
Incremental Maintenance of Global Aggregates

Nabeel Ahmed, David Hadaller and Srinivasan Keshav

School of Computer Science

University of Waterloo

200 University Avenue West

Waterloo, Ontario N2L 3G1

{n3ahmed, dthadaller, keshav}@cs.uwaterloo.ca

Technical Report CS-2006-19

June 21, 2006

1

Incremental Maintenance of Global Aggregates

Abstract

Providing local access to global information can improve the efficiency of many distributed applications. Examples

include applications that aggregate sensor values, search in Peer-to-Peer systems, or perform Top-K queries in stream-

oriented databases. Efficient computation of such aggregates is difficult due to the massive scale and dynamics of

such systems and has led to the proposal of several approximate techniques based on randomized gossip algorithms

[1], [2], [3]. However,maintenanceof such aggregates has not been adequately addressed in the literature. Changes

in node state, therefore, require a full and expensive re-computation of the global aggregate. This paper makes three

contributions to this field. First, we propose a variant of the well-known FM aggregation scheme [4] that allows us

to support incremental maintenance of aggregates. Second, we propose the concept of significance thresholds and

illustrate their benefits. Finally, we present a detailed performance evaluation of our techniques and find that we can

reduce computation time by 60% compared to recomputing the aggregate, as is traditionally done.

Index Terms

Distributed Systems, Peer-to-Peer Systems, Aggregate Computation, Gossip Protocols, Incremental Algorithms,

Probabilistic Counting Algorithms

I. I NTRODUCTION

Large, decentralized, and self-organizing networks will soon be commonplace. In such systems, there is a need

to have local access to global information by means of computing a global aggregate over the entire system [5].

For example:

• In a sensor network, one may want to compute the average temperature over all sensors; the minimum or

maximum temperature; or quantile values, such as the median temperature.

• In Peer-to-Peer (P2P) systems, choosing how to search for a document in a file-sharing system [6], choosing

when to replicate a document in a replicated file system, and performing ranking in a full-text search system

are examples of operations that can make use of global aggregates. For instance, PlanetP [7] is an example

of a P2P text search system which uses a gossip-based protocol to collect ranking statistics such as document

word frequencies.

• In a distributed file system such as the Google File System [8], having local access to the average system load

can be useful for load balancing purposes. We elaborate on this idea further in Section IV.

Maintaining aggregates can be done in one of three ways.

1) One-shot: The global aggregate is computed once and is never updated. This approach is acceptable in systems

where the aggregate doesn’t change (e.g. the count of the number of nodes in a stable system).

2) Drop-and-recompute: The global aggregate is computed, and it is periodically erased and re-computed. This

refresh procedure maintains a more accurate aggregate as values in the system change. For example, if

2

average temperature has been computed, and the temperature value changes at some nodes, the aggregate will

be dropped and a new average temperature computed.

3) Incremental: Rather than performing arefreshas is done in drop-and-recompute schemes, the aggregate is

incrementally maintained by sending update messages when a change occurs. This is what we propose in our

work.

In contrast, if the rate of change of the system is extreme, the value of the global aggregate will be constantly

fluctuating. Attempting to maintain an accurate aggregate in such a system is infeasible, regardless of the technique

used, as the amount of message overhead required to accommodate such fluctuations would overwhelm the network.

Therefore, our work only considers systems which experience a moderate amount of change.

In order to use incremental techniques to maintain a global aggregate, two issues must be addressed.

1) Representing a Change: An update must be represented in a compact and updateable way. We address this

by extending the compact FM aggregation scheme [4] to support updates.

2) How to Propagate a Change: When a change occurs, it must be efficiently disseminated throughout the

system. To address this, we use incremental routing protocols.

Two key ideas form the basis of our approach to efficiently maintaining aggregates. First, suppose some global

aggregate has been computed and a change occurs at a node. It is necessary to determine whether the change

will have a significant impact on the global aggregate. Significance is a system-specific attribute, and as such we

assume the system designer can judge how accurately she wishes to maintain the global aggregate, specified using

a thresholdα. This threshold represents the maximum allowable error in the global aggregate. Therefore, if a local

change will not change the global aggregate by at leastα, no maintenance is required.

Second, we address what should be done in the event of a significant change at some node. A naive approach is

to drop and re-compute the aggregate from scratch, which is inefficient for a system with only a few changes. We

devise an update-specific incremental algorithm to efficiently maintain the global aggregate.

The three main contributions of our work are, (a) the use of a significance threshold to eliminate unnecessary

message overhead in the event of small fluctuations in a node’s value, (b) the design of an incremental aggregation

scheme, allowing efficient update propagation, and (c) a comprehensive evaluation of the benefits of our approach.

We first present background and related work in Section II. We then describe our incremental techniques in

Section III, followed by an example case scenario for our methods in Section IV. Finally, we present a detailed

evaluation of the performance gains of using our approach in Sections V and VI. We conclude the paper with a

discussion and some directions for future work.

II. BACKGROUND AND RELATED WORK

In Section II-A, we present a formal problem statement. In Section II-B, we present previous work that has

motivated the need for maintaining global aggregates. Section II-C presents routing techniques that we use for our

incremental algorithm. Section II-D describes different aggregation techniques, followed by a formal presentation

3

of FM aggregation in Section II-E. Finally, Section II-F, briefly describes other example aggregates that we can

also compute using FM.

A. Model

Consider a distributed system withN nodes where, at timet, the ith node has local informationst
i. In many

problems of interest,N is very large and nodes arrive and depart over time. Moreover, communications between

nodes may be lost, and nodes’ values may change over time.

Our goal is to have the nodes self-organize to compute a functionf(St) whereSt is a global multi-setdefined

asSt = {st
1, s

t
2, ..., s

t
i}. The functionf is any aggregation query (such assum or average), and the value of the

resulting functionf(St) is the desired value to be known at every node.

