
CS–2006–20

On Pattern Expression Languages

Cezar Câmpeanu and Nicolae Santean

Technical Report 20

David R. Cheriton School of Computer Science

University of Waterloo

2006

On Pattern Expression Languages

Cezar Câmpeanu1 and Nicolae Sântean2

1 Department of Computer Science and Information Technology, University of Prince Edward Island
2 Computer Science Department, University of Waterloo

Abstract. In this paper we show that the family of pattern expression languages is closed
under the intersection with regular languages. Since this family is not closed under complement
but is closed under reverse, a natural question arises, that is, whether particular languages
such as those containing words of type ww

R are pattern expression languages or not. We give
a proof for a negative answer to this question, and we provide several examples of languages
which can not be specified by pattern expressions.

1 Introduction

Regular expressions are used in many practical applications, e.g., Perl, Awk, Python, egrep,
vi, and emacs. It is known that practical regular expressions are different from their theo-
retical counterparts. Practical regular expressions [6] are often called “regex”. Regex were
developed under the influence of theoretical regular expressions; and in some implemen-
tations (e.g. in Lex, [10]) they bare a strong similarity to them. However, regex are quite
different in many other environments, and in most implementations regex can express lan-
guage families larger than that of regular languages. For example, Perl regex [6] can express
L1 = {anban | n ≥ 0} and L2 = {ww | w ∈ {a, b}∗}. Anyway, Perl regex and pattern ex-
pressions cannot express the language L3 = {anbn | n ≥ 0}, L4 = {wwR | w ∈ {a, b}∗}
(as will be shown in this paper), or L5 = { (abc)n(cba)n | n ≥ 0}. It is relatively easy to
show that a language can be expressed by a regex. For example, L1 can be expressed by the
Perl regex (a∗)b\1 and L2 by ((a|b)∗)\1. Unlike language L3, which is known that it cannot
be generated in Perl (and it has been proven that is neither an extended regex language
in [2], nor a pattern expression language in [3]), very little is known about L4. There has
been a long-standing controversy, on whether L4 can or can not be generated in Perl or
by pattern expressions. Some people believe the positive, although they cannot give a Perl
regex for it, whereas some others believe the opposite, yet they cannot provide a rigorous
argument to support their claims. For the latter, the difficulty consists in the fact that both
pumping lemmas for extended regex and pattern expression fail to give a contradiction in
the case of L4. Consequently, the present result stating that the mirror language (L4) is not
a pattern expression language is expected to raise the interest of the research community as
well as that of practitioners, due to its practical implications. In this paper we will mainly
focus on new results for pattern expressions, rather than for extended regex. One reason
for this is that they are more versatile, and there is strong evidence that the two models

are equivalent: although no formal proof is available yet, in [3] was proposed a method for
converting a pattern expression into an extended regex and vice-versa.
Related to our study on pattern expressions (PE) we mention [1], where was considered the
addition of a reverse operation to extend the power of pattern languages, or [5], where was
proposed the use of a mirror operation to increase the power of multi-pattern languages.
Other variations on multi-pattern languages, or similar constructs can be found in [8, 14, 5,
9], or more recently, in [9, 12], where one can find a comprehensive survey on the topic. The
formalism and most of the results present in this research stream are developed under the
influence of parallel communication grammar systems and other similar devices. It would
be interesting and rather challenging to analyze the relationship between the formalism
proposed and developed in [2, 3] (and used throughout this paper) and those employed in
the past. For example, in this paper we have used pattern automata introduced in [3], which
bear similarities with parallel communicating finite automata systems, mentioned in [11]. It
is our belief that the two models are not equivalent, matter which we plan to address in the
near future. Another parallel can be drawn between PE languages and certain families of
languages studied in the past. Despite their proximity, we could not identify a past model
equivalent to pattern expressions, and we believe that none of the results present in this
paper can be stated equivalently in the other frameworks. One explanation of this status
quo, of having several models sharing common ideas and yet being rather different, is that
due to their particularities (e.g., the use of recursive definitions and iterating mechanisms),
small model changes may have a huge impact on the behavior of the model. A conceptual
difference between the PE model and the other models, as well as a justification for its
study beside its inherent novelties, is that pattern expressions were inspired by pragmatic
software applications and were influenced by the formalism of expressions (specifications)
and automata (acceptors), whereas the previous work originated in the study of grammars
(generative devices) and had only a purely theoretical justification. For illustration, let us
emphasize some differences between the PE model and other models which although are
apparently similar, their language families differ:

