Adaptive Search Algorithm for Patterns, in
Succinctly Encoded XML

Jérémy Barbay

David R. Cheriton School of Computer Science
University of Waterloo, Canada.

Technical Report CS-2006-11
$Date: 2006/04/21 22:33:36 , Revision: 1.18 $

Abstract. We propose an adaptive algorithm for context queries (queries expressed as preorder and ancestor-
descendant relations on labeled nodes), which can be used to find patterns in XML documents. Our algorithm
takes advantage of the correlation between terms of the query without any preprocessed information, and it
runs in time (kd(lg Ig min(n,s)+lg lg(r))) in the RAM model, where k is the number of terms in the query,
d is the non-deterministic complexity of the query on the multi-labeled tree (i.e. the minimum number of
operations required to check the answer to the query), n is the number of nodes in the tree, s is the number
of relations between nodes and labels, and r is the maximal number of nodes matching a label on any rooted
path in the tree.

Keywords: XML, Multi-Labeled Tree, Context Query, Adaptive Algorithm

1 Introduction

XML is a rapidly emerging format for exchanging data on the web. It standardizes tree structures, so that general
tools can be developed and used for the many distinct applications adopting this standard. Among those tools,
search engines are prominent, and are strongly based on path navigation. XPath [4, 8] is a language developed
for this purpose, which specifies nodes in an XML document by patterns on their rooted paths. Each pattern on
paths is incrementally described by a sequence of location steps, composed of an axis, a nodetest, and optionally
some predicates. The XPath 2.0 [4] specifications define 13 axes and many expressions for predicates, but in
many applications and studies only a small subset of them is considered. In this paper we consider XPath queries
using the four axes ancestor, descendant, following and preceding, as defined by the XPath 2.0 [4]
specifications, with single type node tests and no predicates.

Many solutions for pattern-matching in XML documents have been studied: we cite here only a few repre-
sentative ones. The native XML encoding being not very efficient (both in term of the space used and in terms
of searchability), query solvers consider either an external index added to the document, or simply a different
encoding of the XML document. Some of the solutions use statistical information about the two by two corre-
lation of terms in the query to allow the algorithm solving the query to choose in which order to consider the
terms to reduce the size used for intermediary results. Our algorithm does not require any statistical information,
and it uses only a constant amount of space in addition to the space required to save the results: as Bruno et
al.’s [5] algorithm, our algorithm is holistic, it considers the query as a whole, and it avoids unnecessarily large
intermediate results.

All our results concerning the running time of operators and algorithms are expressed in the RAM model,
where words of size O(lg(max{n,c})) can be accessed and processed in constant time. Our work is based on
a succinct encoding for multi-labeled trees from Barbay and Rao [14], which uses t(lg up + o(lg 1p)), which is
t(1g p + o(lg p)) bits more than the encoding from Barbay et al., where 1 is a short notation for min(n, o), and
where p is the average number of nodes having the same label on a branch (it has been observed to be very small
in practice by Zhang et al. [17]). It supports the labeled search for the first a-ancestor of node « after node b in
time O(lglg 1+ 1glg p,); and for the first o-descendant or children «-children in time O(lglg 1) [14, Corollary
4]

We define the concept of context queries, defined by a graph in which nodes are associated to labels and edges
are associated to relatioons (ancestor, descendant, following Or preceding) , and we propose an adaptive

algorithm to solve these queries in O(dk) operator calls and in time O(0k 1glgn) in the RAM model, where k
is the number of terms of the query and § is the non-deterministic complexity of the query on the multi-labeled
tree (e.g. the minimum number of operations required to check the answer of the query). This algorithm can be
used to solve a large sub-class XPath queries (as a particular case of context queries) and it takes advantage of
the correlation in the document between the sets of nodes matching each terms of the XPath query, without any
preprocessed information about this correlation.

The paper is organized as follows: In Section 2 we define context queries and describe our adaptive algorithm
to solve those queries using the operators defined in the previous section. In Section 3 we discuss how our work
compares to related studies of XML queries and adaptive algorithms. We conclude in Section 4 with a discussion
of our results and a perspective on future research.

