
The R-Acyclic Semiunification Problem

Brad Lushman Gordon V. Cormack

March 13, 2006

Abstract

We recast Kfoury and Wells’ formulation of the
acyclic semiunification problem (ASUP) in graph-
theoretic terms and prove equivalence between the
two formulations. We then relax and simplify the
graph-theoretic formulation; we call the resulting
problem the R-acyclic semiunification problem (R-
ASUP), which we show to be a strict superset of
ASUP. We prove that the ASUP solution procedure
terminates and produces most general solutions for
R-ASUP (and hence for ASUP) in the same sense
as Robinson’s unification algorithm. We thus extend
the class of semiunification instances known to be de-
cidable.

1 Introduction

Given an algebra of terms, consisting of variables,
along with a set of functors with associated arities,
unification [6] is the problem of finding, for a set of
pairs of terms, a variable assignment that equates
each pair in the set1. The unification problem is well
studied; linear time solutions are known. A related
problem, the semiunification problem (SUP), arises
in settings related to polymorphic type assignment in
programming languages. Semiunification differs from
unification in that a variable assignment that solves
the problem instance need not equate pairs of terms;
it is enough that, for each pair, a chosen term (called
the “right-hand side”) be a substitution instance of
the other term (called the “left-hand side”).

Although SUP is now known to be undecidable [3],
a restriction of SUP, known as the acyclic semiunifi-
cation problem (ASUP), has a solution procedure [4].
The standard description of ASUP is based on assign-
ing the pairs (called “inequalities”) in a SUP instance
into columns, subject to certain constraints. This de-
scription is unintuitive, difficult to communicate, and
does not clearly reveal the “acyclicity” inherent in

1Some formulations demand only a variable assignment that
equates a single pair of terms; the two formulations are equiv-
alent, as long as at least one functor has arity greater than 1.

this restriction of SUP.
This paper uses a graph-theoretic setting to de-

scribe ASUP; we prove equivalence between our
graph-theoretic description and the column-based de-
scription. We then present a new graph-theoretic re-
striction on SUP that is both easier to understand
(it clearly reveals the “acyclic” nature of the prob-
lem description) and strictly more general than the
first formulation. Along the way, we present the first
archival proof that the ASUP solution procedure is
correct, confluent, and produces “most general” re-
sults in the same sense as Robinson’s original unifi-
cation algorithm.

2 Background and Related
Work

Unification abounds in computer science; it lies at
the heart of many systems for formal manipulation
of symbols and formulas. Such systems have ap-
plications in theorem proving, software engineering,
and compiler construction; a survey can be found in
[5]. Unification algorithms solve the problem of term
equality in a given symbolic framework; a solution is
an assignment of terms to variables such that per-
forming the assignment equates pairs of given terms.

Semiunification [1] is a related problem that works
in the domain of term inequalities. It arises fre-
quently, particularly in the context of polymorphic
type inference. Semiunification has been used to
study polymorphic recursion in the Milner-Mycroft
calculus [2], and general parametric polymorphism in
the context of System F [7]. In both cases, the un-
decidability of semiunification led to undecidability
results for the respective typability problems. The
semiunification problem, SUP, is defined below:

Definition 1 (SUP). An instance of SUP is a set
{τi ≤ µi} of inequalities in some algebra consisting
of variables and some set of functors. A substitu-
tion S is a solution of SUP if there exist substitutions
S1, . . . , SN such that

τ1SS1 = µ1S

1

· · ·
τNSSN = µNS

Although SUP is itself undecidable [3], a particular
subset, known as the acyclic semiunification problem
(ASUP) is decidable [4]:

Definition 2 (LVars, RVars). For an inequality
τ ≤ µ, define

LVars(τ ≤ µ) = Vars(τ)
RVars(τ ≤ µ) = Vars(µ).

Definition 3 (Acyclic). An instance Γ of SUP
is acyclic if its inequalities can be arranged into m
columns such that the sets V0, . . . , Vm defined by

V0 =
⋃

v∈ col. 1

LVars(v)

· · ·

Vk =

(⋃
v∈ col. k − 1

RVars(v)

)⋃(⋃
v∈ col. k

LVars(v)

)
· · ·

Vm =
⋃

v∈ col. m

RVars(v)

are pairwise disjoint.

Definition 4 (ASUP). ASUP is the restriction of
SUP to acyclic problem instances.

For problems that have been shown to be unde-
cidable via equivalence with SUP, ASUP provides a
means of extracting decidable subproblems. For ex-
ample, Kfoury and Wells [4] observed that typability
in an important sublanguage of System F is, in fact,
reducible to ASUP, and therefore decidable.

The original unification algorithm is due to Robin-
son [6]. The formulation of Robinson’s algorithm that
we present here relies on paths:

Definition 5 (Path). For a term algebra comprising
a set F of functors, a path (denoted by Σ) is a string
over the set

{fi|f ∈ F, 1 ≤ i ≤ arity(f)}

that acts as a partial function on terms as follows:

ε(τ) = τ for all τ
(Σfi)(f(τ1, . . . , τarity(f))) = Σ(τi) (1 ≤ i ≤ arity(f)),

where τ ranges over terms and ε is the empty path.

