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Abstract. We consider in this paper the problem of encoding XML documents in small space while still support-
ing XPath Location steps efficiently. We model XML documents as multi-labeled trees, and propose for those an
encoding which takes space close to the lower bound suggested by information theory, while still supporting the
search for the ancestors, descendants and children matching a given label efficiently. To achieve this goal, we extend
the previous results from Golynski et al. on strings over large alphabets, and from Barbay et al. on binary relations,
to support the rank and select operators in several orders at once; and we extend the results from Geary et al. on
ordinal trees to support the DFUDS order, in addition to the other operators.
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1 Introduction

XML [15] is a rapidly emerging format for exchanging data on the web. It standardizes tree structures, so that general
tools can be developed and used for the many distinct applications adopting this standard. Among those tools, search
engines are prominent, and are strongly based on path navigation. XPath [3, 5] is a language developed for this purpose,
which specifies nodes in an XML document by patterns on their rooted path. Each pattern on paths is incrementally
described by a sequence of location steps , composed of an axis, an optional node test, and some optional predicates .
In this paper we model XML documents as multi-labeled trees, and consider the search for ancestors, descendants and
children matching a given label, which permits to suppport the location steps described in the definition of XPath.

Several approaches have been studied to solve XPath queries, which can be categorized in two distinct schools of
thought. The first one based on a reduction to relational databases: XML documents can be expressed through binary
relations, and XPath queries can be answered through queries on those relations (e.g. [9]). This approach benefits
from the maturity of the search engines on relational data, but the translation in relational data forbids some trivial
and important optimizations [13]. The second school of thought is based on various native implementations of search
engines on XML documents (e.g. Galax [6] , Timber [10, 14]). It draws from both the teachings from relational
databases (query optimization path, importance of the formalization) and from the direct access to the tree-structure of
the documents (as opposed to the access through relational queries). This development of new tools is the occasion for
a paradigm shift in the data structures used: we review two previous contributions, and complement them by several
techniques to finally propose an encoding supporting the search among all XPath location axes.

Geary et al. [7] proposed an encoding for labeled trees (one label per node) supporting the labeled search for
all ancestors, all descendants, and all children in constant time and using n

(

lg σ + O(σ lg lg lg n/ lg lg n)
)

bits for a
document of n tags and σ indexed terms. This space is almost linear in nσ, and can get too large in practice. Barbay et
al. [2] proposed a succinct encoding for multi-labeled trees (one or more labels per node) which uses t (lg σ + o(lg σ))
bits for a tree on n nodes and σ labels, associated in t relations, which supports label-based operators in time O(lg lg σ)
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(a variant of Barbay et al. [2]’s encoding uses instead t(lg n + o(lg n)) bits to support queries in o(lg lg σ)). On
single labeled trees, their encoding uses n (lg σ + o(lg σ)) bits, which is within lower order terms of the lower bound
suggested by information theory. Both results claim to have applications to XPath queries on XML documents, but
describe only as subset of the operators needed to do so, and index only the tags of an XML document.

Our results are twofold:

– First, we extend the work from Golynski et al. [8] on strings and from Barbay et al. [2] on binary relations
to propose an encoding of strings and binary relations which support the rank and select operators in several
different orders (Lemma 1 and Corollary 3).

– Second, we extend the encoding from Geary et al. [7] to support the permutation between preorder and DFUDS

rank in constant time (Lemma 2), which enables us to propose an encoding for multi-labeled trees which supports
the labeled search for all ancestors, descendants, and children (Theorem 1). Our encoding uses t(lg µρ+o(lg µρ)),
which is t(lg ρ+o(lg ρ)) bits more than the encoding from Barbay et al., where µ is a short notation for min(n, σ),
and where ρ is the average number of nodes having the same label on a branch (it has been observed to be very
small in practice by Zhang et al. [17]).

All our results concerning the running time of operators and algorithms are expressed in the RAM model, where
words of size Θ(lg(max{n, σ})) can be accessed and processed in constant time. All our results concerning the space
usage are expressed in the number of bits required, asymptotically in σ, ρ and n.

