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ABSTRACT
How to process missing attribute values is an important data
preprocessing problem in data mining and knowledge discov-
ery tasks. A commonly-used and naive solution to process
data with missing attribute values is to ignore the instances
which contain missing attribute values. This method may
neglect important information within the data and a signifi-
cant amount of data could be easily discarded. Some meth-
ods, such as assigning the most common values or assigning
an average value to the missing attribute, make good use of
all the available data. However the assigned value may not
come from the information which the data originally derived
from, thus noise is brought to the data. We introduce an in-
tegrated approach ItemRSFit to effectively predict missing
attribute values by combining frequent itemset and RSFit
approaches together. Frequent itemset is generated from the
association rules algorithm and it displays the correlations
between different items in a transaction data set. Using
frequent itemset as a knowledge base to predict missing at-
tribute values is shown to have a high prediction accuracy.
However this approach alone cannot predict all the existing
missing attributes. RSFit is a newly developed approach
to predict missing attribute values based on the similari-
ties of attribute-value pairs by only considering attributes
contained in the core or the reduct of the data set. The RS-
Fit approach provides a faster prediction and can be used
for the cases that are not covered by the itemset approach.
Empirical studies on UCI data sets and a real world data
set demonstrate a significant increase of predicting accuracy
obtained from this new integrated approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining
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1. INTRODUCTION
How to process data containing missing attribute values

is an important task in the data preprocessing stage for data
mining applications. Missing attribute values commonly ex-
ist in real-world data sets. They may come from the collect-
ing process, or redundant diagnoses tests, change of the ex-
perimental design, privacy concerns, unknown data and so
on. Discarding all data containing the missing attribute val-
ues cannot fully preserve the characteristics of the original
data. Understanding and usage of original context and back-
ground knowledge to assign the missing values seem to be
an optimal approach for handling missing attribute values.
But in reality, it is difficult to know the original meaning for
this missing data. Various approaches on how to cope with
the missing attribute values have been proposed in the past
years.

In [6] nine approaches on filling in the missing attribute
values were introduced, such as selecting the “most com-
mon attribute value”, the “concept most common attribute
value”, “assigning all possible values of the attribute re-
stricted to the given concept”, “ignoring examples with un-
known attribute values”, “treating missing attribute values
as special values”, “event-covering method” and so on. Al-
though these syntactic approaches provide a direct process-
ing to the missing attribute values, noise is usually brought
into the data set as well. Let us consider the approach of
“assigning most common attribute values” [6] as an example
of assigning missing attribute values. This approach selects
the most frequently appeared value from the attribute to
the missing value, as explained by the following example.

Example 1. Shown in Table 1 as an example, there are 4
data instances existing in a data set T (C, D), where C is the
condition attribute set, D is the decision attribute set, U is
the set of data instances, C = (c1, c2, c3, c4), D = (0, 1), U =
{u1, . . . , u4}. There is a missing value for c3 in u2, repre-
sented with “?”. According to this approach, the most com-
mon value for attribute c3 is 2. However, if we assign the
value, the data set becomes inconsistent. u1 and u2 will
have the same condition attributes with different decision
attributes.

Another approach of “treating missing attribute values as
special values” [6] may also bring noise to the original data.
The missing value is considered as an individual “unknown”



Table 1: Sample Data Set with Missing Attribute
Values

Condition Decision
U c1 c2 c3 c4 D
1 1 2 2 1 1
2 1 2 ? 1 0
3 1 1 3 1 0
4 1 0 2 0 1

value for the attribute. However, the attribute may not have
another value in certain applications, as shown by Example
2.

Example 2. Suppose in a data set, the missing attribute
is “gender of a patient” with values of either “male” or “fe-
male”. In case of missing value for this attribute, we cannot
assign a “unknown” to this attribute.

More research efforts are concentrating on how to predict
the missing attribute values by obtaining the most infor-
mation out of the original data set. In [10], support and
confidence for the association rules generated from data con-
taining missing attribute values were considered not precise.
Rough sets theory was used to estimate the support and con-
fidence values for the generated association rules. For each
large item set, based on which association rules would be
further generated, the maximal set of tuples that matched,
or may match, or certainly did not match, or may not match
the item set were listed. The lowest and the highest possible
support and confidence values were further defined and com-
puted based on these sets. In [5] a “closest fit” approach was
proposed to compare the vectors of all the attribute pairs
from a preterm birth data set, and assign the value from
the most similar pair to the missing value. In more recent
research [4] four interpretations on the meanings of miss-
ing attribute values such as “lost” values and “do not care”
values are discussed. Different approaches from rough sets
theory are demonstrated on selecting values for the individ-
ual interpreted meanings.

