FIX: Feature-based Indexing Technique for XML Documents

Ning Zhang M. Tamer Ozsu Ihab F. Ilyas Ashraf Aboulnaga

David R. Cheriton School of Computer Science
University of Waterloo
{nzhang,tozsu,ilyas,ashraf} @Quwaterloo.ca

TECHNICAL REPORT CS-2006-07 MARCH 2006

University of

Waterloo

Abstract

In this paper, we study the problem of indexing an XML database. Existing XML indexing techniques
focus on clustering methods based on the combinatorial structural properties of an XML document. These
techniques cluster tree nodes into an index tree or graph based on their similarities in ancestor-descendant
or sibling relationships. Index look-up then amounts to pattern matching on the clustered tree or graph.
In this paper, we propose a feature-based indexing technique, called FIX, based on the spectral graph
theory. The basic idea is that for each twig pattern in a collection of XML documents, we calculate a
vector of features based on its structural properties. These features are used as a key for the patterns
and stored in a B-tree or a multidimensional index tree. Given an XPath query, its feature vector is
first calculated and looked up in the index. Then a further refinement phase is performed to fetch the
final results. We experimentally study the indexing technique over two scenarios: a large collection of
relatively smaller documents, and a single large document. Our experiments show that FIX provides
great pruning power and could gain an order of magnitude performance improvement for many XPath
queries over existing evaluation techniques.

1 Introduction

Management of XML data, especially the processing of XPath twig queries, has been the focus of considerable
research and development activity over the past few years. Indexing techniques are crucial for efficiently
answering twig queries in a large database consisting of collections of XML documents. Given a twig query
specified by a path expression, a query processor needs to find the instances of the documents or sub-
structures thereof that satisfy the value and structural constraints specified in the twig query. Appropriate
indexing techniques can significantly improve the performance of this matching operation.

A wide variety of join-based, navigational, and hybrid XPath processing techniques are now available
(e.g., 31} B, 7, [BL 141 B2]). These can be combined with indexing techniques to boost their performance [7,
16l 17, TT]. Another line of XML indexing research focuses on clustering techniques of the XML tree nodes
(e.g., [21,[19, 18, 27]). The indexes are built on the notion of similarity relation (e.g., F&B bisimilarity [18])
to cluster structurally similar XML elements into equivalence classes. Each equivalence class is an index
node and these nodes are connected into a tree or graph based on their structural relationships. Locating
these index nodes is usually performed using a navigational approach (e.g., DFS, BFS [27]).

Clustering is effective for data sets that conform to a regular schema (e.g., an order always has an
order_id and ship_date), but the index could grow very large for structure-rich data sets. To illustrate
the problem, Figure [T] shows a bibliography XML document and its F&B bisimulation graph. In this data
set, all types of publications (article, book, etc.) could have a child element author, which can have any
combination of subelements address, email, phone, and affiliation. Since each author element has a
different parent or set of children, the author elements are incompressible in this particular example. In
other words, each author element in the XML tree is mapped to a singleton equivalence class in the F&B
index. As an example, the F&B bisimulation graph for Treebank data set [I] has more than 3 x 105 vertices
and 2 x 10° edges. Although specific storage structures are developed to materialize such a large graph on
disk [27], updating as well as querying on the structures could be expensive. For example, answering a query
such as //author [phone] [email] requires traversing the whole graph. This problem is not specific to the
F&B index, but common to all clustering indexes whose evaluation algorithm is navigational and which have
no higher order indexes (indexes for the index itself).

One possible solution to avoiding search of the whole graph is to break a large bisimulation graph into
small twigs (for example author with two child elements phone and email) and index these small twigs using
a conventional index (e.g., B-tree). Using this approach, answering the previous query amounts to looking
up the twigs in the B-tree. However, two critical problems have to be solved: (1) what is the key of the twig
patterns, and (2) how to deal with the fact that the number of twig patterns in the graph is exponential to
the size of the graph? These two questions are correlated in that if the number of patterns is small, we can
index all the twigs and use the string representatiorﬂ of the twig pattern or the hash code thereof as the
key. However, in the general case, when the number of twigs is large, we have to choose a subset of the twig
patterns to index. In this general case, the string representation of the twig is no longer a valid key, since

LA tree can always be translated into a parenthesized string representation (e.g., (author (phone) (email)) for the previous
example query twig) and vice versa.

addr ess
. aut hor emai |
__article {

title affiliation

h {email
|) aut hor
article { affiliation

title

affiliation
aut hor {
bi b —— book { addr ess

title

phone
aut hor{ .
4 vww { . emai |
title .
enmai |
) . aut hor{ o
L_ i nproceedi ngs{ affiliation
title
(a) XML tree

aut hor addr ess
aut hor

aut hor emai |
title

aut hor

bi b
affiliation

aut hor phone
(b) F&B bisimilarity graph

Figure 1: An bibliography document and its F&B bisimilarity graph

when index lookup for a query pattern fails, we do not know whether it really is not in the database or it
just is not indexed.

In this paper, we propose a novel indexing technique, called FIX, to index substructures in the database
by their distinguishing structural characteristics (which we call features). Given a twig query as above, the
features of the queries are computed and candidate substructures that conform to these features can be
quickly retrieved from the index without exploring the whole search space. In both the index construction
and query phases, the set of distinctive features serve as a key to the index, similar to the hashed keys in
the hash-based indexes. The key has to satisfy the no-false-negative requirement: by examining only the
query and the keys in the index, we are able to return a complete set of candidate substructures that may
produce results. We do not require no-false-positives (i.e., all candidates produce results), since this can be
handled by a further refinement phase that checks the candidate results returned by the index against the
database. Therefore, FIX prunes the original data and generate a candidate set, and an existing join-based
or navigational operator can further test the validity on the pruned input. The FIX index can be used not
only for equality queries, but also for subpattern queries, which are similar in flavor to range queries that
are typically answered by tree-based indexes.

We have extended the FIX index to support values (or text nodes), in addition to element nodes in the
XML trees. The basic idea is to treat the text nodes in the same way as to the element nodes, with some
proper treatment of the values. Unlike the labels of the element nodes whose domain is usually small, values
can take an infinite domain. This makes feature extraction very expensive. To walk around this problem,
we first map/hash the values into a small domain before calculating the features. This mapping will not
introduce false-negatives, but the queries are limited to value equality constraints only.

In summary, our contributions are as follows:

e We propose an index construction algorithm that efficiently enumerates a subset of the twig patterns
in an XML tree. The enumerated subset is complete in that if the query pattern is not a subpattern of
any of the index patterns, it is not a subpattern of the original XML tree either. To our best knowledge,
FIX is the first XML indexing technique using feature-based pruning.

e We propose a novel set of features for twig patterns, which are used as keys for the enumerated indexed
patterns and query patterns. We further prove that the set of features are appropriate to be used to
prune the index and introduce no false-negatives.

e We propose a natural and effective way to extend the FIX index to support values. Integrating values
into the structural index eliminates the need for “index anding” of the structural index with value-based
indexes, therefore it saves intermediate results.

e We experimentally show that in many cases FIX can improve the performance of twig queries by orders
of magnitude in the pruning power and up to 900% in run-time speedups against the state-of-the-art
indexing approaches.

The rest of the paper is organized as follows: in Section [2] we provide the general background of the
paper. In Section [3] we introduce how to translate a twig pattern into a matrix and prove the properties of
the eigenvalues of the matrices. In Sections [4] and [5] we present the index construction algorithm and index
query algorithm, respectively. In Section[6] we present the experimental studies of the FIX. We compare FIX
with other related work in Section [7l and conclude in Section

2 Background

In this section, we set down the basic definitions and mathematical background that are required in the later
sections. We assume that readers have a basic knowledge of XML data model and XPath, particularly path
expressions. Chamberlin [8] provides a concise yet quite complete introduction.

2.1 Path Expressions and Twig Queries

A path expression consists of a list of steps, each of which consists of an axis, a NameTest (testing the
names of the XML nodes) or a KindTest (testing the type of the XML nodes), and zero or more branching
predicates. The branching predicate is recursively defined to be another path expression enclosed in a pair of
square brackets [], except that the values of the branched path expression can be tested using any value-based
operator (=, <, etc.). There are 13 axes defined in the language, but we focus on the two most frequently
used onesﬂ child axis /, and descendant axis //.

Twig queries are usually defined as path expressions that have no value constraints. However, the term is
defined slightly differently in different papers in the literature. Here we give the definition we use throughout
this paper.