– In multi-patterns, variables are replaced with words given by a regular or a context
free language, while in pattern expressions variables are replaced with words from a
pattern expression language, in a recursive manner – thus there may be stages where
substitutions are done with words in a context-sensitive language.

– For multi-patterns there is no order for substituting variables (all substitutions are
done in one step), whereas for pattern expressions the substitutions are done in a
predefined order and in a finite number of steps.

– Despite their names, iterated patterns (model introduced in [8]) do not contain a
Kleene operator (the word “iteration” refers to substitutions) in contrast with pattern

expressions.

– The model that seems to be the closest to PE is the so-called iterative multi-patterns
where the patterns are given by a language generated by a regular grammar. However,
their differences become obvious when their families of languages are related to those
of the Chomsky hierarchy.

– In some sense, one can view the idea behind pattern expressions as a combination of
ideas used in multi-patterns and iterated patterns. Yet, we are not sure whether even
combining these models in some way one can built a model equivalent with PE.

Finally, we should mention that one of the motivations of the present paper, i.e., whether
L4 or other similar languages belong to PE, has not been addressed in the past despite being
such a natural matter. One reason for this may be that the problem has turned out to be
either trivial for some models, or too complex for others. It is in our hope that our results
will inspire studies on, and solutions to this and other problems remained open for the other
related models.

2 Notations and Definitions

In this section we provide some basic notions and notations used throughout the paper. For
definitions of formal language theory and automata, not covered here, we refer the reader to
[7], [15], or [17]. We also give a formal definition for pattern expressions, along with several
illustrative examples. In order to keep the paper as self contained as possible, we provide
an informal definition and examples for extended regex as well.

An alphabet Σ is a finite non-empty set. A word over Σ is an element of the free monoid
Σ∗, that is, a finite string of symbols in Σ. For Γ ⊆ Σ let | · |Γ : Σ −→ N be defined as
follows: |a|Γ = 1 if a ∈ Γ , and |a|Γ = 0 if a /∈ Γ (i.e., the characteristic function for Γ).
We extend the function | · |Γ to a monoid homomorphism from (Σ∗, ·) to (N,+), thus |w|Γ
will denote the number of occurrences of symbols of Γ in the word w. When Γ = Σ we
omit the subscript and |w| becomes the length of the word w. When Γ = {a}, that is, a
singleton, we use the notation |w|a to express |w|{a}. The word with no letters (the empty
word) is denoted by λ and |λ|Γ = 0, for any Γ ⊆ Σ∗. Similarly, | w |∅= 0 for all w ∈ Σ∗.

A regular expression over Σ is described recursively as follows:

1. the empty set and any letter a of the alphabet Σ are regular expressions denoting the
languages ∅ and {a}, respectively;

2. if α and β are regular expressions, then αβ, α + β, α∗, and (α) are regular expressions
denoting the languages L(α)L(β), L(α) ∪ L(β), L(α)∗, and L(α), respectively;

3. any regular expression is obtained by applying the above rules a finite number of times.

In other words, a regular expression over Σ is the set of all well-formed parenthesized infix
formulae obtained from the elements of Σ∗ (viewed as atomic formulae), the null operator
λ, the binary operators + and · (expressed as juxtaposition), and the unary operator ∗.
Since by convention L(∅∗) = {λ} (we omit the explanation here), we usually denote the
regular expression ∅∗ by λ. A word belonging to the language of a regular expression is said
that “matches the regular expression”.