In addition to the efforts from rough sets theory on process-
ing missing attribute values, strategies from data mining are
also widely applied in predicting the missing values. In [8]
it is suggested that using regression or inference-based tools
on the data set can make a more precise prediction for the
missing attributes. A robust algorithm of generating op-
timal association rules to solve the missing attribute value
problem in the testing data set has been discussed in [15].
In [22], the authors discussed a new approach on using asso-
ciation rules generation on completing missing values. Data
associations are created based on association rule algorithm
and are then used to find the associated values for the miss-
ing data. Formulas, based on support, confidence and lift,
were applied to help choose better options when multiple
matches existed. Recently Zhu and Wu introduced solu-
tions on processing missing attribute values by considering
the attribute cost [24]. They point out that the common
problems on assigning missing values are that not all the
missing values can be predicted by current data mining ap-
proaches, and the predictions usually do not bring higher
prediction accuracy. They consider in the real world, it is
expensive to predict all the missing attributes, therefore a

technique is needed on balancing the prediction percentage,
the prediction accuracy and the computational cost. They
evaluate the importance of different missing data instances
by information-gain ratio.

In this paper we concentrate on predicting missing at-
tribute values in the data preprocessing stage. We discuss
how to effectively predict missing attribute values combining
both the data mining techniques and the rough sets theory.
We show how to avoid bias and extract more information
from the data itself to predict the missing values.

We are interested in integrating two techniques into our
research. One of the techniques is the association rule algo-
rithm, which is well known in data mining for discovering
item relationships from large transaction data sets. Pri-
ori to the association rule generation, frequent itemsets are
generated based on the item-item relations from the large
data set according to a certain support. Thus the frequent
itemsets of a data set represent strong correlations between
different items, and the itemsets represent probabilities for
one or more items existing together in the current trans-
action. When considering a certain data set as a transac-
tion data set, the implications from frequent itemsets can
be used to find to which attribute value the missing at-
tribute is strongly connected. Thus the frequent itemset
can be used for predicting the missing values. We call this
approach “itemset-approach” for prediction. Apparently,
the larger the frequent itemsets used for the prediction, the
more information from the data set itself will be available
for prediction, hence the higher the accuracy will be ob-
tained. However, generating frequent itemset for large data
set is time-consuming. Although itemsets with higher sup-
port need less computation time, they restrict item-item
relationships, therefore not all the missing values can be
predicted. In order to balance the tradeoff between compu-
tation time and the percentage of the applicable prediction,
another approach must be taken into consideration.

Rough sets theory, proposed in the 1980’s by Pawlak [19],
has been used for attribute selection, rule discovery and
many knowledge discovery applications in the areas such as
data mining, machine learning and medical diagnoses. Core
and reduct are among the most important concepts in this
theory. A reduct contains a subset of condition attributes
that are sufficient enough to represent the whole data set.
The intersection of all the possible reduct is the core. There-
fore the attributes contained in the reduct or core are more
important and representative than the rest of the attributes.
Thus by examining only attributes within the same core or
reduct to find the similar attribute value pairs for the data
instance containing the missing attribute values, we can as-
sign the most relevant value for the missing attribute. Since
this method only considers a subset of the data set, which
is either the core or the reduct, the prediction is quite fast.
This approach “RSFit” is recently proposed in [13], and it
is an alternative approach designed for fast prediction. It
can be used to predict missing attributes that cannot be
predicted by the frequent itemset.

We integrate the prediction based on frequent itemset and
RSFit approach into a new approach ItemRSFit to predict
missing attribute values. This approach can predict missing
values from the data itself, therefore less noise is brought
into the original data. Experiments on UCI data sets and a
real world data set demonstrate our proposed approach on
assigning missing attribute values obtains a high accuracy.



The rest of the paper is organized as follows. We intro-
duce frequent itemset generation and rough sets theory in
Section 2 and 3. In Section 4, the details of the ItemRSFit
and RSFit approach, and the evaluation method are elabo-
rated. We will show the experimental results in Section 5,
and Section 6 gives the conclusion remarks.

2. FREQUENT ITEMSET
The association rule algorithm was first introduced in

[1], and it can be used to discover rules from transaction
datasets. Many contributions on how to efficiently generate
frequent itemsets and association rules have been reported
[23], [7], [20], [3]. Association rule algorithms can be used
to find associations among items from transactions. For ex-
ample, in market basket analysis, by analyzing transaction
records from the market, we could use association rule al-
gorithms to discover different shopping behaviors such as,
when customers buy bread, they will probably buy milk.
This type of behavior can be used in the market analysis to
increase the amount of milk sold in the market.

Frequent itemset generation is the first step of the two for
association rule generation. Itemsets that frequently occur
together in the transactions are generated. Rules based on
these itemsets are further discovered to represent the asso-
ciated relations.

Here we consider the transaction data in the form of de-
cision table for generating frequent itemset. For a rough set
approach we define the following concepts.