The paper is organized as follows. In Section 2.2 we show how to support the rank, select and access operators
for several orders, while still using essentially optimal space: for succinctly encoded strings in Lemma 1, and for the
rows of succinctly encoded binary relations in Corollary 3. In Section 3 we use the results of the previous section to
support the search for both ancestors and children of a node matching a particular label. For this we first show how
to extend the encoding from Geary et al. [7] in order to support the permutation between the preorder and DFUDS

ranks in constant time. Given this permutation, the relation associating the nodes of a multi-labeled tree to labels can
be succinctly encoded using Corollary 3 in order to support the rank and select operators in both DFUDS and PRE

order. We show in Theorem 1 how this can be used to encode multi-labeled trees in order to support the search for
all ancestors, children and descendants matching a given label, hence generalizing the results from Barbay et al. [2],
who supported only the search for the first (in preorder) ancestor and descendant. In Section 4 we outline how our
encoding for multi-labeled trees can be used to encode XML documents and support efficiently XPath location steps
with simple predicates. While our encoding uses less space than any other representation currently used in practice, it
still enables fast searches: we describe how it could be compressed to use even less space, without increasing the time
required to search in the document.

2 Multi-order encodings

2.1 Strings

Given a string over an alphabet [σ], Golynski et al. [8] defined the operators

– string rank(α, x), the number of occurrences of α before position x;
– string select(α, r), the position of the r-th occurrence of α in the sequence; and
– string access(x), the character at position x in the sequence.

We show that it is possible to support, with a negligible space overhead, those operators on any permutation π
of the string (string rank

π
, string select

π
and string access

π
), given a constant time access to π(i) and

π−1(i). We will use this result in Section 3.2 in conjunction with the operators tree rankPRE, tree selectPRE,
tree rankDFUDS(x) and tree selectDFUDS(r) described in Lemma 2.
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Lemma 1. Consider a permutation π on [n], such that the access to both π(i) and π−1(i) is supported in constant
time. A string S ∈ [σ]n can be encoded using n(lg σ + o(lg σ)) bits in order to support the operators string rank

and string access in time lg lg σ and the operator string select in constant time, on both S and π(S).

Note that the space required to encode the permutation π is accounted for separately.

Proof (sketch). This is an extension of the results from Golynski et al. [8]. Without loss of generality, suppose that
σ ≤ n (the construction is symmetric in the other case). Consider abstractly the string S as a boolean array of size
σ×n, where column c represents position c of the string and contains a unique one, on the row r corresponding to the
character at this position. Supporting the rank and select operators on this matrix is reduced to support them on square
matrices of size σ×σ via a domain reduction [8]. Encode such a matrix M of size σ×σ in two strings:

– One string COLUMNS on alphabet [σ], which lists the columns of each one of M in row major order3.
– One binary string ROWDELIM which gives in unary 0i the number i of ones in each row, separated by ones.

This encoding completely describes M , and the support of the operators rank and select on S is based only on those
two strings.

S = “dbaacabd” =⇒

. . 1 1 . 1 . .

. 1 . . . . 1 .

. . . . 1 . . .

1 . . . . . . 1
| {z }

n

9

>>=

>>;

σ =⇒
n

σ
×

. . 1 1

. 1 . .

. . . .

1 . . .
| {z }

σ

9

>>=

>>;

σ =⇒

COLUMNS = 3 4 2 1 · · ·

ROWDELIM = 0 0 1 0 1 1 0 1 · · ·

π(COLUMNS) = 2 4 1 3 · · ·

ROWDELIM
′ = 0 1 0 1 0 1 0 1 · · ·

Fig. 1. The relation between the succinct encoding of strings and permutations: the string S is abstracted as a σ×n matrix, which is
decomposed into several σ×σ matrices. As the matrices have exactly 1 one per column, the list of column numbers corresponding
to ones is a permutation of [σ]. A permutation π = (5, 3, 1, 2, 7, 6, 8, 4) of S will be represented by a permutation of COLUMNS and
a new binary string.