An extended regular expression (extended regex) is a regular expression which accepts
the additional atoms “\n”, n ∈ N, used as follows. Each pair of parentheses of the regular
expression is numbered according to the order of open parentheses. An atom \n of the
regular expression is replaced with the content of the n’th pair of parentheses during the
matching of a word. For example, the word a2ba2 matches the expression (

1
(
2
a∗)b)\2 since

the content of the second pair of parentheses matches the subword a2 and \2 duplicates it.
For more on extended regex consult [6].

Next we give a formal definition for pattern expressions followed by a few examples.

Definition 1. Let Σ be an alphabet and V = {v0, . . . , vn−1} be a finite set of variables such
that V ∩Σ = ∅. A regular pattern is a regular expression over Σ ∪V . A pattern expression
is a tuple of regular patterns p = (r0, r1, . . . , rn) with the following properties:

1. r0 is a regular expression over Σ;
2. for i ∈ {1, . . . , n}, ri is a regular expression over Σ ∪ {v0, . . . , vi−1}.

The language L(p) generated by p is defined as follows:
L0 = L(r0), as defined for a regular expression, and for all i ∈ {1, . . . , n},

Li =
{

(u0/v0) . . . (ui−1/vi−1)ui

∣

∣ ui ∈ L(ri), uj ∈ Lj, j ∈ {0, . . . , i − 1}
}

,

where L(p) := Ln and the notation (u/v)α expresses the substitution of all occurrences of
variable v in α by the word u.

For better handling pattern expressions, we use the notation p = (v0 = r0, v1 =
r1, . . . , vn−1 = rn−1, rn) to track easily which variable is substituted by words in which
language: variable vi is substituted by words in the language Li generated by the regular
pattern ri.

Example 1.

– p = (v0 = (a + b)∗, v0abbv0) is a pattern expression generating all double words over
the alphabet {a, b} separated by abb;

– for p = (v0 = ab∗aaa, v1 = bv0v0a
∗, v0v1av1bv0) we have:

L0 = {abnaaa | n ≥ 0},
L1 = {babnaaaabnaaaam | m ≥ 0, n ≥ 0},
L2 = {ablaaababnaaaabnaaaamababnaaaabnaaaambablaaa |

l ≥ 0,m ≥ 0, n ≥ 0};

– for p = (v0 = ab∗, v1 = baa∗, (v0 + v1)(v0 + v1)) we have
L(p) = {abnabn | n ≥ 0} ∪ {banban | n ≥ 1} ∪

{abnbam | n ≥ 0,m ≥ 1} ∪ {bamabn | n ≥ 0,m ≥ 1};

– for p = (v0 = ab∗, v∗0cv0), L(p) = {(abn)mcabn | n ≥ 0,m ≥ 0}.

We emphasize that pattern expressions are extensions of patterns ([1]), i.e., words containing
letters and variables. A pattern language([1, 14]) is obtained from a pattern by substituting
variables with arbitrary words.

The same Pumping Lemma holds for both regex and pattern expression languages,
respectively:

Lemma 1. ([2]) Let L be a pattern expression language or a regex language. Then there is a
constant N , such that if w ∈ L and |w| > N , there is a decomposition w = x0yx1yx2 · · · xm

for some m ≥ 1, such that:

1. |x0y| ≤ N ,

2. |y| ≥ 1,
3. x0y

jx1y
jx2 · · · xm ∈ L for all j > 0.

In order to prove the closure of pattern expression languages to intersection with regular
languages, we recall the notion of pattern automaton, introduced in [3]. A pattern automa-
ton is an automata system P = (A0, A1, . . . , An) where

A0 = (Q0, Σ, δ0, q0,0, F0), and

Ai = (Qi, Σ ∪ {v0, . . . , vi−1}, δi, qi,0, Fi), 0 < i ≤ n,

are finite automata, also called modules of P . A0 is a DFA over Σ, and for each i ∈
{1, . . . , n}, Ai has the same structure as A0, except for the transition labels which may be
either a symbol in Σ or one of the variables v0, . . ., vi−1. We assume that Qi ∩ Qj = ∅ for
0 ≤ i 6= j ≤ n, and we usually denote Q =

⋃n
i=0

Qi. This automata system mimics closely
the structure of a pattern expression p = (v0 = r0, v1 = r1, . . . vn−1 = rn−1, rn), where ri

is the regular pattern corresponding to automaton Ai, for all i ∈ {0, . . . , n}. Then p will
represent a pattern expression associated to the pattern automaton P .