Definition 1. Transaction. The transaction data to the
frequent itemset generation is in a form of a decision table
T = (C, D), where C = {c1, c2, . . . , cm} is the condition at-
tribute set where m is the number of condition attributes,
and D = {d1, d2, . . . , dl} is the decision attribute set where
l is the number of decision attributes. U = {u1, u2, . . . , un}
represent the itemsets in T , where n is the number of item-
sets in T . Each itemset contains (m + l) items.

Therefore each attribute value is considered to be an item
in the transaction.

An association rule [1] is a rule of the form α → β, where α
and β represent itemsets which do not share common items.

Definition 2. Support. A support of an itemset is the
percentage of the number of transactions containing the
union of all the items in the itemset to the total number
of transactions.

Support can be represented as

support =
|α ∪ β|
|T | . (1)

Definition 3. Frequent Itemset. Frequent itemsets are
itemsets that satisfy the minimum support.

Frequent itemset that contains l items is a l-itemset.

3. ROUGH SETS AND RSFIT APPROACH
We briefly introduce rough sets theory [19] as follows. U

is the set of objects we are interested in, where U 6= φ.

Definition 4. Equivalence Relation. Let R be an equiv-
alence relation over U , then the family of all equivalence
classes of R is represented by U/R. [x]R means a category

in R containing an element x ∈ U . Suppose P ⊆ R, and
P 6= φ, IND(P ) is an equivalence relation over U . For any
x ∈ U , the equivalence class of x of the relation IND(P ) is
denoted as [x]P .

Definition 5. Lower Approximation and Upper Ap-
proximation. X is a subset of U , R is an equivalence
relation, the lower approximation of X and the upper ap-
proximation of X is defined as:

RX = ∪{x ∈ U |[x]R ⊆ X} (2)

RX = ∪{x ∈ U |[x]R ∩X 6= φ} (3)

respectively.

Reduct and core are further defined as follows [19]. R is an
equivalence relation and let S ∈ R. We say, S is dispensable
in R, if IND(R) = IND(R− {S}); S is indispensable in R
if IND(R) 6= IND(R − {S}). We say R is independent if
each S ∈ R is indispensable in R.

Definition 6. Reduct. Q is a reduct of P if Q is inde-
pendent, Q ⊆ P , and IND(Q) = IND(P ).

An equivalence relation over a knowledge base can have
many reducts.

Definition 7. Core. The intersection of all the reducts of
an equivalence relation P is defined to be the Core, where

Core(P ) = ∩All Reducts of P.

The reduct and the core are important concepts in rough
sets theory. Reduct sets contain all the representative at-
tributes from the original data set. The reducts can be used
in attribute selection process. There may exist more than
one reduct for each decision table. Finding all the reduct
sets for a data set is NP-hard [11]. Approximation algo-
rithms are used to obtain reduct sets [2]. The intersection
of all the possible reducts is called the core. The core is
contained in all the reduct sets, and it is the essential of the
whole data. Any reduct generated from the original data
set cannot exclude the core attributes.

Since it is infeasible to obtain the core attributes by inter-
secting all the possible reducts, other approaches are pro-
posed to generate the core attributes. Hu et al. [9] intro-
duced a core generation algorithm based on rough sets the-
ory and efficient database operations, without generating
reducts. The algorithm is shown in Algorithm 1, where C is
the set of condition attributes, and D is the set of decision
attributes. Card denotes the count operation in databases,
and Π denotes the projection operation in databases.

This algorithm is developed to consider the effect of each
condition attribute on the decision attribute. The intuition
is that, if the core attribute is removed from the decision ta-
ble, the rest of the attributes will bring different information
to the decision making. Theoretical proof of this algorithm
is provided in [9]. The algorithm takes advantage of efficient
database operations such as count and projection. This al-
gorithm requires no inconsistency in the data set.

3.1 RSFit Approach
The reduct of a data set is a set of condition attributes

whose values are sufficient to correctly predict the decision
attribute. The core is the intersection of all possible reducts.



Algorithm 1: Hu’s Core Generating Algorithm

input : Decision table T (C, D), C is the condition
attributes set; D is the decision attribute set.

output: Core, Core attributes set.

Core ← φ;
for each condition attribute A ∈ C do

if Card(Π(C −A + D)) 6= Card(Π(C −A)) then
Core = Core ∪A;

end

end
return Core;

RSFit approach [13] consider attribute-value pairs contained
in the core or a reduct set to find the best match for the
missing values. This approach is inspired by the “closest
fit” approach by Grzymala-Busse [5], however it is different
from it. Instead of searching the whole data set for clos-
est matched attribute-value pairs, RSFit searches only the
attribute-value pairs within the core or the reduct. The
attribute-value pair is defined as following.

Definition 8. Attribute-Value Pair. In decision table
T = (C, D) as defined in Definition 1, for each ui in U =
{u1, u2, . . . , un}, (1 ≤ i ≤ n), an attribute-value pair for this
data instance is defined to be ui = (v1i, v2i, . . . , vmi, di),
where v1i is the attribute value for condition attribute c1,
v2i is the attribute value for condition attribute c2, ..., and
vmi is the attribute value for condition attribute cm.