Definition 1 A twig query is a path expression whose axes could only be /, except for the root whose axis
could be //. Moreover, there is no KindTest in the expression and no value-based comparison inside the
predicates. 0

For example, the path expression //article[author]/ee is a twig pattern while //article[.//author]/ee
and //article[name = "John Smith"]/title are not. In Section [B] we introduce how a general path
expression (//-axes could occur in the middle) without the value constraints can be handled by searching
the index using twig queries as building blocks. In Section 4.6 we extend our index to handle value equality
constraints.

A twig query can be thought of as a treeﬂ in which each step corresponds to a node in the tree, and the
first step is connected to a special root node. The axes are translated into edges in the tree. Based on the
tree representation, we now define the notion of existential match (or simply match) between a twig query
and an XML tree.

Definition 2 A twig query @ matches an XML tree X if there exists a mapping f from the NameTests of
Q@ to the nodes in X such that the following hold:

e the root of the twig query always matches the document node (parent of the root node in the document).
e for any NameTest g € Q, label(q) = label(f(q))-

e if two NameTests u and v’ are connected by an axis « € {“/”, “//”}, then f(u) is a parent (or ancestor)
Of f(ul) lfOé :u/w (OI‘ 44//77). O

2A study [32] shows that almost all axes involved in the path expressions in the XQuery Use Cases [J] are / and //-axes.
3We denote label(x) the label of node z.

article—————=aut hor addr ess

article aut hor .
emai |
book aut hor
bi b W title affiliation
i nproceedi ngs aut hor phone

Figure 2: A bisimulation graph of the bibliography document in Figure

Since all steps in the twig query are mapped to some XML nodes that satisfy the node name and axes
constraints, a positive match is the necessary and sufficient condition for a query to be satisfied. That is,
if a twig query matches an XML tree/subtree, there must be at least one result of the query in the XML
tree, and vice versa. Match does not specify which XML nodes should be returned, therefore it is used for
existential testing.

2.2 Bisimulation Graph

Given an XML tree, there is a unique (subject to graph isomorphism) minimum bisimulation graph that
captures all structural constraints in the tree. The bisimulation graph defined in this paper is based on the
bisimilarity notion defined by Henzinger et al. [15].

Definition 3 Given an XML tree T'(V;, E;) and a labeled graph G(V,, Ey), an XML tree node u € V; is
bisimilar to a vertex v € V; (v = v) if and and only if all the following conditions hold:

e u and v have the same label.
e if there is an edge (u,v’) in E, then there is an edge (v,v') in E,; such that v’ = o'
e if there is an edge (v,v) in E,, then there is an edge (u, ') in E; such that v' = u'.

Graph G is a bisimulation graph of T' if and only if G is the smallest graph such that every vertex in G is
bisimilar to a vertex in 7. 0

It is easy to see that the bisimulation graph of a tree is a directed acyclic graph (DAG). Otherwise, if
the bisimulation contains a cycle, the tree must also contain a cycle based on the definition. In fact the
bisimulation graph of a DAG is a DAG.

The bisimulation graph of the XML tree in Figure is shown in Figure|2| The difference between the
bisimulation graph and the F&B bisimulation graph is that the former requires that two nodes in the XML
tree belong to the same equivalence class if their subtrees are structurally equivalent. The bisimulation graph
does not require that the two indexing vertices have similar ancestors, but the F&B bisimulation graph does
so. Comnsequently, the bisimulation graph clusters the two author vertices from book and inproceedings
into one equivalence class.

The tree representation of a twig query can always be translated into a bisimulation graph. We call this
bisimulation graph the twig pattern. Similar to the twig query, we can also define matching twig patterns
on a bisimulation graph of an XML tree.

Definition 4 A twig pattern Q' of twig query) matches a bisimulation graph X’ of an XML tree X if
there exists a mapping f’ from the vertices of @)’ to the vertices in X’ such that the following hold:

e for any vertex ¢’ € @', the label of ¢’ is the same as the label of f'(¢’).
e if two vertices p’ and ¢’ are connected by an edge in @', then (f'(p’), f’(¢’)) is an edge in X’.

The induced subgraph of the matched vertices in the bisimulation graph is called a pattern instance or,
shortly, instance of Q. o

The match definitions for twig queries and twig patterns are closely related in that match of a twig query
to an XML tree is the sufficient and necessary condition for the match of the corresponding twig pattern to
the bisimulation graph of the XML tree. We will give the formal proof in Section [31]

2.3 Matrices and Eigenvalues

An undirected unlabeled graph G with n vertices can always be represented as an n xn matrix (e.g., adjacency
matrix or Laplacian matrix). Given an n x n matrix M, there exist a column n-vector ¢ such that

M- = X\
(0,9 = 1
where A is a scalar, and (¥,) is the inner product of two vectors, which is defined as (¥,9) = "0 =

S ik, for 7€ R or Y w7 % v; for @ € C™X1, where 7; is the complex conjugate operator. The
¥ and X are called the normalized eigenvector (or simply eigenvector) and eigenvalue of M, respectively.
The eigenvectors need to be normalized since otherwise there are an infinite number of eigenvalues that are
obtained by properly scaling the eigenvector. For an n X n matrix, there are a total of n such eigenvector
and eigenvalue pairs, but they may not be distinct. The eigenvalues are usually denoted as A1,..., A\,
ordered by their magnitude in descending order. Throughout the rest of the paper, we denote the maximum
and minimum eigenvalues as Apqz and Apipn, and denote A(G) of graph G as the eigenvalue of the matrix
representation of G whenever there is no possibility of confusion.

There is a nice property of the relation between two graphs and their A\, 4, and \,,;, pairs. The following
theorem is adopted from [6]:

Theorem 1 Let G and H be two undirected unlabeled graphs, and Mg and My be their adjacency matrices.
If H is an induced subgraph of G, then Apin(Ma) < Apin(Mp) < Aoz Mpy) < Anae (Mea). O

Note that this theorem holds for unlabeled undirected graphs; we will prove in Section [3.3] that a similar
theorem also holds for labeled directed graphs under a certain translation between the graph and matrix.

3 Features and Their Properties

Given a twig pattern (labeled directed graph), we want to identify the distinctive characteristics of the
structures contained in it. We call these characteristics features of the pattern. Features can be used as a
key to index and retrieve those instances that match a pattern. In FIX, the features are based on a subset
of eigenvalues of the matrix representation of a pattern. Eigenvalues have the nice property that they allow
us to prune the index search space without losing any result.

Before introducing how to obtain features, we first set down the foundations of using bisimulation graph
as a tool to test the existence (match) of a pattern. This is necessary because bisimulation graphs are the
input to calculating the features — eigenvalues. That is, we first prove that the match of a twig pattern
on a bisimulation graph is equivalent to the match of its twig query on the XML tree. In other words,
bisimulation graph preserves all the structural information required for existential matching. The reason we
use twig patterns and bisimulation graphs rather than their corresponding tree structures is that the trees
contain many structural repetitions and are too large to extract features (eigenvalues) from.

In the following subsections, we introduce the translation from a labeled directed graph to a matrix and
prove that similar result to Theorem [I] also holds for the matrix representation, which means that A,,n
and Apqz could be used as a valid tool for pruning. Finally we will introduce other features that give us
additional pruning power.

3.1 Structure Preservation

We first prove that the bisimulation graph preserves all structural information needed for matching, through
the following structural preservation theorem.

Theorem 2 A twig query Q matches an XML tree X if and only if the twig pattern Q' matches the bisim-
ulation graph X'. o

PROOF The sufficient condition:

f is a match

1%
1%

/ X/
@ Is f/ a match?

Given a twig query @ and an XML tree X, assuming their bisimulation graphs are ' and X’ and the
mapping f : G — X is a match, we define a mapping f’ : @' — X’ and prove that f’ is a match as
depicted in the following diagram.

We first prove that for any two vertices v and v in @, if v and v are bisimilar, i.e., they are grouped
into one vertex in @', then f(u) and f(v) are also bisimilar. This actually follows directly from the fact that
matching and bisimilarity are homomorphisms on the edge relation. Here we give the formal proof.

By definitions of bisimilarity and match, we have label(f(u)) = label(u) = label(v) = label(f(v)).
Furthermore, for any v’,v" € Q, if (u,u’) and (v,v’) are edges in @, then (f(u), f(u')) and (f(v), f(v'))
are edges in X. Since Q' is a bisimulation graph of Q and u = v, it follows that «’ = v'. Similarly, since X’
is a bisimulation graph of X, it follows that f(u') 2 f(v’). Therefore, by definition of bisimilarity, f(u) and
f(v) are bisimilar.