We phrase Robinson’s algorithm as follows:

Input: set Γ = {τi = µi}Ni=1 of term equa-
tions

1. Set σ0 = [] and k = 0; go to step 2.
2. If τiσk = µiσk for all i, set σΓ = σk

and terminate with success.
3. Let Σ be a path and 1 ≤ i ≤ N be

such that Σ(τiσk) 6= Σ(µiσk) and at
least one of Σ(τiσk) and Σ(µiσk) is a
variable (say Σ(τiσk) is a variable)—if
this is impossible, then there is a func-
tor mismatch and Γ is not unifiable—
terminate with failure. If Σ(τiσk) does
not occur in Σ(µiσk), then set σk+1 =
[Σ(µiσk)/Σ(τiσk)]◦σk, add 1 to k, and
go to step 2; otherwise terminate with
failure.

The ASUP solution procedure, which we call simply
the redex algorithm, is due to Kfoury and Wells [4].
We present it below:

Input: set Γ = {τi ≤ µi}Ni=1 of term in-
equalities, such that for each i, Vars(τi) ∩
Vars(µi) = ∅.

1. Set σ0 = [] and k = 0; go to step 2.
2. If µiσk is a substitution instance of
τiσk for all i, set σΓ = σk and termi-
nate with success.

3. Perform one of the following steps:
(a) (Redex-I reduction) Let Σ be a

path and 1 ≤ i ≤ N be such
that Σ(µiσk) is a variable and
Σ(τiσk) is not a variable. Set
σk+1 = [Σ(τiσk)′/Σ(µiσk)] ◦ σk,
where Σ(τiσk)′ is Σ(τiσk) with all
variables renamed consistently to
fresh variables. Add 1 to k, and
go to step 2.

(b) (Redex-II reduction) Let Σ1 and
Σ2 be paths, α a variable, and
1 ≤ i ≤ N be such that
Σ1(τiσk) = Σ2(τiσk) = α and
Σ1(µiσk) 6= Σ2(µiσk). If Σ1(µiσk)
and Σ2(µiσk) are not unifiable,
terminate with failure. Else, let
θ be the most general unifier of
Σ1(µiσk) and Σ2(µiσk), as out-
put by Robinson’s unification al-
gorithm, and set σk+1 = θ ◦ σk.
Add 1 to k, and go to step 2.

(c) If neither of steps 3a and 3b is pos-
sible, then there is a functor mis-
match; terminate with failure.

2

An important property of Robinson’s algorithm is
that it always outputs a most general unifier. In other
words, if Robinson’s algorithm outputs a solution σ
of the problem instance, then for any other solution θ
of the instance, there is a variable substitution λ such
that θ = λ◦σ. In Section 4, we prove the correspond-
ing result for the redex algorithm. To the best of our
knowledge, no previous proof of this result occurs in
the literature.

3 A Graph-Theoretic Formula-
tion of ASUP

In this section, we rephrase the acyclicity condition
that distinguishes ASUP from SUP in the language
of graph theory. We state an equivalence between
the original formulation and our graph-thoretic for-
mulation. In later sections, we show how the graph-
theoretic model can be generalized without sacrificing
decidability.

Our discussion relies on the concepts of directed
and undirected paths for a directed graph, and of
signed and unsigned path length. We define these
below.

Definition 6 (Undirected path). Given a directed
graph G and vertices v1 and v2 in G, an undirected
path from v1 to v2 is a path from v1 to v2, in which we
are not required to follow the direction of the edges.
(In other words it is a path where we pretend that G
is undirected.)

Definition 7 (Unsigned, signed path length).
Given a directed graph G, with an undirected path π
joining vertices v1 and v2, the unsigned path length
of π, denoted ||π||, is the number of edges in π. The
signed path length of π, denoted |π|, is the length of
π, where each forward arrow (i.e., pointing away from
v1 and towards v2) counts for +1, and each reverse
arrow (i.e., pointing towards v1 and away from v2)
counts for −1.

We also introduce the following notation:

Definition 8. For a directed graph G containing ver-
tices v1 and v2, we write v1 → v2 (resp. v1 →U v2) if
there is a directed (resp. undirected) edge from v1 to
v2. We write v1 →∗ v2 (resp. v1 →∗U v2) if there is
a directed (resp. undirected) path from v1 to v2. We
write v1 →+ v2 (resp. v1 →+

U v2) if there is a directed
(resp. undirected) path of nonzero length from v1 to
v2. Finally, we write π : v1 →∗ v2 (and analogously
for the other cases) to indicate that π is a (directed)
path from v1 to v2.

The following theorem provides a graph-theoretic
characterization of the column-based definition of
acyclicity, as it appears in Definition 3.

Theorem 1. Let Γ = {µi ≤ τi}ni=1 be an instance of
SUP. Form a directed graph G as follows:

• the inequalities τi ≤ µi are the vertices vi in G;

• vi → vj iff RVars(vi) ∩ LVars(vj) 6= ∅

Then Γ is an acyclic instance of SUP iff the following
four symmetric conditions hold for G:

• for any given variables α1 and α2, whenever π :
v1 →∗U v2, such that α1 ∈ LVars(v1) and α2 ∈
LVars(v2), |π| is constant.

• for any given variables α1 and α2, whenever π :
v1 →∗U v2, such that α1 ∈ LVars(v1) and α2 ∈
RVars(v2), |π| is constant.