The value off(St) may change over time as the local set at one or more nodes changes. Suppose the local set

at nodek changes. Then we wish to compute the functionf(St′), at time t′, whereSt′ = {st
1, s

t
2, ..., s

t′

k , ..., st
i}.

Since the valuesst
1, s

t
2, ..., s

t
i have not changed in the intervalt to t′, the new aggregatef(St′) need not obtain

new values from these unchanged nodes at timet′. Our work focuses on how to incrementally determinef(St′)

based onf(St), for systems that only experience data changes. We later discuss more elaborate change models as

well.

B. Global Aggregate Maintenance

Computing global aggregates is very similar to maintaining global consistency in a traditional distributed system

where protocols such as the Chandy-Lamport distributed snapshot protocol [9] have been used. However, such

protocols are limited to small-scale distributed environments and do not scale well to the types of systems found

today (e.g. peer-to-peer systems, sensor databases). As a result, gossip-based protocols have emerged as a lightweight

and robust mechanism for computing such aggregates.

Gossip-based (or epidemic) protocols perform exceptionally well for computing global aggregates [1], [2], [3],

[10]. They work as follows: At every time step of protocol execution, each node that has something to send selects

one or more nodes to send its data. The dynamics of how information spreads through the network resembles the

spread of an epidemic [11], which provides increased fault-tolerance [12] and resilience to failures.

Gossip-based protocols have been shown to provide time complexities of the order ofO(log N) [10]. Recent

work [1], [2], [10] has also developed sophisticated techniques that reduce the state space of these protocols

to O(log N). These protocols are, therefore, scalable as well as robust [13]. There has also been an interest in

addressing the effect of networkchurn on the performance of these protocols. Although some theoretical work

provides encouraging results, it does not consider the use of incremental updates. In particular, Jelasity et al. [3]

employ an automatic restart mechanism where they restart the protocol periodically by dropping the current estimate

of the global aggregate and re-running the protocol from scratch. This is not necessary if the changes in the global

aggregate are minimal. This motivates the need to build more efficient mechanisms to support updates. Our work

provides a first step in this direction.

4

Fig. 1. The left diagram illustrates the IRWP protocol. The right diagram illustrates the standard random walk protocol. The

gray arrows represent updates propagating through the network.

In order to use gossip protocols for global aggregate computation, it is important to understand the components

which comprise the protocol. We present a logical decoupling of routing and aggregation for this purpose, similar

to that proposed by Nath et al. [1].

C. Routing Mechanisms

We discuss three techniques for gossip-style information propagation that are used in the drop and re-compute

schemes, followed by their incremental variations which we use in our work.

• Flooding: With flooding, each node begins by sending its local valuest
i to all of its neighbours. The neighbours

combine the received value with their local value and send the result (a subset ofSt) to all of their neighbours.

This process repeats until each node has obtained the complete setSt, which incorporates every node’s value.

Flooding provides optimal convergence but comes at the cost of excessive message overhead. Incidentally, this

is also the mechanism used for maintaining routing tables in the widely used OSPF link state routing protocol

[14].

• Uniform Gossip: In uniform gossip, during each timestep, each node selects one neighbour uniformly at

random to send its information (a subset ofSt). This process repeats and the complete setSt eventually

propagates to the entire network. Uniform gossip protocols have been shown to provide exponentially fast

convergence with low message transmission overhead [10]. The operation of this protocol is analogous to the

spread of asimpleepidemic, as discussed in [11].

• Random Walk: In random walk, the protocol is initiated by a node sending its local value (awalk) st
i to

a random neighbour. The neighbour combines the received value with its local value and sends the result (a

subset ofSt) to another random neighbour. This process repeats until every node has received the complete

set St. k random walks can also be used simultaneously, where each random walk is initiated at a random

node in the system. The valuek acts as a tuning parameter that provides a tradeoff between convergence time

and message overhead.

• Incremental Flooding Protocol (IFP): Traditional flooding works by having every node flood its data to the

5

entire network. In incremental flooding, when an update occurs at a node, only that node floods an update

message to the network.

• Incremental Gossip Protocol (IGP): In incremental gossip, when an update occurs, in the first timestep, only

the updated node is involved in the gossip procedure. Other nodes only begin gossiping if they receive the

update. Therefore, nodes receiving the update becomeactiveand continue communicating with their neighbours

until the update protocol terminates. The operation of this protocol is analogous to the spread of acomplex

epidemic, as discussed in [11].

• Incremental Random Walk Protocol (IRWP): In incremental random walk, when an update (or updates)

occur in the system, instead of starting random walks at random nodes in the network, allk random walks

are initiated from the updated node(s), as is shown in Figure 1. The rest of the protocol then proceeds in the

same fashion as the standard random walk protocol.

D. Aggregation Mechanisms

Aggregation refers to the process where nodes in a distributed system combine local node values to form a global

aggregate. A problem encountered when computing aggregates isdouble-counting, where nodes may contribute to

an aggregate more than once, causing inaccuracy in the final result. In order to avoid such problems, Order and

Duplicate Insensitive (ODI) mechanisms can be used, as proposed by Nath et al. [1]. Alternatively, the aggregate

could also carry a record of every contributing node. However, this does not scale well.

Nath et al. [1] achieve order and duplicate insensitivity through the use of the approximate FM counting algorithm,

pioneered by Flajolet and Martin [4]. Other ODI techniques include a push synopsis approach proposed by Kempe

et al. [10]. Due to the extremely compact nature of FM, we adopt this mechanism for maintaining and updating

aggregates.

E. FM Aggregates

We now present a formal discussion of FM aggregates. We later discuss an extension to this framework to support

updates to such aggregates in Section III-A.

Consider a multi-setSt = {st
1, s

t
2, ..., s

t
N} with N elements, as described in Section II-A. We would like to

computef(St), wheref is the count function. In FM, the multi-setSt is represented as a bit vector of length

k (typically k = 3
2 log2(N)). The valuek is a system-dependent tuning parameter which should be chosen large

enough to accommodate the effects of network churn. Initially the bit vector (denotedst
i) is set to zero. The

aggregate FM bit vector (representingf(St)) is then generated as follows. Letcointoss() denote a toss of a fair

coin that returns eitherheads or tails with equal probability.