We describe the RSFit approach as follows.
For each missing attribute value, we let the attribute be

the “target attribute”(represented as ck in the following).
We consider the situation when the missing attribute values
are only existing in the condition attributes, not in the de-
cision attributes. We explain the RSFit approach in detail
on how to find the matched value for this target attribute.

Firstly, we obtain the core of the data set T = (C, D)
based on the core algorithm in Algorithm 1. If the target at-
tribute ck does not belong to the core, we include ck into the
core. In case the core set is empty for decision table T , we
consider a reduct of T . We use the ROSETTA software [18]
for reduct generation. ROSETTA software supports com-
plete data mining process, and many tasks are integrated
such as data preprocessing, incomplete data processing, data
discretization, reduct sets generation, rule generations and
so on. There are a few reduct generation algorithms pro-
vided by ROSETTA, such as Genetic reducer, Johnson re-
ducer, Holte1R reducer, Manual reducer, Dynamic reducer,
RSES Exhaustive reducer and so on. We use Johnson re-
ducer with the option of full discernibility1 from ROSETTA
GUI version 1.4.41 for a single reduct generation with min-
imum number of attributes in the reducts. In case of no
reducts containing the target attribute ck, we include the
target ck into the reduct.

1For reduct generation, there are two options on discernibil-
ity provided by ROSETTA software, which are full discerni-
bility and object related discernibility. With the option of
full discernibility, the software will produce a set of minimal
attribute subsets that can discern all the objects from each
other. With object related discernibility, the software pro-
duces reducts that can discern a certain object from all the
other objects [17].

Secondly, a new decision table T ′ = (C′, D) is created
based on the previous step where C′ = {c′1, c′2, . . . , ck, . . . , c′m′},
1 ≤ k ≤ m′ ≤ m, and C′ ⊆ C, C′ is either the core or the
reduct of C, U ′ = {u1, u2, . . . , un′}, 1 ≤ n′ ≤ n. There are
two possibilities for selecting the data instances. One pos-
sibility is to include other data instances with missing val-
ues to predict the current target attribute value; the other
option is to exclude all the other data instances contain-
ing missing attribute values. We allow the other missing
attribute values existing by designing the proper distance
function.

Thirdly, in T ′, when considering the match cases, there
are two possibilities existing. One possibility is that we
consider all the data instances having various values of the
decision attributes; the other is to consider data instances
having the same decision attribute values as the target data
instance while finding a matched attribute-value pair. Here
we call the first possibility global match, and the second con-
cept match. We use global match in the experiments in our
experimental studies2.

Fourthly, we define the distance function to compute the
similarities between different attribute-value pairs. The de-
tails of the distance function is elaborated in the following.
Let ui = (v1i, v2i, . . . , vki, . . . , vm′ i, di) (1 ≤ i ≤ n′) be the
attribute-value pair containing the missing attribute value
vki (represented as vki =?) for ck (1 ≤ k ≤ m′). Distance
functions, such as Euclidean distance and Manhattan dis-
tance, are used in the instance-based learning to compare
the similarity between a test instance and the training in-
stances [21]. We use Manhattan distance 3to evaluate the
distance between an attribute-value pair containing missing
attribute values with other attribute-value pairs. This for-
mula is also used in the “closest fit” approach [5]. Let uj

be a data instance from U . The distance between uj to the
target data instance ui is defined as4

distance(ui, uj) =
|vi1 − vj1|

maxv1 −minv1
+ . . .+

|vim − vjm|
maxvm −minvm

.

(4)
For attributes which are the missing attribute values, the
distance is set to be 1, which specifies the maximum dif-
ference between unknown values. The best match has the
smallest difference from the target attribute-value pair. Af-
ter the best matched attribute-value pair is returned by the
algorithm, the corresponding value will be assigned to the
target attribute. We consider all the attributes as numerical
attributes. In case of symbolic attributes, we convert them
to numerical ones during the preprocessing stage.

In case there are multiple matched attribute-value pairs
for the missing attribute, one of the values is randomly se-
lected to be assigned to the missing value.

4. ITEMRSFIT APPROACH
The RSFit approach, like other syntactic approaches, can-

not provide high prediction precision, although it provides
a faster prediction than the “closest fit” approach [13].

2RSFit-global and RSFit-concept approaches provide very
close prediction accuracies [14].
3In our experiments, the prediction results by Manhattan
distance and Euclidean distance returned the same accuracy.
Because the computation for Manhattan distance is faster,
we use Manhattan distance as the distance function.
4In the algorithm, |x| returns the absolute value of x.



