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Abstract

We examine eleven open source software systems and present empirical evidence
for the existence of fractal structures in software evolution. In our study, fractal
structures are measured as power laws through the lifetime of a software system.
We describe two specific power law related phenomena: the probability distribution
of software changes decreases as a power function of change sizes; and the time
series of software change exhibits long range correlations with power law behavior.
The existence of such spatial (across the system) and temporal (over the system
lifetime) power laws suggests that Self-Organized Criticality (SOC) occurs in the
evolution of open source software systems. As a consequence, SOC may be useful
as a conceptual framework for understanding software evolution dynamics (the cause
and mechanism of change or growth). We give a qualitative explanation of software
evolution based on SOC. We also discuss some potential implications of SOC to
current software practices.

1 Introduction

Laws of software evolution formulated by Lehman [Leh97] represent a major
intellectual contribution to understanding software evolution dynamics (the
underlying cause and mechanism of software change or growth). Lehman’s
eight laws are empirically grounded on observing how closed source industrial
software systems such as IBM OS/360 were developed and maintained within
a single company using conventional management techniques [LRW+97]. The
laws suggest that software systems must be continuously adapted to respond
to external forces such as new functional requirements and hardware upgrade
and to maintain stakeholder satisfaction.
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Viewing software evolution as a phenomenon driven by various external
forces can make it difficult to accommodate and explain conflicting find-
ings across different software systems or domains. For example, open source
projects in different domains have been found to grow at different rates in-
cluding super-linear, sub-linear and linear rates [GT00][RAGBH05]. A simple,
unified way for explaining evolution dynamics is needed. This paper looks into
Complex Systems theories to seek new ways for describing and explaining soft-
ware evolution.

A wealth of knowledge has been gained in understanding the change be-
havior of complex systems as diverse as sandpiles [BTW87], power black-
outs [CNDP04], earthquakes [Sch90] and even biological evolution [SMBB97].
These systems are complex in the sense that no single characteristic event
size can control their changes or responses over time. That is, changes in a
complex system can be of any size and occur any time. For example, a power
blackout can strike a street, a town, a state and all the way up to a country.
An intriguing aspect of complex systems is that their statistical properties can
be measured as power laws in space and in time.

In 1987, Bak, Tang and Wiesenfeld proposed Self-Organized Criticality
(SOC) to explain typical power law behavior [BTW87]. SOC was set out as an
ambitious effort for explaining the existence of ubiquitous fractal structures in
nature. SOC has two important signatures: (1) the power law distribution of
dynamical responses, and (2) long range correlations with power law behavior
in time series of response [CNDP04][SMBB97]. Section 2 will provide a brief
introduction to fractals, power laws and long range correlations and explain
how these concepts are relevant to SOC.

Does a software system follow the SOC dynamics during its evolution?
This question arises from several previous studies which in particular include:

• Software evolution as punctuated equilibrium
Wu et. al examined the structural evolution of software systems at the level
of source files. They observed that three open source systems (OpenSSH,
PostgreSQL and Linux Kernel) evolved through an alternation between
long periods of small changes and short periods of large avalanche changes
[WSHH04].

• Biological evolution as self-organized criticality
Researchers have found that fluctuations in fossil record exhibit long range
correlations with power law behavior [SMBB97]. The existence of such
fractal structures means that, when examining a given time frame, some
basic properties such as mean and standard variance remain the same as
those obtained from the whole time series if a change of scale is performed.
SOC is suggested as a useful way of understanding how long periods of
small extinctions are interrupted by mass extinctions [BS93][SMBB97]. The
structural evolution of a software system exhibits similar characteristics of
punctuation as fossil record, suggesting that SOC may also be useful for
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explaining software evolution.

• Overall open source movement as a self-organizing collaborative social net-
work
In comparison to traditional industrial systems, open source software sys-
tems are largely developed based on a less strict control and manage-
ment model [Ope05][Ray99]. Spontaneous collaboration is promoted and
backed by a decentralized developer community across the Internet [Ray99].
Researchers including Madey and Koch have suggested that open source
projects can be seen as a self-organizing phenomenon featuring the self-
selection of tasks, spontaneous collaboration and leadership [Koc04][MFT02].
The main empirical evidence they present is power law distribution of open
source project sizes (the numbers of developers) and the power law distri-
bution of developer contributions (the number of commits to the source
control repository).

Motivated by these promising results, we feel that SOC may be established
as a useful conceptual framework for describing and explaining software evo-
lution. In this paper, we describe our effort in seeking evidence for SOC in
open source software systems and also discuss some implications of SOC to
software practices.

The rest of this paper is organized as follows. Section 2 introduces useful
terms and concepts in brief. Section 3 explains empirical data collection in
regard to software changes and time series of change. Section 4 investigates
the existence of power laws in the evolution of open source software systems.
Section 5 provides a qualitative explanation of software evolution based on
SOC. Section 6 discusses some threats to the validity of our work. Section 7
considers related work and Section 8 concludes this paper.

2 Background

This section provides a brief introduction to fractals, power laws, R/S time
series analysis and SOC. The reader familiar with these concepts can skip to
the next section.