Algorithm 1 represents a single coin toss experiment that is performed at each node. Each node flips a coin

until it either obtains a head or completesk coin tosses. The bit vectorst
i maintained at the node is then updated

by setting itsi’th bit corresponding to the number of consecutive tails observed in the coin toss experiment. The

6

Algorithm 1 CTExperiment(st
i,k)

1: j = 0;

2: while cointoss() == ‘tails’ && j < k do

3: j = j + 1;

4: end while

5: if j == k then

6: j = j - 1;

7: end if

8: st
i[j] = 1;

Algorithm 2 FM Counting Algorithm

1: St = 0;

2: for i = 1 to N do

3: CTExperiment(st
i,k)

4: St = St
⋃

st
i;

5: end for

intuition is that as more nodes do coin toss experiments, the probability that a more significant bit at one of the

nodes will be set is higher. The resulting bit vectors are then bitwise OR’ed to generate the aggregate bit vector

St, as is shown in Algorithm 2. This occurs during the routing process, where nodes exchange subsets ofSt, and

union the received subsets until every node has the complete setSt. An algorithm for this process is shown for our

update techniques in Section III.St approximates the count of the nodes, where the approximate count value is

given as2j−1/0.77351, wherej represents the bit position of the least significant zero inSt. Functions other than

count can also be computed using variants of this basic counting algorithm and are discussed in Section II-F.2. The

FM counting algorithm described above has some interesting properties that allows the algorithm to be deployed

in a distributed fashion. In particular, it has:

• Constant Insertion Time: Each element (or contribution) of the multi-set can be inserted into the vector in

O(1) time.

• Set Unions: The union of FM bit vectors representing two multi-setsS1 andS2 is simply the bitwise OR of

their respective bit vectors. Therefore, no ordering or other expensive operations are required.

• Duplicate Insensitivity: FM bit vectors are duplicate insensitive. Therefore, applying a local value more than

once to the bit vectors does not affect the correctness of the resulting aggregate.

These features allow us to compute an aggregate in a distributed fashion by having each node maintain an

individual bit vector and propagate it to other nodes. Nodes union received bit vectors with their local bit vectors

to obtain a combined aggregate. Using this approach, and given that bit vectors are duplicate insensitive, we can

7

use any underlying transport mechanism in order to disseminate this information. Note, although FM aggregates

are compact, they are inaccurate because they can only approximate values to the closest power of 2, causing errors

of up to 50%.

More accurate aggregates can be computed by maintaining multiple bit vectors for each of the items and taking

the average of the results obtained from each [4]. This method decreases the standard error to withinO(1/
√

m),

wherem is the number of bit vectors. This, however, can increase the state maintenance overhead for each node.

Optimizations to reduce this state maintenance overhead have also been proposed, such as the Probabilistic Counting

with Stochastic Averaging (PCSA) technique [4].

F. Computing Other Aggregates

The FM technique can be used to represent a variety of functions, as is described next.

1) Computing Sum:Let st
i in St have the valuev. To computesum, a node performsv coin toss experiments

and unions the bits to produce the resulting bit vector for that value. The other nodes do the same for each of their

items in St. We obtain the aggregate vector (calledsum(St)) representing the global sum of the items inSt by

ORing these individual bit vectors. This approach is similar to that discussed by Considine et al. [2].

2) Computing Average and Standard Deviation:To computeaverage, we simply divide thesumof all the values

in the system by thecountof the number of nodes.Standard deviationcan also be computed by maintaining both

the sum and the sum of the squares of the itemsst
i locally at each node. We elaborate this idea further in Section

III-A when we discuss how to incrementally maintain the standard deviation aggregate. Moreover, these aggregates

can be extended to compute other functions such as non-centralized moments, as is discussed in [1], [2].

III. I NCREMENTAL ALGORITHMS FORGLOBAL AGGREGATEMAINTENANCE

We now present incremental techniques for maintaining up-to-date global aggregates. We first outline some goals

that incremental algorithms should satisfy. We then present enhancements to the FM representation to allow updates

to already computed aggregates. Finally, we present an incremental algorithm that we propose for supporting such

updates.

Ideally, incremental algorithms should have:

• Fast ConvergenceThe algorithm must provide convergence times comparable to or better than existing methods

(e.g.O(logN) for gossip-based protocols).

• Cost-EffectivenessThe algorithm must provide significant cost advantages (e.g. in terms of computation time,

communication cost) over existing methods.

• Fault-Tolerance The algorithm must exhibit fault-tolerance characteristics comparable to that of existing

solutions.

• Scalability The algorithm must provide similar guarantees (in terms of performance and cost) on both small

as well as large-scale systems.

8

A. Incremental FM Aggregates

We show how changes at a node can be reflected in a previously computed FM aggregate. We assume that our

function f is thesumover the multi-setSt, at timet. We later illustrate how this can be extended to incrementally

maintain the standard deviation aggregate.

Suppose that the value of any given itemst
i in the multi-set changes at timet′, to st′

i . How do we incorporate

the new value into the already computedsum(St)? Suppose that the initial value (st
i) sets the first 3 bits of the

bit vector, which are then unioned with the bit vector representing the aggregatesum(St). Later, when the value

changes tost′

i , it may not be possible to determine which bitsst
i originally contributed to the vector. Moreover,

even if it were possible, since the first 3 bits may possibly have been set by one or more other items inSt, these

cannot be legitimately reset forst′

i . Therefore, intuitively, it seems that for this representation we may need to drop

and recompute the entire sum again. However, as we describe now, this is not needed.

Two cases need to be considered for the new valuest′

i :

• st′

i > st
i: In this case, we can simply perform(st′

i − st
i) more coin toss experiments in order to incorporate

the new larger value into the aggregatesum(St).

