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ABSTRACT
We present an algorithm for rank-2 type inference in the
second-order λ-calculus. Our algorithm differs from the
well-known algorithm of Kfoury and Wells in that it em-
ploys only a quadratically fewer type variables and in-
equalities. Our algorithm consists of a translation from
a λ-term to an instance of R-ASUP (a decidable super-
set of ASUP) in which the variables correspond more
directly to features in the original term. We claim that
our construction, being simpler and more direct, is more
amenable to proof and extension.

1. INTRODUCTION
Type inference for the second-order λ-calculus was one
of the most important open problems in programming
language theory, until the question was answered nega-
tively by Wells [11]. Even after Wells’ result, research in
polymorphic type inference has continued. An impor-
tant approximate solution is that of Kfoury and Wells,
which we call Algorithm KW. Their algorithm answers
the type inference problem for the rank-2 fragment of
the second-order λ-calculus [6]. Within this sublan-
guage, a function may require a polymorphic argument,
but no function may demand an argument that is itself a
function demanding a polymorphic argument. In other
words, the ∀-symbol, which denotes polymorphism, may
be nested to the left of at most one → symbol.

We also know from Wells’ result that type inference is
undecidable at all higher ranks. However, rank-2 con-
structions subsume the kind of polymorphic abstrac-
tions permitted by let-polymorphism in ML-like lan-
guages; hence, being able to express widely used func-

tional programming patterns, they form an important
sublanguage of the second-order λ-calculus. A rank-
2 inference algorithm would allow the programmer to
rewrite let-constructions as the application of functions
to arguments, thereby facilitating extensions supporting
separate compilation of a polymorphic abstraction from
its argument.

Despite these advantages of rank-2 inference, it has not
found its way into the more popular typed functional
languages. We believe the absence of rank-2 inference
is due in part to certain shortcomings of Algorithm KW.
Two of these shortcomings are the scheme by which
it represents subexpressions with type variables, and
the complex source-level transformation (known as θ-
reduction) that it employs before the type inference
process begins. Both of these shortcomings make the
algorithm difficult to understand and trace; the latter
in particular makes it hard to translate a failed inference
into a type error that the programmer can understand,
because the error that arises was found in the trans-
formed program instead of the original program.

We present in this paper an algorithm for type inference
in the rank-2 fragment of the second-order λ-calculus
that addresses the first of these shortcomings. The re-
sult is an algorithm that is much clearer to state. Our
results are based on properties of the R-acyclic semiu-
nification problem (a generalization of the acyclic semi-
unification problem of Kfoury, Tiuryn, and Urzyczyn
[5]), whose properties we state and prove elsewhere [7].

The remainder of this paper is organized as follows. In
Section 2, we introduce the semiunification problem, its
subproblems, and the properties of the R-acyclic semiu-
nification problem that we will need. Section 3 contains
a summary of our algorithm. Section 4 summarizes Al-
gorithm KW, highlighting the differences between that
algorithm and ours. In Section 5 we show that our al-
gorithm computes the same answers as Algorithm KW.
We summarize and discuss our results in Section 6.



2. BACKGROUND AND RELATED WORK
The success of ML and its descendents is in a large part
due to the polymorphic type assignment algorithm W
of Damas and Milner [1]. Since then, language de-
signers have sought type inference algorithms for richer
type systems. Of particular interest was the type infer-
ence problem for the second-order λ-calculus of Girard
[2] and Reynolds [9]. This problem remained open for
decades before it was resolved negatively by Wells [11].
At the same time, type inference was proved undecid-
able for all rank restrictions of the second-order λ-calculus
beyond 2. On the other hand, the rank-2 fragment itself,
which subsumes, for example, the let-polymorphism of
ML, was shown decidable, via Algorithm KW [6]. How-
ever, Algorithm KW remains largely a theoretical result;
our work in this paper removes some of the shortcom-
ings, as mentioned in Section 1, that hinder its general
use.