2.1 Fractals

Fractals are mathematical or natural objects that are made of parts similar to
the whole in “some” way. A fractal has a self-similar structure that occurs at
different scales. For example, a small branch of a tree looks like the whole tree
due to the existence of branching structures. When the length of a shoreline
is measured using the box counting method, the length of any segment can
cover the same number of mesh boxes as the whole shoreline if a change of
scale is performed. For a detailed explanation of fractals, the reader can refer
to Mandelbrot’s book Fractal Geometry of Nature [Man82].
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2.2 Power Law

A power law is a relationship between two scalar variables x and y, which can
be written as follows:

y = C·xk

where C is the constant of proportionality and k is the exponent of the power
law. Such a power law relationship shows as a straight line on a log-log plot
since, taking logs of both sides, the above equation is equivalent to

log(y) = k·log(x) + log(C)

which has the same form as the equation for a straight line

Y = k·X + c

The equation f(x) = C·xk has a property that relative scale change f(sx)/f(x) =
sk is independent of x. In this sense, f(x) lacks a characteristic scale or is
scale invariant. Consequently f(x) can be related to fractals because of its
scale invariance.

Power Law Distribution

This paper is concerned with a special kind of distribution called power law
distribution, in which the Probability Density Function (PDF) of size s is
specified as P (s) ∼ s−α and the tail Cumulative Distribution Function (CDF)
of size s is specified as D(s) = P (x≥s) ∼ s−β. The relationship between α
and β is β = α − 1 [New05]. Because β can be conveniently estimated using
linear regression on a log-log plot without binning data points, we choose to
estimate β rather than α in our study.

Power laws have been observed in many fields such as physics, economics,
geography and sociology [New05]. For example, the distribution of earth-
quakes is found to follow P (E)∼E−α where E is the amount of energy. The
exponent α exhibits some geographical dependence and is found to be in the
interval from approximately 1.8 to 2.2 [Jen98]. The distributions of firm
sizes (measured as the number of employees) [Axt01][GGP03] and of open
source project sizes (measured as the number of developers or lines of code)
[HJ02][Koc04] also follow power laws.

2.3 Time Series Analysis

Time series are commonly used to characterize the evolution of software sys-
tems. For example, Lehman et al. studied the evolution of IBM’s operating
system OS/360 by means of observing system growth measured in terms of the
number of source modules and number of modules changed for each release
[BL76][LB85]. Turski performed a regression analysis of results from these
case studies and proposed the inverse-square model, which suggests that sys-
tem growth is inversely proportional to system complexity and that system
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complexity is proportional to the square of system size [Tur02]. Such regres-
sion analysis of time series is useful for understanding the nature of software
evolution. In this paper, we are however interested in studying the fractal
properties of time series recovered from the change history of a software sys-
tem.

A widely used statistical analysis technique for time series is Rescaled
Range Analysis, also referred to as the R/S statistic. It was formulated by
Hurst in 1951 [Hur51]. Hurst worked on the Nile River Dam project in the
early 20th century. He observed that floods of the Nile River could be charac-
terized as a persistent phenomenon, i.e., heavier floods were accompanied by
above average flood occurrences and minor floods were followed by below av-
erage occurrences. Based on this observation, Hurst defined the R/S statistic
which calculates the power law relationship between rescaled adjusted range
R/S(τ) and time lag τ :

R/S(τ) ∼ τH

where H is often known as the Hurst exponent. The rescaled adjusted range
R/S(τ) is defined as the mean of R(τ)/S(τ) over m blocks of τ successive data
points and measures how fast the range of the blocks grows as τ increases. It
is defined as follows:

R/S(τ) =
1

m

m∑
i=1

Ri(τ)

Si(τ)

where Ri(τ) and Si(τ) are the self-adjusted range and standard deviation
obtained for the ith block of τ data points. If the τ data points from the
ith block are re-numbered as {x1, x2, ..., xτ}, Ri(τ) and Si(τ) are calculated
as follows:

Standard deviation: S(τ) =

√√√√1

τ

τ∑
t=1

(xt − x̄τ )2

Self-adjusted range: R(τ) =
τ

max
t=1

X(t, τ)−
τ

min
t=1

X(t, τ)

Cumulative deviation: X(t, τ) =
t∑

u=1

(xt − x̄τ )

Mean: x̄τ =
1

τ

τ∑
t=1

xt

The Hurst exponent H can reflect data persistence in a time series. Based
on the value of H, natural and man-made temporal processes can be classified
as follows:

• Uncorrelated if H = 0.5. A random walk is uncorrelated. Informally, one
can think of that future events are not influenced by previous ones and also
do not carry memory from the past.
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• Long term correlated if H > 0.5. A processes from this category has
long runs of consecutive values above or below the mean. The Nile River
has H = 0.91 as calculated by Hurst [Hur51]. This value implies that
flood occurrences of the Nile River are not purely random but temporally
dependent. Such phenomena are often referred to as long range dependence
or long range correlations.

