatives. The solution implemented in this system, however,
differs greatly from ours.

5/14 July 18, 2006 – 23:16

3.1 Algorithm

Additions to the main algorithm: Incoming
request at leaf f (outgoing is symmetric)

INITIALISATION
Round 1:

temp1
f := m copies of f ’s address

Round i: (1 < i ≤ h)
tempi

f := tempi−1
f

samplei
f := tempi−1

f

GOSSIP (1 & 2)
for each incoming connection, from leaf y do

swap a random half of tempi
f and tempi

y

end for

ACQUISITION (1 & 2)
for each incoming connection, from leaf x do

if received more than max_load connections
in total then

drop the connection and exit
end if
swap tempi

f and tempi
x

if tree structure(af
i−1) changed then

return appropriate k2 sample(s)
else

return k2 new elements from sample
end if

end for

(gossip and acquisition can be intertwined)

We now describe how a leaf f creates and
maintains its mapping table MCf

. Recall that
computation proceeds in rounds indexed by i,
1 ≤ i ≤ h, where, during round i, the ith level
vnode values are computed in parallel. In ad-
dition, during round i, the mapping tables MCi

f

of the next run are prepared.
Each leaf f holds two size-m vectors,

samplei
f and tempi

f . At the beginning of
round i, both vectors are set to tempi−1

f , a near
uniform random sample of Dai−1

f
(where ai−1

f

is f ’s height i − 1 ancestor). When f is con-
tacted during round i by some leaf x and asked
about the partial function value at ai−1

f , leaf f
also piggybacks k2 distinct, not previously re-
turned, elements from samplei

f in its reply (un-
less there has been a structural change in the
tree, which is discussed in Section 3.3). We
choose m = 2k2 · max_load so that a leaf can
always return a new set of k2 elements. In ad-
dition, leaf f and leaf x swap content of their
tempi vectors.

Then, during the gossip phases, the leaves
that retrieved the values of some vnodes cj gos-
sip the values v(cj) along with the new repre-
sentative samples of cj . For each cj , the sam-
ples (if more than 1) are randomly merged to
update the mapping table entry corresponding
to cj , which will be used by the super-leaf dur-
ing the next algorithm run. In addition, during
each iteration of the epidemics with a leaf y, leaf f and y swap a randomly chosen half of their
tempi elements. At the end of the epidemics phase, tempi

f vector is a near uniform random sample
of m elements from Dai+1

f
where ai+1

f is f ’s height i + 1 parent.
Consider a vnode u of height i. The concatenation Cat of the tempi

f vectors over all leaves f ∈
Du contain exactly m copies of each leaf. At the end of round i of run t, Cat is a random
permutation (though correlated to Cat of run t − 1). During round i + 1, each super-leaf that
contacts u is provided with a distinct, non-overlapping portion of Cat, which will be the mapping
used to contact u during round i + 1 of run t + 1. The algorithm attempts to maximise mixing
of Cat, and alternatives are certainly possible. Our simulations (not included) suggest that the
mixing is sufficient. Note that the algorithm we describe later to handle tree structural changes
only approximatively maintains the non-overlapping property; this is the subject future work.

6/14 July 18, 2006 – 23:16

3.2 Dealing with Leaf Joins

For now, assume that members joining or leaving the system do not break the constraints on b and
l, thus do not warrant a change in the tree structure. Structural changes are described next.

A gracefully departing leaf initialises its temp vector to nil instead of m copies of itself at the
beginning of its last run. A leaf crashing after the start of the tth run of the algorithm but before
the start of the t + 1th run is expunged from the system by the time run t + 2 starts.

A leaf f joins a super-leaf by boot-strapping from any leaf y of the super-leaf, once the current
run is over. Leaf f participates in the next run like any other leaf, initialising its vector temp to
m copies of itself. Non-local leaves will not contact f during its first run. However, leaf f will
be contacted like any other leaf during subsequent runs. While f could join any super-leaf, for
performance reasons, it is important that f gets included in the super-leaf of nearby members,
since most of the communications are within the super-leaf.