If n = 0, the pattern automaton consists of only one automaton which operates as an
usual finite automaton. For n > 0, P uses a stack S storing elements of Q, an array of
stacks U = {Ui | 0 ≤ i < n}, whose stacks store elements of {0, 1}, and V = {Vj | 0 ≤
j < n}, whose stacks store elements of Σ∗. The interpretation for U and V is as follows.
Let p = (v0 = r0, v1 = r1, . . . , vn−1 = rn−1, rn) be a pattern expression associated with P .
A computation step of P consists in matching a prefix of the remaining input word with
an expression ri of p, leading to the instantiation of variable vi. When this happens, the
top element of each Uj indicates whether the variable vj has been instantiated, whereas the

top of stack Vj stores the actual string which instantiates vj . All stacks of U and V are
bounded, each containing at most n elements.

The current configuration of pattern automaton P can be described by its current state
q ∈ Q, the remaining of the input word w ∈ Σ∗, the current content of the state stack S and
of every stack of U and V . Thus, the current configuration at step t is (st, xt, St, U t, V t),
where st denotes the current state and xt denotes the remaining input. This configuration
is an accepting configuration if st ∈ Fn and xt = λ.

Initially, P holds an input string w ∈ Σ∗ on its tape, and its current (initial) state is
qn,0. S is empty and all the stacks of U and V are empty. Thus, the initial configuration is
described by

(s0, x0, S0, U0, V 0) = (qn,0, w, λ, λ, λ).

The first step of P is push(Ui, 0), for all 0 ≤ i < n (meaning that no variable has been
instantiated yet). The transitions between consecutive configurations are defined by one of
the following rules:

1. Let xt = ay ∈ Σ∗, with a ∈ Σ. If st = p ∈ Qn, then st+1 = q with q ∈ δn(p, a), and
xt+1 = y. If st = p ∈ Qi for some i < n, then st+1 = q with q ∈ δi(p, a), xt+1 = y, and
top(Vi) = top(Vi)a.

2. Let st = p ∈ Qi for some i > 0. If for an index j ∈ {0, . . . , i − 1} we have q ∈ δi(p, vj)
and top(Uj) = 0, then push(S, q), push(Vj , λ), push(Uk, 0) for all 0 ≤ k < j. Then set
st+1 = qj,0 and leave xt+1 = xt.

3. If st = p ∈ Fi for 0 ≤ i < n and top(Ui) = 0, then set st+1 = top(S), pop(S), pop(Vj)
for 0 ≤ j < i, pop(Uj) for all 0 ≤ j < i, and set top(Ui) = 1.

4. Let st = p ∈ Qi for some i > 0. If for an index j ∈ {0, . . . , i − 1} we have q ∈ δi(p, vj),
top(Uj) = 1, and xt = top(Vj)y, then set st+1 = q, top(Vi) = top(Vi)top(Vj) and
xt+1 = y.

5. If st ∈ Fn and xt = λ, then accept.

The language recognized by P is:

L(P) = {w | (qn,0, w, λ, λ, λ) ⊢∗ (f, λ, S, U, V), f ∈ Fn}.

If for each of the automata Ai with 0 ≤ i ≤ n we denote Ri = L(Ai) ⊆ (Σ∪{v0, . . . , vi−1})
∗,

then is easy to observe that the language recognized by P is

Wn = {(u0/v0) . . . (un−1/vn−1)un | un ∈ Rn, ui ∈ Wi, 0 ≤ i ≤ n − 1}, where

W0 = R0, and for i ∈ {1, . . . , n − 1} :

Wi = {(u0/v0) . . . (ui−1/vi−1)ui | ui ∈ Ri, uj ∈ Wj, 0 ≤ j ≤ i − 1}.
Since Ri = L(ri), it follows that Wi = Li, hence L(P) = L(p), i.e., the automata system
recognizes the same language as the language generated by the pattern expression p.