At the heart of many type inference systems is the uni-
fication problem of Robinson [10]. In richer type sys-
tems, such as that of the second-order λ-calculus, richer
unification-related problems arise. Of particular inter-
est here is the semiunification problem (SUP) and its
descendents. SUP was introduced by Henglein [3] as
part of a study of polymorphic recursion in the Milner-
Mycroft calculus [8]. Though SUP was initially believed
to be solvable, it was proved undecidable by Kfoury,
Tiuryn, and Urzyczyn [4]. SUP’s undecidability was
used in Wells’ proof of the undecidability of type infer-
ence for the second-order λ-calculus [11]. On the other
hand, the decidability of a subproblem, the acyclic semi-
unification problem (ASUP, defined in [5]), forms the
basis for Algorithm KW. More recently, a larger and
more natural decidable subproblem, known as the R-
acyclic semiunification problem (R-ASUP), is presented
in [7], and underlies our present work.

2.1 SUP, ASUP, andR-ASUP
The algorithms presented in this paper are based on the
semiunification problem (SUP) and its subproblems. In
this section, we present the basic definitions and results
that we will need in the remainder of the paper.

Definition 1 (SUP). Given a term algebra A, an
instance of SUP is a set Γ of pairs (called inequalities)
{τi ≤ µi}Ni=1 where τi, µi ∈ A for all i. A solution of
Γ is a substitution S such that there exist substitutions
S1, . . . , SN such that

τ1SS1 = µ1S

τ2SS2 = µ2S

· · ·
τNSSN = µNS

Although SUP itself is undecidable, it has two notable
decidable subsets. The first is the acyclic semiunifi-
cation problem (ASUP), which forms the basis for the
algorithm KW. ASUP is defined in [5]; a solution pro-
cedure is given in [6], and reproduced in Section 3.4.

The second is the R-acyclic semiunification problem (R-
ASUP), which forms the basis for our algorithm. R-
ASUP is presented in detail in [7]; we summarize its
properties here.

Definition 2. Given a SUP instance Γ, the graph of
Γ, denoted G(Γ), is a directed graph, defined as follows:

• the vertices in G(Γ) are the inequalities τ ≤ µ.

• given vertices (inequalities) τi ≤ µi and τj ≤ µj,
there is an edge from τi ≤ µi to τj ≤ µj iff

Vars(µi) ∩Vars(τj) 6= ∅ .

For any expression τ , Vars(τ) represents the set of vari-
ables in τ .

Definition 3. Let G = G(Γ) be a SUP graph. De-
fine relations R and R′ on variables in G as follows:

• for variables α and β, αRβ if there are vertices
τi ≤ µi and τj ≤ µj such that there is a directed
path from τi ≤ µi to τj ≤ µj, and α ∈ Vars(µi)
and β ∈ Vars(µj).

• for variables α and β, αR′β if there are vertices
τi ≤ µi and τj ≤ µj such that there is a directed
path of nonzero length from τi ≤ µi to τj ≤ µj,
and α ∈ Vars(µi) and β ∈ Vars(µj).

Note that R′ is a subrelation of R.

Definition 4 (R-acyclic; R-ASUP). A SUP graph
G is R-acyclic if for all variables α, β, such that αR′β,
we have ¬(βR+α), where R+ is the transitive closure
of R. R-ASUP is the restriction of SUP to instances
whose graphs are R-acyclic.

The following properties of R-ASUP, which we use in
the remainder of this paper, are proved in [7]:

Theorem 1. R-ASUP is a decidable subset of SUP;
moreover, it is decidable by the same procedure that de-
cides ASUP.

Theorem 2. R-ASUP is a strict superset of ASUP.

3. ALGORITHM LC
We present in this section our algorithm for rank-2 type
inference. We will contrast our algorithm with Algo-
rithm KW in the Section 4.