This can easily be done in the case of data centres and operators who know the rack disposition
of machines. Otherwise, the joining member may do a descent on the virtual tree and converge to
the closest super-leaf, assuming an appropriate metric space. Alternatively, system members could
participate in a system like Meridian [14] and use Meridian to locate an optimal super-leaf to join.

3.3 Structural Changes

The tree is maintained in the same way as a standard B-trees. When a super-leaf goes over the
size limit of 2l, it splits. When it becomes smaller than minimum size of l, it merges with a
nearby super-leaf. (Alternatively, it can dissolve and each component leaf can individually rejoin
the system.) Then, structural changes are propagated up the tree, if needed, to maintain the vnode
branching between b = and 2b. Recall b = (lnn)1/λ (and l) are not constant.

Note that even though the tree is height-balanced, the number of super-leaves in subtrees of
the same height may vary significantly. Define the weight of vnode u as the number of super-leaves
descending from u. The algorithm can tolerate a moderate weight imbalance, however a significant
imbalance will impact the load, or equivalently, the running time. In addition to typical B-tree
updates, our tree is also re-balanced to limit weight imbalances, as described below. To do so, the
algorithm also keeps track of the weight of each vnode.

Consider virtual node u of height i − 1. During round i, some leaves (not in Du) try to learn
u’s value. Denote by acq(u) the number of these leaves and let αu = acq(u)

|Du | . Variable αu is the
expected load on a leaf during round i. A re-balancing is triggered when (η ≥ 0 is user chosen):

αu > αmax = max_load · e−1−(2+η) ln max_load
max_load ≈ max_load

e
(1)

denoting that vnode u has insufficient weight. To address this, we transfer some branches from the
heaviest sibling(s) of u to u. See Section 4 for a justification of the value of the maximum expected
load αmax and upper bounds on acq(u). Because the bound is independent of the subtree size,
re-balancing can only be required for higher tree levels, where changes themselves are infrequent.

Structural changes are carried in control messages appended to regular messages. Membership
changes and the split and merge structural changes they trigger, if any, are carried out at the same
time. Round i of run t provides leaves with the mapping information used by round i of run t + 1,
including the number of subtrees rooted at their height-i ancestor v. At the end of round i of run t,
each leaf f checks whether the tree constraints on ai

f are satisfied by the new mapping. If not, any
such leaf f selects the appropriate change (ai

f splitting into two or ai
f merging with some ai

x) and
makes the appropriate change to its mapping table for use in the next algorithm run. Leaf f also
incorporates the change in its announcement for round i + 1 of the current run.

7/14 July 18, 2006 – 23:16

At the end of round i, leaf f also checks whether there is a weight imbalance between the level i
vnodes, that is, between ai

f and the ci+1
f . If so, re-balancing happens: some branches are transfered

(or received) by ai
f from an appropriate ci+1

f . Note that unfortunately, the weight of these vnodes
is stale information: the updated ci+1

f weights are only received during round i+1. In other words,
the membership changes and the split / merges they trigger are enacted at the same time. However,
the re-balancing these may trigger is taken into account a run later.

The choices of what and how to split, merge ore re-balance are deterministic so that the same
decision is reached by all super-leaves independently, with no communication. During round i + 1,
leaf f (f is queried about ai

f) will announce the changes it made to ai
f and provide the necessary

membership information to the leaves contacting it. If the structural change is a split, leaf f returns
two size-m random sample of elements, containing elements of each side of the split. In case of a
merge, if the query comes from a leaf x ∈ Dv, leaf f returns a size-m random sample of Du for each
u child of v; if the query comes from a leaf x /∈ Dv, leaf f returns no sample. A re-balancing is
similar to a merge; however, only samples for the subtrees being transfered are returned. Finally,
if there is no structural change, leaf f returns a random sample of leaves emulating v.

4 Analysis

4.1 Running Time

Theorem 1. The running time of the algorithm is Θ(ln n).