The unsatisfactory prediction accuracy of RSFit approach
can be explained by the fact that this approach does not fully
consider the item-item relationship inside the data set. The
RSFit uses the subset of a transaction as a whole object to
find the similar object. This approach compares the similar-
ity between subsets of transactions and assign the value from
the most similar transaction to the missing item. This kind
of similarity does not consider the item-item relationship.
The frequency of a certain item existing in the transaction
in fact indicates how frequently the other item(s) exist(s) in
the transaction. The indictions from the strong associations
between different items can be discovered by the association
rule algorithm.

4.1 Frequent Itemset on Prediction
The frequent itemset generation in association rule algo-

rithm first counts the frequencies of each individual item
among the whole transaction. Then based on the 1-itemsets
whose support are no less than the predefined minimum
support, frequent 2-itemsets are generated. Those item-
sets with the occurrence no less than the minimum support
are selected for frequent 3-itemsets generation. Frequent l-
itemsets are generated based on the frequent (l−1)-itemset.
The process continues until no new frequent itemsets are
found. The l value can also be specified in the itemset gen-
eration algorithm to achieve limited itemsets within a pre-
ferred time period.

We explain in the following how to use itemset to predict
missing attribute values.

Let T = (C, D) be the decision table that contains missing
attribute values, where C = {c1, c2, . . . , ck, . . . , cm}, 1 ≤ k ≤
m, and U = {u1, u2, . . . , un}, 1 ≤ n.

Firstly, the data input to the association rule algorithm
is prepared. Data instances with missing attribute values
are all removed from T , and we call the new decision table
T ′′. T ′′ does not contain any missing values. Let R a set of
data instances containing the missing attribute values, and
T = T ′′ ∪R.

Secondly, frequent l-itemsets are generated based on T ′′

with a given minimum support. Let Itemsets = {S1, S2, . . . , Sg},
where Si (1 ≤ i ≤ g) is a frequent l-itemset generated
based on T = (C, D) according to a minimum support,
Si = {vp1, vp2, . . . , vpl}, l is the number of items contained
in Si, and vpj (1 ≤ j ≤ l) is an attribute value in T .

Thirdly, we use the frequent itemsets generated in the
previous step as our knowledge base to find a match for the
missing value.

Let ui = (v1i, v2i, . . . , vki, . . . , vmi, di) (1 ≤ i ≤ n) be the
data instance in T containing the missing attribute value vki

(represented as vki =?) for attribute ck (1 ≤ k ≤ m). Search
from Itemsets for all the itemsets containing the missing
attribute vk, check which itemset among the itemsets can be
applied to ui. We say a frequent itemset can be applied to
this data instance if all the items in this itemset, except the
missing attribute, have exactly the same attribute values as
contained by the data instance that has the missing attribute
value. If this itemset can be applied, we assign the attribute
value contained in this itemset to the missing attribute. In
case there are multiple matched attribute-value pairs for the
missing attribute, one of the values is randomly selected to
be assigned to the missing value. The following example
shows how to use frequent itemset for prediction.

Example 3. Suppose ui is one of the data instances in

T that contain missing attribute values, ui = (v1i = 1, v2i =
2, v3i = 4, v4i =?, v5i = 8). An itemset generated from T is
S = {v2 = 2, v3 = 4, v4 = 6, v5 = 8}. Since all the items in
S can be applied to ui, we assign v4i = 6.

Algorithm 2 shows the pseudo code for this prediction
of missing attributes using frequent itemset, which provides
linear time prediction.

Algorithm 2: Algorithm for Predicting Missing Values
by Frequent Itemset.

input : A sorted data instance r ∈ R with p missing
attributes and a sorted itemset I ∈ Itemset.

output: A set A of attributes values that are the
possible missing values of r; or an empty set if
the itemset cannot be used to predict the
missing attributes of r.

A ← ∅
i ← 0 //iterator on I
j ← 0 //iterator on r
while i < |I| and j < |r| and |A| < p do

if I[i] = r[j] then
i ← i + 1
j ← j + 1

else if I[i] > r[j] then
j ← j + 1

else if I[i] < r[j] then
A ← A ∪ {I[i]}
i ← i + 1

A ← A ∪ {r[k]|j ≤ k < |r|}
if |A| > p then

A ← ∅
return A

4.2 ItemRSFit Approach
The frequent itemset is generated from the original data

set without missing values. We use itemset as our knowl-
edge base to predict missing attribute. Since the knowledge
base is generated with a certain support value, when sup-
port is high, the item-item relations are stronger, the avail-
able knowledge for prediction is less. Missing attribute val-
ues from some data instances can be predicted by frequent
itemset. We call these data instances Compatible Records.
There also exist data instances that no possible match can
be found to predict the missing values.

Definition 9. Compatible Record. A compatible record
(CR) is a record whose missing attributes can be predicted
by an itemset. More formally, a record r with p missing
attributes is a CR if there exists an itemset I such that
|I ∩ r| ≤ p.