• Long term anti-correlated if H < 0.5. A process from this category produces
anti-persistent time series in which a value above the mean is more likely
to be followed by a value below the mean and vice versa. Such behavior is
observed in mean-reverting processes such as interest rate change [Ber94].

The Hurst exponent is directly related to the fractal dimension of a time
series by the relation D = 2−H [Spr03]. The fractal dimension D measures
the smoothness of fractal time series. A larger Hurst exponent leads to a
smaller fractal dimension and a smoother surface. Different time series can
be quantified by using the R/S analysis to estimate their associated Hurst
exponents. Such a quantification allows us to study similarities between dif-
ferent temporal processes (including software evolution), thereby recognizing
underlying unifications that might otherwise have gone unnoticed.

Long range correlations in a time series can also be analyzed using the
power spectral analysis based on Fourier transformation. If fractal structures
are present, a power spectral density function in the form of S(f) ∼ f−α with
α > 0 can be obtained in low frequencies where S(f) falls as a power law 3

[Ber94]. The Hurst exponent is closely related to the power spectral exponent
α by the relation α = 2H + 1 [Spr03]. For simplicity, we restrict our analysis
to the R/S statistic.

2.4 Self-Organized Criticality

In 1987, Bak, Tang and Wiesenfeld proposed Self-Organized Criticality (SOC)
to explain widespread occurrences of spatial fractals and fractal time series
(also known as 1/f noise) in nature [BTW87]. According to SOC, a complex
system which consists of interacting components can exhibit some general
characteristic behavior in time (1/f noise) and in space (self-similar fractals)
spontaneously. Such behavior is measured as power laws.

The 1/f noise is a ubiquitous phenomenon [Mil02]. For a given system, we
obtain a time series (signal) by measuring one of its time-dependent properties.
If the power spectrum of the obtained signal behaves like f−α with α ≈ 1, the
system is said to exhibit 1/f noise. Self-similar fractals are another widely
observed natural phenomenon including snowflakes, mountain landscapes and
shorelines [Man82]. The 1/f noise and self-similar fractals are the two most
important diagnostics of SOC and are commonly measured as power laws

3 Note: the α exponent of S(f)∼f−α is not the same as the α exponent of power law
distribution P (s)∼s−α.
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[BTW88]. If a system exhibits power laws without apparent tuning then it is
said to follow the SOC dynamics.

3 Data Collection

We now describe how to collect software changes throughout the lifetime of a
software system.

3.1 Software Change

We denote a software change as a set of source files that are modified together
for a purpose. For example, a change may contain a number of source files
which a developer modified in order to remove a defect or add a feature. We
consider two kinds of change: Logical Changes recovered from source control
repositories (e.g., CVS) and Structural Changes obtained by contrasting sub-
sequent snapshot versions (e.g., releases). For the C and C++ programming
language, we consider files with extensions as follows: .c, .C, .cc, .cpp, cxx,
.c++, .h, .H, .hh, .hpp, .hxx and .h++. The size of a change is measured as
the number of source files that are contained in the change.

Logical Change

A logical change, which is recoverable from a source control repository, con-
tains files checked in by the same developer with the same log message and
at the same time. The term “same time” in this context means that files are
committed in a short period. Zimmermann et al. described a number of meth-
ods for recovering logical changes from the CVS repository [ZW04]. One of
their methods is the sliding time window protocol, which relies on a maximal
time gap to determine whether two subsequent checkins belong to one change.
The change log tool cvs2cl uses such a protocol to recover changes from the
CVS repository automatically [FOP02]. We choose to use cvs2cl in our study.
Recovered changes may be related to different types of task such as bug fix,
feature modification, functional improvement and refactoring. For simplicity
they are not differentiated for our work.

Structural Change

A structural change contains files which satisfy the following requirements: (1)
they have outgoing dependencies added or deleted; and (2) they are connected
in an isolated subgraph within a delta graph obtained by contrasting two
subsequent snapshot versions. As shown in Figure 1, a delta graph contains
five files B, C, D, F, G and H as well as six added and deleted dependencies
among these files. Files B, C, F and H form an isolated subgraph in which B,
C and H have changed their outgoing dependencies but F does not. According
to the definition, B, C and H form a structural change with F excluded. File
D forms a structural change by itself.
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Fig. 1. Recover Structural Changes

We use CTSX [WH06], a robust and efficient program extractor for C
and C++, to extract structural dependency graphs on a daily basis over the
lifetime of a software system. We then compare consecutive graphs to recover
structural changes.

3.2 Time Series of Change

We use time series to record change fluctuations throughout the lifetime of
a software system. We measure the amount of change on a per-period basis
by summing up the sizes of changes in each period. A time series can be
obtained on a daily basis or through comparing consecutive releases if daily
snapshots are not available. We are interested in studying the existence of
long range correlations in time series of software change to see if it represents
the temporal signature of SOC. The R/S analysis is a powerful mathematical
tool we can use to compute such a signature.

