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Abstract

The use of edge based refinement in general, and Delaunay terminal edge refinement in
particular are well established for planar meshing, but largely on a heuristic basis. In this
paper, we present a series of theoretical results on the geometric mesh improvement properties
of these methods. The discussion is based on refining a mesh to meet a specified angle tolerance.

1 Introduction

Delaunay terminal edge refinement, specified in §2, is a member of the family of edge-based adaptive
mesh refinement methods; references to which follow in this introduction. These methods typically
have a goal of generating a mesh appropriate to a piecewise linear approximation task for a region,
D. However, in this report, we consider a geometric goal of producing a mesh in which the angles
in every triangle exceed a specified minimum angle tolerance, angTol. This geometric goal can be
related to what are termed mesh quality issues for piecewise linear approximation, see Berzins, [1]
or Shewchuk, [26]. However, the connection between geometric goals and error control goals for
piecewise linear approximation is complex, and we do not review it here.

Iterative refinement methods produce meshes for D that meet the angle criterion by starting
with a coarse mesh for D that does not meet it and incrementally improving it by adding vertices
until the criterion is met. We show a small example in Figure 1. Figure 1A shows an initial mesh
for D. It has three triangles with small angles which reflect the presence of two small geometric
details of D; the short boundary edge between vertices 2 and 3, and the narrow neck between
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A - initial mesh B - angTol = 20◦ : 24 vertices C - angTol = 30◦ : 40 vertices

Figure 1: Simple example of Delaunay terminal edge refinement for angle control

vertices 4 and 8. Figures 1 B and C show meshes produced by Delaunay terminal edge refinement
for angTol = 20◦ and 30◦, respectively.

Edge based Delaunay refinement methods have been demonstrated to perform well in practice,
as reviewed below. But they are largely heuristics in the sense that there is little in the way of formal
proofs of their effectiveness. In this paper, we analyse a series of mesh improvement properties of
these methods.

Delaunay terminal edge refinement is one of a class of iterative methods that create a sequence
of Delaunay meshes, {Mn}, by inserting one vertex at a time. Here is a brief abstraction of one
iterative step of the method.

1) Select t in Mn−1 such that a smallest angle of t < angTol.

2) Use a longest edge propagation path from t to find a terminal edge of Mn−1, e(t)
that is close to t. (See §2.2 for these concepts.)

3) Let P be the midpoint of e(t).
if e(t) is not a boundary edge then

if P lies in the diametral circle of a boundary edge, e′

then reassign P to be the midpoint of e′

end if
end if

4) Delaunay insert P into Mn−1 to produce Mn

(1)

We will often abbreviate ‘Delaunay terminal edge refinement’ to ‘Deter’ in the sequel; this will refer
to one step of the iterative method as described by (1).

When a new vertex, P ,is inserted into Mn−1 to produce Mn in substep 4) of (1), a large part of
Mn−1 , M̄ , is unchanged; i.e. there submeshes CMn−1 and BMn such that Mn−1 = M̄ + CMn−1

and Mn = M̄ +BMn
1 In this paper, we study the angle properties of BMn for Delaunay terminal

edge refinement. Since the goal of the refinement method is to produce a mesh that meets a
minimum angle size criterion, it would desireable if the smallest angle in the triangles of BMn were

1In the terminology of George and Borouchaki, [4], CMn−1 is the cavity of P and BMn is the ball of P .
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larger than the smallest angle in CMn−1. However, as this report details, for Delaunay terminal
edge refinement, there are worst cases in which this does not happen. We show that it is possible
that one angle in BMn is smaller than the minimum angle of CMn−1; this worst case can occur
only for a special configuration of CMn−1. While it appears to us that this configuration cannot
be reproduced indefinitely, we have not studied the implications rigorously.

We conceptualize substep 4) of (1) as consisting of a longest edge bisection of the triangles
incident on the edge bisected by P , followed by a conversion of the resulting mesh to a Delaunay
mesh, if necessary. This allows us to analyse the new angles created for the mesh in an orderly way.
For an arbitrary triangle, t, the longest edge bisection of t is the splitting of t into two triangles
(tA, tB) by joining the midpoint of a longest edge to the opposite vertex. In the sequel, ‘longest
edge bisection’ will often be abbreviated as ‘LEBis’. For angle improvement, the intuitive view of
a LEBis is that the child triangle tA is no improvement over t, while tB is better than t. In §2, we
quantify this intuitive viewpoint. tA retains the smallest angle of t, which we denote by α0(t). In
the worst case, tA can have a new angle smaller than α0(t). We provide some lower bounds for the
size of this angle. We also show the configurations in which tB can be a well shaped triangle; it
cannot have an angle smaller than min(α0(t), π/6).

In Delaunay terminal edge refinement, LEBis is limited to special edges in the mesh referred to
as ‘terminal edges’. In §2.2, we review the concept of terminal edges and details of terminal edge
refinement and present some implications for angles in the triangles to be refined that result from
its use.

In §3, we discuss the implications of Delaunay insertion for the insertion point determined as
discussed in §2. This process is central to removing small angles from the mesh. If α0(t) is less
than angTol, then the LEBis analysis of t in §2 shows that this angle is inherited by tA. So, if
an angle of this size is not to appear in BMn, it must result from the conversion of the mesh
created by LEBis to a Delaunay mesh. In §3.1, we discuss the improvements that follow from this
conversion. However, in the worse case, the improvement can be arbitrarily small. We present a
precise characterization of the worst case. In §3.3, we apply some of the ideas developed earlier to
analyze a special configuration and demonstrate a lower bound on the edge lengths that can result
from this configuration under subsequent refinements.