3.1 λ-Labelling
We first indicate which abstractions are allowed to be
polymorphic, and which must be monomorphic, by la-
belling each abstraction in the term with either 1, 2, or
3, as follows:

• a λ1-abstraction is any abstraction whose argu-
ment has been supplied;

• a λ3-abstraction is an abstraction whose argument
has not been supplied, but itself appears as a (not
necessarily proper) subexpression of some function
argument;

• a λ2-abstraction is any other abstraction.

The λ1- and λ2-abstractions are polymorphic abstrac-
tions, and the λ3-abstractions are monomorphic abstrac-
tions.

We begin by determining the active variables in the
term. These are the bound variables that are not matched
with arguments1:

act(x) = [] (the empty list)

act(λx.M) = x :: act(M)

act(MN) =

{
[] if act(M) = [],
x′ if act(M) = x :: x′

For a given term M , the labelled version of M , denoted
Mλ, is given by

Mλ = lbl(M, act(M), 2) ,

where the function “lbl” is defined by

lbl(x,X, i) = x

lbl(λx.M,X, i) =

{
(λix.lbl(M,X, i)) if x ∈ X,
(λ1x.lbl(M,X, i)) if x 6∈ X.

lbl((MN), X, i) = lbl(M,X, i)lbl(N, act(N), 3)

3.2 θ-Reduction
Before translating from a λ-labelled expression to SUP,
we follow the example of KW, and first transform the
expression, via a process known as θ-reduction. The
process of θ-reduction consists of applying the following
four reduction rules, until it is no longer possible to do
so:

• (θ1) ((λ1y.N)P )Q→ (λ1y.NQ)P

• (θ2) λ3z.(λ1y.N)P → (λ1v.λ3z.(N ′))(λ3w.(P ′)),
where N ′ = N [vz/y], P ′ = P [w/z], and v and w
are fresh variables

• (θ3) N((λ1y.P )Q)→ (λ1y.NP )Q

• (θ4) (λ1y.(λ2x.N))P → λ2x.((λ1y.N)P )

1We implicitly assume that all bound variables have
been named distinctly from each other and from all free
variables.

An expression in which no θ-reduction is possible is said
to be in θ-normal form. Terms in θ-normal form are
guaranteed to have the following shape:

λ2.x1 · · ·xm.(λ1y1 · · · ((λ1yn.En)En−1) · · · )E0 ,

in which each Ei may contain λ3-abstractions, but no
λ1- or λ2-abstractions.

Because θ-normal forms have such a rigid structure, it
is easier to reason about them than about arbitrary ex-
pressions. However, the degree of structure in θ-normal
forms also implies that the amount of change that a
term must undergo to reach θ-normal form can be dras-
tic; a programmer might not even recognize a θ-normal
equivalent of a program he wrote. Further, as trans-
lation to ASUP occurs on the θ-normal form, any type
errors are detected in relation to the θ-normal form, not
the original term; hence, θ-reduction hinders our ability
to communicate type errors back to the programmer in
a meaningful way.

For these reasons, a practical inference algorithm must
abandon the structure provided by θ-normal forms in
favour of a more general solution. We do not address
this need here; we leave it for future work.

3.3 Translation toR-ASUP
After labelling and θ-reduction, the term has the form

λ2.x1 · · ·xm.(λ1y1 · · · ((λ1yn.En)En−1) · · · )E0 ,

in which each Ei may contain λ3-abstractions, but no
λ1- or λ2-abstractions. We then translate the term into
an instance of SUP. The resulting instance uses the fol-
lowing variables:

• for each λ2-bound variable xi, the variable βxi rep-
resents its specializable type

• for each λ1-bound variable yi, the variable βyi rep-
resents its specializable type

• for each λ3-bound variable zi, the variable γzi rep-
resents its non-specializable type

• for each free variable wi, the variable βwi repre-
sents its specializable type

• for each subexpression E of M , δE represents its
derived type

We then translate the term M to a set of SUP equalities
and inequalities as follows—for each subexpression Ek:

• For each abstraction λ3zi.N , include the equality
δλ3zi.N

= γzi → δN .