2 Adaptive Algorithm

The encoding defined in [14, Corollary 4] supports fast operators to find a single node b matching some criteria
on its label and on its location relative to some node a. We now show how to use those operators to find the
matchings of a whole pattern in a multi-labeled tree.

2.1 Context Queries

We consider queries slightly more general than those defined by Bruno et al. [5]. Mainly, we introduce the axis
following and preceding, and allow cyclic condition in the definition of the query.

Definition 1. A context query is a directed graph such that

— onenode, called the target, is distinguished;

— each nodeis associated to a label from [o] U {x};

— each directed edge is associated to one of the following XPath axis [4]: ancestor, descendant,
followingy,,.,, and precedingy,,. ;.

A node matches a context query (@ if it matchesthe target nodein a context matching the rest of Qs graph.

Figure 1 shows a context query searching in a medical file for all patients to whom have been administrated
a test of result Y after having been prescribed a medicine X. The query specifies the list of nodes labeled
pat i ent , inwhose subtree a node labeled pr escri pt i on with a descendant labeled nedi ci ne Xprecedes
anode labeled t est with a descendant labeled r esul t Y.

medfile

|
- — — — — — < ampatient...
- |

- ... history ...

prescription » test test prescription test

i l ...resuItY...mmedicinexm...resuAItY...
medicine X result Y A -

\ \

Fig. 1. A simple query, on a subset of a medical database. Vertical and diagonal edges correspond to descendant axes, and
horizontal edges to following,, . axes. The target node, here the pat i ent node, is circled.

2.2 Correlation and tour of the query

The answer to a context query is never larger than the number of nodes labeled as the target node of the query.
Algorithms inspired by joint operations in relational databases restrict this set of nodes by considering the edges
of the query one by one. Such an approach is inefficient in many instances, in particular when the lists of labels
associated to two nodes of the query are similar, i.e. when the two nodes are very correlated (e.g. when all nodes
“medi ci ne X" descend from “pr escri pti on” nodes).

Such instances are not unlikely in a database such as described in Figure 1, where each patient would probably
be associated to many prescriptions and tests, and comparing the lists of pat i ent ,prescri pti onandt est
nodes would not result in a significant reduction of the result set. On the other hand, even though the terms
“medicine X and “result Y are more specific, and are more likely to help reduce more significantly the set
of nodes potentially matching the query, comparing the lists of medi ci ne X and prescri pti on nodes, or
equivalently the list of t est andresul t Y, will not result in a significant reduction of the result set.

One way to avoid wasting time in comparing highly similar lists of nodes is to precompute the average
correlation for each pair of labels. This permits us to choose in priority the pair of query nodes that will reduce the
most the set of potential nodes matching the query. This approach is very common in practical implementations
of relational and semi-structured databases, such as BLAS [6], but it uses O(c2) space, and it still does not take
advantage of local correlations. For instance, suppose that the children of each history node in the database of
Figure 1 are ordered chronologically, and that many prescriptions referring to medicine X occur before 2000,
while most tests referring to result Y occur after this date. An algorithm considering one edge at a time might
have large intermediate results independent of its choice between the medi ci ne or r esul t subtree of the
query.

To take advantage of the local correlations between terms, any algorithm has to cycle constantly through
the edges of the query, while considering the query as a while at each step, a characteristic named “holistic” by
Bruno et al. [5]. We define here an order to cycle through the query in at most 2k steps.

Definition 2. A tour of the query @ is a cyclic path of minimal length following edges without any direction
constraint and visiting each edge (and as a consequence visiting each node) of the query at least once.

The direction of the edges of the query is necessary to make sense out of the relation associated to each edge, but
as the location axes are symmetric (e.g. parent V.S. child, following V.S. preceding) one can check whether
two nodes match an edge in any direction. Hence the tour ignores the direction constraints. Figure 2 gives an
example of such a tour on the query of Figure 1.

medfile
|

P -~ ..~ patient «.~ _
7 7/ ~
(’ / . | RN
2 - I ... history ... N

prescription —— test ! \
/ v , 4 v \ \
! l I / \ N \)
4 v / 4) 4 iy Y

medicine X result Y’ test prescription test

e
coresultY Lo 7 edicine XL - resultY L
Fig. 2. A tour of the query given Figure 1. Fig. 3. An execution trace.