Edge based refinement methods for 2 and 3 dimensions have a relatively long history. Perhaps
the earliest reference to adaptive refinement based on LEBis is Sewell, 1979, [24]. See also Bank
and Sherman2 , 1979, [23]; subsequent references are Bank, 1998 [6] , Rivara et al, 1994 - 1997,
[7, 8, 20, 9, 13, 15], Nambiar et al, 1993, [12], Muthukrishnan et al, 1995, [11], Morin et al, 2002,
[10]. More recently, the observation that the constrained Delaunay triangulation (CDT) provides
the triangulation of a set of vertices that is the most ‘improved’ with regard to angles has lead to
using refinement methods that produce a sequence of CDTs, i.e. Delaunay refinement methods.
The combination of edge refinement and Delaunay insertion has been described by George and
Borouchaki , 1997, [5, 4] and Rivara and her collaborators, 2000 - 2002 [17, 18, 27]. Strong mesh
improvement properties for Delaunay circumcenter based refinement were established by 1993
by Chew, 1993, [3], Ruppert, 1995 [16], and Shewchuk, 1996 [25]. In particular, under appropriate
conditions on D, the methods are guaranteed to produce meshes with all angles > angTol, for
a significant range of angTol. Applications of this form of refinement have been described by
Weatherill et al ,1994, [33, 34] and Baker, 1989, [21]. Baker also published a comparison of edge

2The edge based refinement of this reference is not exactly LEBis.

3



base and circumcenter based refinement, 1994, [22].
At the time of this report, we have still many unanswered questions about the theory of Delaunay

terminal edge refinement. In this sense, the report is a progress report for on-going research.

2 Components of Delaunay terminal edge refinement (Deter)

In this section, we present properties of triangles that result from a simple longest edge bisection.
The LEBis of t splits t into two child triangles, tA and tB as described in §2.1. If t is a triangle with
a small angle, then, intuitively, this split isolates the unwanted small angle feature in tA, leaving
an improved triangle tB. In §2, we quantify these roles of tA and tB. In §2.1, we start with a
comprehensive study of the angle properties of tA and tB.

As mentioned in the introduction, LEBis is introduced into our discussion to help us to analyse
the angle implications of the refinement. Algorithmically, the refinement amounts to the Delaunay
insertion of the midpoint of the terminal edge selected for refinement, which can be accomplished
several ways.

In §2.2, we explain the components of Deter refinement and our terminology for them. We then
present two bounds on the angles in the pairs of triangles incident on a Delaunay terminal edge.
In Corollary 2.1 and its discussion, we present important conditions for the removal of small angles
from the mesh.

One of the properties of LEBis of §2.1 is that if t is an acute triangle, then tA has an angle that
is smaller than the smallest angle in t. In §2.3, we provide bounds on how small this new angle can
be.

In §2.4, we study the extent to which tB is an improvement relative to t. A table of improvement
cases is given; the worst case of ‘improvement’ is identified and well defined. In this worst case, tB
has the same smallest angle size as t, but a better shape for further refinement.

2.1 Basic properties of longest edge bisection of triangles - LEBis

Individual properties of LEBIS have been reported in a variety of references, [20, 15, 19]. In this
subsection, we believe we have included all previously published properties, provided some simpler
proofs for some cases, and added new properties in Theorem 2.1 b) and c) and Theorem 2.2.

Figure 2: notation for longest edge bisection

We standardized the notation for this splitting by labeling the vertices of t as A,B,C and
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normalizing this labeling by requiring

|B − C| ≤ |C −A| (2)
|C −A| ≤ |B −A| (3)

M = (A+B)/2

where M is the midpoint of the longest edge that is to be split. These determine the labels A,B
and C uniquely, if t has only one longest edge. In Figure 2 we show this labelling for a clockwise
ordering of ABC. In this figure, we have labelled the two new child triangles, tA and tB; their
indices reflect their incidence on vertices A and B respectively. We have also labelled the angles of
tA (tB) as αj (βj) ; for j = 0, 1, 2. α0 and β0 are inherited unchanged from t.

The following lemma and theorem present some simple properties of a LEBis of any t.

Lemma 2.1 Each of the assertions in the following groups is equivalent to any other in the group.
a)

t is a right angled triangle
α1 = α0

β1 = β0

|A−M | = |C −M |

b)
t is an acute triangle

α1 < α0

β1 < β0

|A−M | < |C −M |

c)
t is an obtuse triangle

α1 > α0

β1 > β0

|A−M | > |C −M |

Proof These equivalences follow from the basic geometry of triangles, plus the sine law applied
to tA , i.e.

|C −M |
sin(αO)

=
|A−M |
sin(α1)

=
|A− C|
sin(α2)

and tB. For assertion group a), note that CC(t) is the diametral circle of edge AB from which the
various assertions follow. 2

Theorem 2.1 The following angle bounds apply

a) α1 ≥ α0/2

b) β1 ≥ π/6

c) β1 ≥ α1

d) β2 ≥ 3α0/2

Proof Assertion a) follows from the following strong result due to Rosenberg and Stenger [35]:
For any triangle t∗ obtained in the iterative bisection process, the smallest angle of t∗ is greater
than or equal to α0/2.

For assertion b), Figure 3 shows the circle of radius |B − A| centered on A. Let C(α0) be the
point at which line segment on the edge AC of t meets this circle. Note that since α0 is a smallest
angle of t, α0 ≤ π/3. Let β1(α0) be the angle BC(α0)M ; then β1(α0) < β1. The triangle BAC(α0)
is isosceles, so if we denote its angle at B by β0(α0) we have

β0(α0) = π/2− α0/2; |C(α0)−B| = 2|B −A|sin(α0/2). (4)
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Figure 3: Bound on β1

So the sine law for triangle BC(α0)M implies

sin(β1(α0) )
|B −A|/2

=
sin(β0(α0) )
|C(α0)−M |

and consequently

sin(β1(α0) ) = (
|B −A|/2
|C(α0)−M |

) cos(α0/2). (5)

Both terms in the product on the right hand side of (5) are monotone decreasing in α0, so
sin(β1(α0) ) > sin(β1(π/3)). Consequently