4 Fractals in Software Evolution

This section presents empirical evidence for fractal structures found in the
evolutionary history of eleven open source software systems. The following
fractal related phenomena are our main concern:

• Power law distribution of change sizes

• Long range correlations in time series of change

We first discuss in detail the empirical results obtained from GCC (GNU
Compiler Collection) [GCC02]. We then summarize empirical results from
more software systems, which include NetBSD, FreeBSD, OpenBSD, Linux,
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PostgreSQL, KSDK, KOffice, PHP, OpenSSL and Ruby. Appendix A provides
a brief introduction to these systems.

4.1 Power Law Distribution of Change Sizes

In our analysis of distributions of change sizes for GCC, the quantity being
plotted is D(s), which is the tail cumulative distribution function (see Section
2.2).

4.1.1 Distribution of Logical Changes in GCC

We recovered a total of 40,034 logical changes from the CVS repository of
GCC. The studied development period is about eight years, from 1997/08/11
to 2005/09/09. Fig. 2(a) displays D(s) on a log-log plot, which follows ap-
proximately a straight line. An ordinary least squares (OLS) linear estimation
on the logarithmic scale of base 10 yields the following:

D(s) ∼ s−β, β = 1.3237

D(s) has a property that relative change D(ks)/D(s) = k−β is independent
of size s. D(s) is thereby scale invariant and it can be seen as a self-similar
object statistically. In GCC, a larger logical change occurs less frequently than
a smaller one. We can estimate how much rarer large changes are using the
obtained D(s) equation. In Fig. 2(a) the probability of a change occurrence
that involves more than 100 source files is extremely low, roughly less than
0.16%.

We have also found that similar power law distributions hold for individual
years from 1998 to 2005 in GCC. The obtained scaling exponents vary from
1.29 to 1.34. This suggests that yearly distributions share a similar power law
behavior with each other and also with the lifetime distribution.

4.1.2 Distribution of Structural Changes in GCC

After observing that the size distribution of logical changes followed a power
law relationship, we were curious to know whether other kinds of software
change have a similar distribution. We examined the size distribution of daily
structural changes over the same development period of GCC. A power law
was observed by neglecting changes consisting of more than 100 files. It is
shown as a log-log plot in Fig. 2(b). An OLS linear fit on the logarithmic
scale gives the following:

D(s) ∼ s−β, β = 0.7482

The exponent β is estimated with 1≤s≤100. It is interesting that this dis-
tribution begins to deviate from the power law roughly for s > 100. This
suggests that a massive structural change involving more than 100 source files
is extremely rare and not governed by the power law. Such a large change may
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(a) Size distribution of logical changes (β = 1.3237)
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(b) Size distribution of structural changes (β = 0.7482)

Fig. 2. Tail Cumulative Distributions of Change Sizes for GCC

structurally depend on hundreds of other files in the system. It is difficult to
modify a substantial number of dependencies among several hundred files.

The long tail deviation from a power law may be relevant to the finite-size
effect [BTW88]. We suspect that the deviation might appear at a larger change
size if the number of files in GCC grows significantly in the future. We have
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System Period
Logical change (LC) Structural change (SC)

#LC β R2 #SC β R2

NetBSD 1993/03/20–2005/08/17 86,280 1.3072 0.9952 – – –

FreeBSD 1993/06/06–2005/08/17 72,021 1.3435 0.9916 – – –

OpenBSD 1995/10/18–2005/08/17 47,969 1.1796 0.9963 – – –

Linux∗ 1994/03/13–2005/07/15 – – – 5,042 0.3420 0.9902

PostgreSQL 1996/07/09–2005/09/09 10,797 1.2866 0.9907 3,140 0.8573 0.9929

GCC 1997/08/11–2005/09/09 40,034 1.3237 0.9853 10,835 0.7482 0.9915

KSDK 1999/01/01–2004/09/15 4,012 1.4305 0.9851 1,112 0.7096 0.9655

KOffice 1999/01/01–2004/09/15 2,2948 1.4326 0.9899 19,913 0.5634 0.9624

OpenSSL 1999/01/01–2005/07/16 3,934 1.2989 0.9912 872 0.8208 0.9815

PHP 1999/04/07–2005/09/09 15,558 1.2749 0.9882 2,198 0.7701 0.9822

Ruby 1999/08/13–2005/09/09 3,655 1.5022 0.9935 443 0.9101 0.9227

∗: Structural changes of Linux were obtained by comparing consecutive releases over time.

Table 1
Scaling Exponents for Distributions of Software Changes

also observed similar deviations around s = 100 in several other open source
software systems including KSDK, KOffice, OpenSSL, PHP, PostgreSQL, and
Ruby. Compared to GCC, these systems have a smaller or roughly equivalent
size. For Linux which is many times larger than GCC, the deviation appears
around s = 350. These differences can be seen in log-log plots shown in
Appendix B.

4.1.3 Power Distributions Observed in More Systems

We examined ten more open source systems and found they followed power
laws to varying degrees. The obtained scaling exponents are summarized in
Table 1. The obtained log-log plots are shown in Appendix B.