A permutation π(S) of S will be represented by the permutation π(COLUMNS) of COLUMNS, so there is no need to
encode it. The string ROWDELIM′ corresponding to π(S) is simply encoded using n + o(n) bit. Then the rank, select
and access operators are supported on both S and π(S) based only on the three strings COLUMNS, ROWDELIM and
ROWDELIM′, using in total n(lg σ + o(lg σ)) bits. ut

2.2 Relations

Given a binary relation R ∈ [n][σ], Barbay et al. [2] defined the operators

– label rank(α, x), the number of objects labeled α preceding x;
– label select(α, r), the r-th object labeled α, if any, or ∞ otherwise;
– table access(x, α), checks whether object x is associated with label α.

The result from Lemma 1 can easily be extended to those operators on binary relations, provided the adequate definition
of the permutation of a relation:

Definition 1. Given a permutation π on [n] and a binary relation R ∈ [σ]× [n], the permuted binary relation π(R) is
the relation such that (x, α) ∈ π(R) if and only if (π−1(x), α) ∈ R.

3 The Row-Major order lists the elements of the first row, then of the second one, and so on.
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Barbay et al.’s encoding for binary relations can be extended to support the same operators on both a relation and
its permutation. For simplicity, we show here only a restriction of it to the operators on labels (Barbay et al.’s encoding
support operators on objects too). We prove it in two steps: first for an encoding of size growing with σ, and second
for an encoding of size growing with n.

Corollary 1. Consider a permutation π on [n], such that the access to both π(i) and π−1(i) is supported in constant
time. A binary relation R ∈ [σ] × [n] of cardinality t can be encoded using t(lg σ + o(lg σ)) bits4 in order to support
the operators label rank, TableAccess in time O(lg lg σ) and the operator label select in constant time, on both
R and π(R).

Proof. We represent the binary relation r through:

– a string S ∈ [σ]t as the column-major order list of the row of the elements of the relation R,
– two binary strings B and Bπ ∈ {0, 1}t+σ, listing the cardinalities of each column in unary.

The key issue is to simulate the access to Sπ, the column major order list of the row of the elements of the relation
π(R). To do so, observer that each position p in π(S) corresponds to a zero in Bπ, and can be decomposed as the
number of occurrences p1 of 1 before it plus the number p0 of 0 between this position and the last 1 or the beginning
of the string, such that p = p1 + p0 The corresponding position p′ in S corresponds to a zero in B defined as the
number of occurrences π−1(p1) of 1 before it and the same number p0 of 0 between this position and the last 1 or the
beginning of the string: p′ = π−1(p1) + p0.

By Lemma 1, we can support all operators on π(R) from Sπ and Bπ with o(t) additional bits. ut

Note that this proof is very simple as it directly transcribes the relation in a string, which is not possible for an
encoding which grows in function of n instead of σ, or for an encoding supporting the orthogonal rank and select
operators on the columns.

Corollary 2. Suppose that a permutation π on [n] is encoded such that the access both π(i) and π−1(i) is supported
in time at most O(lg lg n). A binary relation R ∈ [σ]× [n] of cardinality t can be encoded using t(lg n + o(lg n)) bits
in order to support the operators label rank, TableAccess in time O(lg lg n) and the operator label select in
constant time, on both R and π(R).

Proof. This time, we need to decompose the relation into σ/n square matrices of size n × n, via the same reduction
step from Golynski et al. [8] and Barbay et al. [2], which uses 2σ + o(σ) additional bits and reduces the support of
rank and select operators on the lines of the relation R to the rank and select operators on the lines of smaller relations
through the definition of rounded rank and select operators.

Consider one of those small relations M , and note tM its cardinality: as it is of size n × n, Corollary 1 permits to
encode it in tM (lg n + o(lg n)) bits and still support rank and select on it in time O(lg lg n).

Summing the space used over all smaller relations, the total space used is t(lg n + o(lg n)) + 2σ + o(σ) bits. As
we suppose that σ ≤ t, this corresponds to the final result. ut

Note that the requirement on the encoding of the permutation π in Corollary 2 is weaker than in Corollary 1. As
Corollary 2 supports the operators in time O(lg lg n), it does not matter if computing the permutation’s values costs us
another O(lg lg n). On the other hand, in Corollary 1 the operators are supported in time O(lg lg σ) and an additional
cost of O(lg lg n) would be costly.