β1 ≥ β1(α0) ≥ β1(π/3) = π/6

Assertion c) probably follows from a simple geometric observation; but we support it using the
sine laws for tA and tB; i.e.

sin(β1)
|B −M |

=
sin(β0)
|C −M |

≥ sin(α0)
|C −M |

=
sin(α1)
|A−M |

Assertion d) follows from β2 = α1 + α0 and using a) of this theorem and b) of Lemma 2.1. 2

Theorem 2.2 The following angle bounds apply conditionally

a) if t is obtuse, then β2 ≥ 2α0

b) if t is acute, then tB is acute

c) if α0 < π/6.215, or t is obtuse and α0 < π/6 then β1 > min(β0, β2)

d) if α0 > arcsin(1/3) = 19.5◦ , then β1 < π/2, i.e. tB is acute.
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For a), we again note that β2 = α1 + α0 and use α1 > α0 for obtuse triangles as per Lemma
2.1.

For b), let circ1 be the diametral circle of BA, and let circ2 be the diametral circle of BM ,
which is contained in circ1. t acute implies C 6∈ circ1, so that C 6∈ circ2 and consequently, tB is
acute.

For c) , we will show that under the conditions on α0 and t, then edge BM of triangle tB is
not its shortest edge. Let C1 and C2 be two circles of radius |B −M |. C1 is centered on M , and is
the diametral circle of edge AB; C2 is centered on B. If C lies inside either one, then edge BM is
not the shortest edge of tB and so β1 > min(β0, β2) as stated in b). We demonstrate two ways this
can happen. First consider C1 and let Z be the intersection point of C1 and C2 which lies above
edge AB. Then triangle BMZ is equilateral, and angle BAZ = .5 angle BMZ = π/6 since both
these angles are subtended by the chord BZ with M at the center of the circumcircle of BAZ. So,
if α0 < π/6 and t is obtuse, so that C in in C1, then edge CM is shorter than edge BM in tB.

However, the line AZ is tangent to C2 at Z. This can be seen from the facts that triangle ZMA
is isosceles , so that angle MZA = π/6, and angle BZA = angle BZM + angle MZA = pi/2.
If t is acute and α0 = π/3, then C lies outside C2, as well as outside C1, and BC is longer than
edge BM . Consider the point P where C2 intersects the circle of radius |A−B| centered on A. C
must lie on the line segment AP since AB is a longest edge ot t. The triangle BAP is isosceles,
with base = |P − B| = |A − B|/2. Consequently, angle BAP = asin(.25) > π/6.215. Hence, if
α0 < π/6.215, then edge BM is longer than the minimum of the other two edges of tB, regardless
of the shape of t.

For d), let M ′ be the midpoint of edge BM , and let C ′ be the point on the diametral circle
of edge BM ′ at which the tangent to this circle through A touches the circle. Let ᾱ be the angle
MAC ′ at A made by this tangent. Then, since angle AC ′M ′ = π/2,

sin(ᾱ) = |M ′ − C ′|/M ′ −A| = 1/3

If α0 > ᾱ then C must lie outside this diametral circle and tB is acute. Evidently, this condition is
sufficient, but not necessary. 2

2.2 Delaunay terminal edges and triangle configurations

For a planar mesh, a boundary edge is terminal if it is the longest edge of its incident triangle and
an internal edge is terminal if it is the longest edge of each of the two incident triangles. Figure 4
(a) shows edge AB as an example of an internal terminal edge and Figure 4 (b) shows edge CD as
a boundary terminal edge. These figures show sequences of triangles {tk}, k = 0, 1, 2, 3 such that
the shared edge of tk and tk+1 is a longest edge of tk but not tk+1 for k = 0, 1 (and for (b), for
k = 2).a These are examples of longest edge propagation paths for t0 in each case. In general, they
are of arbitrary length. We will abbreviate ‘longest edge propagation paths’ for t0 as ‘Lepp(t0)’.
Lepp, and the terminal edge concepts, were introduced and used in references [15, 19, 20].

We present two motivations for the concept of terminal edges. The first motivation is that
one of the tactics in refinement for geometric improvement is to refine the largest triangles first.
A terminal edge in a mesh is a local maximum for edge length in a graph sense so it is a good
candidate for refinement.

The second motivation is more fundamental. Consider two neighbouring triangles tk, tk+1 as
shown in Figure 4 (a) for k = 0, 1, 2. For k = 0, 1, a refinement of the mesh could be made by
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splitting tk and tk+1, using the midpoint of their common edge. This splitting would be a LEBis
of tk, but not tk+1. However, for k = 2, terminal edge AB is a longest edge of both t2 and t3, so
the midpoint refinement is a LEBis of both triangles.

Figure 4: Sequences of mesh triangles; common edge of tk, tk+1 is a longest edge of tk

Terminology and its concepts

We now explain the terminology of the paper. Terminal edge bisection is a refinement technique
in which a terminal edge is identified in each refinement step, and its midpoint inserted into the
mesh by simple LEBis of each incident triangle as described in §2.1 above. Delaunay terminal
edge bisection is is a modification of terminal edge bisection in which the meshes being refined
are Delaunay, or constrained Delaunay, and the insertion is a Delaunay point insertion. Given
a triangle, t0 that is to be refined, the algorithm for computing a longest edge propagation path
starting at t0 locates a terminal edge near t0, in a graph sense. Figure 4 illustrates this concept for
the two triangles marked t0 on the left and t∗0 on the right.