The missing attributes of a CR are predicted using the tech-
nique described in Section 4.1. If a record is not CR, the
RSFit method is applied to predict the rest of the missing
attribute values. We call this integrated approach ItemRS-
Fit. The details on the integrated approach is shown in the
following figure.

The procedure of the ItemRSFit approach is described in
Figure 1.
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Figure 1: ItemRSFit Approach

4.3 Evaluation Method
We use the following approach to perform the evaluation

process. We consider complete data sets as the transaction
data set T . For each data set, we randomly select a certain
number of missing values among the whole data set to pro-
duce n missing attribute values per data set. We then apply
both RSFit approach and ItemRSFit approach on predicting
missing values, and compare the accuracy of the prediction.

5. EXPERIMENT
The ItemRSFit approach is implemented by Perl and the

experiments are conducted on Sun Fire V880, four 900Mhz
UltraSPARC III processors. We use apriori frequent item-
set generation [3] to generate frequent 5-itemset. The core
generation in RSFit approach is implemented with Perl com-
bining the SQL queries accessing MySQL (version 4.0.12).
ROSETTA software [18] is used for reduct generation.

5.1 Experiments on Geriatric Care Data
We first perform experiments on a geriatric care data set

as shown in Table 2. This data set is an actual data set
from Dalhousie University Faculty of Medicine to determine
the survival status of a patient giving all the symptoms he
or she shows. The data set contains 8, 547 patient records
with 44 symptoms and their survival status. We use sur-
vival status as the decision attribute, and the 44 symptoms
of a patient as condition attributes, which includes educa-
tion level, the eyesight, hearing, be able to walk, be able to
manage his/her own meals, live alone, cough, high blood
pressure, heart problem, cough, gender, the age of the pa-
tient at investigation and so on.5 There is no missing value
in this data set. There are 12 inconsistent data entries in
the medical data set. After removing these instances, the

5Refer to [12] for details about this data set.

data contains 8, 535 records. 6 The core attributes for this
data set are eartrouble, livealone, heart, highbloodpressure,
eyetrouble, hearing, sex, health, educationlevel, chest, house-
work, diabetes, dental, studyage. Table 3 lists the prediction

Table 2: Geriatric Care Data Set

edulevel eyesight . . . livealone cough hbp heart . . . studyage sex livedead
0.6364 0.25 . . . 0.00 0.00 0.00 0.00 . . . 73.00 1.00 0
0.7273 0.50 . . . 0.00 0.00 0.00 0.00 . . . 70.00 2.00 0
0.9091 0.25 . . . 0.00 0.00 1.00 1.00 . . . 76.00 1.00 0
0.5455 0.25 . . . 1.00 1.00 0.00 0.00 . . . 81.00 2.00 0
0.4545 0.25 . . . 1.00 0.00 1.00 0.00 . . . 86.00 2.00 0
0.2727 0.00 . . . 1.00 0.00 1.00 0.00 . . . 76.00 2.00 0
0.0000 0.25 . . . 0.00 0.00 0.00 1.00 . . . 76.00 1.00 0
0.8182 0.00 . . . 0.00 0.00 1.00 0.00 . . . 76.00 2.00 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

accuracy comparisons for the RSFit and the ItemRSFit ap-
proaches. RSFit is used to predict missing attribute val-
ues based on the attribute-value pairs from the core or the
reduct. ItemRSFit approach is the new integrated approach
introduced in this paper. Table 3 lists the prediction accu-
racy for both RSFit and ItemRSFit according to different
number of missing attribute values and different support
values. We also list the number and the percentage of com-
patible records by only using frequent itemset as knowledge
for prediction. In this research, we experiment on geriatric
care with 50 to 200 missing attribute values.

From Table 3 we can see, the smaller the support becomes,
the more itemsets are generated, the number of compatible
records from frequent itemset becomes larger. ItemRSFit
approach always obtains higher or the same prediction ac-
curacy as the RSFit approach.

Figure 2 shows the comparison for the number of compati-
ble records by Itemsets prediction according to different sup-
port for different number of missing values. Frequent item-
sets with lower support value can provide a bigger knowledge
base to find predictions, and this is not related to the num-
ber of missing values existing in the data set. We can also see
from Figure 2 that using itemsets alone cannot predict all
the missing values. For instance, when there are 50 missing
values existing in the data set, given support = 10%, there
are still 8% missing instances that cannot be predicted by
the itemsets.

In order to show that ItemRSFit approach obtains bet-
ter prediction accuracy than RSFit, we show the prediction
accuracy comparisons on geriatric care data set with 150
missing attribute values, as shown in Figure 3. We can see
from Figure 3 when support value is lower, the prediction
accuracy of ItemRSFit is significantly higher than RSFit
prediction. This result demonstrates that frequent itemsets
as knowledge base can effectively be applied for predicting
missing attribute values.