Corollary 3. Consider a permutation π on [n], such that the access to both π(i) and π−1(i) is supported in constant
time. A binary relation R ∈ [σ]× [n] of cardinality t can be encoded using t(lg µ+o(lg µ)) bits in order to support the
operators label rank, TableAccess in time O(lg lg µ) and the operator label select in constant time, on both R
and π(R), where µ = min(n, σ).

4 Without loss of generality, we suppose that t > σ, n: it is easy to ignore labels which do not occur in the relation.
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3 Trees

3.1 DFUDS order support

The encoding described by Geary et al. [7] for ordinal tree is powerful: we extend it to support a different order on the
nodes, named DFUDS: it is the order associated to the depth first unary degree sequence [4] representation, where all
the children of a node are listed before its other descendants (see the Figure 2 for an example).

1

2

4

6 7

5

8 9

3

10

12 13

11

14 15

Fig. 2. A binary tree where each node was assigned its rank in the DFUDS order. Note in particular that the DFUDS is not the same as
the leveled order, here equal to 1, 2, 3, 4, 5, 10, 11, 6, 7, 8, 9, 12, 13, 14, 15.

Lemma 2. An ordinal tree on n nodes can be encoded in 2n + o(n) bits in order to support in constant time
the same operators as Geary et al. (in particular the operators tree rankPRE, tree selectPRE, tree rankPOST,
tree selectPOST), and the operators tree rankDFUDS and tree selectDFUDS.

Proof (sketch). The technique is an extension of Geary et al.’s to support the depth operator using o(n) bits.
First observe that the DFUDS and PRE ranks of a node x are linked by a simple relation:

rankDFUDS(x) =

{

childrank(x) − 1 + rankDFUDS(child(parent(x), 1)) if childrank(x) > 1;
rankPRE(x) +

∑

a∈anc(x)\{r} (degree(parent(a)) − childrank(a)) otherwise.

As the operators rankPRE, parent, childrank and child (see Geary et al.’s definition) are all supported in constant
time by the encoding from Geary et al., the support of the operator rankDFUDS is reduced to the support of S(x) =
∑

a non root ancestor of x (degree(parent(a)) − childrank(a)) in constant time for each node of the tree.
This support is analogous to the support for depth in constant time [7], using the following property:

Property 1. No node of a mini-tree (resp. micro-tree) except the root has siblings in another mini-tree (resp. micro-
tree).

We precompute and memorize S(x) for the root x of each mini-tree, as n/ max{d(lg n)4e, 2} numbers, each
encoded in lg n bits, which uses in total o(n) bits. We precompute and store the difference S(y) − S(x) between the
root x of each micro-tree and the root y of the mini-tree which contains it, as n/ max{d(lg n)/24e, 2} numbers, each
encoded in lg lg n bits, which uses in total O(n lg lg n

lg n
) = o(n) bits. We finally compute the difference S(y) − S(x)

between each node x and the root y of the micro-tree which contains it using a precomputed table using o(n) bits. ut

Given the lists of labels of a multilabeled tree in DFUDS order, one can easily support the search for the α-children
and α-descendants of a node x, as those are all consecutive in this order. Unfortunately, the DFUDS order is not as
practical to support the search for α-ancestors than the preorder. Lemma 2 provides a permutation between the DFUDS
order and the preorder, which can be combined with Corollary 3 to support the search for α-ancestors, α-children and
α-descendants from a using encoding.
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3.2 Multi-Labeled Trees

Using Corollary 3 and Lemma 2, Theorem 1 defines an encoding for multi-labeled trees which uses almost minimal
space that supports all the labeled searches at once.

Definition 2 (Barbay et al. [2]). A multi-labeled tree is an ordinal tree on n nodes together with a set of σ labels,
and a set of t pairs from [n] × [σ].

Barbay et al.distinguished in their encoding for each branch the occurrence of each label the closest to the root,
by doubling the size of the alphabet. This allow them to find easily the ancestor matching a given label which is the
closest to the root, which is sufficient for the task that they are considering.