Finally, Deter of a triangle t will refer to finding a terminal edge associated with t using Lepp
and performing Delaunay terminal edge bisection on it. As the examples of Figure 4 show, Deter
of t may not modify t, in which case the process can be repeated in the refined mesh. Evidently,
this repeated application of Deter to t must terminate and modify t either by Delaunay terminal
edge bisection of its longest edge, or by swapping it during the Delaunay insertion of some other
midpoint. Algorithmic details of Deter, including repeated application to a given t, are given in
[15, 19, 20, 27]

Our description of one step of Deter at (1) includes a ‘encroachment’ rule when the midpoint
of a terminal edge is inside the diametral circle of some boundary edge, not necessarily terminal.
Such rules are needed to ensure mesh improvement by refining boundary edges, [3, 16]. As the
small examples of Figure 1 of the introduction show, the insertion of boundary vertices plays a very
important role in computing a mesh that meets a minimum error tolerance. Nevertheless in this
report, we will restrict our attention to refinement of terminal edges.
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Configurations of terminal triangles

Let t1, t2 be the two neighbouring triangles on an internal terminal edge, AB. Simple bisection of
AB results in 4 new triangles in the mesh, which we can designate by tj,A and tj,B for j = 1, 2,
as in the previous subsection, §2.1. If tj are both acute, the the discussion of tj,A and tj,B in §2.1
applies independently for j = 1, 2. For a pair of triangles (t1, t2) sharing a Delaunay edge, the
sum of the angles opposite the common edge cannot exceed π, consequently, at most one of the
tk can be obtuse. In this case, there are restrictions on the tj that we describe in this subsection
using Figure 5. The figure shows only t1; we denote the vertex of t2 opposite edge AB, which is

Figure 5: The configuration of triangles at an internal terminal edge

not shown, by D. The dashed circular arcs are part of the circles of radius |B − A| centered at A
and B respectively and the circumcircle of t1 is shown with a solid perimeter. Because edge AB
is terminal and the triangles are Delaunay, D must lie in the small region at the bottom of the
diagram below the arc of CC(t1) between D′ and D′′ and inside the two dashed arcs that meet at
E. One implication of this configuration is the following theorem.

Simple implications of this diagram are the following lemma and corollary.

Lemma 2.2 For any pair of Delaunay terminal-triangles t1, t2 sharing an internal terminal edge,
largest angle(ti) ≤ 2π/3 for i = 1, 2.

Proof: Assume the largest angle occurs in obtuse triangle t1 as shown in Figure 5. If θ > 2π/3,
then E lies inside CC(t1), which is impossible. 2

Corollary 2.1 For a LEBis of tin a Delaunay mesh, if α0 + α1 < π/3 then edge CA is not a
terminal edge. Note α0 + α1 = β2.

Basically this corollary shows that if tA is a ‘skinny’ obtuse triangle, then CA cannpt be a terminal
edge. There are many special configurations that ensure α0 +α1 < π/3; i.e. t is acute and α0 < π/6
, or t is obtuse and α1 < π/6.

The following theorem shows that if the edge is a terminal edge, then the more obtuse t1 is, the
larger the smallest angle of acute t2 is.
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Theorem 2.3 Let t1 and t2 be incident on an internal terminal edge and let θ be the largest angle
of t1. Let α0(t2) be the smallest angle of t2. If π/2 ≤ θ ≤ 2π/3,

α0(t2) ≥ 2θ − π

Proof: Referring to Figure 5, vertex D of t2 must be inside the lens of dashed arcs and outside
the circumcircle of t1. D′, D′′ are the points where the lens intersects CC(t1). Assume that a
smallest angle of t2 is at A. Let δ be the angle BAD′; then α0(t2) > δ. Look at triangle BD′A.
Because C,B,D′, A are co-circular, the opposite angles in this quadrangle add to π and so angle
BD′A is π − θ as marked. But because B and D′ are on the dashed arc centered at A, triangle
AD′B is isosceles and angle D′BA = π − θ as marked. So δ = 2 ∗ θ − π. 2

This theorem, and Figure 5 illustrate restrictions on the configuration of triangles that share a
terminal edge, e.g. if θ = 7π/12, then α0(t2) ≥ π/6.

As mentioned at the outset of this section, one of the characteristics of LEBis is that it nec-
essarily produces an obtuse child triangle, tA, which retains angle α0 from its parent,t and, if t is
acute, has a smaller angle α1. So, if α0 is small, mesh improvement in the sense of removing small
angles must come from subsequent processing of tA. It may happen that the Delaunay insertion
of M removes tA from the mesh. The implications of of this possibility are discussed in the next
section. If not, i.e. if edge AC is an internal Delaunay edge , it may not be a terminal edge.
Intuitively, it would be expected that the configurations of the two triangles incident on edge AC
would not commonly meet the conditions presented above for it to be a terminal edge, in general.
Corollary 2.1 is a particular instance of this. So, in general, it would be expected that repeated
Deter refinements of tA would, sooner or later, result in edge AC being removed from the mesh by
a Delaunay insertion following the bisection of some other nearby terminal edge.

2.3 Bounds on the size of α1 for acute t

Here, we next discuss some bounds on the size of α1 in the case that t is an acute Delaunay terminal
triangle.

Figure 6: Regions EFC and E’F’C’ are geometrical places for vertex B and midpoint M for a
terminal triangle BAC with respective smallest and largest angles of vertices A and C

Figure 6 shows the possible locations for vertex B of a Delaunay terminal triangle for a fixed
second longest edge CA. It also shows the possible locations for M . It supports an analysis of
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properties of tA and tB as parametrized by B. Since BA is the longest edge, the following two
conditions hold: Condition (2) constrains B to lie inside the circular arc EFA of centre C and
radius |C − A|. Consequently, M lies inside the circular arc CF ′A of centre N = (C + A)/2 and
radius |C − A|/2. Condition (3) constrains B to lie outside the circular arc CF of centre A and
radius |C − A|, and so M lies outside circular arc NF ′ of centre A, radius |C − A|/2. The line
CE makes an angle of 120◦ with CA; this constraint is a direct application of Theorem 2.1 for an
unconstrained Delaunay terminal triangle.