• For each occurrence xij of a variable xi, include
the inequality βxi ≤ δxij .

• For each occurrence yij of a variable yi, include
the inequality βyi ≤ δyij .



• For each occurrence wij of a free variable wi, in-
clude the inequality βwi ≤ δwij .

• For each occurrence zij of a variable zi, include
the equality γzi = δzij .

• For each application MN , include the equality
δM = δN → δMN .

• If there is a user-supplied type annotation ∀~α.τ for
some λ2-bound variable xi, include the equality
βxi = τ .

• For each free variable wi, if a type environment
supplies wi with the type ∀~α.τ , include the equal-
ity βwi = τ .

Each equality τ = µ is merely syntactic sugar for the
inequality α → α ≤ τ → µ, where α is a fresh vari-
able. Finally, for each redex (λ1yj .Ej+1)Ej , we add the
equality βyj = δEj .

For proof that the resulting instance belongs toR-ASUP,
see later in this paper.

3.4 R-ASUP Solution and Type Recovery
To compute the type of a term M , we solve the R-ASUP
instance we computed in the previous section. The R-
ASUP solution procedure is identical to the ASUP so-
lution procedure presented in [6]. It is a “redex pro-
cedure”, in which reducible expressions (redexes) are
repeatedly found and reduced. There are two kinds of
redex:

• redex-I : Let τ ≤ µ be an inequality. Let α be a
variable and τ1 be a compound expression such
that α and τ1 occur at corresponding positions
within µ and τ , respectively. Then a redex-I is
said to exist and reduction of the redex-I consists
of replacing α throughout the problem instance by
τ ′1, which is τ1 with all variables replaced by fresh
ones.

• redex-II : Let τ ≤ µ be an inequality. Let α be a
variable and µ1 and µ2 be expressions such that
µ1 6= µ2, α and µ1 occur at corresponding posi-
tions within τ and µ, respectively, and α and µ2

occur at corresponding positions within τ and µ,
respectively. Then a redex-II is said to exist and
reduction of the redex-II consists of applying the
most general unifier of µ1 and µ2 throughout the
instance (according to Robinson’s unification al-
gorithm [10]) and failing if unification fails.

At the end of the redex procedure, when no redexes
remain, the accumulated substitution performed, S, is
the solution of the R-ASUP instance.

To recover a term’s type from the associated ASUP in-
stance, KW begins by solving the instance, via the same
redex procedure as we presented in Section 3.4. If S is

the solution of the instance, then the final type is given
by

∀.(∀.τ1 → · · · → ∀.τm → δEn+1S) ,

where ∀.τi is the user-annotated type for the λ2-variable
xi, or ∀α.α if none was supplied.

4. ALGORITHM KW
We present in this section the original rank-2 typability
algorithm for the second-order λ-calculus. This algo-
rithm appears in [6]; our purpose here is to contrast it
with our own algorithm.

4.1 Translation to ASUP
The abstraction-labelling and θ-reduction steps for KW
are the same as for LC. The difference lies in the trans-
lation procedure, which targets ASUP for KW, whereas
LC targets R-ASUP. As we noted previously, the input
is always a θ-normal form:

λ2x1 · · ·xm.(λ1y1.(λ
1y2.(· · · ((λ1yn.En+1)En) · · · ))E2)E1,

with free variables w1, . . . wp. Each Ei may introduce
variable bindings; the variables bound in Ei will be
called zi,1, zi,2, . . ..

The corresponding instance of ASUP contains the fol-
lowing variables:

• For 1 ≤ j ≤ m, 1 ≤ i ≤ n+ 1, the variable βxi−1,j ,
representing the type of the parameter xj (which
may be specialized) within the subexpression Ei.

• For 1 ≤ j ≤ p, 1 ≤ i ≤ n + 1, the variable βwi−1,j ,
representing the type of the free variable wj (which
may be specialized) within the subexpression Ei.