It is trivial to see that such a tour is of length at least &, the number of edges in the query, and at most 2k.
The complexity of following such a tour depends of the query but is independent of the size and content of the
database. Any algorithm following such a tour has found a match of the query each time the 2k last consecutive
query-edges traversed and checked matched (see Figure 3).

2.3 Algorithm

We propose an algorithm that does not require any statistical information and that avoids unnecessarily large
intermediate results. As Bruno et al.’s [5] holistic algorithm, it considers the query as a whole rather than decom-
posing it in independent joints. Following a tour such as defined in Section 2.2, and searching the tree through
the operators on the succinct encoding, it is possible to find all the nodes matching a context query in time pro-
portional to the number of steps that a non-deterministic algorithm would require to check the correctness of the
answer to the query.

Theorem 1. Consider a context query (Q of k£ edges ona multi-labeled tree on n nodesand o labelsin ¢ relations.
There is an algorithm solving @ in O(dk) operator calls and in time O(dk 1glg n), where § is the minimum
number of steps required to check the answer of the query.

Proof (sketch). For simplicity, consider the bogus node oo that matches all labels and is a successor to all nodes.
Our algorithm goes as follows: starting from the target node, it cycles through the edges of the query @,

Algorithm 1 Sol ve_Query(Q)
Given a context query @ of target node target, the function outputs the list of nodes matching Q.

a «— target(Q); YES « 0;
a « the first available a-node of the document.
whilea # oo do
(a, 7, B) < the next edge of tour(Q);
b < nextmatch(a,a,r,[3,b)
if match(a,r,b) then
YES « YES + 1;
if YES = |tour(Q)| then
Output the node a currently matching the target (of label «);
a < next(q, a);
end if
else
YES «— 0;
end if
(a,a) — (8,b);

end while

updating for each query node « the matching node « in the multi-labeled tree, such that any a-node preceding a
in preorder has already been considered and can be ignored.

After a tour where [tour(Q)| matches have been successfully checked, the algorithm has found a match for @
and can output the tree-node corresponding to the target node. To allow the search to continue, it then updates
which tree-node is associated to the target, and iterates. The preorder rank of the successive nodes pointed to
for each query-node is strictly increasing at each update, so that at any time, all preorder predecessors of the
tree-node matching target have been considered. Every |tour(Q)| < 2k iterations the algorithm considered at
least as many nodes as a non-deterministic algorithm would have in a single operation. It takes at most 2k steps
to eliminate as many potential result nodes as a non-deterministic algorithm which can “guess” which operation
to perform to eliminate the largest number of potential result nodes.

When the preorder rank of the node associated to any query-node reaches the value oo, all nodes matching
this label have been considered (hence the correctness), and the algorithm has performed 26k operator calls
where a non-deterministic algorithm would have performed at least § (hence the complexity result). O

Consider for instance the execution trace presented in Figure 4 and 5, for a tour of the query considering
t est nodes before prescri pti on nodes. A non-deterministic algorithm can “guess” the tour described in
Figure 2 to find or check the match immediately, as in Figure 3. But even when the algorithm chooses a non-
optimal tour, it will find the match (or, equivalently, the key operations to prove that some nodes cannot belong
to a match) in at most twice as many operations as the best non-deterministic algorithm, i.e. at most 4k.

medfile
medfile |
... patient .
l . \
_ ..~patient ... T \
- | .\-history ...\
- . \
e ... history ... \
/ \
/
/ L AT T
' T test prescription test
- A 4 N
test prescription test RN m Z
m /'\ coaresultY Lo 7 edicine XL - resultY L

Looresulty L. Looresulty L.

... medicine X ...

Fig.5. The rest of the execution trace, where
Fig.4. The first part of the execution trace of the algo- the algorithm follows the tour through the
rithm with another tour of the query given Figure 1, sym- ~ nodes labeled prescription, mnedicine,
metric to the one given in Figure 2: the trace stops when ~ Prescription, patient, test, result,
the algorithm proves that the first node does not belong ~ test, and prescri pti on, at which point it proved

to a match, because no pr escri pti on node precedes @ match, having matched seven consecutive edges, the
it. length of the tour of the query.