Some of the properties of the triangles of the diagram are summarized in the table given be-
low. We shall denote by the smallest and largest angle of any triangle t by θmin(t) and θmax(t)
respectively.

B is in/on property
edge CE θmax(t) = 120◦

arc EF t is an isosceles triangle with smallest edge equal
to second longest edge

arc CF t is an isosceles triangles with longest edge equal
to second longest edge

edge CG t is a right triangle, α0 = α1, θmin(tA) = α0 = α1

interior of region CEG α1 > α0, θmin(tA) = α0

interior of region CGF acute triangles with α1 < α0, θmin(tA) = α1

Item a) of Theorem 2.1 is quite a weak lower bound for α1 when α0 is small. By studying the
distribution of angles (α0, α1) as shown in the diagram of Figure 7, we can see the distribution of
the ordered pair of angles (α0, α1). Figure 7 is a relabelled version of Figure 6. In Figure 7, the

Figure 7: Distribution of angles (α0, α1) for a terminal triangle with B in CEF

segments EH and UW respectively correspond to the terminal triangles with smallest angles equal
to 30◦ and 22◦. Note for α0 = 30◦, the angle α1 decreases from 60◦ to 23.79◦ along EH, while for
α0 = 22◦ the α1 angle decreases from 37.75◦ to 19.25◦ along UW. Remember that segment line CG
indentifies right terminal triangles with α0 = α1. Note also that the ratio α0/α1 increases along
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line segment E to C and arc F to C.
We consider the case α0 = 22◦ since we are interested in improvement of angles in the mesh

below this value (see section 3.1 for an explanation of this constraint).
These properties and continuity reasoning allows to state the following lemma:

Lemma 2.3 a) For acute terminal triangles with smallest angle α0 ≤ 30◦ (B in region CIH), it
holds that α1 ≥ 0.79α0.

b) For acute terminal triangles with smallest angle α0 ≤ 22◦ (B in region CVW), it holds that
α1 ≥ 0.886 α0.

c) For acute terminal triangles the ratio α0/α1 increases (α1 approaching α0) while α0 decreases.

2.4 tB is worst case safe

We now quantify the notion that the triangle tB created by a LEBis of triangle t is a better triangle
than t. The results of the preceding sections are used, and extended, to prove the following theorem
about the smallest angle of tB = α0(tB). This theorem also refers to the child triangle of a LEBis
of tB that retains angle α0(tB) which we could denote by tB,A. More precisely, the theorem refers to
the other acute angle of tB,A, which we could denote by α1(tB,A). However, this seems unnecessarily
clumsy, so we will simply denote it by α1(tB). An example is shown in Figure 9. Note that the
vertex at which α0(tB) occurs is opposite to the shortest edge of tB, which depends on the location
of C as listed in Table 1 below.

Theorem 2.4 For any triangle t in mesh M ,

α0(tB) ≥ min(α0(t), π/6) (6)

and if tB is acute
α1(tB) ≥ min(1.4 ∗ α0(t), π/6) (7)

Essentially, this theorem says that in the worst case, the creation of tB by LEBis of t and subsequent
conversion of the new mesh M to a Delaunay mesh cannot produce any new angles that are smaller
than the smallest angle in t, or 30◦. The case that α0(tB) = α0(t) occurs if t is isosceles with
β0 = α0. The theorem shows that this is the worst possible case, and, the proof shows that it is
the only way that α0(tB) = α0(t) if α0(t) ≤ π/6.
Proof : Figure 8 shows:

- the longest edge AB of t for bisection,

- its midpoint, M , and its quarter point Q midway between B and M

- three related circular arcs:

arc BEH is part of the circle centered at A of radius |B −A|. C must lie above BM , on, or
to the left of, MH, and to the right of arc BEH.

arc BFG is part of the circle centered at M of radius B −M
arc MFE is part of the circle centered at B of radius B −M .

12



Figure 8: Regions for C

- evidently, F is the intersection of arcs BG and ME

The proof of the theorem involves examining the cases arising from the different regions of domain
in which C can lie. We summarize these cases in Table 1.

Region for C t is lower bound shortest edge lower bound
for α0(tB) of tB for α1(tB)

EFGM acute π/6 BM π/6
EBF acute 1.5α0(t) BC 1.4α0(t)
BQF obtuse 1.5α0(t) BC -

QFGM obtuse α0(t) CM -

Table 1: Lower bounds for α0(tB)

The fourth column of this table implicitly indicates which of βk is the smallest angle of tB,
α0(tB), since it is opposite the shortest edge of tB. The entry in the third column for row EFGM
follows because β1 is a minimum for this region when C is at H. The next two entries in the third
column follow from Theorem 2.1, and the bottom entry follows because β0(t) ≥ α0(t) with equality
only if C lies on MH.

The fifth column of the table is relevant for tB acute because as Lemma 2.1 pointed out, for
acute tB, α1(tB) < α0tB. Furthermore, as we detail in §3.1 below, and angle arbitrarily close to
α1 can created in the conversion of the refined mesh to a Delaunay mesh. The entry for EFGM
in the 5 th column follows also because α1(tB) is minimized for C in region EFGM by C = H.
The entry in the 5 th column for EBF is based on a somewhat complex explicit computation; we
present stages of it in Lemma 2.4 and its corollary which follow. 2

Lemma 2.4 For acute isosceles t,

sin(α1(tB)) = (1/f) sin(α0(t))

for
f = 2( (sin2(α0(t)/2) + 1/4)2 + sin2(α0(t)/2)/4 )1/2 (8)
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Figure 9: configuration of α1(tB) for acute, isosceles t

Proof : Figure 9 shows the LEBis of acute isosceles t with edge AB scaled to length 1. |B − C| =
2sin(α/2) and, in the coordinate system shown, C = (2sin2(α/2), sin(α)) where we abbreviate
α0(t) to simply α. The longest edge of tB is CM , where the coordinates of M are (1/2, 0), and
the smallest angle is CMB = β2(t). So LEBis of tB will introduce the midpoint of line segment
CM = M ′ into the mesh, with α1(tB) as angle M ′BM . The coordinates of M ′ and be computed
as (sin2(α/2) + 1/4, sin(α)/2) from which the lemma follows. 2

Corollary 2.2 For acute t with α0(t) ≤ π/6,

sin(α1(tB)) ≥ 1.45sin(α0(t))

For C in EFB of Figure 8, we can see that α0(t) ≤ π/6 and that for given α0(t), the worst case
of bounding α1(tB) below by α0(t) occurs for acute isosceles t. The factor, f of Lemma (2.4) is
monotone increasing in α and for α = π/6, f = .68477.