• For 1 ≤ j ≤ n, j < i ≤ n+ 1, the variable βyi−1,j ,
representing the type of the parameter yj (which
may be specialized) within the subexpression Ei.

• For each bound variable zi,j , the variable γi,j , rep-
resenting its (non-specializable) type.

• For each subexpression M of each Ei, the vari-
able δM , representing the type derived for M (dif-
ferent occurrences of the same subexpression are
considered distinct and are assigned different δ-
variables).

Then, for each subexpression N of each Ei, the ASUP
instance contains the following inequalities:

• If N = xj , the inequality βxi−1,j ≤ δN .

• If N = wj , the inequality βwi−1,j ≤ δN .

• If N = yj , the inequality βyi−1,j ≤ δN .

• If N = zi,j , the equality γi,j = δN .

• If N = PQ, the equality δP = δQ → δN .



• If N = λzi,j .P , the equality γi,j → δP = δN .

As before, an equality τ = µ is syntactic sugar for the
inequality α→ α ≤ τ → µ, where α is a fresh variable.

In addition, the instance contains the following inequal-
ities:

• For each β-redex (λyi.Pi)Ei, include the equality
βyi,i = δEi .

• For each xj , 1 ≤ i ≤ n, include the inequality
βxi−1,j ≤ βxi,j .

• For each yj , j < i ≤ n, include the inequality
βyi−1,j ≤ β

y
i,j .

• For each wj , 1 ≤ i ≤ n, include the inequality
βwi−1,j ≤ βwi,j .

Finally, for each of the free variables w1, . . . wp, we con-
sult a type environment A (if one has been supplied) for
typing information. If, for a given wi, A(wi) = ∀~α.σ for
some rank 0 type σ, we include the equality βw0,i = σ
in the ASUP instance. Similarly, if the variable xj is
supplied, via programmer annotation, the type ∀~α.σ
for some rank 0 type σ, then we include the equality
βx0,j = σ in the problem instance.

A few properties of this translation are worth noting.
First, each variable xj , yj , and wj gets, respectively,
n + 1, n − j + 1, and n + 1 specializable type vari-
ables to track its type, one for each expression Ei in
which the variable could possibly occur. These variables
are called, respectively, βx0,j , . . . , β

x
n,j , β

y
j,j , . . . , β

y
n,j , and

βw0,j , . . . , β
w
n,j . Second, the variables associated with xj ,

yj , and wj , are related to one another by chains of in-
equalities: βx0,j ≤ · · · ≤ βxn,j , β

y
j,j ≤ · · · ≤ βyn,j , and

βw0,j ≤ · · · ≤ βwn,j . By contrast, our translation does not
produce these chains of inequalities; further, it employs
a single variable for each of xj , yj , and wj .

4.2 Type Recovery
The type recovery step for KW is the same as for LC.

In summary, the important difference between our al-
gorithm and KW is that we use only one type variable
for each abstraction parameter and free variable. In
the next section, we show that our algorithm produces
equivalent results to KW.

5. REDUCING THE NUMBER OF SUP
VARIABLES

In this section we show that each variable in the term to
be typed can be represented by a single type variable.

Recall that under the KW translation to ASUP, each
variable xj , yj , and wj in a θ-normal term E gets,
respectively, n + 1, n − j + 1, and n + 1 specializ-
able type variables to track its type, one for each ex-
pression Ei in which the variable could possibly occur.