We did not analyze distributions of structural change sizes for three BSD
variants because each of them is actually composed of a large number of smaller
applications and libraries. It is beyond the scope of this paper to study the
evolution of structural dependencies among a collection of interacting applica-
tions. Unlike structural changes, logical changes are mostly within the bound-
ary of each smaller application or library. Thus we only studied distributions
of logical changes for three BSDs.

Because Linux does not have a source control repository such as CVS for
public access, we were not able to analyze change log information or perform
daily structural comparisons. We instead examined the structural evolution
of Linux through comparing 524 releases (from 1.0 to 2.6.12.3). These releases
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were chosen and ordered according to release dates to create a historical se-
quence, which contains both stable and experimental releases.

Here are some of our observations on the studied open source systems.

• All eleven software systems we studied have a power law distribution with
respect to either logical or structural changes. The quality of fit (R2) values
shown in Table 1 indicate a strong linear relationship between function D(s)
and the number of source files on the logarithmic scale.

• The distribution of logical changes has a larger scaling exponent than dis-
tribution of structural changes. This is limited to a size threshold, above
which a large structural change can have a lower probability if compared to
a logical change of the same size. This can be seen from Figure 2. The dis-
tribution in Fig. 2(b) deviates from the power law at larger sizes (s > 100)
and drops toward probability zero. No structural change is found to involve
more than 800 source files in GCC on a daily basis. This kind of deviation
is apparently more common in the distribution of structural changes than
in the distribution of logical changes.

• OpenBSD has a scaling exponent different from those of FreeBSD and
NetBSD. This suggests that products from the same product family may
exhibit slightly different behaviors. This perhaps is because that FreeBSD
and NetBSD have a longer history and thus have more logical changes
than OpenBSD. Further examination will be needed for understanding what
causes such differences in β from system to system.

• For Linux, time intervals between any two adjacent releases vary between 5
days and 37 days except that release 2.3.99-pre9 is approximately 6 months
away from release 2.4.0. Such a sampling frequency in fact favors large struc-
tural changes rather than small ones. As a result, Linux has the smallest
scaling exponent.

4.2 Long Range Correlations in Time Series

The essential nature of software system evolution is change occurring spatially
(across the system) and temporally (over the system lifetime). Our observation
of scale invariance in distributions of change sizes leads us to wonder wether
the evolution of a software system exhibits fractal structures in time, i.e., long
range correlations with power law behavior. As pointed out in Section 2.3,
the R/S analysis can be used to analyze long range correlations in time series.
Therefore, to answer the above question, we need to determine whether a
time series of software change has a Hurst exponent greater than 0.5 (the
characteristic value of random noise).

4.2.1 R/S Analysis of GCC

The two R/S statistic plots shown in Figure 3 have Hurst exponents with
H= 0.7711 for time series of logical change and H= 0.6841 for time series of
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Fig. 3. R/S Analysis of Daily Time Series for GCC

structural change. These exponents are significantly above 0.5, thus indicat-
ing strong long range correlations. These results can be verified by means
of randomly shuffling the original time series to eliminate correlations and
re-applying R/S analysis. For GCC, a random shuffling always results in a
reduction of H towards 0.5.
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System
Logical change Structural change

TSC H R2 TSC H R2

NetBSD 98.6% 0.7340 0.9984 – – –

FreeBSD 96.4% 0.7586 0.9952 – – –

OpenBSD 96.5% 0.7181 0.9962 – – –

Linux∗ – – – 96.2% 0.7491 0.9893

PostgreSQL 80.5% 0.7637 0.9969 52.1% 0.7029 0.9972

GCC 98.9% 0.7711 0.9973 84.8% 0.6841 0.9964

KSDK 53.5% 0.8096 0.9811 33.0% 0.7909 0.9872

KOffice 96.6% 0.8092 0.9921 90.3% 0.6967 0.9967

OpenSSL 56.6% 0.7354 0.9941 26.5% 0.7163 0.9894

PHP 94.7% 0.7545 0.9968 59.2% 0.6186 0.9948

Ruby 61.2% 0.6980 0.9936 14.7% 0.5129 0.9864

∗: The time series of Linux was obtained by comparing consecutive releases over time.

Table 2
Hurst Exponents from R/S Analysis of Daily Time Series

4.2.2 R/S Analysis of More Systems

We performed the R/S analysis on the same set of systems we examined in
Section 4.1. We estimated Hurst exponents by considering time lags smaller
than 365 (days). The largest time lag for Linux is 174 (releases). This is
because Linux’s time series were obtained by comparing subsequent releases
but not daily snapshot versions. The time lag 174 accounts approximately for
one third of 524 Linux releases we studied. The obtained Hurst exponents are
summarized in Table 2.

We also defined Time Series Coverage (TSC) as the ratio of the number of
non-zero values to the total number of values in a time series. TSC measures
how often changes occur over a system’s lifetime. Table 2 shows that Ruby
has the smallest TSC (14.7%) with regard to structural change activities,
indicating that Ruby’s structure was changed approximately once every seven
days on average. Smaller systems such as KSDK, PHP and Ruby are less prone
to logical and structural changes. Larger systems such as GCC, Linux, KOffice
and three BSD variants tend to change every day. This is not surprising
because more developers are usually involved in a larger project and change
activities occur more frequently.