Based on the above result, we define the mapping [’ : Q' — X' as follows: for any ¢’ € @', there always
exists g; € @ such that ¢; = ¢’. Based on the previous result, for all such g;, there is a unique ¢”” € X’ such
that ¢ = f(g;). Therefore, we let f'(q) = ¢".

Next we prove that f’' is a match from @’ to X’. Given any ¢’ € @', f'(¢') satisfies the following
conditions:

o label(q') = label(f'(q’)). This directly follows from the definition of f’.

e for any edge (p',¢') € Q', there is an edge (f'(p'), f'(¢')) € X’'. This is because the edge relation is
preserved in the match and bisimilarity mappings and f’ is defined to be the composition of the two
mappings.

Therefore, based on the definition of match, f’ is a match between @’ and X'.

The necessary condition:

This direction follows from the fact that bisimulation is an onto mapping, i.e., bisimulation graph is the
minimum graph such that every vertex in Q' has a bisimilarity vertex in Q). The proof is similar to the other
direction. n

This theorem seems contradictory to the fact that the F&B bisimulation graph is the smallest covering
index for twig queries [I8] and bisimulation graph is smaller than the F&B bisimulation graph. The rea-
son is that here the “structural preservation” is defined for testing pattern existence (the notion of match)
and the “covering” in F&B bisimulation is defined in terms of query answering (which needs more infor-
mation than existential testing). In fact, the bisimulation graph shown in Figure [2| can not answer the
query //inproceedings[author] since two authors from inproceedings and book are grouped into one
equivalence class. But this graph is sufficient to answer the the existence of authors under inproceedings.

Having the structural preserving property, we can now use the twig pattern and bisimulation graph of
an XML document as the subject of querying and indexing instead of twig query and XML tree.

3.2 Anti-symmetric Matrices for Twig Patterns

Given a labeled directed graph (twig pattern), we want to translate it into a matrix such that the matrix
preserves as much structural information of the graph as possible. By structural information, we mean the
labels of the vertices and the edge relations (here the orientations of the edges are important). Ignoring

either of them makes the matrix unrepresentative, and, therefore, reduces the pruning power of any method
based on this matrix representation.

To record the vertex label information in the matrix, we assign a distinctive weight to each edge ac-
cording to the labels of the two incident vertices. Then the vertex labels can be removed. For the example
bisimulation graph in Figure [2] we can pick an encoding as follows:

(bib,article) -> 1 (article,author)-> 2
(bib,book) -> 3 (book ,author) -> 4
(article, title)-> 11 (book, title) -> 12

Note that if two edges have the same label (e.g., the two article-to-author edges in Figure , their
edge weights will be the same. As long as the encoding of different edge labels are different, it is always
possible to translate the weighted directed graph back to the original labeled directed graph.

To preserve the direction information, we represent the directed weighted graph as an anti-symmetric
matrix (a.k.a. skew-symmetric matrix) as follows: we number each vertex v arbitrarily from 1 to n and map
it to a dimension in the n x n matrix M. The reason that we can assign arbitrary number (dimension) to
vertices is that any assignment can be permuted to some other assignment (and the permutation results in
an isomorphic graph), which is equivalent to permutation of the matrix. It is well known that the eigenvalues
of a matrix remain invariant under matrix permutation [12].

If an edge (v;, v;) has weight w; ; after the above edge-label-to-integer translation, we assign M[i, j] = w; ;
and M[j,i] = —w; ;. If (v;,v;) is not an edge, M7, j] = M[j,i] = 0. In this anti-symmetric matrix, the
diagonal elements M[i, i] are always 0 for an acyclic graph. The reason that we put the negative weight at
M][j,] is that triangle matrices with all M][i, 4] = 0 have the same set of eigenvalues [0,0,...,0] (matrices
having the same spectrum are called isospectral). A non-zero anti-symmetric matrix is guaranteed to have at
least one non-zero eigenvalue [I2]. Two anti-symmetric matrices are isospectral, if one can be transformed to
the other by non-singular transformation, that is one anti-symmetric matrix can be obtained by multiplying
the other anti-symmetric matrix with a non-singular matrix (a matrix has inverse). If it is common that
two anti-symmetric matrices are isospectral but non-isomorphic, the pruning power will be small. Given
that the number of distinct edge label encodings is small in most XML databases and given the requirement
of MJi,j] = —M]j,4] for anti-symmetric matrices, the probability of two anti-symmetric matrices being
isospectral but non-isomorphic is expected to be very small.

As an example, the bisimulation graph in Figure|2|is translated into the following 15 x 15 matrix (because
there are 15 vertices in the graph):

0 2 12
-2 0 0

M = .
—-12 0 0

3.3 Eigenvalue Properties
Given the pairs of A,,;, and A, of two anti-symmetric matrices, we prove a similar result to Theorem m

Theorem 3 Let G and H be two DAGs, and Mg and My be the anti-symmetric matrixz representations of
G and H respectively. If H is an induced subgraph of G (which means H is isomorphic to a subgraph of G
with the isomorphic mapping f and for every edge (u,v) in H, there is an edge (f(u), f(v)) in G such that
their weights are the same), then Apmin(G) < Apin(H) < Anaz(H) < Anaz(G). O

PROOF Since a similar theorem holds for a symmetric matrix (adjacency matrix for undirected graphs), the
idea of our proof is to convert the anti-symmetric matrix to a (somewhat) symmetric matrix and use the
same proof idea for symmetric matrix in the anti-symmetric case.

The rationale of the conversion is based on the fact that the anti-symmetric matrix has some degree of
“symmetry” in that M[i, j| and M|[j,4] only differ by a negation. In fact, if we multiply the imaginary unit

i = v/—1 with the matrix, we get a Hermitian matrix sM, which is a symmetric matrix equivalent in the
complex domain C™*™. A Hermitian matrix H is matrix in C"*" such that H is equal to its conjugate
transpose, i.e., H[i, j] = H[j, i], where a + bi = a — bi is the complex conjugate for real numbers a and b.

It is well know that the eigenvalues of a Hermitian matrix are all real numbers and all eigenvalues
of an anti-symmetric matrix are all pure imaginary numbers [13]. It follows that in order to compare the
magnitude of the eigenvalues, it is sufficient to compare the imaginary part (real numbers) only. Furthermore,
we prove that the set of eigenvalues of the anti-symmetric matrix is the same set of eigenvalues of the
transformed Hermitian matrix by multiplying a negative imaginary unit, i.e., A(M) = —i A(¢M). Therefore,
the magnitudes of A and Ay of M is the same as those of Apipn (iIM) and Mgz (M), Thus what remains
is to prove that the theorem holds on a Hermitian matrix.

(1) A(M) = —iA(:M): for any eigenvector Z; of iM, the corresponding eigenvalue \; satisfies: tM - &; =
Xi@;. Tt follows that M - Z; = (—i);)#;. Based on the definition of eigenvalue, —i)\; is an eigenvalue of M.

(2) Eigenvalue containment property holds for the Hermitian matrix: This proof is very similar to the
proof for symmetric matrix. Since H is an induced subgraph of G, it is sufficient to prove that the property
holds for the largest induced subgraph (denoted as H') of G, i.e., H' can be obtained from G by removing
an arbitrary vertex and its incident edges. We can prove that the same property holds for smaller induced
subgraphs by induction on the number of vertices.

Given a graph G with n vertices and its largest induced subgraph H’ with (n — 1) vertices, we can always
permute My, such that Mg is the sub-matrix of Mg in dimensions 1 to (n — 1) without changing its
eigenvalues. Suppose T is the eigenvector of My corresponding to Apaz(Mp-), ie., & = [x1,22,. .., Tpn_1]

and (Z,T) = Z?:_ll T; % x; = 1, we prove that ¢ = [r1,%2,...,2Z,—1,0] is a normalized eigenvector of Mg
and its corresponding eigenvalue is A\pq(Mpg/). It is clear that (7,7) = 1 and (Mg - ¢,9) = (Mp/ - &, %) =
Amaz(Mp+). Therefore, we have

Me 9" ¥ = Amaz(Mpur)
Me 9" ¥ = Apaa(Mpr) 7y
Mg -9)" = ApaaMpur) "

Mgy = Anae(Mur)y

Therefore, Apmqz(Mp) is an eigenvalue of Mg by definition; thus Apmaz(Mpar) € [Amin(Ma), Admaz(Ma)].
Similarly, Amin(Mpr) can also be proved to fall in the range [Apnin(Ma), Amaz(Ma)]- -

The proof of Theorem [3| actually shows a stronger result: the set of eigenvalues of H are a subset of the
eigenvalues of G if H is an induced subgraph of G. One could also use the whole set of eigenvalues as the
features of a pattern used for indexing, and test the subset relationship instead of testing range containment
to get more pruning power. However, some practical difficulties may arise. For example, we need to index
a variable sized set in the B-tree, which is not well supported in current implementations. Secondly, the
eigenvalues are calculated using numerical methods and they may contains roundoff errors. Testing equality
is sometimes dangerous. While roundoff errors also exist for containment testing, we can always choose a
larger range for the indexed Apin, Amae range (e.g., using |Amin| and [Anaq| for the index range instead)
to test containment against the range of the twig query. Due to these reasons, we choose Ap,in and A\j,qz as
two features to index.