3 Geometric mesh improvements: internal terminal edges

The previous section discussed the angles generated by LEBis of a boundary terminal triangle, t1,
or a pair of triangles, t1 and t2 which share an internal terminal edge. We noted that the child
triangles tj,B, j = 1 or j = 1, 2 usually had larger angles, and in any case, were no worse, than
tj . However, the other child triangles tj,A were definitely not improved, and if tj is acute, then tj,A
has an angle smaller than α0(tj). rIn the introduction, we described the n the step of iterative
Deter as the replacement of submesh CMn−1 of Mn−1 by submesh BMn of Mn. Conceptually, we
view the creation of Mn as talking place in 2 stages. The first is the insertion of midpoint M into
mesh Mn−1 by LEBis of the tj . We will denote the resulting mesh by MSB. In general, MSB is not
Delaunay, so the second stage is the conversion of MSB to Mn. I.e.

Mn−1 = M̄ + CMn−1>MSB>M̄ +BMn = Mn

This provides the opportunity for removing small angles of tA ∈ MSB from Mn if edge CA is not
Delaunay in MSB.

The conversion of MSB to Delaunay is known to increase the minimum angle in BMn. In
Theorem 3.1, we add more precision to this general observation by identifying two vertices of BMn
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Figure 10: Example of the partial cavity of vertex M in mesh MSB with NA = 4

that are influenced by α0 and α1 respectively. However, it may be that CA is a Delaunay edge in
MSB an so it also appears in Mn, along with angles α0 and α1. In this case, it is not likely that
CA is a terminal edge, In §2, we presented two criteria for terminal edges, and Lemma 3.2 add a
third. Basically they indicate that the longest edge of a triangle with two small angles cannot be a
terminal edge. Since the LEBis stage of Deter is limited to terminal edges, if CA is not terminal,
then its midpoint will not be inserted in the mesh and so any elimination of CA from the mesh must
come when an insertion of the mipoint of some nearby terminal edge makes CA a non-Delaunay
edge.

In §3.3, we present a special case of mesh non-degeneration, if not improvement, when CA is a
Delaunay, but not terminal, edge.

3.1 Delaunay insertion of point M

To describe the conversion of MSB, we will use the terminology of George and Borouchaki ,[4]. The
cavity of the vertex M in MSB is the set of triangles, t, such that M ∈ CC(t)3. It has a polygonal
boundary that is star-shaped with respect to vertex M . We will denote the boundary vertices of
the cavity by Pk for k = 0, to N in clockwise order about M starting with P0 = C. Since A,B
and C are on this boundary, N ≥ 2. The result of the Delaunay insertion of vertex M is that the
triangles in the cavity of M are removed from MSB and a new set of triangles appear in Mn with
M as a vertex, i.e. the triangles MPkPk+1.

We let NA be the index of A in the list of boundary vertices of the cavity of M i.e. PNA = A.
The subset of the cavity of M that is bounded by the first NA+ 1 vertices and the edges AM and
MC will be referred to as the partial cavity of M . An example is shown in Figure 10; this figure
also shows CC(tA) of triangle tA = CMA with the Pk in its interior. This illustrates the statement
of the following lemma. We have also shown a mesh vertex, Q , and triangle P2QP3 which are not
in the cavity of M although they are in CC(tA). So the converse of the lemma is not true.

Lemma 3.1 If NA > 1, Pk is in CC(tA) for 1 < k < NA

3‘CC(t)≡ the circumcircle of t’
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Proof C and A are not in CC(Pk−1PkPk+1). Consequently, if M ∈ CC(Pk−1PkPk+1) then
CC(Pk−1PkPk+1) must cut the edge CA twice, at points C ′ and A′ either at the endpoints of
this edge or in its interior. The chord C ′A′ of CC(Pk−1PkPk+1) cuts this circle into two sections;
one contains M in its interior and the other contains Pk on its boundary. We will designate
this latter section by Cap(Pk−1PkPk+1). By the symmetry of circumcircles, since M is inside
CC(Pk−1PkPk+1), Pk is inside CC(C ′MA′); in fact, in the section of CC(C ′MA′) opposite to
M across the chord C ′A′. We will designate this section as Cap(C ′MA′). Now, Cap(C ′MA′) ⊂
Cap(tA); so we have Pk ∈ Cap(C ′MA′) ⊂ Cap(tA) ⊂ CC(tA).

We will study the angles and edge lengths of the new triangles incident on M . Let

αmin(M) =
the minimum angle of the triangles in the partial cavity of
M excluding triangle tA

(9)

Now, each triangle t ∈ MSB in the cavity of M has vertices, Pi, Pj , Pk for i < j < k. If t has an
edge on the boundary of the cavity, then i = j − 1. In this case, M ∈ CC (t) implies that the
angle at M in Mn opposite edge Pj−1, Pj is larger than the angle opposite edge Pj−1, Pj in t. So, in
particular, the angle at M is larger than αmin(M). Intuitively, we can see that the closer a cavity
edge, Pj−1Pj , is to M the larger this angle improvement will be. Conversely, if CC(t) is very close
to CC(tA) then very little angle improvement can occur.