To efficiently find all the α-ancestors of any given node, we encode for each node and for each of its labels α the
number of α-ancestors of x. To measure the maximum number of such ancestors, we borrow the notion of recursion
levels of XML documents by Zhang et al. [17].

Definition 3 (Zhang et al. [17]). Given a rooted path in the XML tree, the maximum number of occurrences of any
label minus 1 is the path recursion level (PRL). The recursion level of a node in the XML tree is defined to be the PRL
of the path from the root to this node. The document recursion level (DRL) is defined to be the maximum PRL over all
rooted paths in the XML tree.

We extend this notion to a more precise one, which takes into account the relative frequencies of the labels.

Definition 4. The recursivity ρα of a label α in a multi-labeled tree is the maximum number of occurrences of α on
any rooted path of the tree. The average recursivity ρ of a multi-labeled tree is the average recursivity of the labels
weighted by the proportion tα/t of nodes associated with each label α:

ρ =
∑

α∈[σ]

tα
t

ρα

Note that Zhang et al. observed that in practice the DRL is often very small: in the data sets that they considered it
is never larger than 10 [17, Table 2]. As the DRL of an XML document is a natural upper bound to its recursivity, we
expect the average recursivity of documents to be even lower in practice.

Theorem 1. Consider a multi-labeled tree on n nodes and σ labels, associated in t relations, of average recursivity
ρ. There is an encoding using t(lg(ρµ) + o(lg(ρµ))) bits (where µ = min(n, σ)) that supports

– the navigation operators on the structure of the tree in constant time;
– the enumeration of the set A of α-ancestors of x in time O(lg lg µ + |A| lg lg ρα);
– the enumeration of the set D of α-descendants of x α in time O(|D| lg lg µ);
– the enumeration of the set C of α-children of x α in time O(|C| lg lg µ).

Proof (sketch). Represent the structure T of the tree as an ordinal tree encoded using the encoding for unlabeled
ordinal trees defined by Geary et al. [7]: this takes 2n + o(n) bits, and supports the navigation operators on the tree
structure in constant time as well as the search without node test nor predicate.

Represent the relation R between nodes and labels using Corollary 3 using t(lg µ + o(lg µ)) bits to support the
rank, select and access operators on the orders PRE, POST and DFUDS on the nodes in time O(lg µ).

This permits to support the enumeration of all descendants of a node x matching label α in time O(|D| lg µ) using
exactly the same technique than Barbay et al. [2].

The same technique, used with the DFUDS order, permits to support the enumeration of all children of a node x
matching α in time O(|C| lg µ).

As there is no order in which the ancestors of each node are all consecutive, we associate to each label α of a node
x the number of ancestors of x matching α: this is a generalization of the trick used by Barbay et al. [2] to distinguish
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the highest α-node on each rooted branch. For each label α such that ρα > 1, we represent those numbers in one string
Sα ∈ [ρα]tα , where the ith number of Sα corresponds to the ith node labeled α in preorder.

The length of the strings (Sα)α∈[σ] is already implicitly encoded in the encoding of R, we need just to encode
for each label α its recursivity ρα in unary, using t + σ bits. To encode the strings themselves, we use the encoding
described by Golynski et al. [8], which uses tα(lg ρα + o(lg ρα)) bits in order to support the rank and access operator
in time O(lg lg ρα) and the select operator in constant time.

The total space used by the strings is
∑

α∈[σ] tα(lg ρα + o(lg ρα)). By concavity of the log, this is smaller than





∑

α∈[σ]

tα





(

lg

(
∑

α∈[σ] tαρα

∑

α∈[σ] tα

)

+ o

(
∑

α∈[σ] tαρα

∑

α∈[σ] tα

))

= t(lg ρ + o(lg ρ)).

To support the enumeration of all the α-ancestors of a node x, we first find from R the number px of α-nodes
preceding x in preorder: this corresponds to a position in Sα, and took us time O(lg lg µ). Then we initialize i to 1
and iterate as follows: find the position pi in Sα of the symbol i immediately preceding position px: it corresponds to
the ith α-node in preorder. If this node is an ancestor of x, output it, increments i and iterates, otherwise stop. Each
iteration correspond to a select operation in R (performed in constant time) and some rank and select operators in
Sα, hence each is performed in time O(lg lg ρ), hence the total time of O(lg µ + |A| lg ρα) to enumerate the set A of
α-ancestors of x.