Proof. The running time is O(h ·R) where R is the running time of a round. We have log2b
n
2l +1 ≤

h ≤ logb
n
l + 1, or h = Θ

(
1

ln b ln n
l

)
. There are two operations during a round: the acquisition

of values and the broadcast within the super-leaf, each of which may be repeated once more if
some values are missing. The running time of the broadcast within each super-leaf is Θ(ln l) when
running an epidemic algorithm. Because each leaf sends one or two messages and processes at
most 2 max_load incoming messages the length of both acquisition phases is upper bounded by
2 max_load + 2 = 2 ln ln n + 2 ≤ 2 ln l + 2. We have R = Θ(ln l + max_load) = Θ(ln lnn) = Θ(ln b).
The running time is then

T = h ·R = Θ
(

1
ln b

ln
n

l
· ln b

)
= Θ(lnn)

4.2 Reliability in the Face of Failures

We now prove that the algorithm succeeds with high probability even in the presence of failures.
This derivation also justifies our earlier choices of values for l and b.

4.2.1 Model and Assumption

We assume that a fraction p of leaves, chosen uniformly at random amongst the members currently
in the membership list, may fail at anytime during the computation (as opposed to before the start
of the computation, as prior work [7, 6] does). We assume the failures to be fail-stop failures. The
value of a failed leaf will be included in the computation if the value makes it to a leaf that will
stay alive during the computation. Typically, the value is dropped only if it fails to be forwarded
to a super-leaf member that stays alive until (at least) the completion of round 1. Leaves stopping
during the execution of the algorithm do not disrupt it. This handling of failed leaves is similar to
that of prior work [4, 11, 10, 9] that handle members failing during computation.

8/14 July 18, 2006 – 23:16

We assume that the mapping tables provide each leaf with a uniform random sample of leaves
that it needs to contact, although in practice the mapping is only approximatively uniform.

Assuming that leaves select uniformly at random which connections to drop when they become
too numerous, we model the dropping of incoming connections by an increase bounded by ε in the
probability of failures from p. The justification for this and the new modified probability of failure
p′are described below. The detailed proofs of the theorems can be found in appendix.

4.2.2 Reliability

Recall that αu = acq(u)
|Du | is the expected load on the leaves of Du and that the tree re-balancing

ensures that, for a user-chosen η ≥ 0 (see the bound on ε below):

αu ≤ αmax = max_load · e−1−(2+η) ln max_load
max_load (1)

Lemma 1. Leaves dropping connections when their load exceeds max_load long range messages in
a round is equivalent to leaves serving all their connections but with an increase of ε in the failure
probability of targets, where ε ≤ 1

4 ln2 max_load ·
1

(max_load)η .

We set k1 = ln ln n
| ln(2p+ε)| . Note that limn→∞ ε = 0.

Theorem 2. The algorithm fails with probability:

pfail = O
(

1
n(γ−1)+γρ

)
where γ = | ln(2(p + ε))|/2 is a parameter depending on the failure probability, and ρ a user-chosen
parameter governing the reliability with 0 ≤ ρ ≤ O(lnn) being acceptable values. Larger ρ leads to
larger super-leaves, of size l = (1 + ρ) · (lnn)1+1/λ

4.3 Load on Leaves and Tree Balance

The membership service needs to maintain the bound on α as defined in Equation 1. Denote by
S(u) the number of super-leaves that need to acquire u’s value. Note that acq(u) ≤ S(u) · 2l/b =
2(1 + ρ)S(u) ln n since each super-leaf sends at most 2l/b messages to Du . For the highest vnodes
in the tree, the bound on acq(u) is loose by a (1 + ρ) ln n factor.

Theorem 3. For the virtual nodes u high in the tree, that is, such that

S(u) ≥ (1 + ρ)| ln(2(p + ε))| ln
2 n

2e2
(2)

we have acq(u) = O(S(u) · k1) = O(S(u) · ln lnn)
This result holds with very high probability. The probability that some (virtual) node exceeds the

bound during the execution of the algorithm is smaller than the algorithm failure probability.

In other words, none of the vnodes satisfying constraint (2) will have a load exceeding O(k1·S(u))

4.4 Message Complexity

The number of messages sent by the algorithm is O(n lnn). However, not all messages have the
same cost. A more interesting metric is to count the number of long distance messages (as opposed
to local messages, sent within the super-leaf).