BMn is the set of triangles PjPj+1M for 0 ≤ j ≤ NA − 1; i.e. the set of triangles in Mn

that replace the partial cavity of M . It follows immediately from the Delaunay mesh property of
maximizing the minimum angle in a triangulation that the minimum angle of the triangles of BMn

is not less than the minimum angle of the triangles of the partial cavity of M . However, this is not
a very insightfull observation. In particular, the partial cavity of M contains tA from the longest
edge bisection of t and the minimum angle of tA can be α1, which can be smaller than existing
angles in the mesh. While it thus possible that the smallest angle in BMn can be an arbitrarily
small improvement of α1, we show, as part of the following theorem, that this can only occur at
one vertex and under a very specific circumstance. The following theorem details the worse case
limits of angle improvement generally. Its proof provides insight into the mechanisms of angle
improvement resulting from Delaunay insertion.

Theorem 3.1 a) Angle CP1M ≥ α0 and the other two angles of triangle CP1M exceed αmin(M).
(See (9) for αmin(M). )

b) Angle MPNA−1A ≥ α1 and the other two angles of triangle MPNA−1A exceed αmin(M).

c) If NA > 2, then in the set of triangles PjPj+1M for 1 ≤ j ≤ NA − 2, every angle exceeds
αmin(M).

Proof: To establish this result, we will look at an algorithm for constructing the partial cavity
of M and use it to trace the evolution of new angles in BMn.
S is a stack of triangles initialized by CDA, the neighbour of triangle tA on edge CA
while S is not empty do

1. t = pop(S) ; (removes t from S)
if M ∈ CC(t) then

2. t is in the partial cavity of M
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3. identify vertices of t as Q0, Q1, Q2 of t labeled so that M is on the side of edge Q0Q2

opposite to Q1

if 4. t has a neighbouring triangle on edge Q0Q1 then
push it onto S

end if
if t has a neighbouring triangle on edge Q1Q2 then

push it onto S
end if
5. Swap edge Q0Q2 with edge Q1M in the quadrilateral Q0Q1Q2M

end if
end while

When the algorithm terminates the partial cavity of M has been converted to BMn.

Figure 11: Configuration of quadrilateral Q0, Q1, Q2,M for Theorem 3.1

When the edge swap step is entered, the quadrilateral Q0Q1Q2M is configured as in Figure 11;
M is in CC(Q0Q1Q2). The effect on the angles at the vertices of this quadrilateral are:

at Q0 Angle Q1Q0Q2 is denoted by x in Figure 11. Evidently x ≥ αmin(M) so angle x is replaced
at Q0 by MQ0Q2 + x ≥MQ0Q2 + αmin(M)

at Q2 As at Q0, MQ2Q0 = y is replaced at Q2 by MQ2Q0 + y ≥MQ2Q0 + αmin(M)

at Q1 By the symmetry of circumcircles, Q1 is inside CC(MQ0Q2). Angles Q0Q1M and Q0Q2M
subtend the same chord, Q0M , of CC(MQ0Q2). So, Q1 inside this circle implies that angle
Q0Q1M > angleQ0Q2M . Similarly, Q2Q1M ≥ angleQ2Q0M

at M Angles Q0MQ1 and Q0Q2Q1 subtend the same chord of CC(Q0Q1Q2). So, M inside this
circle implies that angle Q0MQ1 > angleQ0Q2Q1 ≥ αmin(M). Similarly, Q2MQ1 >
angleQ2Q0Q1 ≥ αmin(M).

So, the angles at M always exceed αmin(M).
There are two angles at each Pj , 1 ≤ j ≤ NA− 1 , angle MPjPj−1, and angle MPjPj+1. Angle

MPjPj−1 ≥ mαmin(M), where m is the number of times Pj is identified as Q2 in step 3. of the
algorithm, and similarly for angle MPjPj+1. What about MPjPj+1 for j = 0, i.e. MCP1? Angle
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MP0P1 = MCP1 and angle tA = α0 share the chord CA of CC(tA). From Lemma 3.1 we know P1

is in CC(tA); so we can conclude that MP0P1 > αO. Similarly, angle MPNA−1A and angle MCA
both share chord AM of CC(TA); so angle MPNA−1A > α1. 2

Corollary 3.1 If t is obtuse, then no new angles smaller than the existing ones in the unrefined
mesh result from Delaunay terminal edge refinement of t

3.2 non-terminal CA

If the partial cavity of M is the trivial one consisting of only tA, then the prospects of mesh
improvement by Delaunay insertion do not apply to tA. In this case, if α0 is small, then this angle
is still in the mesh, in tA. When CA is not a terminal edge in the mesh, removing α0 from the mesh
can be accomplished by removing the edge CA through subsequent refinements. In this subsection,
we study some special instances in which it can be shown that CA is not a terminal edge of tA and
its neighbour, tA,2, on edge CA.

Lemma 3.2 If BC is the shortest edge of tB, then edge CA is not a terminal edge of tA if

α0(tA,2) < π − 2arctan(3tan(α0)) (10)

Proof: Theorem 2.3 implies that CA is not a terminal edge of the mesh if

α0(tA,2) < 2α2 − π (11)

We develop a lower bound for α2 to prove the lemma. Without additional assumptions, the only
lower bound on α2 would be π/2, which occurs when C lies on the bisector of edge AB. If this lower
bound is place into the right hand side of (11), the result is 0, and no useful information results.
Figure 12 shows t, but not tA or tB. The midpoint, M of edge AB is marked and so is the quarter

Figure 12: for Lemma 3.2

point Q which is the midpoint of edge BM of tB. The condition that BC is the shortest edge of
tB implies that C lies to the left of the vertical line through Q, shown in the figure as dashed; it
intersects edge CA at C ′. Evidently, the angle, AMC ′ = α′2 is a minimum for α2 wherever C lies.
We show that

α′2 = π − arctan(3 tan(α0) ) (12)
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as follows.

|C ′ −Q| = |Q−M | tan(β′2) =
|B −A|

4
tan(β′2)

|C ′ −Q| = |Q−A| tan(α0) =
3|B −A|

4
tan(α0)

so tan(β′2) = 3tan(α0) i.e. β′2 = arctan(3tan(α0)). Since α′2 + β′2 = π, (12) follows.
Since α′2 is a lower bound for α2, Theorem 2.3 implies that CA is not a terminal edge unless

α2(tA,2) > 2α′2 − π. The lemma then follows by substituting (12) into this expression. 2 .