• for any given variables α1 and α2, whenever π :
v1 →∗U v2, such that α1 ∈ RVars(v1) and α2 ∈
LVars(v2), |π| is constant.

• for any given variables α1 and α2, whenever π :
v1 →∗U v2, such that α1 ∈ RVars(v1) and α2 ∈
RVars(v2), |π| is constant.

We leave a full proof to the appendix.
A few characteristics of this formulation are worth

noting. First, the disjointness of the sets V0, . . . , Vm is
modelled by a condition requiring constancy of path
lengths. Second, although the constants mentioned
in the four conditions are, of course, related to one
another, we still need all four conditions—this is be-
cause a given variable might occur only on lefthand
sides, or only on righthand sides. In these cases, not
all four constants may exist for a given choice of α1

and α2. Finally, although any directed graph satis-
fying the conditions of the theorem must be acyclic,
there is no direct notion of acyclicity mentioned in
the theorem. In Section 5, we generalize the con-
dition for acyclicity, while maintaining decidability.
The new condition clearly has an acyclic flavour.

4 “Most General”

In this section, we prove that, analogous to Robin-
son’s algorithm, the redex algorithm outputs most
general semiunifiers; to our knowledge, a previous
proof of this result does not appear in the litera-
ture. As an important corollary, we prove that the
redex algorithm is confluent; in other words, the or-
der in which we apply the reductions outlined in the
algorithm does not affect the final outcome beyond

3

renaming substitutions. Confluence is an important
building block for our generalization of acyclicity in
Section 5.

We begin by presenting a version of the original
proof that Robinson’s Unification Algorithm com-
putes most general unifiers. The corresponding proof
for semiunification is of a similar flavour.

Theorem 2. If Γ is unifiable, then Robinson’s algo-
rithm will terminate with success and return a unifier
σΓ, with the property that if θ is any unifier of Γ, then
there is a substitution λ such that θ = λ ◦ σΓ.

Proof. The idea is to prove that if Γ is unifiable,
then the algorithm will terminate with success, and
that the following statement is true for k ≥ 0 un-
til termination: there is a substitution λk such that
θ = λk ◦ σk. If k = 0, then σk = [] and we can take
λk = θ. For a general k, suppose θ = λk ◦σk for some
λk. If σk unifies Γ, then we are done, and we just
take σΓ = σk. Otherwise, we perform step 3. Since
λk unifies Γσk, it also unifies Σ(τiσk) and Σ(µiσk),
i.e., Σ(τiσk)λk = Σ(µiσk)λk. Now, if Σ(τiσk) (which
is a variable) occurs in Σ(µiσk), then Σ(τiσk)λk oc-
curs in Σ(µiσk)λk, which is impossible since these
expressions are equal. Hence, this step of the algo-
rithm does not terminate with failure; rather, we set
σk+1 = [Σ(µiσk)/Σ(τiσk)] ◦ σk. Let λk+1 be the re-
striction of λk to variables other than Σ(τiσk). Then
we have

λk = λk+1 ∪ [Σ(τiσk)λk/Σ(τiσk)]
= λk+1 ∪ [Σ(µiσk)λk/Σ(τiσk)]
= λk+1 ∪ [Σ(µiσk)λk+1/Σ(τiσk)]
= λk+1 ◦ [Σ(µiσk)/Σ(τiσk)],

where the third equality follows because Σ(τiσk) does
not occur in Σ(µiσk). Thus, θ = λk ◦ σk = λk+1 ◦
[Σ(µiσk)/Σ(τiσk)]◦σk = λk+1◦σk+1. The result now
follows by induction.

The proof of the same result for semiunification is
slightly more difficult. We begin with the following
lemma, which characterizes the structure of solvable
SUP instances that are not yet solved:

Lemma 1. Let τ and µ be expressions with no func-
tor mismatches, such that Vars(τ) and Vars(µ) are
disjoint, and suppose that µ is not a substitution in-
stance of τ . Then at least one of the following is true:

• there is a path Σ such that Σ(µ) is a variable and
Σ(τ) is not a variable;

• there are paths Σ1 and Σ2 and a variable α such
that Σ1(τ) = Σ2(τ) = α and Σ1(µ) 6= Σ2(µ).

Proof. Choose Σ as large as possible such that Σ(µ)
is not a substitution instance of Σ(τ). In particular,
choose Σ such that there is no path Σ′, of which Σ is a
prefix, such that Σ′(µ) is not a substitution instance
of Σ′(τ). Two cases arise:

• Σ(µ) is a variable. Then Σ(τ) cannot be a vari-
able (otherwise a renaming (or identity) substi-
tution would map Σ(τ) onto Σ(µ)), so the result
follows.