• st′

i < st
i: In this case, we construct another multi-setDt′ that is defined as follows:

Dt′ = {d|d = st
i − st′

i }

Using this multi-setDt′ (referred to as adelete vector), we maintain the differencest
i−st′

i for multiple updated

items inSt. Furthermore, we can apply the samesum function for summing up the values of all the items in

Dt′ to generate the aggregatesum(Dt′). Once bothsum(St) andsum(Dt′) are computed, we can apply the

FM evaluation function discussed in Section II-E in order to obtain the sum values for both setsSt andDt′ .

Using these two values, the new aggregatesum(St′) is the sum value ofDt′ subtracted from the sum value

of St. In this way, delete vectors can be used to support updates to FM aggregates.

We now illustrate an example of how to incrementally maintain the second moment (i.e. standard deviation) of

all the values. Recall, standard deviation can be computed as follows:

dev =

√
N

∑N
i=1(s

t
i)2 − (

∑N
i=1 st

i)2

N(N − 1)

The second component of the numerator represents the square of thesum of the values which can be updated using

the methods described above. In addition, the first component of the numerator requires each node to maintain the

sum of the squares of all the local values (easily done using techniques similar tosum). If a local change occurs,

both the sum and the sum of the squares vectors can be updated and propagated in a manner similar to that described

above. Therefore, in this way, the standard deviation aggregate may also be incrementally maintained using delete

vectors.

9

Algorithm 3 Update Algorithm

1: /∗ Phase: Susceptible∗/

2: if node updatedto st′

i then

3: Update local aggregateSt to St′

4: ∆S = St′ − St

5: if ∆S >= α then

6: Send updatest′

i to random neighbour

7: Move to infectiousphase in next round

8: end if

9: end if

10: if received updatest′

i then

11: St′ = St
⋃

st′

i .

12: rcvdcounter = 0

13: Move to infectiousphase in current round

14: end if

15: /∗ Phase: Infectious∗/

16: if (received updatest′

i ‖ Node can propagate) && rcvdcounter ≤ γ then

17: Send updatest′

i to random neighbour

18: rcvdcounter = rcvdcounter + 1.

19: else

20: move torecoveredphase

21: end if

22: /∗ Phase: Recovered∗/

23: Discardrcvdcounter

Although the update techniques described above allow additions/deletions to already computed aggregates, recall

that FM suffers from accuracy problems. As a result, over time, as more and more contributions are made to the bit

vectors, the vectors becomepolluted, i.e. they can no longer accurately represent the aggregate being maintained. In

this situation, the vectors should be dropped and a fresh set recomputed. The decision of when to drop and recompute

may be based on a system specific threshold (such as the number of update exchanges between neighbours) or

through the use of other mechanisms to identify anomalies in the maintained aggregate. However, the general

problem of when and how to initiate dropping and re-computation of the aggregate is an open area of research.

B. Incremental Update Algorithm

Our update algorithm combines the aggregation mechanism described in Section III-A with the incremental

routing protocols discussed in Section II-C. The protocol proceeds in the form ofroundswhere, in each round, a

10

communication occurs between one or more nodes. Each node is assumed to know the length of a round. The time

to converge to the correct global aggregate is referred to as anepoch.

The update algorithm proceeds in three phases, similar to the way in which epidemics spread in a population

[11]. Each node passes through these phases independently for each update/infection introduced in the system. The

three phases are:

Susceptible: In the susceptible phase, each node is prone to becoming infected by an update introduced at any of

the nodes. A node becomes infectious if it receives an update, ormaybecome infectious when a change to its local

value occurs. Algorithm 3 illustrates this effect. At the beginning of an epoch (at timet′), when an update occurs

at a node, it uses the incremental FM approach (discussed in Section III-A) to generate the new aggregate that

incorporates the update. Using the newly generated aggregateSt′ , the node computes the change in the aggregate

by computing∆S = |St′ − St|. If ∆S is greater than or equal to asignificance thresholdα, the node propagates

the change to its neighbours using an incremental routing protocol. Once this occurs, the updated node enters the

infectious phase while other nodes in the system are still susceptible, with respect to the given update. If∆S is

strictly less thanα, then the node does nothing as the change is not significant (i.e. it does not become infectious).

Infectious: If an update arrives at a susceptible node, the node unions it with its local aggregate and becomes

Infectious. For all subsequent rounds before termination, depending on the underlying routing protocol, the node

either does or does not continually send updates. For example, in incremental gossip, infectious nodes communicate

at every round until termination. However, in incremental random walk, nodes only communicate when they receive

an update (i.e. a random walk). Moreover, for aggregation, since FM can represent multiple unique updates in a

single bit vector, nodes receiving many single updates will eventually propagate bit vectors that contain multiple

updates. This allows faster dissemination of updates in the system and such updates are termedco-operative.

Cooperative updates have implications on the termination of the algorithm, discussed in the next phase. As the

algorithm proceeds, all nodes eventually enter the infectious phase.

Recovered: A node enters the recovered phase when it has ceased to propagate an update any further. Deciding

when to terminate the propagation of updates in a decentralized system is a challenging and open problem. This

problem is complicated as nodes may receive cooperative updates, making it hard to distinguish between individual

update contributions. Therefore, the value ofγ, which is the number of rounds that a node remains infectious (or

active), is a tuning parameter that needs to be determined based on the characteristics of the system. Onceγ rounds

have passed, it is highly likely that the node will not receive any more updates that cause changes to the aggregate.

Once all nodes enter the recovered phase, the system will have converged to the correct global aggregate.

C. Significance Threshold

The significance threshold (α) presented in the previous section functions as a tuning knob allowing the system

designer to trade off the accuracy and cost of sending updates. Threshold values are chosen based on global change

significance, which is defined as the significance of a local change to the global aggregate. Threshold values are

also based on the query or aggregate that is being processed in the system.