These variables are called, respectively, βx1,j , . . . , β
x
n+1,j ,

βyj+1,j , . . . , β
y
n+1,j , and βw1,j , . . . , β

w
n+1,j . Second, the vari-

ables associated with xj , yj , and wj , are related to one
another by chains of inequalities: βx1,j ≤ · · · ≤ βxn+1,j ,
βyj+1,j ≤ · · · ≤ βyn+1,j , and βw1,j ≤ · · · ≤ βwn+1,j . Hence,
any information we deduce for a variable “lower” in the
chain will get propagated, via redex-I reduction, “up”
the chain to the remaining variables. Collectively, we
shall refer to the variables βxi,j , β

y
i,j , and βwi,j as β-

variables. Further, we write βi,j when the distinction
among x, y, and w is unimportant. We use the nota-
tion β⊥,j to stand for βx1,j , β

w
1,j , or βyj+1,j .

Next, we observe a few properties of the ASUP solution
procedure (which is the same as the R-ASUP solution
procedure) in relation to the placement of variables:

Observation 1. If a variable α is replaced during
redex reduction, then it must occur as part of a redex—
this occurrence is always on the righthand side of some
inequality.

Observation 1 is immediate from the definition of the
redex algorithm.

Observation 2. For i > ⊥, βi,j only occurs on the
lefthand sides of inequalities, except within the inequality
βi−1,j ≤ βi,j.

Observation 2 is also immediate.

Since βi,j , i > 1, only occurs on the righthand side of an
inequality when it occurs alone, it cannot occur as part
of a redex-II. Hence, it can only be replaced as part of
a redex-I reduction. This, in turn, can only take place
if the variable βi−1,j is replaced during redex reduction.
By induction, for all i > 1, the variable βi,j can only be
replaced if the variable β⊥,j is replaced.

Each β⊥,j can be replaced in only one way:

• βx1,j is replaced via the equality βx1,j = τ (i.e., the
inequality α→ α ≤ βx1,j → τ) if the parameter xj
is annotated with ∀.τ , where τ is a rank 0 type.

• βw1,j is replaced via the equality βw0,j = τ (i.e., the
inequality α → α ≤ βw0,j → τ) if the initial type
environment associates the free variable wj with
the type ∀.τ , where τ is a rank 0 type.

• βyj+1,j is replaced via the equality βyj+1,j = δEj
(i.e., the inequality α → α ≤ βyj+1,j → δEj ) be-
cause of the redex (λyj .Pj)Ej .

These are the only inequalities in which the variables
β⊥,j occur on the righthand side.

Assuming these replacements occur (in the case of βyj+1,j ,
they will surely occur), and assuming they result in the



replacement of β⊥,j by something other than just an-
other variable, then there will be a redex-I in the in-
equality β⊥,j ≤ β⊥+1,j . Suppose that β⊥,j has been
replaced by an expression τj . Then redex reduction re-
places β⊥+1,j by the expression τj

′, which is τj , with all
variables renamed consistently to fresh variables. Sim-
ilarly, β⊥+2,j is replaced by τj

′′, and so on. Therefore,
we have proved the following:

Theorem 3. Given j and the choice of x, y, of w,
if β⊥,j is replaced by an expression τj , then all βi,j are
replaced by expressions that differ from τj by consistent
renaming of variables to fresh ones. In particular, they
are all structurally equivalent.

The replacement of variables by fresh ones is important,
because it keeps the problem instance within the realm
of ASUP—for each i, the variable βi,j occurs within
the set Vi and all sets Vi are declared by ASUP to be
pairwise disjoint. Therefore, to remain within ASUP,

the variables in each τ
(i)
j must be pairwise disjoint sets.

In [7], we define the notion of a solved inequality :

Definition 5 (Solved). An inequality τ ≤ µ is
solved of order 0 if there is a substitution S such that
τS = µ, and the variables of τ do not occur on the
right-hand side of any inequality in the instance. An
inequality τ ≤ µ is solved of order k for k > 0 if there
is a substitution S such that τS = µ, and the variables of
t do not occur on the right-hand side of any inequality
in the instance that is not solved of order j for some
j < k. An inequality is solved if it is solved of order k
for some k ≥ 0.