Computational Cost: Eigenvalue computation for Hermitian matrix is O(n?®), where n is the number of
vertices in the bisimulation graph [22]. Since the twig patterns are usually very small and we break the large
bisimulation graph for XML tree into smaller ones in the index construction step, the real-world computation
cost is very efficient — sub-millisecond for a dense 10 x 10 matrix and sub-second for a dense 300 x 300
matrix on a Pentium 4 3GHz PC. Eigenvalue calculation for sparse matrices (where most bisimulation graphs
generate sparse matrices) would be even more efficient.

3.4 Other Features

In addition to eigenvalues of patterns, there are other possible features that can further increase the pruning
power.

o —_\
Unclustered index |

N 4
XML documents Primary storage

Clustered index

I
I
Construction !
I
I

Figure 3: Building and querying indexes

Unclustered
Index
[TSI L

NS v S

‘ Primary XML Data Storage ‘

‘ Copy of Primary XML Data Storage with Redundancy ‘

NNy

Index

Figure 4: Clustered and Unclustered FIX Indexes

For example, the root label of the twig pattern or bisimulation graph. It can easily be included in the
key to be indexed in the B-tree. Any bisimulation graph in the index that satisfies the eigenvalue range
containment requirement but whose labels do not match with the twig pattern will also be pruned.

Other features may qualify as well, but in this paper we use the set of {A\in, Amaz, root label} as features,
and they are the keys of the B-tree index described in the next section. The pruning criteria is that the
indexed eigenvalue range does not contain the query eigenvalue range, or the root labels do not match.

4 Index Construction

Using FIX for query processing has two steps: the pruning phase prunes the input and produces candidate
results, and the refinement phase takes the candidate results and validates them using a query processor,
which could be join-based or navigational. The overall architecture of constructing and querying the index
is depicted in Figure [3] In this section, we are only concerned with the construction of FIX for pruning.

First we give two alternative index types: clustered and unclustered. Then we show their construction
algorithm.

4.1 Types of Indexes

As in the relational case, we can build a clustered or unclustered index. Unlike relational databases, the
clustered index for FIX incurs storage overhead due to the redundant storage of subelements as explained
later. In both cases, the keys of the B-tree are the features but the “values” are different. In the unclustered
index, the values are the references/pointers to the primary data storage (see Figure . The advantage of
unclustered index is that the primary storage does not need to be changed, and there is very small overhead
for building the B-tree with pointers as the data entries. However, query processing may suffer from the fact
that it needs to follow many pointers to perform the query refinement phase, which usually incurs random
I/0s. On the other hand, we can build a clustered index by copying the contents in the primary storage
pointed by the pointers and store them sequentially according to their feature keys (see Figure [4)). This is

10

different from the relational case since we cannot reorder data units in place. The reason is that the data
units in the XML case are subtrees and one may contain another as a descendant. Therefore, in order to
make the value sorted in the same order as the keys, the clustered index has to copy each subtree to another
storage, which may incur large space overhead. Therefore, there is a tradeoff between the storage overhead
and performance in the query refinement step. Unclustered indexes are easier to build and it is the only
choice if data has to be ordered on other criteria. It may be useful when the selectivity of the typical queries
is high so that few pointers are produced as candidates. On the other hand, clustered index could provide
better performance because the I/O are essentially sequential. In the case where the database consists of a
large collection of relatively small documents and each of them are inserted into the database as an entry, the
clustered index may be the right choice because we can reorder the documents so that their order coincides
with the order of their feature keys. Furthermore, there is no redundancy in the storage since every document
is treated as a unit. Therefore, the clustered index does not need to keep a copy of the primary storage and
incurs no space overhead.

4.2 Index Construction for Collections of Documents

The index construction algorithm takes a collection of XML documents as input, and inserts them into
a B-tree index. The algorithm works in two phases: in the first phase, it generates indexable units that
are small enough to efficiently extract features from. An indexable unit could be a small document in the
collection, or a substructure of a large document. In the second phase, the features of the indexable units
are computed and inserted into the B-tree index.

The index construction procedure is codified as the method CONSTRUCT-INDEX in Algorithm [I} where
input C is a collection of XML documents (possibly singleton), L is the depth limit, and I is a B-tree that
holds the index entries. The depth limit is a parameter for a document being qualified as an indexable unit.
In the following subsection, we first introduce how to index an indexable unit, and we introduce how to
handle large document in the subsequent subsection.

4.3 Construction of an Index Entry for a Small Document

Each small document whose depth is no larger than the depth limit (an application-dependent threshold) is
treated as a unit and converted into a bisimulation graph, which, in turn, is translated into an anti-symmetric
matrix. For each of these matrices, we calculate the eigenvalues and use the A, and A, together with
the root label of the document as the key to be inserted into the B-tree. The value of the entry inserted into
the B-tree is the document itself if we want to build a clustered index, or the pointer to the primary storage
for an unclustered index. This process is codified in the CONSTRUCT-ENTRIES method in Algorithm
The third parameter of the methods has to be set to 0 indicating that the document does not need to be
partitioned.

In the input to the CONSTRUCT-ENTRIES method, X is the input event stream, and H is a B-tree index.
Parameter L is the pattern depth limit and is set to O in this case. The variable G (line is of type
BisimGraph, which is a data structure that contains two substructures: the root of the bisimulation graph
and a mapping from a signature to a vertex in the bisimulation graph. It also maintains the maximum
depth of the bisimulation graph. The signature is a data structure that uniquely identifies a vertex. It
consists of the vertex label and a set of child vertices. Two XML nodes are in the same equivalence class
(bisimulation vertex) if and only if their signatures, namely, labels and children are the same by the definition
of bisimilarity.

CONSTRUCT-ENTRIES works as follows: Whenever an open event (corresponding to encountering an
open tag when parsing the XML document) is received, a new signature is created and initialized with
its label and an empty set of child vertices (line [5). The pair of signature and pointer to the primary
storage corresponding to the event is pushed onto a stack PathStack (line @ This pair is popped whenever
the corresponding closing event (corresponding to a closing tag) is received (line . Since at this time, all
children (and their descendants) corresponding to the current event have been visited and their corresponding
bisimulation vertices are recorded in the signature that is popped from the stack (line , we need to look
up the mapping maintained in G to see if the signature already exists (line E[) If it is not in the mapping,
then we need to create a new bisimulation vertex w and insert all bisimulation vertices maintained in the

11

Algorithm 1 Constructing FIX for a Collection of Documents

CoNSTRUCT-INDEX(C' : Collection, L : int, I : BTree)
1 for each XML document d € C

2 do if the depth of d < L then

3 CoNSTRUCT-ENTRIES(I, d, 0);

4 else CONSTRUCT-ENTRIES(], d, L);

CONSTRUCT-ENTRIES(H : BTree, X : EventStream, L : int)

1 G <« empty graph; > G is of type BisimGraph
2 PathStack «— empty stack;
3 while X generates more event x

4 do if z is an open event then
5 sig — (z.label,0); > c-set initialized to 0
6 PathStack.push((sig, z.start_ptr));
7 elseif z is a closing event then
8 (sig, start_ptr) « PathStack.pop();
9 u +— lookup sig in G;
10 if sig is not in G then
11 create vertex u with label z.label;
12 create edge (u,v;) for each v; € sig.c_set;
13 create mapping sig = u in G}
14 else release sig;
15 if PathStack is not empty then
16 p-sig < PathStack.top().first;
17 p-sig.c_set «— p_sig.c_set U {u}
18 else G.root «— u;
19 if L =0 then
20 BTREE-INSERT(H, u, G.dep, start_ptr);
21 if L > 0 then
22 GEN-SUBPATTERN(H, v, L, start_ptr);

BTREE-INSERT(H : BTree, u : BisimVertex, L : int, ptr : StoragePointer)

1 if wu.eigs is not set then

2 convert u into matrix M up to depth L;
<>\maac7 >\mzn> — EIG‘PAIR(M)§
u~€ig5 — <Amazy A'm7/n,>y

k — (u.eigs, u.label);

if H is a clustered index then
v «— pattern instance from the primary storage

following ptr;
8 insert v in H with key k;
9 else insert ptr in H with key k;

~N O Utk W

GEN-SUBPATTERN(H : BTree, v : BisimVertex, L : int, ptr : StoragePointer)

1 if v.eigs is set then
BTREE-INSERT(H, v, 0, ptr);

else Tr < BISIM-TRAVELER(v, L, ptr);
CoONSTRUCT-ENTRIES(H, T'r, 0);

=W N

signature into u’s children list, and then record the new mapping from the signature to v in G (lines .
If the signature is already in the bisimulation graph, we only have to release the memory acquired for the
signature. If the PathStack is not yet empty (which means the whole tree has not been traversed), we need
to update the children list of u’s parent in the PathStack (lines [L6HLT7); otherwise, we set u as the root of
graph G and call BTREE-INSERT to update the database. G.dep is the maximum depth of the bisimulation
graph, which indicates that the whole graph should be indexed.