11

We illustrate this by example. Suppose we are computingsum in a very large network. In such a network,

updates that cause changes in the global sum above the significance thresholdα should signal the propagation of

the updates. In this case,α could be conservatively chosen to be equal toX, the percentage of error that can be

tolerated for the aggregate (described in more detail in the next section). On the other hand, if we are computing

max, thenα may simply be the difference between a node’s current value and the current maximum in the system.

Thus, nodes can have different values ofα and this value may also change every time an update occurs at a node.

Determining the global significance of a local change as a function of the query type is difficult. For queries such

assum andmax, the choice may be relatively straight forward, however, the general problem is hard. We provide

intuition for selecting an appropriate value for the threshold by means of a use case that we describe next.

IV. EXAMPLE

We present a practical scenario that makes use of incremental aggregate maintenance, and serves to provide

intuition on how to select a significance threshold.

Consider a decentralized distributed file system similar to the Google File System [8]. In such a system, there

exist areas of the file system that are accessed more often than others. In the case of Google, suchhotspotswould

likely correspond to indices that are more popular than others at some point in time. Such access patterns (known as

flash crowds[15]) result in a concentration of load on a small subset of servers in the file system. We would like to

balance this load evenly across the system. One method to alleviate this problem would be to replicate the popular

content to neighbouring servers, so that the load can be shared between them. However, in order to do this, the

system must first identify the existence of imbalanced load. This can be achieved by computing the average load in

the system and comparing that to the load experienced locally. If a node is experiencing greater than average load,

then it ought to redistribute its load to a node with less than average load. Once this global average is available at

each node, the load distribution algorithm can adopt any of the well-known load balancing techniques [14].

Obtaining such global information in a highly decentralized distributed file system is non-trivial. Gossip-based

protocols are well-suited for computing such a global aggregate [16]. However, current gossip-based schemes drop

and recompute the aggregate whenever a fresh value is needed. For the system we have described, this is clearly not

a wise approach since significant load changes are not likely to occur simultaneously on all servers, precluding the

need to drop and recompute the aggregate from scratch. We propose to use incremental techniques for this system,

discussed next.

A. Computing Average Load

At system startup, the average load computation can be done using traditional gossip-based techniques. To

compute the average, we compute two aggregates: thesumof all load values in the system and thecount of the

number of nodes in the system. Once these aggregates are computed, the average is simplysumdivided bycount.

We now describe how to maintain these aggregates as the load in the system changes.

12

B. Maintaining Average Load

As the load distribution varies, the average load also changes but its variations are likely to be much smaller than

the load variation at any given node. Therefore, because small variations of the average load in the system (such as

an increase of 0.1%) won’t have a large impact on load balancing decisions, we need only to focus on changes to

the average load which are significant (i.e. changes that are greater than the significance threshold). This threshold

α can be chosen to be the maximum amount of error in the average load that the system can tolerate. For example

if α was 1%, then any changes in local load that cause a change of less than 1% in the average load, need not be

communicated by a node, reducing message overhead. Determining global significance in a decentralized fashion

is addressed next.

C. Determining Significance Locally

Determining the significance of a local change on the global aggregate is challenging in a decentralized environ-

ment. Clearly, if all nodes in the network change at approximately the same time, and none of the nodes communicate

their change, the aggregate could become inaccurate. We address this problem by selecting conservative thresholds

that assume the worst-case, that is, all other nodes also change simultaneously. This ensures that the actual error

threshold will never be exceeded.

In order to add structure to the problem, we first consider the case where all nodes are experiencing the same

load (i.e. the load is perfectly balanced). In this case,N nodes are equally loaded withL load, and we are only

interested in load changes which cause the global average to change byX%. The global average in this case is

simply L. If the load at every node increases locally by some amount less thanX%, then the global average load

is guaranteed not to have increased by more thanX%. Therefore, any local change that is withinα = X% of the

current average load does not need to be communicated.

We now consider the unbalanced case. In order to compute the local significance of a change, the node computes

the impact its change has on the global average. If a system withN nodes can tolerate no more thanX% error,

and assuming the worst case where all nodes change simultaneously, each node’s local change will be significant if

it impacts the global aggregate by more thanX%/N . The intuition is that if any node’s change causes a change of

less thanX%/N , and if all other nodes cause a change ofX%/N (in the worst case), the total resulting change is

guaranteed to be less thanX%. Although this conservative approach will require more communication overhead than

necessary, it ensures that the actual error will never exceedX%. Using this mechanism, global change significance

can be approximated locally.

V. SIMULATION MODEL

A. Simulation Setup

We have implemented a custom simulator in C. As indicated in Section III-C, because the significance threshold

is influenced by system-specific parameters such as system dynamics, available capacity, and the query type being

computed, we do not model its effect in our simulations. We use thesum query for our simulations and only model

13

Component Accuracy Protocol Cost Delay

Incremental

Routing

Does Not Affect Affects Affects

Incremental

Aggregation

Affects Affects Does Not Affect

TABLE I

EFFECT OF PROTOCOL COMPONENTS ON PERFORMANCE METRICS

data changes (not node/link failures) in the system. All nodes in the system maintain identical configurations and

are equal in their capabilities. Unless otherwise indicated, the topology considered for our simulations is a clique.

We present results of a sensitivity analysis on a more realistic topology in Section VI-E.

1) Assumptions:We make the following assumptions:

• Uniform Data Distribution: We assume data changes are uniformly distributed across the entire system, i.e.

each node is equally likely to update its local state. This represents the worst case for our algorithm since it

reduces the likelihood of cooperative updates (i.e. a single aggregate carrying multiple updates) from occurring

in the system.

• Synchronized Operation:All nodes are assumed to have a synchronized time base, allowing them to identify

the start and end of a round. We make this assumption for ease of simulation.

• Centralized Control: We assume centralized control for the initiation and termination of the update algorithm.

Therefore, once the simulator starts the algorithm, it stops the algorithm when it detects that all nodes have

converged to the same aggregate.