3 Comparison to Related Work

3.1 XML and XPath

Since data sets can be very large and can be searched very often, efficiently querying XML data is a major
concern. Indexes and intelligent labeling can be used to simplify the operations in a more or less compact way [1,
2]. Grust [12] proposes a labeling scheme based on the prefix and postfix rankings of the nodes and observed that
for any node v this scheme permitted to easily partition the nodes of the document in four parts, from which the
set of nodes accessed from v by any axis is easily defined.

As Grust implements and queries his index using purely relational techniques, his approach is close to similar
ones storing XML in relational databases. Shanmugasundaram et al. [16] proposed storing XML in relational
databases, in order to benefit from the extensive optimizations developed for those database systems.

Bruno et al. [5], working on a variant of XPath called Twig Pattern Matching, suggests that “a limitation of
this approach (...) is that intermediate result sizes can get large, even when the input and output sizes are more
manageable”, and proposes instead to study holistic algorithms that consider the query as a whole and avoid
unnecessarily large intermediate results. This approach supposes a native implementation [13] to treat XML
queries, as opposed to the storage of XML in a relational database.

We propose an holistic algorithm to solve a subset of XPath queries. As Bruno et al.’s algorithm for twig
pattern matching, it considers the query as a whole, and it avoids unnecessarily large intermediate results as it
uses only a constant amount of space in addition to the space required to save the results. The first advantage of
our algorithm is that its complexity is expressed as a function of the non-deterministic complexity of the instance,
and that it takes advantage of the local correlation between terms of the query. The second advantage comes from
the use of the succinct encoding to perform much faster searches in the tree. One direction of research is to
study how Bruno et al.’s [5] algorithm can be adapted to use our succinct encoding, and to determine if it can be
analyzed in a way similar to our algorithm.

3.2 Adaptive Algorithms

Adaptive algorithms are algorithms that, among instances of the same size, perform better on “easier” instances,
where the easiness has to be defined for each problem. Kirkpatrick and Seidel [15] were the first to point out the
interest of such algorithms by giving an algorithm to compute the convex-hull of a set of points whose complexity
is expressed as a function of the size of the convex-hull rather than of the size of the set. Adaptive algorithms
for sorting were studied as functions of many distinct measures of difficulty, and Estivill and Castro summarized
these in a survey [11].

Closer to our applications, Demaine et al. [9], motivated by applications in posting lists for search engines,
studied adaptive algorithms for the union, intersection and difference of sets represented by sorted arrays. Their
measure of difficulty is defined as the cost of encoding a certificate of the result of the instance, and they proved
that their algorithms are optimal in the comparison model with respect to this measure of difficulty. Barbay and
Kenyon [3] defined another measure of difficulty (denoted o) for the intersection problem, based on the number
of steps required by a non-deterministic algorithm to check the answer. They proved that their deterministic
algorithm, with respect to this measure of difficulty, was optimal as compared to randomized algorithms in the
comparison model.

Our algorithm and its analysis are directly inspired by the work on the Intersection problem from Barbay
and Kenyon [3]. While context queries are not exactly reduced to intersection instances, the relation between
both problems is very strong, especially when abstracting the algorithm in the search model, where the basic
operation is a search (as opposed to the comparison model where the basic operation is a comparison). This
suggests that other intersection algorithms such as the ones defined by Demaine et al. [9] could also be transcribed
to this context. Of particular interest, the algorithm Smal | Adapt i ve has been shown to outperform other
algorithms [10] on the intersection problem, and in particular to outperform an algorithm which considers the
sets two by two, in a way similar to the XPath algorithms currently used in XPath query solvers such as BLAS [6].
The practical study of the adaptation of this algorithm to XPath queries sounds promising.

4 Conclusion

We consider in this paper the applications of succinct encoding techniques for data structures, and adaptive
algorithm techniques for the resolution of queries. We define the concept of context queries, and we propose
an adaptive algorithm to solve these queries in O(dk) operator calls and in time O(dklglgn) in the RAM
model, where k is the number of terms of the query and § is the non-deterministic complexity of the query
on the multi-labeled tree (e.g. the minimum number of operations required to check the answer of the query).
This algorithm is holistic as it takes into account the whole query rather than decomposing it in smaller chunks
solved independently, and it takes advantage of the local correlation between labels in the document, without any
preprocessed information about this correlation.