The H values obtained for all the time series of logical change vary between
0.7 and 0.8. This indicates that these time series appear approximately equally
correlated in the long run. By contrast, all the H values obtained for structural
change have a wider span from 0.6 to 0.8 with Ruby excluded. The Hurst
exponent for Ruby is 0.5129, a close indicator of random noise. This perhaps
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is because the time series of Ruby is too sparse (TSC = 14.7%) to yield notable
correlations.

4.3 Summary

We presented evidence for the existence of fractal structures in the evolution
of eleven open source systems. The fractal structures are measured as power
laws in space (across the system) and in time (over the system lifetime). Both
logical and structural changes follow power laws. However, logical changes
yield stronger indications than structural changes.

5 Discussion

All the eleven systems we examined have evolved over many years. However,
their change dynamics share a typical power law behavior, which appears to
be independent of individual details of each system. Where do these scale
free dynamics come from? We provide a qualitative explanation of software
evolution dynamics from a perspective based on SOC.

Bak used the sandpile model to illustrate the dynamics of a SOC system
[BTW88]. Suppose a person starts to build a sandpile on a flat square board
by means of dropping grains of sand randomly, one grain at a time. The whole
sandpile grows as many smaller piles are formed and their slopes increase con-
tinuously. The slopes at different locations eventually reach a critical value.
If more sand is added, sand slides occur. As the sandpile is built up, the
characteristic size of the largest sand slides (avalanches) grows until the state
of criticality is reached, in which the size of the largest avalanche is equal to
the size of the entire board. The dynamical behavior of the sandpile in criti-
cality shows characteristics of 1/f noise and fractal structures. The quantity
exhibiting 1/f noise is the sliding rate of sand measured over time; fractal
structures appear in the form of power law distribution of sand slide sizes.
Local random perturbations (sand drop) in criticality can result in responses
(sand slide) of any size up to the entire system. The temporal and spatial
power law behaviors are a direct consequence and extend over several decades
on a macroscopic level.

The spatial and temporal power laws we have observed in the evolution
of open source systems (see Section 4) suggest that software systems may
follow the SOC dynamics. An analogy to the sandpile model can be drawn
to explain the evolution dynamics of a software system in a qualitative way.
Table 3 shows our proposed analogy, which has four elements: driving force,
response, system state, and relaxing force. We now interpret their meanings.

Like a sandpile, an evolving software system is continuously changed under
the influence of various driving forces as diverse as new customer requirements,
hardware upgrade, and development process. More specifically, changes occur
in response to requests related to bugs, refactorings, features and etc. Changes
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propagate to different locations within the system. From our point of view, a
change request is analogous to a sand drop and a (logical or structural) change
is mapped to a sand slide.

In the sandpile model, system state is a matrix of maximum gradients
(slopes) covering every location occupied by sand, and relaxing force is grav-
ity which controls sand slides by reducing maximum gradients at appropriate
locations if more grains of sand are dropped. We map stakeholder satisfaction
to gravity and the release/iteration plan to the sand gradient profile. The de-
mands from different stakeholders such as developers, architects and customers
must be satisfied. This is consistent with Lehman’s law of Continuing Change
[Leh97] stating that changes must be made continuously to maintain stake-
holder satisfaction. The relaxing force can be release plans in the long term
or iteration plans in the short term, controlling how and when to deliver the
next release or prepare a workable product for the next cycle of development.
Changes are estimated, planned and performed at different levels of priority
and severity. For example, a refactoring is often needed after many new fea-
tures are added. In order to perform an assigned or self-selected refactoring, a
developer (stakeholder) builds a progressive understanding of unfamiliar parts
through communication with other developers and performs the refactoring
task incrementally. After the task is done, the developer re-gains satisfaction
with the system.

Criticality and Self-Organization

When does an evolving software system enter criticality and what does self-
organization mean in the context of software evolution? We now offer our
answers to these two questions.

We studied eleven open source systems in total by analyzing the change
history of each system after the first release was out or a reasonable amount of
source code (normally tens of files) was developed. Since then power laws can
be observed in distributions of change sizes and in time series of change. We
thus suspect that an evolving software system may enter criticality no later
than its first release.

To understand self-organization, we need to take into consideration de-

Sandpile model Software system

Driving force sand drop change request

Response sand slide change propagation

System state gradient profile release/iteration plan

Relaxing force gravity stakeholder satisfaction

Table 3
Sandpile Model and Software System

16



veloper behaviors and development processes. In large open source projects,
developers commonly collaborate with one another for some common purposes
spontaneously and they are free to modify and redistribute the source code
and to work on the segments of their own interest. A central organization
in the name of core group or steering committee [BP03] may exist. It plays
an important role in providing general development guidelines or road maps,
anchoring a broader community of developers and users, and nurturing lead-
ership and collaboration across the community [Hig99]. However, such an
organization does not control or command what and how an individual de-
veloper should modify the source code. Spontaneous collaboration activities
between developers ensure the delivery of a system’s first release and then
sustain the future evolution of the system.