2) Simulation Metrics:We now briefly list the performance metrics used in our simulations. Each component

of the incremental update algorithm affects multiple metrics, as shown in Table 1. These are briefly discussed further:

Accuracy. We use the mean error in the local estimate of the global aggregate to measure the accuracy of each

of the aggregate maintenance schemes. The mean error is defined aset = 1
N

1
St

∑N
i=1 |Ŝt

i − St|, whereŜt
i is the

local estimate of the aggregate at nodei, St is the true value of the aggregate, andN is the total number of nodes

in the network.

Protocol Cost. The cost of a protocol has three components: computation time (i.e. time to perform the coin

toss experiments), communication time, and state maintenance overhead. In this study, we only consider the

communication time and state maintenance overhead. Communication time consists of the message transmission

overhead (or number of message transmissions) and message size. Since FM aggregates use constant size bit vectors,

the state maintenance overhead and message size are constant. Therefore, we only analyze the message transmission

overhead.

14

0

5

10

15

20

25

30

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 ti
m

e
(#

 R
ou

nd
s)

Incremental Gossip Uniform Gossip
Fig. 2. Comparison of convergence times of IGP and Uniform Gossip protocols.

0

5

10

15

20

25

30

35

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 ti
m

e
(#

 R
ou

nd
s)

IRWP Random Walk Protocol
Fig. 3. Comparison of convergence times of IRWP and Random Walk protocols.

Delay.The delay metric is defined as the number of rounds taken to converge to the approximate global aggregate

from the time the update(s) occurred. We also refer to this as theconvergence timeof the update algorithm.

In our simulations, we report the average measure over 500 epochs. We begin with astablesystem, i.e. where

the global aggregate has converged. During the update process, we introduce updates uniformly at random over

the entire network. We experiment with 10,000 nodes in order to gauge the scalability of our techniques; for the

random walk and incremental random walk protocols, we use as many random walks as there are nodes in the

system. We show later in Section VI-D that this does not significantly increase the overhead of the protocol. Also,

for IRWP, we uniformly divide the number of random walks across the updates to allow an equal allocation of

resources to each update. Other allocation techniques are also possible and are left for future work. Finally, in order

to allow for greater accuracy in computing the aggregate, we use fifty 32-bit vectors per node (≈ 0.2k bytes) to

store the aggregate.

VI. SIMULATION RESULTS

We first present results comparing the performance of our incremental update techniques with existing drop and

re-compute schemes. Second, we compare the different types of incremental update mechanisms against each other.

Third, we present results quantifying the accuracy of incremental FM aggregation, followed by an analysis of the

effect of increasing the number of random walks (RWs) on the incremental random walk protocol. Finally, we end

15

0

50000

100000

150000

200000

250000

300000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

Incremental Gossip Uniform Gossip
Fig. 4. Comparison of message transmission overhead of IGP and Uniform Gossip protocols.

0

50000

100000

150000

200000

250000

300000

350000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

IRWP Random Walk Protocol
Fig. 5. Comparison of message transmission overhead of IRWP and Random Walk protocols.

with a sensitivity analysis of our methods.

A. Incremental Updates vs. Drop and Re-compute Schemes

We first analyze factors that affect the convergence time and cost of our update techniques.

• Convergence Time:Figure 2 compares the performance of the incremental gossip protocol (IGP) with uniform

gossip. We observe that the convergence times of both protocols are nearly identical with varying numbers

of updates. The update propagation technique in IGP models the spread of a complex epidemic that takes

O(logN) rounds to converge, which is the same convergence time as uniform gossip (i.e. a simple epidemic).

Therefore, IGP does not provide any improvement in convergence time. Figure 3 compares the convergence

times of incremental random walk (IRWP) and standard random walk. IRWP reduces mean convergence time

by as much as60% for a small number of updates. Although random walk and IRWP use the same number of

random walks, IRWP concentrates all its walks only on updated nodes, providing more resources per update

and thereby allowing faster convergence. For random walk, because the aggregate is dropped and re-computed,

every node originates a random walk whether or not it has an update, which reduces the number of resources

per update.

• Protocol Cost:Figure 4 compares the message transmission overhead of incremental gossip with uniform

gossip. As the number of nodes with updates increases, the cost of the two protocols converge. For a small

16

0

5

10

15

20

25

30

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(#

 R
ou

nd
s)

IRWP IGP IFP
Fig. 6. Comparison of convergence times of incremental routing protocols.

0

50000

100000

150000

200000

250000

300000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

IRWP IGP IFP
Fig. 7. Comparison of message transmission overhead of incremental routing protocols.

number of updates, we see an almost 60% decrease in the number of messages required for convergence.

Because IGP requires only updated nodes to gossip in earlier rounds whereas all nodes communicate in

uniform gossip (due to a drop and re-computation), the total message overhead for IGP is substantially lower.

However, as the number of updates increases, more nodes communicate in earlier rounds, which causes an

increase in the number of messages, resulting in a smaller performance gap between uniform gossip and IGP.

When we compare incremental random walk with standard random walk in Figure 5, we see similar trends. The

reason why IRWP uses fewer messages than random walk is because it takes fewer rounds to converge. Because

IRWP and random walk use the same number of walks in each round, IRWP incurs a lower communication

cost when compared to random walk.

B. Comparison of Incremental Routing Protocols

We now compare the relative performance of the incremental routing protocols (Figures 6 and 7). Note that the

number of messages per round is different for each protocol. For illustrative purposes, we also present results for

incremental flood (IFP).

• Convergence Time:Figure 6 compares the convergence times of the incremental routing protocols. We see

that IFP converges the fastest because it simply floods the update in the first round to all nodes in the clique.

IRWP converges faster than IGP because IRWP performs more transmissions in earlier rounds than IGP.

17

3001008060402097531

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
Time (Rounds)

M
ea

n
Er

ro
r

Incremental FM Standard FM Number of Updates
Fig. 8. Accuracy of standard FM and incremental FM as updates are made in the system; the points at the top of the graph

indicate the number of updates introduced into the system at that point in time. Standard FM drops and recomputes the aggregate

when updates are introduced.