One obvious direction for future research is to extend our technique to support a broader range of XPath
queries. It seems that complex node tests cannot be supported by the data structure without increasing its size
by more than a lower order term. The work from Chiniforooshan et al. [7] is a first step towards an algorithm to
support more complex node type tests.

An interesting open problem in theory is whether there is a lower bound on the complexity of any algorithm
solving context queries. Using a technique similar to the one used by Barbay and Kenyon [3], it would not be
difficult to prove a lower bound on the number of operator calls performed by any randomized algorithm solving
context queries, but it seems much more difficult to obtain a more general lower bound, that does not suppose
that the algorithm uses our encoding.

Another interesting perspective for future work concerns the implementation of our data structures and algo-
rithms. Succinct encodings is still a young research topic, and the structures described are even more complicated
to implement than to describe. As the field matures, one can hope that simpler structures will appear that will be
easier to implement but with properties almost as good as those presented in this paper.

Bibliography

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries. In Proceedings of
the Twelfth annual ACM-SIAM Symposium on Discrete Algorithms, pages 547-556, 2001.

[2] S. Alstrup and T. Rauhe. Improved labeling scheme for ancestor queries. In Proceedings of the Thirteenth
annual ACM-S AM Symposium on Discrete Algorithms, pages 947-953, 2002.

[3] J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In Proceedings of the thirteenth
ACM-S AM Symposium On Discrete Algorithms (SODA), pages 390-399, 2002.

[4] A.Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and J. Simon. XML Path language
(XPath) 2.0. Technical report, W3C Working Draft, November 2003. http://www.w3.0rg/TR/xpath20/.

[5] N.Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching. In Proceedings
of the 2002 ACM SSIGMOD International Conference on Management of Data, pages 310-321. ACM Press,
2002.

[6] Y. Chen, S. B. Davidson, and Y. Zheng. Blas: An efficient xpath processing system. In Proceedings
of the ACM SIGMOD, International Conference on Management of Data. ACM, June 2004. DBLP,
http://dblp.uni-trier.de.

[7] E. Chiniforooshan, A. Farzan, and M. Mirzazadeh. Worst case optimal union-intersection expression evalu-
ation. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, volume 3580
of Lecture Notes in Computer Science, pages 179-190. Springer, 2005.

[8] J. Clark and S. DeRose. XML Path language (XPath). Technical report, W3C Recommendation, November
1999. http://www.w3.org/TR/xpath/.

[9] E. D. Demaine, A. Lbpez-Ortiz, and J. . Munro. Adaptive set intersections, unions, and differences. In
Proceedings of the 11" ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 743-752, 2000.

[10] E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Experiments on adaptive set intersections for text retrieval
systems. In Proceedings of the 3rd Workshop on Algorithm Engineering and Experiments, Lecture Notes
in Computer Science, pages 5-6, Washington DC, January 2001.

[11] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM Computing Surveys,
24(4):441-476,1992.

[12] T. Grust. Accelerating xpath location steps. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 109-120. ACM Press, 2002.

[13] H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Nierman, S. Paparizos, J. Patel, D. Srivastava, and Y. Wu.
Timber: A native XML database. VLDB, 11(4):274-291, 2002.

[14] S.R.Jérémy Barbay. Succinct encoding for XPath location steps. Technical Report CS-2006-10, University
of Waterloo, Ontario, Canada, 2006.

[15] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SAM J. Comput., 1986.
15(1):287-299.

[16] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Relational databases
for querying XML documents: Limitations and opportunities. In The VLDB Journal, pages 302-314, 1999.

[17] N. Zhang, M. T. Ozsu, A. Aboulnaga, and I. F. Ilyas. XSEED: Accurate and Fast Cardinality Estimation
for XPath Queries. In to appear Proc. 22nd Int. Conf. on Data Engineering (ICDE) 2006, 2006.