Informally, τ ≤ µ is solved if τS = µ for some S, and
the variables of τ do not occur on the righthand side of
any unsolved inequality in the instance. The important
property of solved inequalities is that they will never
contain a redex:

Theorem 4. If an inequality is solved, then the redex
algorithm will never find a redex in it.

This result is proved in [7]. The theorem allows us
to make the following observation about chains of β-
variables:

Observation 3. Once the redex-I’s in the chains of
β-variable inequalities have been reduced, the chains are
solved.

Therefore, once the variables βi,j have been replaced

by τ
(i)
j , we may assume that the chains of β-variable

inequalities are no longer there. Therefore, for all prac-

tical purposes, the expressions τ
(i)
j only occur on left-

hand sides.

Observation 4. If a variable only occurs on left-hand
sides of inequalities in a SUP instance, then it will never
be replaced by the ASUP solution algorithm.

This is clear—since redex reductions arise from replace-
ments on the righthand side of an inequality, if a variable
never occurs on a righthand side, it will never be part
of a redex.

Depending on the instance, we sometimes have a choice
regarding whether a particular variable replacement is
performed by one or more of the substitutions S1, . . . , Sn,
or by the solution S. We prefer solutions in which S
does as little work as possible; we formalize this notion
below:

Definition 6. Let Γ = {τi ≤ µi}ni=1 be a SUP in-
stance with solution S. S is called canonical if

dom S ⊆
n⋃
i=1

Vars(µi) .

The following result shows that any SUP solution has a
“canonical core” that is also a solution:

Theorem 5. If a SUP instance Γ has a solution S,
then S can be written as S′C ◦SC , where SC is canonical,
dom SC ∩ dom S′C = ∅, and SC solves Γ.

Proof. For each inequality τi ≤ µi in Γ, there is a
substitution Si such that τiSSi = µS. Let

V =

n⋃
i=1

Vars(µi) .

Let SC = S|V (the restriction of S to variables in V ) and
S′C = S \SC (i.e., the restriction of S to variables not in
V ). Then SC is canonical by construction, S = S′C ◦SC ,
and dom SC ∩dom S′C = ∅. It remains to show that SC
solves Γ. We have

τiSSi = µS .

Hence, since SC and S′C commute (their domains are
disjoint),

τiSCS
′
CSi = µS′CSC .

Since dom S′C ∩ V = ∅, we have

τiSCS
′
CSi = µSC .

Grouping S′C and Si together as Si ◦S′C , we see that SC
solves each inequality in Γ; hence, it solves Γ.

From now on we implicitly assume that solutions of SUP
instances are canonical. Note that any solution com-
puted by the redex procedure arises from redexes whose
reduction produces substitutions on at least one right-
hand side; hence the redex procedure always computes
canonical solutions.



Theorem 6. Let τ ≤ µ be an inequality in a SUP
instance Γ, such that the variables in τ do not occur
on any righthand sides. Let τ ′ be a consistent variable
renaming of τ , such that the variables in τ ′ also do not
occur on any righthand sides. Let Γ′ = (Γ \ {τ ≤ µ}) ∪
{τ ′ ≤ µ}. Then Γ′ has a solution if and only if Γ has a
solution. Moreover, Γ and Γ′ have the same solutions.

Proof. There exist renaming substitutions ρ and ρ′

such that τρ = τ ′ and τ ′ρ′ = τ . If S solves Γ, then
there is a substitution S1 such that τSS1 = µS. But
then τ ′ρ′SS1 = µS. Taking S′ = ρ′ ◦S, and noting that
the variables in the domain of ρ′ do not intersect those
in the domain of S (because S is assumed canonical),
we have ρ′ ◦ S = S ◦ ρ′. Thus, τ ′Sρ′S1 = µS. Letting
S′1 = S1 ◦ ρ′, we have τ ′SS′1 = µS. As S still solves the
remaining inequalities in Γ, it follows that S solves Γ′.
Similarly, any solution of Γ′ also solves Γ.