1 300100806040209753

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
Time (Rounds)

M
ea

n
Er

ro
r

Incremental FM Standard FM Number of Updates
Fig. 9. Accuracy of standard FM and incremental FM as updates are made in the system; standard FM does not drop the

aggregate in this case.

However, this effect is reduced as more updates are applied to the system because more nodes in IGP also

begin communicating in earlier rounds.

• Protocol Cost:Figure 7 compares the message transmission overhead of the incremental routing protocols.

Incremental flood performs the worst since the number of update messages increases linearly with an increasing

number of updates. Surprisingly, we observe that IRWP and IGP have approximately the same message

transmission cost despite their differing convergence times. This is because although IGP takes longer to

converge, it uses fewer messages per round, resulting in roughly the same total message overhead as IRWP.

The main conclusion we draw from these results is that although IRWP and IGP behave differently, each protocol

provides a tradeoff between the number of messages per round and convergence time; with both having the same

overall message overhead. In Section VII, we discuss the ramifications of choosing one protocol over the other.

C. Accuracy of Incremental FM

Figure 8 compares the accuracy of incremental FM aggregation with standard FM aggregation, where the aggregate

is dropped and recomputed each time an update occurs. Updates are injected into the system as soon as it converges

18

0

100

200

300

400

500

0 2000 4000 6000 8000 10000
Number of Nodes

C
on

ve
rg

en
ce

 T
im

e
(#

 R
ou

nd
s)

256 Walks 512 Walks 1024 Walks 2048 Walks
Fig. 10. Analysis of using different amounts of walks on IRWP convergence time.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2000 4000 6000 8000 10000
Number of Nodes

N
um

be
r o

f M
es

sa
ge

s

256 Walks 512 Walks 1024 Walks 2048 Walks
Fig. 11. Analysis of using different amounts of walks on IRWP message transmission overhead.

to the global aggregate. We also progressively increase the number of updates injected each time. The figure shows

the mean error in the aggregate across all nodes in the system. The points at the top of the graph indicate the

number of updates that were introduced into the system at specified points in time. Whenever an update occurs,

standard FM immediately drops the aggregate at all nodes and performs a re-computation, thus resulting in a large

average error in the aggregate (assuming the old aggregate is not maintained while the new aggregate is being

computed). In other words, the naive drop and recompute approach is almost always in error. Because Incremental

FM does not drop the aggregate, the mean error is significantly lower. Therefore, for a small number of updates,

incremental FM maintains a high level of accuracy.

Instead of dropping the aggregate immediately, a more clever non-incremental algorithm could choose to drop

and re-compute after a larger interval of time to avoid excessive oscillations. However, not reacting to updates

reduces accuracy, as shown in Figure 9. Here we show the accuracy over time for standard FM that does not drop

and re-compute the aggregate. We see the inaccuracy of standard FM increasing over time. Also note that the

number of updates applied in the simulation constitutes a change to only approximately 11% of the nodes in the

system. Even with such a small degree of change, the accumulated error reaches almost 100%. This demonstrates

the advantages of using incremental techniques rather than standard drop-and-recompute schemes.

19

0

10

20

30

40

50

60

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(#

 R
ou

nd
s)

Random Walk IRWP
Fig. 12. Comparison of IRWP and Random Walk convergence times on a PLRG topology.

0

100000

200000

300000

400000

500000

600000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

Random Walk IRWP
Fig. 13. Comparison of IRWP and Random Walk message transmission overhead on a PLRG topology.

D. Effect of Multiple Random Walks

• Convergence Time:Figure 10 illustrates the effect of increasing the number of random walks for IRWP on

its convergence time. We observe that doubling the number of walks results in approximately a 50% decrease

in the convergence time. This decrease eventually diminishes as the number of walks are increased, since the

system eventually becomes saturated.

• Protocol Cost:Figure 11 illustrates the effect of increasing the number of random walks on message trans-

mission overhead for IRWP. Unexpectedly, the message transmission overhead is nearly independent of the

number of random walks. We attribute this to thecooperativenature of the updates. Because each walk carries

multiple updates, increasing the number of random walks causes a decrease in convergence time. Therefore,

the message transmission overhead does not change. This is the reason we chose to use a large number of

walks for our simulations.

E. Effect of Complex Topologies

We now present a sensitivity analysis for our incremental routing protocols. For this purpose, we used a BRITE-

based [17] power-law random graph (PLRG) with 10,000 nodes. An example PLRG for a 100 node system is shown

in Figure 14. Due to space limitations, we only present results comparing the random walk and IRWP protocols.

Results comparing uniform gossip and IGP follow similar trends.

20

Fig. 14. Sample 100 node PLRG topology, generated using BRITE. The line graph on the left represents the frequency of node

degrees.

Figures 12 and 13 present a comparison of the convergence times and message transmission overheads for

IRWP and standard random walk. We see that the results closely match those of the clique topology. Although the

differences between random walk and IRWP are more noticeable for the clique, even for the PLRG topology, IRWP

performs significantly better both in terms of convergence time and message overhead than standard random walk.

This indicates that the update mechanism is relatively insensitive to the underlying topology and can potentially be

applied to arbitrary topologies.

VII. D ISCUSSION

Computing aggregates in a distributed setting is a challenging yet necessary requirement for many systems [7], [8],

[16]. Recent literature on gossip protocols provides useful theoretical properties for such protocols, highlighting

their suitability for computing aggregates in decentralized distributed systems. However, most of this literature

lacks a comprehensive examination of the performance of these protocols in a simulation or experimental setting.

Our work is a first step towards understanding the behaviour of gossip protocols by means of simulation. We

also examine ways to improve gossip in such scenarios. In particular, we examine opportunities for performing

incremental updates and show that it is possible to perform better than standard gossip-based techniques. We present

an approach to updating FM aggregates that maintains the compactness of the aggregate. We also discuss the use

of thresholds that allows the system designer to tradeoff the accuracy and cost of the update algorithm. Finally, we

provide a comprehensive evaluation of the performance of gossip protocols and show that our techniques are able

to perform better than existing methods, both in terms of convergence time and cost.