• Σ(µ) is not a variable. Then Σ(µ) =
f(µ1, . . . , µn). Since Σ(τ) cannot be a variable
(otherwise, Σ(µ) is obviously a substitution in-
stance of Σ(τ)), and there are no functor mis-
matches, we have Σ(τ) = f(τ1, . . . , τn). By the
maximality of Σ, each µi is a substitution in-
stance of the corresponding τi, i.e., for each i,
there is a substitution σi such that τiσi = µi.
If the sets Vars(τi) are pairwise disjoint, then
the substitutions σi have pairwise disjoint do-
mains and if we let σ = σ1 ◦ · · · ◦ σn, then
Σ(τ)σ = Σ(µ)σ, a contradiction. Thus there ex-
ist 1 ≤ j, k ≤ n, j 6= k, and a variable α such
that α ∈ Vars(τj)∩Vars(τk). For all such j, k, α,
if ασj = ασk, then the substitutions all agree
where there domains intersect and again we ob-
tain the contradiction Σ(τ)σ = Σ(µ)σ. Thus,
we can assume that j, k, and α are chosen such
that ασj 6= ασk. For these two occurrences of α
within τ (the first in τj) and the second in τk,
let Σ1 and Σ2 be, respectively, the paths that
reach them. Then Σ1(τ) = Σ2(τ) = α, and
Σ1(µ) = ασj 6= ασk = Σ2(µ), as required.

In either case, we obtain the required result.

The lemma guarantees that the two types of sub-
stitution outlined in the redex algorithm are the only
possibilities. The theorem establishing correctness
and completeness for the redex algorithm is as fol-
lows:

Theorem 3. If Γ = {τi ≤ µi}Ni=1 is semiunifi-
able and has the property that for each i, Vars(τi) ∩
Vars(µi) = ∅, then the above redex algorithm will
terminate with success and return a semiunifier σΓ,
which has the property that if θ is any semiunifier of
σΓ, then there is a substitution λ such that θ = λ◦σΓ.

Proof. As before, we show that if Γ is semiunifiable,
then the algorithm will terminate with success, and
that the following statement is true for k ≥ 0 until
termination: there is a substitution λk such that θ =
λk◦σk. If k = 0, then σk = [] and we can take λk = θ.
In general, suppose θ = λk ◦ σk for some λk. If σΓ

4

semiunifies Γ, then we are done, and we just take
σΓ = σk. Otherwise, we perform step 3. Since the
instance is not solved, then by Lemma 1, there are
two possibilities, corresponding respectively to steps
3a and 3b. Hence, there are two cases to consider:

1. We perform step 3a. Since λk semiunifies
Γσk, it also semiunifies Σ(τiσk) and Σ(µiσk).
Let λ′k be the restriction of λk to {Σ(µiσk)}.
Then λ′k also semiunifies Σ(τiσk) and Σ(µiσk).
Since Σ(µiσk) does not occur in Σ(τiσk), λ′k
semiunifies Σ(τiσk)′ and Σ(µiσk), i.e., there
is a substitution σ such that Σ(τiσk)′λ′kσ =
Σ(µiσk)λ′k. Upon simplification, we obtain
Σ(τiσk)′σ = Σ(µiσk)λ′k, which we rewrite as
Σ(µiσk)(σ ◦ [Σ(τiσk)′/Σ(µiσk)]) = Σ(µiσk)λ′k.
Since λ′k and σ ◦ [Σ(τiσk)′/Σ(µiσk)] both have
domain {Σ(µiσk)}, we obtain λ′k = σ ◦
[Σ(τiσk)′/Σ(µiσk)]. The algorithm sets σk+1 =
[Σ(τiσk)′/Σ(µiσk)] ◦ σk. Let λ′′k be the restric-
tion of λk to variables other than Σ(µiσk). Let
λk+1 = σ ◦ λ′′k . Then we have

λk+1 ◦ σk+1 = σ ◦ λ′′k ◦ [Σ(τiσk)′/Σ(µiσk)] ◦ σk
= σ ◦ [Σ(τiσk)′/Σ(µiσk)] ◦ λ′′k ◦ σk
= λ′k ◦ λ′′k ◦ σk
= λk ◦ σk
= θ,

where the second equality follows because λ′′k and
[Σ(τiσk)′/Σ(µiσk)] have disjoint domains.

2. We perform step 3b. Since Σ1(τiσk) =
Σ2(τiσk) = α, it follows that Σ1(µiσk)λk =
Σ2(µiσk)λk, otherwise no substitution could
map α to both of these. Hence, λk unifies
Σ1(µiσk) and Σ2(µiσk). Therefore, Robinson’s
unification algorithm will not fail on these ex-
pressions, and consequently the semiunification
algorithm will not fail for this value of k. Let
σ be the most general unifier of Σ1(µiσk) and
Σ2(µiσk), as output by Robinson’s unification
algorithm. Let λ′k be the restriction of λk to
the domain of σ. Then λ′k also unifies Σ1(µiσk)
and Σ2(µiσk). Hence, there is a substitution
σ′ such that λ′k = σ′ ◦ σ. The algorithm sets
σk+1 = σ ◦ σk. Let λ′′k be the restriction of λk
to variables other than those in the domain of σ.
Let λk+1 = σ′ ◦ λ′′k . Then we have

λk+1 ◦ σk+1 = σ′ ◦ λ′′k ◦ σ ◦ σk
= σ′ ◦ σ ◦ λ′′k ◦ σk
= λ′k ◦ λ′′k ◦ σk
= λk ◦ σk
= θ,

where the second equality follows because σ and
λ′′k have disjoint domains.

The result now follows by induction.

Corollary 1. The redex algorithm is confluent—any
two chosen sequences of redex reductions produce so-
lutions that differ at most by variable renamings.