The expressions τ
(i)
j that replace the variables βi,j con-

tain only variables that appear on the lefthand sides of
inequalities (after the chains of β-variables, and other
solved inequalities, have been removed). Hence, we may

freely rename the variables in τ
(i)
j , so long as the vari-

able names we choose also do not occur on any right-
hand sides. Thus we can choose to rename variables
such that τ

(i)
j = τ

(k)
j for all i, k, without affecting

the solution. What we obtain is the same instance that
would result if we used a single variable for each of xj ,
yj , wj . Therefore, we have the following:

Theorem 7. Consider an expression of the form

λx1 · · ·xm.(λy1.(λy2.(· · · ((λyn.En+1)En) · · · ))E2)E1,

with free variables w1, . . . wp, with all bound variables
uniquely named, distinctly from all free variables, and
in which each Ei may introduce variable bindings, called
called zi,1, zi,2, . . .. Let Γ be the ASUP instance derived
for this expression, as described before. Let Γ′ be the
SUP instance produced by the Algorithm LC, i.e., in
which each term variable is represented by exactly one
SUP variable. Then Γ and Γ′ have the same solutions.

The theorem establishes that the SUP instance obtained
by our new translation procedure has the same solution
as the corresponding ASUP instance. However, the the-
orem does not guarantee that, with the instance in this
form, the redex procedure will be able to find the solu-
tion, as the output of this translation procedure will, in
general, lie outside of ASUP. If, in order to find the solu-
tion, a procedure must fill in the variables and inequal-
ities we just removed, then we are no further ahead.
However, the following theorem shows that this is not
necessary:

Theorem 8. Every SUP instance produced by the pro-
cedure outlined in Theorem 7 is an instance of R-ASUP.

Proof. Let Γ be the ASUP instance obtained from
some λ-termM . Since ASUP is contained in R-ASUP, Γ
is an R-ASUP instance. Let Γ1 be the result of removing
all of the β-chains from Γ. Since removing nodes from a
graph does not create any new paths, Γ1 is an R-ASUP
instance. Now, for each β-variable, there is at most
one inequality τk ≤ µk that contains it on the right-
hand side (moreover, since this inequality is phrased
as an equality, it follows that τk = αk → αk, where
αk occurs in no other inequality). By merging all of
the β-variables pertaining to a particular term variable
(assume we rename all β⊥,j to βj), we create edges from
τk ≤ µk to each inequality that had βi,j on the left-hand
side. Can any of these new paths violate R-acyclicity?
Since the original instance was an ASUP instance, any
paths that violate R-acyclicity must contain these new
edges. Since τk = αk → αk, and αk is fresh, the vertex
τk ≤ µk has no in-edges. So any path containing τk ≤
µk contains it as the first node in the path. Thus, for R-
acyclicity to fail, we need to find a variable ε outside µk
such that εRζ for some variable ζ in µk. But since the
variables in µk (i.e., βj and the type expression with
which it is equated) never occur anywhere else on a
right-hand side, it follows that there is no variable ε
outside µk such that εRζ for any ζ ∈ Vars(µk), and
therefore the instance is R-acyclic.

As a consequence of Theorem 8, we can simply apply
the redex procedure to the R-ASUP instance obtained
via Theorem 7, and be guaranteed of termination with
the same answer.

6. DISCUSSION
We present in this paper a direct algorithm for comput-
ing rank-2 types for terms in System F. Our algorithm
differs from the original KW algorithm by eliminating
a quadratic number of variables from the SUP instance
associated with the given term. As a consequence, we
now produce SUP instances that are linear in size, in
proportion to the size of the input, where previously
the size of the SUP instance was quadratic. Since the
ensuing step, (R-)ASUP solution, can be exponential
(ASUP is DEXPTIME-complete), reducing the size of
the input to this step may pay dividends in time saved.

We leave to future work the problem of eliminating
the θ-reduction step from the type inference process, so
that we may produce a truly syntax-directed translation
from the typability problem to SUP.
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