We briefly indicate some insights we gain from our evaluation:

21

• Update performance: Although a wealth of theoretical literature on gossip protocols presents tight upper

bounds on the performance of these protocols, we find that from a practical standpoint, we can improve on

these techniques further by making these protocols incrementally updateable. Surprisingly, we find that these

extensions yield performance benefits of up to 60% when compared to existing techniques.

• Routing Policy: In comparing the performance of different routing protocols, we find that incremental versions

of random walk and uniform gossip perform similarly in terms of performance and cost. However, we hasten

to point out that although both techniques have similar performance, each protocol has its own characteristic

set of advantages. Incremental gossip provides a solution that can be easily deployed in a distributed setting,

without requiring any pre-allocation of resources (or walks) to updates. However, with random walk, the system

designer is provided with the additional degree of flexibility of being able to tune the number of walks based

on the number and type of updates (e.g. assigning more walks to more crucial updates). Therefore, we argue

that choosing the most suitable routing policy is based on the application scenario being considered and the

desired degree of flexibility.

• Accuracy Improvement: In terms of accuracy, we make interesting observations for the drop and re-compute

schemes. If the system is too reactive to updates, oscillations may occur due to frequent drops. On the other

hand, if a node retains the FM aggregate over time, even when a small fraction of the system experiences

change (≈ 11%), the aggregate’s accuracy rapidly decreases, with the mean error increasing to almost 100%.

However, in contrast, our update technique adequately addresses this problem by keeping the amount of error

acceptably low.

• Resource Independence: Intuition suggests that using more walks in the incremental random walk protocol

would increase the cost of the protocol. However, surprisingly, this is not true. This is because the protocol is

able to converge faster with more walks, making the cost of the protocol effectively independent of the number

of allocated resources. We believe this result will encourage an exploration of random walk to examine its

suitability to other types of applications.

VIII. C ONCLUSIONS ANDFUTURE WORK

Computing global aggregates is an important problem and has been studied extensively in the traditional distributed

systems literature [18]. However, this work relies on the stability and reliability found in such systems, which

precludes its use on today’s large-scale decentralized systems; a domain where gossip protocols have been shown

to be more applicable. Our work examines the benefits of using incremental gossip-based techniques for maintaining

global aggregates. Our contributions are:

1) We propose a variant of a well-known FM aggregation scheme that allows efficient update propagation.

2) We establish the notion of local significance thresholds and illustrate their benefits.

3) We present a detailed performance evaluation of our techniques, and find that we can achieve a reduction of

as much as 60% in computation time compared to existing methods.

22

There are many avenues to explore in future work. On the theoretical side, we plan to come up with a formal

analysis of the accuracy and cost of our methods. We are also developing formal proofs to illustrate the correctness

of our techniques. On the practical side, we plan to incorporate a more elaborate change model that also takes into

account node and link failures. Additionally, we are exploring methods that can be used to decide when to drop

and recompute incremental aggregates. Finally, another set of problems that we also hope to address pertain to the

implementation issues of random walk. In particular, given a fixed number of walks, how to allocate resources to

each update in a decentralized fashion. Using this framework, we can also come up with other allocations that may

be more desirable in different scenarios (e.g. prioritized allocation of walks to updates).

REFERENCES

[1] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffusion for robust aggregation in sensor networks,” inProceedings of SenSys

’04, November 2004.

[2] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation techniques for sensor databases,” inICDE ’04: Proceedings of the

20th International Conference on Data Engineering. Washington, DC, USA: IEEE Computer Society, 2004, p. 449.

[3] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation in large dynamic networks,”ACM Journal, vol. 15, no. 5, November

2004.

[4] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applications,”J. Comput. Syst. Sci., vol. 31, no. 2, pp.

182–209, 1985.

[5] R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and scalable technology for distributed system monitoring, management,

and data mining,”ACM Trans. Comput. Syst., vol. 21, no. 2, pp. 164–206, 2003.

[6] M. Zaharia and S. Keshav, “Adaptive peer-to-peer search,” Submitted for Publication, January 2005.

[7] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen, “PlanetP: Using Gossiping to Build Content Addressable Peer-to-Peer

Information Sharing Communities,” inTwelfth IEEE International Symposium on High Performance Distributed Computing (HPDC-12).

IEEE Press, June 2003, pp. 236–246.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” inSOSP ’03: Proceedings of the nineteenth ACM symposium on

Operating systems principles. New York, NY, USA: ACM Press, 2003, pp. 29–43.

[9] K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states of distributed systems,”ACM Trans. Comput. Syst., vol. 3,

no. 1, pp. 63–75, 1985.

[10] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,” inFOCS ’03: Proceedings of the 44th Annual

IEEE Symposium on Foundations of Computer Science. Washington, DC, USA: IEEE Computer Society, 2003, p. 482.

[11] N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press, 1975.

[12] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for

replicated database maintenance,”SIGOPS Oper. Syst. Rev., vol. 22, no. 1, pp. 8–32, 1988.

[13] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer networks,” inProceedings of INFOCOMM 2004, March 2004.

[14] A. S. Tanenbaum and M. V. Steen,Distributed Systems: Principles and Paradigms. Upper Saddle River, NJ, USA: Prentice Hall PTR,

2001.

[15] T. Stading, P. Maniatis, and M. Baker, “Peer-to-peer caching schemes to address flash crowds,” inIPTPS ’01: Revised Papers from the

First International Workshop on Peer-to-Peer Systems. London, UK: Springer-Verlag, 2002, pp. 203–213.

[16] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a lightweight network location service without virtual coordinates,”SIGCOMM Comput.

Commun. Rev., vol. 35, no. 4, pp. 85–96, 2005.

[17] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: an approach to universal toplogy generation,” inProceedings of MASCOTS, Aug.

2001.

[18] M. T. Ozsu and P. Valduriez,Principles of distributed database systems. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1991.