Proof. Let S1 and S2 be solutions produced by the
redex procedure. Then by the theorem, there exist
substitutions S′1 and S′2 such that S2 = S′1 ◦ S1 and
S1 = S′2 ◦S2. Hence, S1 = S′2 ◦S′1 ◦S1 and S2 = S′1 ◦
S′2◦S2, which gives us S′2◦S′1 = S′1◦S′2 = []. Hence S′1
and S′2 are inverses, which can only happen if S′1 and
S′2 are either identity or renaming substitutions.

We do not explicitly demonstrate that the redex
algorithm always terminates on instances of ASUP;
this follows as an immediate consequence of Theo-
rems 6 and 7.

The theorem shows that the redex algorithm out-
puts a most general semiunifier for any instance of
SUP on which it terminates. Further, we are free
to choose any “reduction strategy” we like, without
having to worry about the generality of the answer.
In the next section, we show that the algorithm ter-
minates on a wider class of instances than originally
allowed.

5 Generalized “Acyclicity”

In this section, we present a more general, graph-
theoretic formulation of “acyclic”, upon which the
redex algorithm still terminates.

Lemma 2. If τiσk ≤ µiσk contains a redex that is
reduced in step k + 1 of the redex algorithm, then
the domain of the substitution σ such that σk+1 =
σ ◦σk (i.e., the substitution that reduces the redex) is
a subset of Vars(µiσk). In particaular, the domain of
σ does not intersect Vars(τiσk).

Proof. Immediate from the statement of the algo-
rithm.

Lemma 3. If a SUP instance Γ contains an inequal-
ity τ ≤ µ, and the semiunifier σ output by the redex
algorithm replaces a variable α in τ , then there exists
an inequality τ ′ ≤ µ′ in Γ such that τ ′ ≤ µ′ contains
a redex and α occurs in µ.

Proof. Immediate consequence of the previous
lemma.

5

Our termination proof is based on removing in-
equalities from the problem instance until none re-
main, at which point the algorithm terminates. An
inequality may be removed if we can prove that it
contains no redex, and further will never contain a
redex. Such inequalities are called solved :

Definition 9 (Solved). An inequality τ ≤ µ is
solved of order 0 if there is a substitution S such that
τS = µ, and the variables of τ do not occur on the
right-hand side of any inequality in the instance. An
inequality τ ≤ µ is solved of order k for k > 0 if there
is a substitution S such that τS = µ, and the vari-
ables of t do not occur on the right-hand side of any
inequality in the instance that is not solved of order j
for some j < k. An inequality is solved if it is solved
of order k for some k ≥ 0.

Informally, τ ≤ µ is solved if τS = µ for some S,
and the variables of τ do not occur on the righthand
side of any unsolved inequality in the instance. The
property we desire of solved inequalities, namely that
they will never contain a redex, is established in the
following two lemmas:

Lemma 4. If an inequality τ ≤ µ is solved of order
0, then the redex algorithm will not find a redex in it.

Proof. If there is a substitution S such that τS = µ,
then the empty substitution semiunifies τ and µ.
Thus, if the redex algorithm produces a semiunifier
σ, then by Theorem 3, there is a substitution σ′ such
that σ′ ◦ σ = []. This is only possible if σ is a renam-
ing substitution, and the redex algorithm does not
produce renaming substitutions.

Lemma 5. If an inequality is solved, then the redex
algorithm will never find a redex in it.

Proof. If an inequality τ ≤ µ is solved, then it is
solved of order k for some k ≥ 0. For k = 0, the
result follows from the previous lemma. Otherwise,
there is a substitution S such that τS = µ and every
occurrence of every variable in Vars(τ) on a right-
hand side is within an inequality that is solved of
order j < k. By induction, no redex will be found
in any such inequality, and therefore, no substitution
performed by the algorithm will ever replace a vari-
able in τ . Since the empty substitution already semi-
unifies τ ≤ µ, there are currently no redices in τ ≤ µ;
since no substitution will ever replace a variable in τ ,
there will continue to be no redices in τ ≤ µ. Hence,
by induction, the redex algorithm will never find a
redex in a solved inequality.

We now define an acyclicity criterion for the graph
G corresponding to a SUP instance Γ. We call this

criterion R-acyclicity ; we show that R-acyclicity is
sufficient to guarantee termination of the redex algo-
rithm, and is more general than the original, column-
based criterion.

Definition 10 (R-acyclic). For a graph G on a
SUP instance Γ = {τi ≤ µi}Ni=1, define relations R,
R′ on variables in G as follows: αRβ (resp. αR′β)
if there exist vertices vi and vj with α ∈ RVars(vi),
β ∈ RVars(vj), and vi →∗ vj (resp. vi →+ vj). G
is said to be R-acyclic if whenever αiR′αj, we have
¬(αjR+αi), where R+ is the transitive closure of the
relation R.

The “R” in R-acyclic refers, of course, to the rela-
tion R in Definition 10. However, it also emphasises
the asymmetry in the definition between RVars and
LVars—in particular, that we impose conditions on
RVars, but not on LVars. Hence, “R-acyclic” may
be read as “right-acyclic”. Although the statement
of R-acyclicity is somewhat involved, R-acyclicity is
not itself difficult to understand. For illustrative pur-
poses, Figure 1 depicts a graph that is not R-acyclic.
Note that R-acyclicity implies acyclicity.