9/14 July 18, 2006 – 23:16

Theorem 4. The number of non-local messages sent by the algorithm is with high probability O(n).

Denote by Agg the size of the partial result of the aggregation function g, typically O(1).

Theorem 5. Non-local messages, excluding merging and re-balancing ones, are of size O(Agg+m).
Tree merging and re-balancing messages are of size O(Agg + l)

The size of local messages is implementation specific, typically of size O(l).

5 Computable Functions
We call the “dependency graph” of a function the directed acyclic graph representing the depen-
dency of intermediary computations on other intermediary results and variables. Variables are sink
nodes; the other nodes represent operands. A node’s out-going edges point to the operand inputs.

Any function whose dependency graph can be naturally embedded into the tree the algorithm
utilises can be computed efficiently using our scheme, such as:

1. Sum, product, mean, standard deviation and other moments;
2. Count of nodes having a particular property, which includes voting;
3. Min, max and derived expressions: top k, consensus, barrier synchronisation (by waiting for

the minimum value to increase) [13],
4. Approximate histogram [12] and therefore approximate cumulative distribution and most

frequent values;
5. Uniform and non-uniform random sampling.

Theorem 6. All dependency graphs can be embedded in the algorithm tree, therefore all functions
are computable.

This comes at the expense of larger messages. See details in full paper. The idea is to propagate
up the tree all values that cannot be processed. In the worst case, no aggregation is done, yielding
O(n) sized messages. Randomisation is handled by reaching agreement on a generator seed.

6 Conclusion
We have described the first accurate, efficient and robust algorithm for in-network computation of
functions of global state. We provide a simple abstraction of a tree on which arbitrary functions
can be evaluated. Our scheme has three important features:

• Unlike other systems such as peer-to-peer overlays, our solution updates routing tables during
function computation. By deriving the tables for the next run from scratch during the current
one, our scheme deals well with node churn.

• We exploit the fact that network link latencies are heterogeneous. Our scheme groups nearby
nodes into “super-leaves” and most communications are within the super-leaf. Other overlay
schemes ignore this heterogeneity and consequently suffer from poor performance.

• Unlike other schemes, our routing tables contain only representative samples of virtual nodes
and not exact matches; this flexibility inherently increases fault tolerance.

We believe that our work can serve as a basis for building robust and efficient distributed systems
in a variety of domains.

10/14 July 18, 2006 – 23:16

References
[1] H. Ballani and P. Francis. Towards a global IP anycast service. In Proc. SIGCOMM, 2005.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design, analysis and
applications. In Proc. 24th IEEE INFOCOM, 2005.

[3] E. Cohen and H. Kaplan. Spatially-decaying aggregation over a network: model and algo-
rithms. In Proc. 23rd ACM SIGMOD, 2004.

[4] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation techniques for sensor
databases. In Proc. 20th ICDE, March 2004.

[5] P. Flajolet and N. Martin. Probabilistic counting algorithms for data base applications. JCSS,
31:182–209, 1985.

[6] S. Kashyap, S. Deb, K.V.M. Naidu, R. Rastogi, and A. Srinivasan. Efficient gossip-based
aggregate computation. In Proc. 25th ACM PODS, 2006.

[7] D. Kempe, A. Dobra, and J. Gehrke. Computing aggregate information using gossip. In Proc.
44th IEEE FOCS, 2003.

[8] S. Keshav. Efficient and decentralized computation of approximate global state. ACM Com-
puter Communication Review, January 2005.

[9] A. Manjhi, S. Nath, and P. Gibbons. Tributaries and deltas: Efficient and robust aggregation
in sensor network streams. In Proc. 24th ACM SIGMOD, 2005.

[10] D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In Proc. 25th ACM
PODC, 2006.

[11] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson. Synopsis diffusion for robust aggregation in
sensor networks. In Proc. 3rd ACM SENSYS, 2004.

[12] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: new aggregation
techniques for sensor networks. In Proc. 3rd ACM SENSYS, 2004.

[13] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data mining. ACM TOCS, 21(2), May 2003.

