
A Scalable Peer-to-peer Protocol Enabling Efficient and
Flexible Search

Reaz Ahmed and Raouf Boutaba
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, CA N2L 3G1

{r5ahmed,rboutaba}@uwaterloo.ca

(Technical Report: CS-2006-05)

Abstract

Efficient discovery of information, based on partial knowledge, is a challenging problem faced by many large
scale distributed systems. This paper presents a peer-to-peer search protocol that addresses this problem. The
proposed system provides an efficient mechanism for advertising a binary pattern, and discovering it using any
subset of its 1-bits. A pattern (e.g., Bloom filter) summarizes the properties (e.g., keywords or service description)
associated with a shared object (e.g., document or service).

The proposed system has a partially decentralized architecture involving superpeers and adopts a novel struc-
tured search mechanism derived from the theory of Error Correcting Codes (ECC). Better resilience to peer failure
is achieved by utilizing replication and redundant routing paths. The number of routing hops and the number of
links maintained by each superpeer scales logarithmically with the number of superpeers. The concept presented
in this paper is supported with theoretical analysis, and simulation results.

1 Introduction

Locating the peer, responsible for a given data item, is an essential functionality for most peer-to-peer (P2P) systems,
featuring frequent joins and leaves of peers. Distributed Hash Table (DHT) techniques, such as Chord[24], CAN[22],
Kademlia[21], have been extensively investigated for their efficiency in performing this task. These techniques assign
a portion of the key space to each peer and offer a single functionality: given a key, find the ID of the peer responsible
for that key. Keys and IDs belong to the same space, usually 160-bit integers. A key is associated with a data item,
and is computed by hashing the data item or some of its identifying properties.

A major handicap of DHT-techniques is their inability to resolve inexact queries, i.e., queries that are generated
from a partial knowledge of the target data item. Many distributed applications, including content sharing P2P
systems and service discovery systems, are required to provide support for inexact queries. For example, in service
discovery systems [18] (e.g., Jini, SLP and Salutation), a service is advertised as a list of descriptive attribute-value
pairs, called service description. Queries for a service include only a subset of the attribute-value pairs previously
advertised in the description of that service. Similarly, for a file-sharing P2P system, the users do not always know
the exact name of the advertised file. Instead, queries are based on a subset of the keywords that are present in the
filename.

Several research proposals have focused on building an additional layer on top of a DHT protocol for supporting
subset matching. For example, Squid[23] and Twine[6] build a middleware on top of Chord to support partial keyword
matching (prefixes only) and service discovery, respectively. DHT-techniques cluster keys based on numeric distance.
But, for efficient subset matching keys should be clustered based on hamming distance1. As a result, these solutions

1The Hamming distance between two bit vectors X and Y of same length is calculated as d(X, Y) = |X ⊕ Y | = number of bits on
which X and Y disagree.

1

(Squid and Twine) generate many independent DHT-lookups for resolving one query. More recently, the problem of
subset matching in distributed environments has been addressed in [3]. Here, a hierarchical architecture, utilizing
semi-structured search, has been proposed.

The contribution of this paper is a scalable and efficient P2P search protocol for supporting subset search. Instead
of using keys, we have used patterns (like Bloom filters [7]) to summarize the identifying properties associated with a
shared object. The proposed system provides an efficient mechanism for advertising a binary pattern, and discovering
it by using any subset of its 1-bits. We adopted a partially decentralized architecture involving superpeers, and adopts
a novel structured search mechanism based on the theory of Error Correcting Codes (ECC). Better resilience to peer
failure is attained by using replication and redundant routing paths. The number of routing hops and the number
of links maintained by each superpeer scales logarithmically with the number of superpeers. The concept presented
in this paper is supported with theoretical analysis, and simulation results obtained from the application of these
concepts to partial keyword search utilizing the extended Golay code[16].

The rest of this paper is organized as follows. Section 2 compares the proposed system with related works. The
preliminaries on coding theory and Bloom filters are presented in Section 3. Section 4 explains the new system, and
proves several of its properties. Simulation results, supporting our claims, are presented in Section 5. Finally we
conclude and outline our future research goals in Section 6.

2 Related Works

Sate-of-the-art solutions for subset matching [4], [12] in centralized environments, hold linear relationship with the
number of patterns to be matched against. Hence, equivalent solutions in a distributed environment, where the
patterns are distributed across networked nodes, will require flooding the network.

Pattern matching in distributed environments has been addressed in [3]. This work presents the Distributed Pattern
Matching System (DPMS). DPMS organizes indexing peers in a lattice-like hierarchy and uses restricted flooding
(within O(logN) peers) at the topmost level of the hierarchy. DPMS uses Bloom filters as meta-information for
routing, and relies on replication for increasing fault-resilience. DPMS uses a don’t care based aggregation scheme

to reduce the volume of index information at higher level peers. DPMS requires O
(
log N

logN

)
additional hops for

finding each match, after a set of O(logN) peers at the topmost level has been flooded. On the contrary, we can
discover all the matches by searching a limited number of superpeers.