Corollary 3.2 If α0 ≤ π/6 and edge BC is the shortest edge of tB, then edge CA is not terminal.

Proof: : π − arctan(3 tan(α0)) is monotone decreasing in α0. If α0 ≤ π/6, then

α−2 => π − arctan(3 tan(π/6))

But π − arctan(3 tan(π/6)) = 2π/3 since tan(π/6) = 1/sqrt(3) and arctan(sqrt(3)) = π/3. But,
as Figure 12 shows, α−2 ia a lower bound for α2 and, by Theorem 2.2, CA cannot be a terminal
edge of tA if α2 > 2π/3 2 .

Corollary 3.3 If α0 < π/4.4 and edge BC is the shortest edge of tB, then CA is not terminal,
unless α0(t2) > α0

Proof: π− arctan(3 tan(α0)) is monotone decreasing in α0. Equation x = π− arctan(3 tan(x))
has its unique solution at x̄ just below π/4.4. So for α0 < π/4.4,

α0 < x̄ = π − arctan(3 tan(x̄)) < π − arctan(3 tan(α0)).

So if α0(t2) ≤ α0, then the lemma shows that edge CA cannot be terminal 2 .

3.3 Small edge improvement

In this section, we show that if t is shaped so that |B−C| < |C−M |, i.e. if |B−C| is the shortest
edge of tB, then Delaunay insertion of M into the mesh can only produce new edges that are longer
than |B − C|. We then look at repeated Deter applied to a special case of t.

Figure 13 shows the terminal triangle ABC, and an arc of its circumcircle CC(ABC). The
point C ′ is the projection of C onto edge BA. The figure also shows the insertion point M , and
an arc of CC(TA). We assume that |C −M | > |A −M |, and consequently, that t is acute and
that α1 < α0. The line CDb is parallel to edge BA. Db is the point of intersection of this line with
CC(TA) and Nlim is the midpoint of line segment CDb. The point Cim is the point of intersection
of CC(ABC) and line segment CDb.

Lemma 3.3 If |C −M | > |B − C|, the circle of radius |B − C| about M lies inside CC(ABC)
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Figure 13: Configuration of terminal triangle t and its neighbour

Proof Introduce coordinates (r, s) with origin at B and r axis along edge BA4. Let the coordinates
of A be (z, 0) and the coordinates of C be (a, b). Then |B −C|2 = a2 + b2 which we will denote by
d2. Then (r, s) on the circle of radius |B − C| about M satisfies

(r − z/2)2 + s2 = d2. (13)

The equation for CC(ABC) is

(r − z/2)2 + (s− c)2 = z2/4 + c2. (14)

where
c = (d2 − az)/(2b). (15)

Note that the centre of CC(ABC) lies on the bisector of edge AB. Let (z/2, s̄) be the point of
maximum height of CC(ABC) above AB. The coordinate form of the condition |C−M | > |B−C|
is a < z/4. We want to show that if this condition holds, we have d < s̄. Suppose the contrary
holds, i.e. s̄2 < d2. Then, using (14),

2cs̄+ z2/4 < d2

or
s̄ < (d2 − z2/4)/2c

Using (15), this implies s̄ < f b for f = (d2 − z2/4)/(d2 − az). However, if a < z/4, this implies
f < 1, i.e. (̄s) < b, which is impossible, since s̄ is the maximum height of CC(ABC). Consequently,
a < z/4 is incompatible with s̄2 < d2. 2

Corollary 3.4 If |B−C| is the shortest edge of tB then Delaunay insertion of M into the current
mesh can only produce edges longer than |B − C|.

We now use this lemma in a theorem that demonstrates a special case of tA for which we can
prove that no new small edges are produced in repeated Deter refinements of t. Let D be the vertex
of the triangle, tA,2, that shares edge CA with tA. D must be outside CC(ABC).

4These are longest edge coordinates, See Simpson [30]
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Theorem 3.2 If α0 ≤ α0(tA,2), and |B − C| is the shortest edge of tB, and edge CA is not a
terminal edge of tA, then the circle of radius |B−C| about M is empty for repeated applications of
Deter refinement to tA.

Proof: Note that edge CD must lie on, or above line CDb because angle ACD = α0(tA,2), is
not smaller than α0. There are two cases to consider. The first case is that D is inside CC(tA).
In this case, there is a non trivial partial cavity of M . Then Lemma 3.3 proves the result, since D
lies outside CC(ABC).

In the second case, D is on or outside CC(tA), and tA is the trivial partial cavity of M . Then,
since CA is not a terminal edge, there are two subcases for the Deter refinement process applied to
tA. In subcase 1, as a result of Lepp(tA), Deter refinement inserts a point above edge CD that lies
in CC(tA,2). This removes edge CD and no small edge at M occurs. In subcase 2, CD is bisected
- perhaps several times - until the midpoint, N , of one of the bisections lies inside CC(tA). Then
N must lie between Nlim and Db. But |M −Nlim| > |B − C| so |N −M > |B − C|, even though
N can be inside CC(ABC). 2 It may be interesting to note that if the relation on the minimum
angles of tA and tA,2 of this theorem were reversed, i.e. α(tA,2) < α0 < π/4.4, and edge BC is the
shortest edge of tB, then it follows from Corollary 3.3 that CA cannot be a terminal edge.
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