[14] B. Wong, A. Slivkins, and G. Sirer. Meridian: A lightweight network location service without
virtual coordinates. In Proc. SIGCOMM, 2005.

11/14 July 18, 2006 – 23:16

A Proofs of Section 4
Proof of lemma 1. First note that the leaves whose connections are dropped are chosen uniformly
at random:

Let H be a descendent leaf of a virtual node u. Consider the set of leaves that are set to learn
u’s value during the round and assume that H will drop some connections. Break the process of
leaves selecting their communication partner uniformly at random into two steps. First, an oracle
chooses the histogram distribution of the load of the potential partners and randomly attaches a
leaf to each load. (The probability distribution of the histograms is the same as if leaves selected
their targets uniformly at random.) Then, each leaf selects at random the load of its communication
partner – the probability is proportional to the load – and attempts to communicate with the leaf
responsible for that load. This process is the same as if leaves chose their communication partner
uniformly at random

Thus it is equivalent to consider that leaf targets fail uniformly at random with probability
p′ = p + ε where ε is the probability that a connection is dropped. We now compute an upper-
bound on ε.

Consider leaf f , descendent of virtual node u. Denote by s = |Du | the number of leaves that
emulate u and denote by m the number of leaves that try to learn u’s value during the current
round. By our assumption, each one of these m leaves selects a leaf uniformly at random in Du .
The probability that leaf f has received j connections is therefore

(
m
j

) (
1
s

)j (
1− 1

s

)m−j . Denote
by E the expected number of connections that f drops. The probability for a given leaf to see its
connection dropped is ε = sE

s = E. We have

ε =
m∑

j=max_load

(j − max_load) ·
(

m

j

) (
1
s

)j (
1− 1

s

)m−j

≤
m∑

j=max_load

(j − max_load) ·
(

m · e
j

)j (
1
s

)j

· 1 since
(
m
j

)
≤

(
m·e
j

)j

≤
m∑

j=max_load

(j − max_load) ·
(

α · e
j

)j
m
s ≤ α by definition of α

≤
∞∑

j=max_load

(j − max_load) ·
(

max_load
j

· e−(2+η) ln max_load
max_load

)j

bound on α

≤
∞∑

κ=0

κ · 1 · e−(κ+max_load)(2+η) ln max_load
max_load max_load ≤ j

≤ e−(2+η) ln max_load
∫ ∞

0
xe−x(2+η) ln max_load

max_load dx

=
(

1
max_load

)2+η

·
(

max_load
(2 + η) ln max_load

)2 ∫∞
0 xe−βxdx = β−2

≤ 1
4 ln2 max_load

· 1
(max_load)η

Proof of Theorem 2. For the purpose of an upper-bound on the algorithm failure probability, we
may ignore the successes of first phase acquisitions and only consider the second phases. Recall, p
is the probability that a leaf is dead. Let p′ = p + 2ε. We justify below that p′ is an upper-bound
on the probability that a request to a leaf is not answered during the second phase, either because
the leaf is dead, or because the leaf is overloaded.

12/14 July 18, 2006 – 23:16

Some leaves may receive max_load or more in-coming messages during the first acquisition
phase. These leaves may be unwilling to serve up to max_load requests during the second acquisition
phase because they may exceed their load quota of max_load connections for each phase. We do
not assume that leaves are able to distinguish between first and second phase acquisition messages,
therefore they may serve too much during the first phase. Since these leaves may fail to answer
requests during the second acquisition, we mark them as dead. Although the number of these leaves
may be computed, for convenience we shall use ε|Du | as a rough upper-bound, yielding an increase
of ε in the failure probability of targets. Applying Lemma 1 yields another increase, by ε as well,
of the probability of targets failing to answer a query.

The probability that a leaf set to acquire the value from a given sub-tree T succeeds is at
least (1 − p) · (1 − p′). The probability that a super-leaf fails to acquire the value of T is at most
(1 − (1 − p)(1 − p′))k2 ≤ (p + p′)k2 when there are k2 = (1+ρ)

2 lnn leaves set to acquire the value
from T.