The BTREE-INSERT method is farily straightforward: it first checks whether the bisimulation vertex has
an (Amaz, Amin) pair associated with it. If not, it converts the graph into an anti-symmetric matrix under the
depth limitation, calculates the eigenvalue thereof, and associates the (Amaz, Amin) pair with u (lines .
Then it uses the pair and the root label as a key and inserts the pointer in the B-tree for the unclustered
index. If the index is a clustered index, we need to retrieve the XML documents from the primary storage
and store them as values of the B-tree.

Complexity: CONSTRUCT-ENTRIES is a single-pass algorithm that reads each incoming event once. For

12

each closing event, the algorithm searches the bisimulation graph for signature, which could be O(1) using
an efficient hashing method. Therefore, the CPU cost of the construction algorithm is O(n + m), where n
is the number of events generated from the input event stream (in case of XML SAX-event stream, it is the
number of XML elements in the whole collection), and m is the number of vertices in the bisimulation graph.

The major cost of Algorithm [1fis the I/O cost, which depends on the number of B-tree insertions and
number of reads from the primary storage. In the unclustered case, the number of B-tree insertions is the
same as the number of documents in the collection since we generate only one bisimulation graph for each
document. In the clustered case, the B-tree I/O is the same as the unclustered case but there is additional I/O
cost for retrieving documents from the primary storage, which is proportional to the number of documents
in the collection as well. In summary, the I/O cost is O(N) where N is the number of documents in the
collection.

4.4 Construct Entries for a Large Document

The bisimulation graph of a large document could be very large. Furthermore, no substructures in the large
document can be pruned if it is indexed as one entry. Therefore, we need to enumerate subpatterns inside
the document tree and populate the instances into the B-tree. If the database consists of multiple large
documents, we need to enumerate subpatterns for each of them.

First, we need to restrict the subpattern size before enumerating its instances in the XML tree. Based on
the same idea of local similarity in prior works [19] [10], we limit the depth of subpatterns to a small number
k (k-patterns). With this construct, however, the index loses some expressive power: it can only answer a
twig pattern up to depth k. The tradeoff between expressive power and efficiency is common [I9] and does
not invalidate the benefit of building the index. It is easy for the query optimizer to test whether a twig
query is covered by an index.

The method for index construction with limited pattern depth is the CONSTRUCT-ENTRIES method
in Algorithm [I} with a positive argument L as the depth limit. The CONSTRUCT-ENTRIES needs to call
GEN-SUBPATTERN to enumerate subpatterns given the root of the subpattern and depth L. The GEN-
SUBPATTERN method is based on the idea that we can create a bisimulation graph “traveler” (BISIM-
TRAVELLER) that traverses the bisimulation graph in depth-first order within the depth limit L. During the
traversal, it generates an open event when traversing to another vertex, or a closing event when it finishes
traversing the subtree of the node or when it traverses to a depth of L. This stream of events can, in turn,
be fed to the CONSTRUCT-ENTRIES method. The depth limit in the call to CONSTRUCT-ENTRIES is set to 0
whenever we need to index the whole subpattern. The method will generate a new bisimulation graph that
is a subgraph of the original one, and store it into the B-tree as described in Section [£-3] To guarantee that
the subpattern enumeration process is performed only once for each bisimulation vertex, we also associate
the bisimulation vertex with the (Ap4z, Amin) pair of the subpattern, indicating that this vertex has already
been enumerated and the eigenvalues are calculated (line [T)).

The reason that we need to go all the way to define a traveler and call CONSTRUCT-ENTRIES again
instead of using the subgraph beginning at the current vertex v is that the subgraph itself usually is not a
bisimulation graph. The limit on the depth causes the subgraph to contain some repetitions such that the
subgraph is no longer a bisimulation graph. For example, in Figure 2| the subgraph of depth 2 rooted at
bib is not a bisimulation graph since article is repeated twice.

We use the following theorem to derive the cost of the enumeration algorithm and to prove the complete-
ness of the index.

Theorem 4 For an index with positive depth limit, the number of subpattern instances that are enumerated
by Algorithm[1] is exactly the same as the number of elements in the document. O

PROOF When the depth limit L > 0 in Algorithm [I} the function GEN-SUBPATTERN is called once for each
closing event. For each invocation of GEN-SUBPATTERN a new entry corresponding to a subpattern instance
is inserted into the B-tree. Since the number of closing event equals to the number of elements in an XML
document, the inserted subpattern instances equals to the number of elements.]

Complexity: The CPU cost of building the index with positive depth limit is the same as the cost for build-
ing the index on the collection of small documents, except that there is the additional cost for enumerating

13

subpatterns. For each vertex in the bisimulation graph, the subpattern rooted at this vertex is enumerated
once, therefore the additional CPU cost is the same as the number of vertices in the bisimulation graph.
Therefore, the CPU cost is O(n + m) where n is the number of XML elements and m is the number of
vertices in the bisimulation graph.

The I/O cost is dependent on the number of pattern instances generated, i.e., number of elements in the
XML document. For each pattern instance, there is a B-tree insertion operation, and for clustered index,
there is an additional read operation in primary storage. Therefore, the I/O cost is O(n), where n is the
number of XML elements.

4.5 Completeness of Index Construction

We show that the index constructed in the previous subsections is complete for any k-pattern query, if the
depth limit of the index is at least k.

Theorem 5 If the index is built with depth limit at least k (in the case where depth limit is 0 for collection
of small documents, k is the mazimum depth of the all documents in the collection), a k-pattern is not
contained in the XML document, if it is not contained in the index. 0

Proor It is straightforward to show that completeness holds for the collection of small documents case. If
the twig pattern is of depth k, and it is contained in any of the documents, the document will be retrieved
in accordance to Theorem [3l

In the large document case, since we generate a subpattern for each XML element (Theorem , the
indexed pattern instances cover all subtrees of depth k. Therefore, if there is any XML node in the result
of the k-pattern, the pattern instance of this node is already indexed and will be returned as a candidate
result. n

4.6 Supporting Value Equality Predicates

FIX structural index can be extended to support value-based equality predicates such as the query //article[author
= "John Smith"]/title. This is based on the observation that the PCDATA in the XML documents, as
well as the atomic value “John Smith” in the query, can be thought of as the “labels” of the text nodes,
which are children of element nodes. However, we cannot directly use the values in the same way as we use
the element node labels in indexing and querying. The reason is that the bisimulation graph is converted
to a matrix by mapping an edge (identified by the labels of the two incident vertices) to an integer. If the
domain of one of the vertex labels is infinite, the edge will be mapped to an infinite domain as well, making
the matrix computation impractical.

To solve this problem, we map/hash the PCDATA or atomic value to an integer in a small range («, a+],
where « is the maximum of the element labels, and 3 is a small integer parameter. After the mapping, we
treat the hashed integer as the label of a value node, then the FIX index can be constructed based on the
new document tree with value nodes. It is straightforward to see that after the value-to-label mapping, all
the properties (including the completeness) still holds for the extended indexes. Therefore, in the rest of
the paper, we will not distinguish between pure structural and the integrated structural and value indexes
because the techniques work for both cases.

One thing to note here is that it may be necessary to carefully choose the g value to tradeoff between
query processing time and size of the index. With a large 3, the values can be mapped to a large domain, and
the bisimulation graph is large. Since the substructures are enumerated for each vertex in the bisimulation
graph, there will be many substructures enumerated and inserted into the B-tree. This will result in a much
larger B-tree compared to the B-tree containing only structures. On the other hand, with a small 3, the
B-tree will be small, but many different values will be hashed into the same label. This will introduce more
false-positives because of the collisions in hashing. How to choose a proper [for a given data set is an
interesting problem left for our future work.