- - -...
τ1 ≤ µ1(α) τ2 ≤ µ2(β)

� � �...
τ4 ≤ µ4(γ) τ3 ≤ µ3(β)

� � �...
τ6 ≤ µ6(α) τ5 ≤ µ5(γ)

Figure 1: The relation R and R-acyclicity. The nota-
tion µ(α) denotes an expression µ in which α occurs as
a subexpression. Here, αRβ—indeed, αR′β. Since also
βRγRα, we have βR+α; therefore, this graph is not R-
acyclic.

Theorem 4 (Invariance of R-acyclicity). Let G
be the graph of a SUP instance Γ = {τi ≤ µi}Ni=1.
If G is R-acyclic, then G continues to be R-acyclic
after redex reduction.

Proof. Suppose a redex-I is reduced in Γ. Then all
occurrences of some variable α are replaced with some
expression τ , containing only fresh variables. Hence
all vertices that contained α now contain the variables
of τ , and therefore no edges are erased by this reduc-
tion. Since only those edges that contained α will
now contain the variables of τ , this reduction cannot
create any new edges. Hence, the cycle structure of G
is unchanged and G remains R-acyclic. Suppose now
that a redex-II is reduced in Γ. If reduction causes G
to lose R-acyclicity, then there is a variable replace-
ment [τ/α] that occurs during reduction, which in-
duces, for some β1, . . . βn, the relations β1R · · ·Rβn,

6

and such that βnR′β1. Since [τ/α] caused the vio-
lation, it created an edge that completed one of the
paths from βi to β(i mod n)+1. For such an i, there is
an edge from some vj → vk lying along this path, that
was created by the substitution [τ/α]. Hence, one of
RVars(vj) and LVars(vk) contains the variable α; the
other contains a variable from τ , say γ. Now, for
the redex [τ/α] to exist, there must exist an inequal-
ity vh that satisfies the conditions for this redex-II;
hence α and τ are both in RVars(vh). Since one of α
and γ is in LVars(vk), we have vh → vk. Since either
α or γ is in RVars(vj), and both are in RVars(vh),
the transitive closure of R connects the path ending
with vj to the path beginning with vh, and followed
by vk. Hence, the removal of the edge from vj to
τk ≤ µk does not restore R-acyclicity. Since remov-
ing edges introduced by redex-II reductions cannot
convert graphs that are not R-acyclic to graphs that
are, it follows that if a graph is R-acyclic, it will con-
tinue to be R-acyclic after redex-II reduction.

The following theorem, establishing the solvability of
singleton instances of SUP, will ultimately form the
base case of our main result:

Theorem 5. Every instance of SUP comprising a
single inequality τ ≤ µ, with Vars(τ) ∩ Vars(µ) = ∅,
is solvable by the redex algorithm.

Proof. We bound the number of redex reductions
that can be performed in τ ≤ µ:

• The number of redex-I reductions in τ ≤ µ is
bounded by the number of leaf nodes in τ (i.e.,
by the number of variable occurrences in τ). Ev-
ery redex-I reduction causes at least one variable
α in τ to be matched against a variable in µ. No
further reduction will ever again cause this oc-
currence of α to be part of a redex-I. Hence there
can be no more redex-I’s than leaves in τ .

• The number of redex-II reductions that can occur
in τ ≤ µ before a redex-I reduction must occur
is bounded by |Vars(µ)|. This is because each
redex-II reduction replaces at least one variable
in µ; hence it decreases |Vars(µ)| by at least 1.

Since the number of redex-II reductions that can oc-
cur between redex-I reductions is bounded, and the
total number of redex-I reductions is bounded, the
redex algorithm must eventually terminate.

We now prove the main result. The inductive step
of the proof relies on the fact that every directed
acyclic graph G creates a partial order ≤G on its ver-
tices, defined such that v1 ≤G v2 if there is a directed
path from v1 to v2. The minimal elements in ≤G are

the source vertices, and the maximal elements are the
sink vertices. Further, every directed acyclic graph
has at least one source vertex and at least one sink
vertex. Hence also, the relation ≤G has at least one
minimal element and at least one maximal element.

Theorem 6. Let Γ be an instance of SUP and G be
the graph induced by Γ according to the statement of
Theorem 1. If G is R-acyclic, then the redex algo-
rithm will terminate on Γ.

Proof. By induction on |Γ|. If Γ is a single inequality,
then the result follows from Theorem 5. Otherwise,
R-acyclicity implies that G is acyclic; therefore, let
τ0 ≤ µ0 be a source inequality in G. By confluence,
we can reduce in any order we like, so let S0 be the
result of applying the redex algorithm to τ0 ≤ µ0.
Since τ0 ≤ µ0 is a source vertex, it has no in-edges.
Hence, there are no inequalities in G whose right-
hand side contains any of the variables in τ0. Then
τ0S0 ≤ µ0S0, which simplifies to τ0 ≤ µ0S0, is solved
of order 0, and no more redices will ever be found
in this inequality. Hence all remaining redices are
found in the new instance Γ′ = (Γ \ {τ0 ≤ µ0})S0,
which is strictly smaller than Γ, and whose graph, by
Theorem 4, is still R-acyclic. By induction, the redex
algorithm terminates on Γ′, returning a solution S.
Then it follows that the redex algorithm terminates
on Γ, with solution S ◦ S0.