We can easily see that the PA operation is non-deterministic, making the running time
exponential. Since pattern automata recognize languages generated by pattern expressions,
one may wonder what is the running time for recognizing a word in the language and
whether is possible to construct some device that has a better running time than PA. The
following theorem answers this question.

Theorem 1. The membership problem for pattern expressions is NP-complete.

Proof. We analyze the membership problem for pattern automata. Let P be a pattern
automaton as previously defined, and w an input word. If we guess the “right choice” in
each module Ai of P (i.e., we always make the right variable substitutions, hence avoiding
backtracking), to recognize w takes O(|w|) time, therefore the problem is in NP. Since the
problem w ∈ L(p) is NP-hard when p is just a pattern (see [1, T. 3.2.3, p.133]), we conclude
that our problem is also NP-hard, therefore NP-complete.

Remark 1. For a pattern expression p with n regular patterns, the membership problem
has O(n2m) space complexity, where m is the length of the input word. This results from
the fact that all words in the stacks used for simulating a pattern automaton have a length
bounded by the length of the input word w (storing some sub-words of w) and there are
2n + 1 stacks, each of depth at most n.

3 Main Results

As mentioned in the previous section, there already exists a pumping lemma holding for
both pattern expression languages and extended regex languages. This lemma turns out to
be too weak for proving that a language like L4 (mentioned in introduction) is not a pattern
expression or an extended regex language. To go around this problem, we first prove an
important closure property for the family of pattern expression languages.

Theorem 2. The family of pattern expression languages is closed under intersection with
regular languages.

Proof. Let L = L(p) with p = (r0, r1, . . . , rn) be a pattern expression language and R be a
regular language accepted by a trim DFA B = (Σ,QB , 0, δB , FB).

The idea of the proof, based on a Cartesian product construction [7, 4], is as follows.
We consider a pattern automaton P , such that L(P) = L(p), and construct a pattern
automaton which simulates the run of P in “parallel” with B. This simulation works purely
in parallel when P transits from state to state based on letters in Σ. When P chooses
a transition labeled with a variable name “v”, B is put on hold, and P calls the proper

module which takes over the resolution of v. Whenever a module called recursively uses a
transition labeled with a letter in Σ, B is revived and advances again in parallel with P .
This idea is facing the challenge of making this simulator look like a pattern automaton.
The problem has turn to be rather complicate, and we will see that the newly constructed
pattern automaton uses significantly more variables than P – number increased of order
O(| QB |2). One essential trick used in this proof is to index the new variables in such
manner, that the subscripts themselves provide information on where the run of B has
paused or where it has to resume from, in terms of the states of B. Hence, we anticipate
that beside the normal indexing of variables in P we will need two more sets of subscripts.

Let p = (r0, ..., rn) be the initial pattern expression with n regular patterns and variables
v0, . . . , vn−1, and let P = (A0, A1, . . . , An) be the corresponding pattern automaton, where
Ai = (Qi, Σ∪{v0, . . . , vi−1}, δi, qi,0, Fi) are the modules of P for i ∈ {0, . . . , n}. We construct
a pattern automaton P ′ consisting of the following finite automata:

1. for all i, j ∈ QB:

a. A0,i,j =
(

Q0 × QB , Σ, (q0,0, i), δ0,B , F0,j

)

, where

∀(p, l) ∈ Q0 × QB,∀a ∈ Σ : δ0,B

(

(p, l), a
)

=
(

δ0(p, a), δB(l, a)
)

,
and F0,j = F0 × {j};

b. for all k ∈ {1, . . . , n − 1}:

Ak,i,j =
(

Qk × QB, Σ ∪ {vk′,i′,j′ |i
′, j′ ∈ QB,

k′ < k}, (qk,0, i), δk,B , Fk,j

)

, where

∀(p, l) ∈ Qk × QB , a ∈ Σ : δk,B

(

(p, l), a
)

=
(

δk(p, a), δB(l, a)
)