14

5 Query Processing and Optimization using FIX

Given a twig query of depth k, it is relatively straightforward to perform query processing using FIX (Al-
gorithm : we need to first check whether the index covers the twig query by comparing the depth limit
of the index and the depth of the twig query. If it does, the query tree is converted into a bisimulation
graph (twig pattern), then the pattern is converted into an anti-symmetric matrix, and the A4 and A\pip
are computed. This pair of eigenvalues and the root label of the twig pattern are used as a key to perform
range query in the index. For each candidate returned by the range query, the refinement query processor is
invoked to get the final results. Before the query processor takes over, we need to replace the leading //-axis
with /-axis. This is because any descendants of the root of an indexed pattern instance are also indexed.
They will be visited eventually if they are returned by the index as candidates. For index with values, it is
straightforward to see that value-based equality predicates can be answered without false-negatives.

Algorithm 2 Index Query Processing

INDEX-PROCESSOR(Q : TwigQuery, Idz : FIX)

check the Idx depth limit is no shorter than Q’s depth;
Q' <+ CONVERT-TO-BISIM-GRAPH(Q);
M «— CONVERT-TO-MATRIX(Q’);
(Amaz, Amin) < E1G-PAIR(M);
k — (Amaz, Amin,root label of Q’);
C « Idz.search(k);
if Idx has non-zero depth limit

replace the leading //-axis with /-axis from Q;
for each c € C
10 do if Idx is clustered then
11 run refinement query processor with @ on c¢;
12 else run refinement query processor with @
following the pointer c;

O~ Uk WN -

©

For a general path expression that contains //-axes in the middle, we can decompose the query tree into
multiple twig queries that are connected by //-edges. For example, the query //open_auction[.//bidder [name]
[email]]/price can be decomposed into //open_auction/price and //bidder[name] [email]. If the
database consists of small documents and the depth limit is set to unlimited, the document whose [Apin, Amax]
range contains the [Amin, Amaz] ranges of both twig queries should be returned as candidates. If the index
is built with a non-zero depth limit on large documents, only pattern instances that contain the top sub-
twig query (//open_auction/price in the above example) are returned as candidates, otherwise even if the
candidate may match the descendant sub-twig query (//bidder [name] [email] in the above example), the
top sub-twig query will not be matched thus the whole query is not matched. In this case, the descendant
sub-twig query does not provide any pruning power.

The cost of FIX index processing consists of three parts: CPU cost of converting a twig query into
its bisimulation graph, converting the graph into a matrix, and computing the eigenvalues of the matrix.
The cost of the first two components is O(m) each, where m is the size of the query, and the eigenvalue
computation is O(m'3), where m’ is the size of the bisimulation graph and m’ < m. For a reasonable sized
query, these costs are negligible. The I/O cost includes searching the B-tree and retrieving the document
from B-tree (for the clustered index) or from the primary storage (for the unclustered index). The cost
of searching the B-tree is well studied and the missing part in cost estimation is the number of candidate
results. This can be estimated if we have further knowledge (e.g., histograms on Az, Amin, and root labels
of pattern instances). A good practice is to build a histogram on the primary sorting key (e.g., Anaz) in
the B-tree. The rest of the cost is that of refinement of the candidate results. Although the number of
candidates may be the same, clustered and unclustered index may have much different cost due to different
degree of randomness in I/0.

6 Experimental Evaluation

In this section, we first evaluate the performance of pure structural FIX index according to three implementation-
independent metrics, as well as the actual run-time speedup against the state-of-the-art evaluation techniques.

15

data sets| size |# elements| ICT |Uldx| | |CIdx]|
XBench (27.9 MB| 115306 |17.8 sec | 0.2 MB| 6.1 MB
DBLP |169 MB| 4022548 [32.5sec. | 2 MB |77.9 MB
XMark (116 MB| 1666315 | 86 sec. |5.6 MB |143.3 MB

Treebank| 86 MB | 2437666 |375 sec. |37.3 MB|310.6 MB

Table 1: Characteristics of experimental data sets, the index construction times (ICT), and the sizes of the
unclustered index (Uldx) and clustered index (CIdx)

Then we evaluate the integrated value and structural index. While the wall clock time speedup is the “net

effect” of the benefit of using FIX index over a specific algorithm implementation, implementation indepen-
dent metrics reveal more insight into the design decisions of the FIX index and provide a general guideline
of how much improvement that the FIX index can achieve for any implementation.

The FIX index is implemented using C+4 and uses Berkeley DB for the B-tree implementation. We
choose the NoK processor [32] to perform the refinement step. To compare with the unclustered FIX index,
we extend the implementation of NoK operator with support of //-axes. To compare with the clustered FIX
index, we choose the disk-based F&B index [27], whose implementation is obtained from the authors. The
disk-based F&B index has been reported to have superior performance over a number of other indexes, so
we select it as a representative clustering index technique. All the tests are conducted on a Pentium 4 PC
with 3GHz CPU and 1GB memory running Windows XP.

6.1 Test Data Sets and Index Construction

We tested both synthetic and real data sets. For the category of large collection of small documents, we use
XBench [30] TCMD (text-centric multi-document) data set, which models the real world text-centric XML
data sets such Reuters news corpus and the Springer digital library. This data set contains 2,607 documents
with various sizes from 1KB to 130KB. The document structures have small degree of variations, e.g., an
article element may or may not have a keywords subelement. Since all documents in the collection are
small, we do not enumerate substructures in each document when constructing the index, i.e., the depth
limit parameter in Algorithm [1]is set to zero.

We also tested FIX with non-zero depth limit on large XML documents: DBLP [20], XMark [24] with
scale factor 1, and Treebank [I]. They are chosen because of their different structural characteristics. The
structure in DBLP is very regular and the tree is shallow, so the same structure is repeated many times,
making each structural pattern less selective. The XMark data set is structure-rich, fairly deep and very flat
(fan-out of the bisimulation graph is large), therefore, the structures are less repetitive. The Treebank data
set represents highly recursive documents. It is very deep but not as flat as XMark, and the structures are
also very selective.

The basic statistics, index construction time, and index sizes for these data sets are listed in Table
The index we constructed for XBench TCMD data has no depth limit, and the indexes for the other data
sets are constructed by enumerating subpatterns of depth limit 6. The construction times for indexes with
smaller depth limits are slightly faster. This depth limit is chosen so that the index can cover fairly complex
twig queries. Depending on the complexity of bisimulation graph of the document and the depth limit, the
enumerated subpattern could be too large for calculating eigenvalues (e.g., number of edges is larger than
3000). In this case, we do not calculate the eigenvalues but use an artificial [Apmin, Amaz] Tange [0,00] to
guarantee that the instances of this subpattern will always be returned as a candidate result. This may lose
pruning power, but fortunately, there are very few such cases in all the test data sets for reasonable depth
limit of 6 (1 for DBLP, 11 for XMark, and 1 for Treebank).

16

6.2 Performance Evaluation Based on Implementation-independent Metrics

We define three metrics to evaluate the effectiveness of FIX: pruning power (pp), selectivity (sel), and false-
positive ratio (fpr):

sel = 1—rst/ent
pp = l—cdt/ent
for = 1—rst/cdt

where cdt is the number of entries returned by the index as candidate results, ent is number of all entries in
the index, and rst is the number of entries that actually produce at least one final result. For the index with
depth limit 0 on a large collection of small documents, pp is the ratio of number of documents pruned by the
index over the total number of documents in the collection. For the index with non-zero depth limit k, since
each element corresponds to an entry in the index (the subtree of depth k starting from that element), pp is
the ratio of elements pruned over the total number of elements as a starting pointer for further refinement.

In order to evaluate the real effectiveness of the index, the pruning power metric should be combined with
the selectivity of the query. The low pruning power of a query does not mean that the index is ineffective if
the selectivity is also low (i.e., the query is not selective). The only bad case is when the selectivity is high
but the pruning power is low.

The metric fpr is another indicator of the effectiveness of the pruning of the FIX index against the
“perfect” index, which produces no false-positives.