Corollary 2. The set of SUP instances that have
R-acyclic graphs forms a decidable subset of SUP.

Proof. By the theorem, there exists a terminating se-
quence of reductions for any instance whose graph is
R-acyclic. The resulting substitution solves the in-
stance, and is furthermore most general.

We have now produced a solvable subset of SUP
that has no dependence on path length, and further,
makes no explicit requirements of variables on the
left-hand sides of inequalities. This is not only a sim-
pler description than the original, but as we shall now
see, it describes a strictly larger subset of SUP:

Definition 11 (R-ASUP). R-ASUP is the restric-
tion of SUP to R-acyclic problem instances.

Theorem 7. R-ASUP is a strict superset of ASUP.

Proof. For variables α and β, if αR′β (where R′ is
as given in Definition 10), then α’s column assign-
ment is strictly smaller than β’s. If also βR+α, then
β’s column assignment would be less than or equal
to α’s, which is a contradiction. Hence ¬(βR+α),
and therefore any instance that satisfies the column-
based definition of acyclicity is R-acyclic. On the

7

other hand, consider any instance containing the fol-
lowing inequalities:

α ≤ β

β ≤ γ

α ≤ γ

This instance does not satisfy the column-based cri-
terion for acyclicity—for suppose that α ∈ Vi. Then
by the second inequality, γ ∈ Vi+2, but by the third
inequality, γ ∈ Vi+1. On the other hand, it is easy
to see that these inequalities are R-acyclic. Hence,
indeed, R-acyclicity is strictly more general than the
column-based criterion.

6 Summary and Future Work

When Henglein first presented SUP as part of his
work on the Milner-Mycroft calculus, he presented a
solution for the linear subset of SUP (i.e., the subset
in which all functors are unary) and conjectured gen-
eral solvability. SUP was later found to be solvable on
all instances consisting of a single inequality. Kfoury,
Tiuryn, and Urzyczyn [3] eventually showed that the
full SUP is, in fact, unsolvable, though Kfoury and
Wells formulated the subset of SUP known as ASUP,
and demonstrated solvability.

This paper expands the class of solvable instances
of SUP by replacing the column-based formulation of
acyclicity by R-acyclicity. R-acyclicity enjoys several
advantages over the original formulation:

• it eliminates the need for constancy of path
lengths in an instance’s graph;

• it replaces four conditions with a single con-
dition, by eliminating explicit consideration of
variables on the lefthand side;

• the relationship between R-acyclicity and the re-
lation R clearly show the acyclic character of this
subset of SUP; the notion of acyclicity is not as
apparent in the column-based formulation;

• by relaxing several of the conditions originally
imposed on SUP instances, R-acyclicity is more
widely applicable than the original formulation
of acyclicity; hence, the class of known solvable
instances of SUP is now increased.

Just as ASUP provides an opportunity to find mean-
ingful solvable subsets of problems that are unsolv-
able due to equivalence with SUP, our new formu-
lation of acyclicity allows us to find larger solvable
subsets of these problems. In future work, we will

explore the application of this work to known prob-
lems that are connected to SUP. Already (though we
have not presented the result here), we can report
that our work has led to a significant simplification of
a well-known typing algorithm for a subset of System
F. Moreover, we believe that R-acyclicity will yield
simplifications beyond those we have already found.

References

[1] Fritz Henglein. Semi-unification. Technical Re-
port (SETL Newsletter) 223, New York Univer-
sity, April 1988.

[2] Fritz Henglein. Type inference and semi-
unification. In Proceedings of the 1988 ACM
conference on LISP and functional programming,
pages 184–197. Association for Computing Ma-
chinery, ACM Press, 1988.

[3] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The un-
decidability of the semi-unification problem. In-
formation and Computation, 102:83–101, 1993.

[4] A. J. Kfoury and J. B. Wells. A direct algorithm
for type inference in the rank-2 fragment of the
second-order λ-calculus. In 1994 ACM Confer-
ence on LISP and Functional Programming, pages
196–207. ACM Press, 1994.

[5] Kevin Knight. Unification: a multidisciplinary
survey. ACM Comput. Surv., 21(1):93–124, 1989.

[6] J. A. Robinson. A machine-oriented logic based
on the resolution principle. J. ACM, 12(1):23–41,
1965.

[7] J. B. Wells. Typability and type checking in Sys-
tem F are equivalent and undecidable. Annals of
Pure and Applied Logic, 98(1–3):111–156, 1999.