Self-organization shall not be confused with Lehman’s third law of software
evolution, Self-Regulation [Leh97]. Self-regulation is a control notion suggest-
ing that both positive and negative feedback controls are constantly and perva-
sively exercised during a system’s evolution. By contrast, self-organization is
a configurational notion indicating spontaneous developer collaboration which
is neither entirely directed by a central organization nor prescribed by a pub-
lished software process guideline [JS03].

Change Propagation

If a software system follows the SOC dynamics, can we forsee the extent to
which changes propagate through the system? According to SOC, a complex
system is evolving at the edge between chaos and order where no single charac-
teristic size can control the evolution of the system [Jen98]. For example, the
electricity power grid is postulated to operate in such a narrow region where
power blackouts can not be limited to a certain small size such as a street
block or a small town [CNDP04]. It is difficult to predict where a blackout
can occur and how far the blackout can propagate.

As a software system evolves to respond to the changing environment and
requirements, changes of varying sizes occur at different locations within the
system. As indicated by the power law distributions we have observed in
the evolution of open source systems, a change can be up to any sizes. The
occurrences of change covering a significant part of a system or even the en-
tire system, though rare, appear inevitable in open source projects. Necessary
measures should be adopted to facilitate communication and collaboration be-
tween developers to prepare them for a large unexpected change. For instance,
Collective Code Ownership [Nor03] offers an effective strategy for facilitating
collaboration among developers and improving the quality of code.

Agile Software Development

Agile Software Development is a conceptual framework for undertaking soft-
ware engineering projects with the help of lightweight methodologies such as
Extreme Programming [Ext04] and Adaptive Software Development [Hig99].
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Generally speaking, agile methodologies value

- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation, and
- Responding to change over following a plan

These core values are regarded as the canonical definition of agile software
development and commonly referred to as the Agile Manifesto [Man01].

Highsmith has advocated adaptive software development as an alternate
approach between monumental and accidental software development models
in today’s turbulent e-business world [Hig99]. His idea is drawn from theories
for complex adaptive systems (including SOC). He emphasizes adaptability,
speed and collaboration as the key elements to the success of software project
teams who develop and manage high-speed, high-change and high-uncertainty
projects in real life. Other agile methodologies share similar ideas.

Agile software development has grown in recognition of complex systems
theories which value adaptation over prediction or optimization [Man01]. The
agile manifesto was summarized by many agile software practitioners based on
their hands-on experience in developing and managing large numbers of real
life projects over years. The fractal phenomena we observed in open source
software evolution provide empirical evidence for the existence of SOC. This
can lend a hand to agile software practitioners in justifying their methodolo-
gies.

6 Validity Threats and Limitations

There are several threats to the validity of our work.

• The eleven systems we studied are all successful, large open source software
systems. There are large numbers of small open source projects which
neither attract many developers nor are maintained actively over a long
period of time. Therefore, the systems we studied are not representative of
small or failed open source projects.

• It is unknown whether closed source industrial systems exhibit similar power
laws in space and in time. This needs to be empirically checked through
future work.

• Structural change is not as clear cut as logical change. The definition and
identification of a structural change is affected by how one interprets changes
to the system structure and how frequently structural snapshots are cap-
tured. Furthermore, CTSX that we used to extract program structural de-
pendencies produces significant inaccuracies when handling C++ programs.
This perhaps explains why KOffice implemented in C++ does not to follow
power laws during its structural evolution (see Fig. B.1(f)).

• Some simulation models for SOC [BS93][SMBB97] can be adapted to sim-
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ulate software evolution and verify our empirical findings from a theoreti-
cal point of view. For example, Cook et. al have presented a conditional
growth model to reveal the existence of SOC in software growth [CHW05].
By adapting their model to software changes, we might be able to obtain
theoretical proof of SOC in software evolution.

7 Related Work

In several empirical studies of software evolution, researchers have examined
power law distributions related to open source projects hosted on the Source-
Forge Web site [Sou05]. The mission of SourceForge is to enrich the open
source community by providing a centralized place for open source developers
to manage open source software development.

Hunt and Johnson studied downloads of software projects at SourceForge
and found that projects sizes (number of software downloads) follow a Pareto
distribution [HJ02]. A Pareto distribution is a rank-based power law dis-
tribution [New05]. According to their findings, there are a small number of
exceptionally popular open source projects such as Linux, Apache and Mozilla
while most SourceForge projects are less popular. They suggest that studying
median size projects instead of exceptionally popular projects might be useful
for identifying best practice for developing open source software.

Madey et al. reported similar power law distributions about open source
projects [MFT02]. They choose to measure project sizes using the number of
developers. Their results indicate that most open source projects at Source-
Forge have only one developer and only a small percentage have a larger
ongoing team. In addition, they modeled open source movement as a col-
laborative social network with developers as nodes and joint membership in
projects as links between nodes. The clusters (development teams) in the
social network are connected by linchpin nodes which are developers playing
an important role in transferring ideas and technology between different de-
velopment teams. Madey found that cluster sizes also followed power laws.
The presence of power laws is suggestive evidence that open source software
development can be modeled as self-organizing collaborative social networks.