For each data set, we randomly generate 1000 test queries and select representative queries based on their
selectivities: low, medium, and high. However, depending on the characteristics of the data sets (i.e., the
distribution of the substructures), these queries may not cover all 3 selectivity criteria. For example, since
each document in the XBench TCMD have very similar structure, the queries are more likely to fall into
the category of low selectivity. On the other hand, XMark and Treebank data sets are structure-rich, thus
almost all queries fall into the high selectivity category. For these cases, we select the representative queries
given below with relatively high or low selectivityﬁ

TCMD_hi : /article/epiloglacknoledgements]/references/a_id
TCMD_md : /article/prologlkeywords]/authors/author/contact [phonel
TCMD_lo : /articlelepilog]l/prolog/authors/author

DBLP_hi : //proceedings[booktitle]/title[sup][i]

DBLP_md : //article[number]/author

DBLP_lo : //inproceedings[urll]/title

XMark_hi: //category/description[parlist]/parlist/listitem/text
XMark_md: //closed_auction/annotation/description/text
XMark_lo: //open_auction[seller]/annotation/description/text
TrBnk_hi: //EMPTY/S/NP[PP]/NP

TrBnk_md: //S[VP]/NP/NP/PP/NP

TrBnk_lo: //EMPTY/S[VP]/NP

The selectivity, pruning power, and false-positive ratios for these queries are listed in Table 2} For low
selectivity queries (e.g., TCMD_1o), FIX does not show strong pruning power. However, since only about 16%
of the returned candidates are false positives, the index still performs well in that most of the remaining
candidates produce final results. On the other hand, for highly selective queries, such as (almost) all XMark
and Treebank queries, FIX prunes very well, very close to the selectivity. This means that the features used
in FIX reflect the intrinsic structural characteristics of the patterns. However, the false-positive ratios for
queries in this category could also be high (e.g., TrBnk_hi and TrBnk_md). This suggests that there may be
other features that are unique in this data set that are missed in our index, which will be considered in our
future work. For the queries in the medium category, the effectiveness of FIX varies. The pruning powers of
FIX on some queries (e.g., DBLP_md and XMark_md) are very close to their selectivities, and the false-positive
ratios are reasonable. On the other hand, some queries have poor pruning power (e.g., TCMD_md) or the
false-positive ratio is high (e.g., TrBnk_lo). This case represents the grey area that is hard for the optimizer
to estimate the cost.

The average of the three metrics over the random 1000 queries for each data set is shown in Figure
As seen from this figure, the average pruning power is very close to the selectivity for XMark and Treebank,

4We eliminated queries that have selectivity 0 and 1 since they do not give us much information about the index.

17

query sel pp for
TCMD_hi | 79.31% | 26.12% | 71.99%
TCMD_md | 49.23% | 5.62% | 46.21%
TCMD_lo | 16.85% | 0.35% | 16.29%
DBLP_hi | 99.97% | 99.79% | 84.91%
DBLP_md | 72.59% | 70.85% | 5.91%
DBLP_lo | 47.36% | 47.35% | 0.002%
XMark_hi | 99.96% | 99.87% | 75.13%
XMark_md | 99.10% | 98.71% | 30.14%
XMark_lo | 98.89% | 98.43% | 30.01%
TrBnk_hi | 99.97% | 95.37% | 99.45%
TrBnk_md | 99.81% | 85.97% | 98.67%
TrBnk_lo | 97.48% | 95.36% | 45.79%

Table 2: Implementation-independent metrics for representative queries for each data sets in each category

0.9

08— —
07— —
06— —
05— —
04— —

024+ — —— —
01+ — — —

Average values for different metrics

TCMD DBLP Xmark Treebank
Data Sets

avg. sel Mavg. pp avg. fpr

Figure 5: Average selectivity, pruning power, and false-positive ratio of 1000 random queries on different
data sets

but there are about 32% and 14% differences for TCMD and DBLP, respectively. One of the reasons for this
is that, as indicated earlier, unlike XMark and Treebank, XBench TCMD and DBLP are not structure-rich.
Structural indexes that cluster based on structures are not likely to be effective anyway. In the following
subsection, we shall show that the integrated structural and value index can improve the pruning power as
well as the query processing time.

6.3 Run-time Performance Evaluation

We tested the running time speedup for using FIX indexes. Although clustered index (such as F&B index
and clustered FIX index) are more efficient in query processing, they are less efficient in result subtree
construction (due to the loss of document order). Furthermore, clustering criteria may conflict with other
sorting criteria, making the unclustered FIX index or the original storage preserving document order (such
as the one in [32]) preferable. To compare similar techniques based on the same criteria, we focus on the
runtime performance of unclustered FIX index with the NoK navigational operator without index support,
and compare the clustered FIX index with clustered F&B index that has been shown to perform better than
other indexes [27].

To be able to benchmark different types of queries, we look at both simple path (sp) and branching path

18

Runtime Performance on XMark Runtime Performance on Treebank Runtime Performance on DBLP
10000

10000 100000

10000

1000 q 1000

1000

100 A 100

100

10

Runtime in log scale (msec.)
Runtime in log scale (msec.)
Runtime in log scale (msec)

N DBLP_hi_sp DBLP_lo_sp peLP Bfllbp DBLP_lo_bp

Xmark_hi_sp Xmark_lo_sp Xmark_hi_bp Xmark_lo_bp Trbnk_hi_sp Trbnk_lo_sp Trbnk_hi_bp Trbnk_lo_bp 01

Test Queries Queries Queries
[ONoK BFIX unclustered BF&B CIFIX clustered CINoK EFIX unclustered B F&B CIFIX clustered [NoK EFIX unclustered M F&B CIFIX clustered]
(a) XMark (b) Treebank (c) DBLP

Figure 6: Runtime comparisons on XMark, Treebank, and DBLP

(bp) queries. Together with the selectivity dimension, low (lo) and high (hi) selectivity, there are four test
queries for each data sets: {hi,lo} x {sp,bp}. The test queries are listed as follows:

XMark_hi_sp: //item/mailbox/mail/text/emph/keyword

XMark_lo_sp: //description/parlist/listitem

XMark_hi_bp: //item[name]/mailbox/mail[to]/text[bold]/emph/bold

XMark_lo_bp: //item[payment] [quantity] [shipping] [mailbox/mail/text]
/description/parlist

Trbnk_hi_sp: //EMPTY/S/NP/NP/PP

Trbnk_lo_sp: //EMPTY/S/VP

Trbnk_hi_bp: //EMPTY/S/NP[PP]/NP

Trbnk_lo_bp: //EMPTY/S[VP]/NP

DBLP_hi_sp : //inproceedings/title/i

DBLP_lo_sp : //dblp/inproceedings/author

DBLP_hi_bp : //inproceedings[url]/title[sub] [i]

DBLP_lo_bp : //article[number]/author

Figure [6] depicts the speedup of the FIX indexes to the existing techniques in logarithmic scale. As shown
in Figuresand FIX unclustered and clustered indexes performs considerably better than the NoK or
F&B indexes, respectively. However, on the more regular and simple data set DBLP (F igur, although
FIX unclustered index still outperforms NoK, F&B index outperforms FIX clustered index, particularly in
the cases of queries with high selectivity. The reason is that the structure of DBLP data set is very regular
and shallow. The whole F&B index for DBLP is only 180 KB, and could easily fit into main memory due
to the caching mechanism of F&B index implementation. We conjecture, however, that queries on simple
data sets usually involve value constraints. For such a general path expression, the majority of processing
time is spent on the value-predicate evaluation. Therefore, we also test the index performance with value
constraints.

6.4 Performance of Value Indexes

Since DBLP is the only real data set (the PCDATA in other data sets are all randomly generated), and
since queries with value-predicates are all branching paths, we only tested the branching paths with high
selectivity and low selectivity on the DBLP data set. The test queries are listed as follows:

DBLP_vl_hi: //proceedings[publisher="Springer"] [title]
DBLP_vl_hi: //inproceedings[year="1998"][titlel/author

Figure shows the implementation-independent metrics. For low selective queries, the FIX index
with values performs comparable to the FIX index with no vlaues as far as the implementation-independent
metrics are concerned. For high selective queries, however, FIX index with values demonstrates a significant
improvement over the pure structural index, with the selectivity and pruning power almost identical, and
false-positive ratio (fpr) around 1.7%. Figure shows the runtime speedups compared to F&B index.
The FIX index with values outperforms F&B index on both queries with more than a factor of 2. However,
as mentioned earlier, FIX index with values does not come for free, the construction time and memory
requirement are much higher than the pure structural index (around a factor of 30 and 10 with 5 = 10,

19

Implementation-Independent metrics for Runtime Performance on DBLP with values
DBLP with values
~ 10000
1.2 8
2]
L8 o1 E 10001
c = o
=] | 5]
E 3 064 g
& < £
= 9 04 o
ET E Y
~ 202+ E
- >
0 - = 1
DBLP_hi_bp DBLP_lo_bp DBLP_hi_bp DBLP_lo_bp
Queries Queries
W sel @pp Ofpr \D F&B B FIX cIustered\
(a) Implementation-independent Metrics (b) Runtime Speedup

Figure 7: DBLP with values

respectively). With proper tuning of 5 value, we can achieve the balance between the cost associated with
the index construction and the savings for the query processing.