,
∀k′ < k,∀p ∈ Qk,∀i′, j′ ∈ QB : δk,B

(

(p, i′), vk′,i′,j′
)

=
(

δk(p, vk′), j′
)

, and
Fk,j = Fk × {j};

2. An,0,FB
=

(

Qn × QB , Σ ∪ {vk,i,j|i, j ∈ QB, k < n},

(qn,0, 0), δn,B , Fn,B

)

, where

∀(p, l) ∈ Qk × QB,∀a ∈ Σ : δn,B

(

(p, l), a
)

=
(

δn(p, a), δB(l, a)
)

,
∀k < n,∀p ∈ Qn,∀i, j ∈ QB : δn,B

(

(p, i), vk,i,j

)

=
(

δn(p, vk), j
)

,

and Fn,j = Fn × FB .

Then, the sought pattern automaton P ′ is obtained by ordering all the above automata
as follows:

P ′ =
(

A0,0,0, . . . , A0,0,t, A0,1,0, . . . , A0,1,t, A0,2,0 . . . , A0,2,t, . . . , A0,t,t,
A1,0,0, . . . , An−1,t,t, An,0,FB

)

,

where t =| QB |. We make the following observations which justify the correctness of our
construction:

1. If in the pattern automaton P ′ we consider only the first component of each state and
ignore the extra subscripts (i.e., the above i and j), we discover that a computation in P
for an input word w is successful if and only if there exists a successful computation for
w in this reduced version of P ′, since all automata Ak,i,j are identical with Ak, for all i, j.

2. For i, j ∈ QB denote by Bi,j the automaton obtained from B by setting i to be the
initial state and j the only final state. Also denote pk = (r0, . . . , rk) the pattern ex-
pression obtained from p considering only the first k + 1 patterns with 0 ≤ k < n, and
similarly denote P ′

k,i,j to be the pattern automaton obtained from P ′ considering only
the automata from A0,0,0 to Ak,i,j, for 0 ≤ k < n and i, j ∈ QB . Then one can check by
induction that

∀i, j ∈ QB,∀k ∈ {0, n − 1} : L(pk) ∩ L(Bi,j) = L(P ′
k,i,j).

3. If a word w belongs to L(p), then it can be factorized as w = x0u1x1 . . . usxs, where
we have all xi ∈ Σ∗ and each ui ∈ L(pr) for some r ∈ {0, . . . , n − 1}. The words ui are
the substitution words for the variables in the pattern rn used for generating w. If w
belongs to L(B) as well, then we have the following sequence:

x0 ∈ B0,i1 , u1 ∈ Bi1,j1, x1 ∈ Bj1,i2 , . . .
. . . , xs−1 ∈ Bjs−1,is , us ∈ Bis,js

, xs ∈ Bjs,is+1
, and is+1 ∈ FB .

Since each ul also belongs to a language L(pt) for some t ∈ {0, . . . , n − 1}, we obtain
ul ∈ L(pt)∩Bil,jl

= L(P ′
t,il,jl

). Using this relation, it can be checked that the automaton
An,0,FB

should accept w as well, hence that w ∈ L(P ′).

The details, as well as the reciprocal of the last observation are omitted, being too elaborated
for the present space constraints. Thus, our automata system P ′ recognizes the intersection
between L(P) and L(B), proving that the intersection is a pattern expression language.

4 Limitations of Pattern Expressions

In this section we prove that although pattern expression languages are closed under the
reverse operation, the language L4 is not a pattern expression language. This result was
the initial motivation of the paper and we address it here.

Let Σ be an alphabet with at least 3 letters.

Proposition 1. The language L =
{

uuR
∣

∣

∣
u ∈ Σ∗

}

is not a pattern expression language.

Proof. We assume by contradiction that the language L is a pattern expression language,
i.e., that there exist a pattern expression p = (r0, . . . , rn) such that L = L(p). Let a, b, c be
three distinct letters of Σ. Invoking Theorem 2, it follows that L5 = L∩ (abc)∗(cba)∗ is also
a PE language.