Koch studied individual programmers’ contribution to open source projects
at SourceForge and he found power laws [Koc04]. Koch measured the contribu-
tion of a programmer using the number of commits made by the programmer
or the number of projects the programmer worked on. The observed power
laws indicate that a minority of programmers are in fact responsible for the
major growth of open source projects. In addition, the collocation of projects
in a virtual hosting environment such as SourceForge does not significantly
increase co-participation over different projects.

These studies have treated the open source software community as an ecol-
ogy in which individual programmers collaborate with one another, ideas are
nurtured, and projects are delivered. Both Madey and Koch have suggested
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that the overall open source software development is a self-organizing system
in which spontaneous collaboration as well as leadership (e.g., chief program-
mers) contribute to the success of many open source projects. By contrast,
we examined power laws during the evolution of several open source systems
and suggested that software systems follow the SOC dynamics.

The work of Gorshenev and Pis’mak on explaining software evolution dy-
namics based on SOC perhaps is the most relevant to our work [GY03]. They
observed that distributions of added lines (or deleted lines) follow power laws
in three open source systems which are Mozilla, FreeBSD and Emacs. We
studied logical and structural changes at the source file level and observed
power laws in distributions of change sizes as well as in time series of change.
Also, we suggested a qualitative explanation of software evolution dynamics
based on Bak’s sandpile model.

8 Conclusion

We presented empirical evidence for the existence of fractal structures in the
evolution of open source software systems. Fractal structures are identified and
measured as power laws in space (across the system) and in time (over the
system lifetime). Specifically, our findings are presented in the form of power
law distribution of change sizes and long range correlations in time series of
change. Such spatial and temporal fractal structures suggest that open source
software systems follow the SOC dynamics during their evolution.

It is interesting that power laws have been observed at three levels of
abstraction in terms of open source software development: the project level
[HJ02][Koc04][MFT02], the file level (our work), and the level of lines of code
[GY03]. These power laws make it promising to explain the evolution of open
source communities as well as the evolution of individual projects using SOC.
A unified framework built on SOC may be constructed and then enhanced
in the future, within which software evolution may be better explained and
understood.
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A Studied Open Source Software Systems

1 BSD is the UNIX derivative distributed by the University of California
at Berkeley. The development of BSD at Berkeley ceased after 4.4BSD-
Lite was delivered in 1995. Since then, several distributions based on
4.4BSD-Lite such as FreeBSD, NetBSD and OpenBSD have been in active
development.
- FreeBSD is developed as a complete operating system with the kernel

and miscellaneous utilities included [Fre04].
- NetBSD is a unified, portable, production-quality operating system

[Net02]. It is often used in embedded systems.
- OpenBSD focuses on open source and documentation, standardiza-

tion, code correctness and security [Ope04a].

2 GCC [GCC02] stands for GNU Compiler Collection and it has a set of
compilers for C, C++, Objective C, Fortran, Java, and Ada, as well as
libraries for these languages. GCC is the key component of the GNU tool
chain and provides standard compiler support for free Unix-like operating
systems.

3 KOffice [KOf04] is an integrated office suite developed for the K Desk-
top Environment (KDE). KOffice is part of the KDE Project and con-
sists of 12 main applications: KPresenter, KWord, KChart, KSpread,
Kivio, Karbon14, Krita, Kugar, KPlato, Kexi, KFormular and Filters
that permit KOffice to interoperate with other popular office suites such
as OpenOffice and Microsoft Office.

4 KSDK [KDE04] is a software development toolkit designed for the KDE
project. KSDK offers a collection of tools for developing and debugging
various kinds of KDE applications.

5 Linux [Lin04] is a cloned operating system UNIX, written from scratch
by Linus Torvalds and then subsequently worked on by hundreds of de-
velopers who are loosely connected through the Internet. It aims towards
POSIX and Single UNIX Specification compliance. Linux 1.0 was deliv-
ered in March 1994.

6 OpenSSL [Ope04b] is a cryptography toolkit implementing the Secure
Sockets Layer (SSL 2.0/3.0) and Transport Layer Security (TLS 1.0)
protocols as well as a full-strength general purpose cryptography library.

7 PostgreSQL [Pos03] is a SQL-compliant object-relational database man-
agement system (DBMS). It has more than 15 years history and a globally
distributed development team.

8 PHP [PHP04], short for “Hypertext Preprocessor”, is a reflective pro-
gramming language which is widely used for developing server-side ap-
plications and dynamic web content.

9 Ruby [Rub04] is an interpreted scripting language for quick and easy
object-oriented programming. It has many convenient features for text
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file processing and system management.

B Distributions of Change Sizes
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(c) PostgreSQL
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(f) KOffice
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(g) OpenSSL
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(h) Ruby

Fig. B.1. Tail CDF of Structural Changes
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(e) PostgreSQL

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y 

(T
ai

l C
D

F
)

(f) PHP

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y 

(T
ai

l C
D

F
)
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(i) OpenSSL
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(j) Ruby

Fig. B.2. Tail CDF of Logical Changes
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