Figure 4 demonstrates the prediction accuracy compar-
isons for different number of missing attribute values with
different support for the geriatric care data set using ItemRS-
Fit. We can see from the comparisons that ItemRSFit ap-
proach obtains higher accuracy when support value is lower.
The number of missing attribute values existing in the data
set does not affect this fact.

Observations. From the experimental results on geri-

6Notice from our previous experiments that core generation
algorithm cannot return correct core attributes when the
data set contains inconsistent data entries.



Table 3: Comparisons on Geriatric Data on Predic-
tion Accuracy (CR: the compatible records)

Data Sets Average Accuracy(Percentage%)
Missing RSFit Support # CR % CR Integrated
Values ItemRSFit

50 64.00% 90% 11 22% 64.00%
80% 22 44% 68.00%
70% 26 52% 68.00%
60% 38 76% 72.00%
50% 41 82% 70.00%
40% 43 86% 72.00%
30% 43 86% 78.00%
20% 46 92% 90.00%
10% 46 92% 96.00%

100 69.00% 90% 26 26% 69.00%
80% 53 53% 74.00%
70% 58 58% 74.00%
60% 69 69% 77.00%
50% 80 80% 75.00%
40% 87 87% 76.00%
30% 87 87% 81.00%
20% 95 95% 87.00%
10% 95 95% 96.00%

150 73.33% 90% 43 29% 75.33%
80% 85 57% 79.33%
70% 94 63% 79.33%
60% 120 80% 80.00%
50% 133 89% 81.33%
40% 137 91% 82.00%
30% 137 91% 83.33%
20% 142 95% 89.33%
10% 142 95% 96.67%

200 73.50% 90% 39 20% 73.50%
80% 103 52% 77.00%
70% 118 59% 76.50%
60% 146 73% 75.50%
50% 169 84% 73.50%
40% 182 91% 79.00%
30% 182 91% 79.50%
20% 192 96% 88.50%
10% 194 96% 96.00%
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Figure 2: Comparisons on the Percentage of Com-
patible Records for Geriatric Care Data using Fre-
quent Itemsets to Predict

atric care data set shown in Figures 2, 3, 4, we observe that
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Figure 3: Accuracy Comparisons for Geriatric Care
Data with 150 Missing Attribute Values
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Figure 4: Accuracy Comparisons for Geriatric Care
Data with Different Number of Missing Attribute
Values

• The prediction accuracy for ItemRSFit approach in-
creases while the support value decreases.

• Frequent Itemset approach can provide a higher pre-
diction by itself. But this approach cannot predict all
the missing values in the geriatric care data set.

• For the ItemRSFit approach on geriatric care data, the
highest accuracy is obtained when support = 10%; the
lowest accuracy is obtained when support = 90%. This
can be explain as the following. “Support” is a mea-
sure to evaluate the occurrence of both the antecedents
and the consequents of an association rule in the data
set. The higher the support is, the more frequent this
occurrence becomes, the less knowledge for prediction
is obtained. When the support value is increased, less
matched cases are found from the itemset approach,
therefore more missing values have to be predicted by
RSFit approach.

• The lowest accuracy of the ItemRSFit approach is equal
to the accuracy from RSFit approach. RSFit approach
gives the baseline prediction accuracy for the ItemRS-
Fit approach.



• For different number of missing attribute values, fre-
quent itemset with the lowest support brings the high-
est prediction accuracy. The frequent itemset alone as
the knowledge base to predict the missing values can-
not fully find all the matches for the missing value for
geriatric care data.

5.2 Experiments on UCI Data Sets
In the experiments on the UCI data sets [16] we study

how the ItemRSFit approach can be applied for predictions
on different types of data sets. We experiments on data
sets with no missing attribute values. For each data set,
we randomly select 5% of the total possible missing val-
ues (total number of condition attributes × total number of
data instances) as missing attribute values, and list the pre-
diction accuracy comparisons for the ItemRSFit and RSFit
approaches according to different support values.

Abalone Data This data set is used to predict the age
of abalone from physical measurements. There are 4, 177 in-
stances and 8 condition attributes in this data set. There are
no missing attribute values or inconsistent data instances in
the data set. For this data set, we randomly select 0.5%
missing attribute values, which is 167 missing values. The
prediction comparisons between RSFit and ItemRSFit ap-
proaches are shown in Figure 5.
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Figure 5: Accuracy Comparisons for Abalone Data
with 0.5% Missing Attribute Values

Observation. As we can see, when support value de-
creases, the prediction accuracy increases.

Lymphography Data The data set contains 148 in-
stances and 18 condition attributes. There are no missing
attribute values in this data. We check that there is no in-
consistent data. The core is empty for this data set. We
randomly select 133 missing attribute values from this data
set, which is around 5% of the data set. The prediction
comparisons between RSFit and ItemRSFit approaches are
shown in Figure 6.