It is easy to observe that L5 = {(abc)j(cba)j |j ≥ 0}. Since this language is a PE
language, we can invoke the pumping lemma for PE languages (Lemma 1), which en-
sures that there exists a constant N such that for all w ∈ L5 with |w| > N , w can
be factorized as w = x0yx1 . . . xm−1yxm such that m ≥ 1, |x0y| < N , | y |≥ 1, and
wi = x0y

ix1 . . . xm−1y
ixm ∈ L5 for all i ≥ 0.

Considering the word w = (abc)N (cba)N ∈ L5 and a factorization of w as stated by
the pumping lemma, i.e., (abc)N (cba)N = x0yx1 . . . xm−1yxm. It follows that y is a sub-
word of (abc)N . We distinguish two cases: y is also a sub-word of (cba)N , and y is not
a sub-word of (cba)N . In the first case, y must be a letter since no word of two or more
letters is simultaneously a sub word in of both (abc)N and (cba)N . Since x0x1 . . . xm ∈ L5,
but x0x1 . . . xm is obtained from (abc)N (cba)N , by deleting the same letter m times, it
follows that x0x1 . . . xm /∈ L5, contradiction. In the second case, the word x0x1 . . . xm ∈ L5,
but x0x1 . . . xm is obtained from (abc)N (cba)N , by deleting only sub-words of (abc)N , so
x0x1 . . . xm /∈ L5, contradiction.

Reaching a contradiction, we conclude that L4 is not a PE language.

Of course, one may ask whether it is necessary to use a ternary alphabet and if the
result holds for binary alphabets (for unary alphabets the language L5 becomes a regular
language, thus it avoids the contradiction). The question remains open.

The closure of PE languages under the intersection with regular languages is a very
powerful tool, in particular for proving that certain languages are not PE. The following
results illustrate the technique.

Proposition 2.

1. The following languages over an alphabet with at least three letters are not PE languages:

- L6 =
{

u
∣

∣

∣
u = uR

}

(the language of palindromes),

- L7 =
{

ucv
∣

∣

∣
| u |a + | u |b=| v |a + | v |b

}

,

- L8 =
{

w
∣

∣

∣
| w |a=| w |b=| w |c

}

,

- L9 =
{

uv
∣

∣

∣
| u |a + | u |b=| v |c

}

.

2. The following languages over an alphabet with at least two letters are not PE languages:

- L10 =
{

w
∣

∣

∣
| w |a=| w |b

}

, L8 ⊆ {a, b}∗,

- L11 =
{

w
∣

∣

∣
| w |b= 2 | w |a

}

, L9 ⊆ {a, b}∗.

Proof. We observe that

L6 ∩ (abc)∗(cba)∗ =
{

(abc)n(cba)n
∣

∣

∣
n ≥ 0

}

, which is not a PE language ([3, Exam-

ple 7]);

L7 ∩ (a + b)∗c(a + b)∗ =
{

{a, b}nc{a, b}n
∣

∣

∣
n ≥ 0

}

, which is not a PE language ([3]);

L8 ∩ a∗b∗c∗ =
{

anbncn
∣

∣

∣
n ≥ 0

}

, which is not a PE language ([3]);

L9 ∩ (a + b)∗c∗ =
{

{a, b}ncn
∣

∣

∣
n ≥ 0

}

, which is not a PE language ([3, Example 8]);

L10 ∩ a∗b∗ =
{

anbn
∣

∣

∣
n ≥ 0

}

, which is not a PE language ([3]);

L11 ∩ a∗b∗ =
{

a2nbn
∣

∣

∣
n ≥ 0

}

, which is not a PE language ([3, Example 7]);

If any of L6, . . . , L11 was a PE language, so would be the corresponding intersections –
a contradiction.

We also remark that some previous results which involved substantial effort to prove,
such as Lemma 3 in [2], are direct consequence of this closure property of PE languages.

Remark 2. We remind that PE languages under the unary alphabet may be neither regular,
nor context-free, as has been proven for the language {am | m is not prime } in [3].