Summing the space required for T , R and the strings (Sα)α∈[σ] gives the final result t(lg(ρµ) + o(lg(ρµ))). ut

For algorithms such as the one described by Barbay et al. [1, 2], it is useful to search for the first available node
matching the location step, where available nodes are defined as those following one particular node in preorder. We
show how to extend the encoding of Theorem 1 in order to support those operators:

Corollary 4. Consider a multi-labeled tree on n nodes and σ labels, associated in t relations, of average recursivity
ρ. There is an encoding using t(lg(ρµ) + o(lg(ρµ))) bits (where µ = min(n, σ)) that supports

– the navigation operators on the structure of the tree in constant time;
– the selection of the first α-ancestor of node x after node y in time O(lg lg µ + lg lg ρα);
– the selection of the first α-descendant of node x in time O(lg lg µ);
– the selection of the first α-descendant of node x in time O(lg lg µ);

Proof (sketch). Without loss of generality, we assume that the operators return ∞ when the answer is not defined (e.g.
when the node x has no α-descendant, child or ancestor succeeding to y).

Finding the first descendant and the first child of a node x which matches a label α and succeeds to a node y is
already supported by the encoding of Theorem 1. To support the search for the first ancestor after a node y, a naive
approach would require to perform a binary search among all the α ancestors of x to find the first one succeeding to
y, which would take time O(lg ρα lg lg µ).

Instead, we add to the encoding of Theorem 1 the support of the operator LCA in constant time, either by extending
Geary’s encoding of the ordinal tree or by spending 2n + o(n) bits to encode a second time the structure of the tree as
described by Sadakane [12].

Consider a context node x, a threshold node y and a label α. Without loss of generality, we can suppose that y
precedes x in preorder (otherwise the operator return ∞), and even that y is an ancestor of x: if it is not then the
problem is equivalent to the search for the first α-ancestor of node x after node LCA(x, y).

Using rank and select on the relation R, we can find the first α-descendant z of y in preorder in time O(lg lg µ).
The node z is not necessarily an ancestor of x, but it has the same number i of α-ancestors as y, indicated by the
corresponding value in the string Sα, accessed in time O(lg lg ρα). Finally, the first α-ancestor of x after y is the α-
node corresponding to the value i just before the position corresponding to x in Sα, found in O(lg lg µ+lg lg ρα). ut
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4 Conclusion

We described how to modify Barbay et al. [2]’s succinct encoding for multi-labeled trees in order to support the search
for child and ancestor matching a given node-test, rather than the descendant and ancestor, and how to extend it in
order to support all those operators with the same encoding. This final encoding supports exactly the same operators
than the one described by Geary et al. [7], but with a new time/space trade-off: while Geary et al.’s encoding supports
the operators in optimal (constant) time, our encoding uses an amount of space considered asymptotically optimal
(i.e. within lower order terms of the amount required to encode the data without supporting any operators on it). We
pretend that our encoding is more practical than Geary et al.’s: the time in which our encoding supports the operators,
O(lg lg σ), is still manageable; while the space used by Geary et al.’s encoding can make it useless in practice as it is
growing linearly in nσ.

This encoding can easily be further extended to support the specificities of XML documents and XPath queries,
such as attributes and all location axes (such as children, descendants, attributes,descendants-or-self, preceding-sibling,
preceding, or ancestor-or-self), and could be advantageously used in many application (e.g. the work from Josifovski et
al. [11] and from Zhang et al. [16]).

Note also that all the encodings presented in this paper are based on the encoding from Golynski et al. [8], which
does not compress but supports the select operator in constant time and rank and access in slightly larger time. Most
of them make no use of the access operator, and hence can be based instead on the other encoding from Golynski et
al., which takes advantage of the entropy of the string to compress the representation, at the cost of the support of the
access operator. Of course the entropy of a binary relation or a multi-labeled tree would not be defined in the same
way as for a string, but this is an obvious research perspective.
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