Observation. As we can see, when support value de-
creases, the prediction accuracy increases. We further ex-
plore the prediction accuracy on smaller number of missing
values with this data set, as shown in Figure 7. For 10
missing values, when support reaches less than or equal to
20%, the accuracy is 100%. This observation implies that
less number of frequent itemsets can also be used to provide
high predictions for missing attributes.
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Figure 6: Accuracy Comparisons for Lymphography
Data with 5% Missing Attribute Values
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Figure 7: Accuracy Comparisons for Lymphography
Data with 10 Missing Attribute Values

Glass Data This data set is used for the study of clas-
sification of types of glass by criminological investigation.
At the scene of the crime, the glass left can be used as evi-
dence. There are 214 instances and 9 condition attributes.
There are no missing attribute values or inconsistent data
instances. We randomly select 96 missing attribute values
from this data set, which is around 5% of the data set. The
prediction comparisons between RSFit and ItemRSFit ap-
proaches are shown in Figure 8.

Observation. For glass data set, the support values rank
from 1% to 10% for frequent itemset generation. We can
see as support decreases, the prediction accuracy increases.
The highest prediction accuracy obtained when support =
1%. The ItemRSFit always achieves higher prediction than
RSFit.

Iris Data For Iris data set, there are 4 condition at-
tributes, 150 instances. There is no inconsistent data ex-
isting in the data. We first use core algorithm to generate
core attributes, but the result is empty. This means none of
the attributes is indispensable. We randomly select 30 miss-
ing attribute values from this data set, which is around 5%
of the data set. The prediction comparisons between RSFit
and ItemRSFit approaches are shown in Figure 9.

Observation. For iris data set, the support values rank
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Figure 8: Accuracy Comparisons for Glass Data
with 5% Missing Attribute Values
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Figure 9: Accuracy Comparisons for Iris Data with
5% Missing Attribute Values

from 1% to 10% for frequent itemset generation. We can
see as support decreases, the prediction accuracy increases.
The highest prediction accuracy of 83.33% is obtained when
support = 1%. The ItemRSFit always achieves higher pre-
diction than RSFit. It is also interesting to notice how dras-
tically the prediction accuracy increases from 20% to 83.33%
within a small range of support values decreases from 7% to
1%.

5.3 Discussions and Related Work
Experimental results from both the real-world geriatric

care data set and UCI data sets have demonstrated the
high prediction characteristics of the proposed ItemRSFit
approach on processing data with missing attribute values.
Frequent itemset can be used as knowledge base to predict
missing attribute values.

We find the approach introduced in [22] close to our work.
An approach of using association rules generations on com-
pleting missing values is discussed. However, our proposed
ItemRSFit approach is quite different from the approach
introduced in [22]. First, only frequent 1-itemset and 2-
itemset are used in [22] to find the possible values for the
missing data, and data associations with missing attribute
on the consequent part are used for prediction. It is not dis-

cussed how much percentage of the missing data can be pre-
dicted with the data association. We use frequent 5-itemset
as knowledge base for prediction. We explore the relations
between different support and the percentage of the com-
patible records using frequent itemsets as shown in Figure 2.
Second, in case there is no match from the data association,
the missing value is assigned by the most common value
of the missing attribute in [22]. We use frequent itemsets
as knowledge base for prediction, and RSFit approach for
the non-compatible records that the itemset cannot be ap-
plied, which guarantee that more important attributes are
taking into considerations while predicting attributes. The
proposed ItemRSFit approach provides predictions based on
the data domain itself, which better preserves the originality
of the data sets and avoids noises. Third, our approach is
also more efficient, because we do not need to generate data
association based on both support and confidence for predic-
tion. Only support is used for frequent itemsets generations
in ItemRSFit approach.

6. CONCLUDING REMARKS AND FUTURE
WORK

An efficient approach on predicting missing attribute val-
ues is proposed in this paper. The experimental results show
this new approach always obtains higher prediction accu-
racy than RSFit. The prediction relies on the data itself
as knowledge bases and therefore the predicted values are
not biased. The ItemRSFit approach can be applied for
data preprocessing in data mining and knowledge discovery
tasks.

In this paper, the ItemRSFit approach uses the RSFit
approach on predicting non-compatible records. We would
like to experiment on other techniques on predicting miss-
ing values for the non-compatible records. In our research,
we also adopt the strategies used by [24] on balancing the
computational cost and the prediction accuracy. Lower sup-
port value can bring a higher prediction accuracy, however
frequent itemset with lower support requires more time for
computation than frequent itemset with higher support. In
the future, we are interested to explore a satisfactory bal-
ance between the support value and the prediction accuracy.
Given the available computational cost and the affordable
computation time, it is interesting to explore to what per-
centage the missing attributes can be effectively predicted,
and what are the most effective attributes to be predicted.
In case of a higher prediction cost, the idea of giving more
important attributes higher priorities for predictions can be
applied as heuristics.
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