Appendix—Proof of Theorem 1

In this section, we prove Theorem 1, that our graph-
theoretic formulation of acyclicity is equivalent to the
original, column-based formulation:

Proof of Theorem 1. We begin with the forward di-
rection. Suppose Γ is an acyclic instance of SUP.
Then there is an arrangement of the inequalities in Γ
into m columns such that the following sets:

V0 =
⋃

v∈col. 1

LVars(v)

8

Vi =

(⋃
v∈col. i

RVars(v)

)⋃(⋃
v∈col. i+ 1

LVars(v)

)
Vm =

⋃
v∈col. m

RVars(v)

are pairwise disjoint. Now, consider any edge from
µi ≤ τi to µj ≤ τj in G. Then τi and µj share at least
one variable in common. Thus, by the disjointness of
the Vi’s µi ≤ τi and µj ≤ τj must be in adjacent
columns, say µi ≤ τi is in column k and µj ≤ τj is in
column k+1 (so that the variables in τi and µj are in
the set Vk). Hence the edge points from an inequality
in column k to one in column k + 1. (Since all edges
point from a given column to the one immediately
following it, it follows immediately that G is acyclic.)
Now, let µ1 ≤ τ1 and µ2 ≤ τ2 be inequalities in Γ, i.e.,
edges in G, in columns k1 and k2, respectively, and
suppose π : µ1 ≤ τ1 →∗U µ2 ≤ τ2 in G. We prove by
induction on ||π|| that |π| = k2−k1. If ||π|| = 0, then
the two vertices coincide, and the result is immedi-
ate. Otherwise, we can decompose π into a directed
(though possibly reversed) path π1 followed by an
undirected path π2 via a vertex µ3 ≤ τ3, in column
k3. Since every edge joins consecutive columns, |π1|
must be precisely k3−k1. By induction, we claim that
|π2| = k2 − k3. Thus |π| = k2 − k1, independently of
our choice of path. Hence, for any pair of vertices in
G, all undirected paths joining them have the same
signed length. (Note that this implies that all directed
paths joining two given vertices also have the same
length.) Now, choose i, j ∈ {1, 2}. By the pairwise
disjointness of V0, . . . , Vm, all inequalities τ11 ≤ τ12

such that α1 ∈ Vars(τ1i) are in some column k, and
all inequalities τ21 ≤ τ22 such that α2 ∈ Vars(τ2j) are
in some column k′. Hence all undirected paths join-
ing such vertices must be of signed length precisely
k − k′. This establishes the forward direction.

For the reverse direction, we begin with an acyclic
digraph G satisfying our hypotheses, and arrange the
inequalities into columns as follows:

• for each connected component of G:

– label any vertex v with any integer c

– while there are unlabelled vertices:

∗ choose a labelled vertex w, with label
lw

∗ for all unlabelled vertices w′ such that
w → w′, label w′ with label lw + 1

∗ for all unlabelled vertices w′ such that
w′ → w, label w′ with label lw − 1

• while possible:

– let G1 and G2 be connected components of
G, such that there are vertices v1 ∈ G1,
v2 ∈ G2, with respective labels l1 and l2,
such that Vars(v1) ∩Vars(v2) 6= ∅

– subtract l2 − l1 from all labels in G2

– create a new vertex v3, with no variables
and label l1 + 1, and edges from v1 to v3,
and from v2 to v3, so that G1 and G2 are
now connected

• let l0 be the smallest label in G and subtract l0
from all labels in G

• erase all edges and vertices added to G in the
second loop above; each vertex’s label is its col-
umn

The following observation is immediate: if there is
an assignment of the inequalities into columns, such
that the Vi’s are disjoint, then this algorithm will find
it—every choice of label it makes is forced upon it by
the edges of the graph, which constrain the possible
column assignments. What we must show is that
there is always such an assignment. In particular,
after the algorithm is finished, if we form the Vi’s,
will these sets be pairwise disjoint?

First note that the edges of G actually used by
the algorithm in assigning labels induce a spanning
tree on each connected component of G. So between
any two vertices v1 and v2 (labelled l1 and l2, respec-
tively) within a connected component of G, there is a
unique path along the spanning tree that joins them.
Moreover the signed length of the path from v1 to v2

along the spanning tree is l2 − l1 (easy induction on
path lengths).

Let each vertex’s label be its column and form the
sets V0, . . . , Vm. Suppose there are sets Vi and Vj with
a variable φ such that φ ∈ Vi ∩ Vj . There are four
cases, depending on whether φ is found on the left-
hand sides or the right-hand sides of the inequalities
involved. We consider one case in detail here–there
are inequalities τ1 ≤ µ1 and τ2 ≤ µ2, in columns i and
j, respectively, such that φ ∈ Vars(µ1) ∩ Vars(µ2).
The signed path length between these two vertices is
j − i. By hypothesis, all paths between two inequali-
ties having φ on the right-hand side must then have
this signed length. Consider now the distance from
the vertex τ1 ≤ µ1 to itself. It must also have value
i− j, by hypothesis on G, but of course the distance
from a vertex to itself is 0. Hence i − j = 0, from
which we obtain i = j. The remaining three cases
are similarly easy.

The other major case is that τ1 ≤ µ1 and τ2 ≤ µ2

lie in different connected components of G, so that

9

there is no path joining them. There are then two
possibilities:

• τ1 ≤ µ1 and τ2 ≤ µ2 were the vertices considered
in the second part of the algorithm—then they
were assigned the same label; hence i = j.

• otherwise two vertices v1 and v2, with a variable
ψ in common, were used by the algorithm to tem-
porarily join the connected components. Say v1

and τ1 ≤ µ1 are in the same connected compo-
nent, as are v2 and τ2 ≤ µ2. By hypothesis on
G, the signed path length from v1 to τ1 ≤ µ1

is equal to the signed path length from v2 to
τ2 ≤ µ2. Since the algorithm assigns v1 and v2

the same column, it follows again that i = j.

This completes the proof.

10