Taking a union bound on all branches whose value a super-leaf needs to acquire, for all super-
leaves and for all rounds, we get an upper-bound on the failure probability of the algorithm:
pfail ≤

(
2bn

l h(p + p′)k2
)
. Note that bh/l ≤ 1/(1 + ρ) ≤ 1. We have

pfail ≤ 2eln n− (1+ρ) ln n| ln(2(p+ε))|
2 =

2

n
| ln(2(p+ε))|

2
−1

· 1

(n| ln(2(p+ε))|)
ρ
2

Proof of Theorem 3. Consider a virtual node u. There are S(u) super-leaves trying to acquire u’s
value. Each of them fails to do so during the first phase with a probability upper-bounded by
1/ lnn (see proof of Theorem 4). Denote by M the number of super-leaves that need to run a
second acquisition phase and by µ the expected value of M . Bound M using a Chernoff bound:

Pr[M ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

≤
(

e

1 + δ

)(1+δ)µ

Note that µ ≤ S(u)/ lnn. Set (1+ δ)µ = e2S(u)/ lnn, which guarantees that e
1+δ ≤

1
e , and we have

P1 = Pr[M ≥ e2S(u)
lnn

] ≤ e−
e2S(u)

ln n

Define P1 to be the probability of exceeding this bound. We want P1 small enough that the prob-
ability of some vnode exceeding the bound is smaller than Pfail, the algorithm failure probability.
There are at most 2n/lb vnodes satisfying requirement (2). It is sufficient to have P12n/lb ≤ Pfail,
which can be rewritten as

e−
e2S(u)

ln n ∗ 2n ≤ 2ne−
(1+ρ) ln n| ln(2(p+ε))|

2

equivalent to Equation 2. This shows that with sufficiently high probability, all super-leaves learn
the subtree value during the first acquisition phase, that is, acq(u) = k1S(u)

Proof of Theorem 4. The number N1 of messages sent during all first acquisition phases isO(n
l 2bhk1)

where k1 = ln lnn/| ln(2p + ε)| is the number of leaves that are dedicated to any given subtree.
Simplifying, we get

N1 = O(n)

A second phase acquisition is run only if the first phase one is unsuccessful. A first phase
acquisition fails with probability upper-bounded by (2p + ε)k1 = 1/ lnn. We use a Chernoff bound
to bound the number M of these unsuccessful first phase acquisitions:

Pr[M ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

≤
(

e

1 + δ

)(1+δ)µ

13/14 July 18, 2006 – 23:16

We have µ ≤ 2bhn/(l · lnn) ≤ 2n/((1+ρ) ln n). Set (1+δ)µ = 2e2n/((1+ρ) ln n), which guarantees
that e

1+δ ≤
1
e , and we have

Pr[M ≥ 2e2n

(1 + ρ) ln n
] ≤ e

− n
(1+ρ) ln n ≤ e−n/2

The last inequality holds for sufficiently large n.
With high probability, the number N2 of messages sent during all second phase acquisitions is

upper-bounded by 2e2n
(1+ρ) ln n ·

2l
b , that is

N2 = O (n)

Finally, the total number N of messages sent to non-(super-leaf)-local leaves is N = N1 + N2:

N = O(n)

Proof of Theorem 5. Assuming no structural changes, the query requests are of size m and the
answers of size Agg+k2+m = O(Agg+m). In the case of a split, the answer size is Agg+2k2+m =
O(Agg + m).

In the case of merging or rebalancing between vnode u and v, k2 sized information needs to be
communicated for each child of u that v needs to know, and of each child of v that u needs to know.
There are at most 4b of these. The total information exchanged is of size O(Agg + m + bk2) =
O(Agg + m + l).

14/14 July 18, 2006 – 23:16

	Background and Related Work
	Approach
	Virtual Tree
	Algorithm
	Super-leaves

	Creating and Maintaining Mapping Tables
	Algorithm
	Dealing with Leaf Joins
	Structural Changes

	Analysis
	Running Time
	Reliability in the Face of Failures
	Model and Assumption
	Reliability

	Load on Leaves and Tree Balance
	Message Complexity

	Computable Functions
	Conclusion
	Proofs of Section 4