5 Open Questions and Further Work

In the following we list a few problems remained unaddressed, and which are the subject of
our proposed further work. They are mostly concerned with extensions of extended regex
and pattern languages.

How much would the power of extended regex increase if we add a reverse operator?
We expect that although more context-free languages would be expressed by such
expressions, they will still not cover the entire family of context-free languages.

We propose the addition of the new operator “∗i”: if we number the Kleene star
operators in a PE or regex, we can use later the “same star” which will synchronize
the number of its iterations with the number of iterations of the referenced star. For
example, the language {anbn | n ≥ 0} which is not a PE/regex language would be
recognized this time by p = (u = a∗, v = b∗1 , uv) or by the regex expression (a∗b∗1).
This addition seems still not to cover the entire family of context-free languages,
since the language of all words which have a same number of a’s and b’s seems to be
inexpressible by PE/regex together with these new additional operators.

The previous observation leads us to a third proposed addition, that of a shuffle op-
erator. It would be interesting to investigate the power of these newly defined PE/regex.

We point out to a problem whose resolution is still uncertain, that is, whether PE and
regex languages are the same family. As we mentioned in the introduction, there exist
methods which allegedly convert one into another, however, no rigorous proof of equiv-
alence has been provided yet. Finally, we intend to investigate further the relationship
between PE and regex languages and other families of pattern-related languages. We
envision a rigorous comparison between the present and past models.

6 Acknowledgments

We express acknowledgments to Dr. Max Burke for his suggestion on the use of language
L5.

References

1. D. Angluin, Finding Patterns common to a set of strings. Journal of Comput. System Sci. 21 (1980)
46-62.

2. C. Câmpeanu, K. Salomaa, S. Yu: A Formal Study of Practical Regular Expressions, IJFCS, pp.
3. C. Câmpeanu and S. Yu: Pattern Expressions and Pattern Automata, IPL, pp.
4. C. Câmpeanu, “Regular languages and programming languages”, Revue Roumaine de Linguistique -

CLTA, 23 (1986), 7-10.
5. S. Dumitrescu, G. Paun, A. Salomaa, Pattern Languages versus Parallel Communicating Grammar Sys-

tems TUCS report 42, September 1996.
6. J. E.F. Friedl Mastering Regular Expressions, O’Reilly & Associates, Inc., Cambridge, 1997.
7. J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata Theory, Languages, and Com-

putation, Addison Wesley, Reading Mass, 2006.
8. L. Kari, A. Mateescu, Gh. Păun, A. Salomaa, Multi-pattern languages, Theoretical Computer Science,

141 (1995), 253-268.
9. S. Kobayashi, V. Mitrana, G. Păun, and G. Rozenberg, Formal properties of PA-matching Theoretical

Computer Science, Volume 262, Issues 1-2, 6 July 2001, Pages 117-131.
10. M.E. Lesk, “Lex - a lexical analyzer generator”, Computer Science Technical Report (1975) 39, AT&T

Bell Laboratories, Murray Hill, N.J.
11. C. Mart́ın-Vide and V. Mitrana, Some undecidable problems for parallel communicating finite automata

systems Information Processing Letters, 77 (2001), 239245.
12. C. Mart́ın-Vide and V. Mitrana, Remarks on arbitrary multiple pattern interpretations Information

Processing Letters, In Press, Corrected Proof, Available online 24 October 2006.
13. V. Mitrana and R. Stiebe, Extended finite automata over groups Discrete Applied Mathematics, Volume

108, Issue 3, 15 March 2001, Pages 287-300
14. V. Mitrana, G. Păun, G. Rozenberg, and A. Salomaa, Pattern systems Theoretical Computer Science,

Volume 154, Issue 2, 5 February 1996, Pages 183-201(19)
15. A. Salomaa, Theory of Automata, Pergamon Press (1969), Oxford.
16. A. Salomaa, Formal Languages (Academic Press, New York, 1973).
17. S. Yu, Regular Languages. In: A. Salomaa and G. Rozenberg (ed.), Handbook of Formal Languages,

Springer Verlag, 1997, 41–110.