7 Related Work

A wide variety of XML indexing techniques are available. Much research has focused on improving existing
query processors. For example, XB-tree [7], XR~tree [17], iTwigStack [I1I], and ToXin [4] are proposed to
prune the input lists to the holistic twig join operator. FIX also follows the pruning approach, but it is not
designed to work for a particular operator, and can be coupled with any path processing operator that can
perform query refinement.

A parallel line of research focuses on the clustering index [21], 19, I8, 27]. The common theme of these
clustering techniques is that they are all based on some variant of simulation/bisimulation graph of the
XML data tree. Depending on different definition of the (bi)simulation, the computational complexity,
space complexity and type of queries that can be answered are different. For example, if the bisimulation
is defined using the similarity or bisimilarity relation [I5], only simple linear path queries can be answered
without looking at the original data and performing refinement; while indexes constructed using the forward
and backward (F&B) bisimilarity relation [2] can answer all twig (branching) path queries, thus bearing the
name of covering index. For a non-covering index, a further refinement step may be required to search for
the final results from the candidate results. FIX uses the bisimulation graph as the basis for representing
structural information in the XML tree that is good enough to answer existential match. FIX does not use the
bisimulation graph itself is as an index, but uses the structural information extracted from the bisimulation
graph. By separating a large bisimulation graph into smaller ones, we can quickly find a substructure as the
candidate of a pattern without traversing the whole graph.

ViST [26] and PRIX [23] are two other XML indexing techniques that fall into one category: they both
break the XML document into structure-encoded strings and store them into a conventional index such as
B-tree. These strings can also be considered as features. However, their indexes need special operators for
refinement, while FIX does not.

Eigenvalues and spectral graph theory have many applications in other areas of computer science. Our
initial idea was inspired by the work in Computer Vision, where spectra of shock graphs are used to index
visual objects [25]. The shock graph is a unlabeled directed graph to represent the abstract of objects. They
use the full set of eigenvalues as features to approximate query processing, but did not make use or prove the
[Anin, Amaz] Property to for substructure queries (thus did not prove the property). There are also related
work in the area of data mining, in which a large collection of graphs are indexed by identifying “features” —
frequent substructures [28] [29]. Their features are combinatorial in that features are compared by subgraph

20

isomorphism.

8 Conclusion

As more and more document are stored in XML databases, an index is needed to quickly retrieve a subset
of candidates to do further refinement. Depending on the characteristics of the data sets, a value-based
index or a structural index or both are appropriate for certain queries. A structural index should distinguish
structural characteristics of the document or its substructure. In this paper, we have proposed the feature-
based index FIX for indexing substructures as well as values in a document or collection of documents. Our
approach, to the best of our knowledge, is the first XML indexing technique to take the substructures and
values as a whole object and compute its distinctive features. Unlike many other indexing techniques, FIX
can be combined with an XPath query processor with no or litter change in their implementations. We have
successfully applied FIX as a pruning index for an existing highly optimized navigational operator. FIX could
give order of magnitudes speedup in running time.

In addition to the navigational operator, we plan to apply the FIX to other query operators and evaluate
the performance of other ways of incorporating values into the index. We also plan to move the index to
R-tree or other high-dimensional indexing trees to gain further pruning power. Finally, we are also interested
in finding more features and finding out what features are most effective for a particular type of data sets.

References

[1] University of Washington XML Data Repository. Available at http://www.cs.washington.edu/
research/xmldatasets/www/repository.html,

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kaufmann Publishers, 2000.

[3] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu. Structural Joins: A
Primitive for Efficient XML Query Pattern Matching. In Proc. 18th Int. Conf. on Data Engineering,
pages 141-152, 2002.

[4] A.Barta, M. P. Consens, and A. O. Mendelzon. Benefits of Path Summaries in an XML Query Optimizer
Supporting Multiple Access Methods. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 133-144,
2005.

[5] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski. Streaming XPath
Processing with Forward and Backword Axes. In Proc. 19th Int. Conf. on Data Engineering, 2003.

[6] B. Bollobds. Modern Graph Theory. Springer, 1998.

[7] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 310-322, 2002.

[8] D. Chamberlin. XQuery: An XML Query Language. IBM Systems Journal, 41(40):597-615, 2002.

[9] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query Use Cases. Available at
http://www.w3.org/TR/xmlquery-use-cases.

[10] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An Adaptive Structural Summary for Graph-Structured
Data. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 134-144, 2003.

[11] T. Chen, J. Lu, and T. W. Ling. On Boosting Holism in XML Twig Pattern Matching Using Structural
Index Techniques. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 455-466, 2005.

[12] D. M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application. Academic Press,
1979.

21

http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

[13]

[14]

[15]

[16]

[18]

[19]

[20]
[21]

[27]

28]

[29]

H. Eves. Elementary Matriz Theory. Allyn and Bacon, Inc, 1966.

A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A. N. Rao, F. Tian, S. D. Viglas,
Y. Wang, J. F. Naughton, and D. J. DeWitt. Mixed Mode XML Query Processing. In Proc. 29th Int.
Conf. on Very Large Data Bases, pages 225-236, 2003.

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing Simulation on Finite and Infinite
Graphs. In Proc. IEEE Conf. on Foundations of Computer Science, pages 453462, 1995.

H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing XML Data for Efficient Structural Joins.
In Proc. 19th Int. Conf. on Data Engineering, pages 253—263, 2003.

H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic Twig Joins on Indexed XML Documents. In Proc.
29th Int. Conf. on Very Large Data Bases, pages 273-284, 2003.

R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering Indexing for Branching Path
Queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 133-144, 2002.

R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting Local Similarity for Efficient Indexing
of Paths in Graph Structured Data. In Proc. 18th Int. Conf. on Data Engineering, pages 129-140, 2002.

M. Ley. DBLP XML Repository. Avaiable at http://dblp.uni-trier.de/xml; accessed April 2004.

T. Milo and D. Suciu. Index Structures for Path Expressions. Lecture Notes in Computer Science,
1540:277-295, 1999.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art
of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

P. Rao and B. Moon. PRIX: Indexing and Querying XML Using Priifer Sequences. In Proc. 20th Int.
Conf. on Data Engineering, pages 288-300, 2004.

A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and R. Busse. The
XML Benchmark Project. Technical Report INS-R0103, CWI, 2001.

A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, and S. W. Zucker. Indexing Hierarchical Struc-
tures Using Graph Spectra. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(7):1125-1140,
2005.

H. Wang, S. Park, W. Fan, and P. Yu. ViST: A Dynamic Index Method for Querying XML Data by
Tree Structures. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 110-121, 2003.

W. Wang, H. Wang, H. Lu, H. Jiang, X. Lin, and J. Li. Efficient Processing of XML Path Queries Using
the Disk-based FB Index. In Proc. 81st Int. Conf. on Very Large Data Bases, pages 145-156, 2005.

X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-based Approach. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 335-346, 2004.

X. Yan, P. S. Yu, and J. Han. Substructure Similarity Search in Graph Databases. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 766-777, 2005.

B. B. Yao, M. T. Ozsu, and N. Khandelwal. XBench Benchmark and Performance Testing of XML
DBMSs. In Proc. 20th Int. Conf. on Data Engineering, 2004.

C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On Supporting Containment
Queries in Relational Database Management Systems. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 425-436, 2001.

N. Zhang, V. Kacholia, and M. T. Ozsu. A Succinct Physical Storage Scheme for Efficient Evaluation
of Path Queries in XML. In Proc. 20th Int. Conf. on Data Engineering, pages 54 — 65, 2004.

22

http://dblp.uni-trier.de/xml

	Introduction
	Background
	Path Expressions and Twig Queries
	Bisimulation Graph
	Matrices and Eigenvalues

	Features and Their Properties
	Structure Preservation
	Anti-symmetric Matrices for Twig Patterns
	Eigenvalue Properties
	Other Features

	Index Construction
	Types of Indexes
	Index Construction for Collections of Documents
	Construction of an Index Entry for a Small Document
	Construct Entries for a Large Document
	Completeness of Index Construction
	Supporting Value Equality Predicates

	Query Processing and Optimization using FIX
	Experimental Evaluation
	Test Data Sets and Index Construction
	Performance Evaluation Based on Implementation-independent Metrics
	Run-time Performance Evaluation
	Performance of Value Indexes

	Related Work
	Conclusion