Several research activities (including [23], [26]) add a layer on top of DHT to support keyword search. Squid [23]
adopts space-filling-curves to map similar keywords to numerically close keys, and uses Chord [24] for routing. It
supports partial prefix matching (e.g. queries like compu* or net*) and multi keyword queries. In contrast to
the new system, Squid does not have the provision for supporting true inexact matching for queries like *net*.
pSearch [26] aims to support full-text search. It uses Information Retrieval techniques, like vector space model
and latent semantic indexing, on top of CAN [22]. Queries and data are represented by term vectors. Searches
are performed in multidimensional Cartesian space. In this technique search performance degrades with increase in
dimensionality.

Unstructured systems ([2],[1]) can support partial keyword search. These systems depend on blind search techniques,
such as flooding [2] and random walk [20]. Hence, the generated volume of query traffic does not scale with the growth
in network size. Many research activities are aimed towards improving the routing performance of unstructured P2P
systems by adopting hint-based routing strategies. In [28] and [27], peers learn from the results of previous routing
decisions, and bias future query routing based on this knowledge. In [9], routing is biased by peer capacity; queries
are routed to peers of higher capacity with a higher probability. In [11], peers are organized according to common
interests, and restricted flooding is performed in different interest groups. In [9], [28] and [19], peers store index
information from other peers within a neighborhood radius of 2 or 3 hops. These techniques reduce the query traffic
volume to some extent, but do not provide any guarantee on search completeness or any bound on the volume of
query/advertisement traffic.

Service discovery is another application of the new system presented in this paper. Service discovery systems rely on
three-party architecture, composed of clients, services and directory entities. Directory entities gather advertisements

2

from services and resolve queries from clients. Major protocols for service discovery from industry, like SLP, Jini,
Salutation, etc, assume a few directory agents, and do not provide any structured way of locating service descriptions.
Solutions from academia, like Secure Service Discovery Service (SSDS) [14] and Twine [6], target Internet-scale service
discovery and face the challenge of achieving efficiency and scalability in locating service descriptions based on partial
information. SSDS relies on a tree-like hierarchy of directory entities. It uses Bloom filters for representing service
descriptions. Bit-wise OR-base aggregation scheme is adopted for reducing the volume of index information at higher
level directory entities. SSDS suffers from load-balancing problem and is vulnerable to the failure of higher level
directory entities along the index tree.

Twine [6], on the other hand, uses a hierarchical naming scheme and relies on Chord as the underlying routing
mechanism. Twine generates a set of strands (substrings) from the advertisement or query, computes keys for
each of these strands, and finally performs search or advertisement using these keys. The number of DHT-lookup
increases with the number of attribute-value pairs in a name and so the amount of generated traffic is high. Also,
load-balancing is a major problem in this system. Peers responsible for small or popular strands become overloaded,
and the overall performance degrades.

In summary, the proposed system can be used to solve the generic problem of subset search in distributed en-
vironments without compromising scalability and efficiency requirements. In particular, it can help in reducing
search traffic, resulting from multiple DHT-lookups, as in [6],[23], and the lack of scalability displayed by hint-based
unstructured systems such as [2], [19] and [11].

3 Preliminaries

In this section, we explain the properties of linear codes, extended Golay code and Bloom filters. We highlight only
the properties that will be required for our discussion in subsequent sections.

3.1 Linear Binary Codes

Let Fn
2 define the linear space of all n-tuples (or vector) over the finite field F2 = {0, 1}. A linear binary code of

length n is a subspace C ⊂ Fn
2 . The n-tuples, forming the subspace, are called codewords. A linear binary code is

specified by using three parameters (n, k, d). Here, k is the dimension (or rank) of the code. This indicates that
there exists a total of 2k codewords in the code. d is the minimum hamming distance between any two codewords.
A good (n, k, d)-code has a small n (for fast transmission), a large k (for increased information content), and a large
d (for correcting many errors).

Since the set of codewords in C is a subspace of Fn
2 , the XOR of any two codewords, u and v, is also a codeword,

i.e., ∀u, v ∈ C =⇒ u ⊕ v ∈ C. This property allows the entire code to be represented in terms of a minimal set of
codewords, known as a basis in linear algebra terminology. A basis for an (n, k, d) code contains exactly k codewords.
These k codewords, g1, g2, . . . , gk, are collated in the rows of a k × n matrix known as the generator matrix, GC , for
code C. The codewords of C can be generated by XORing any number of rows2 of G. The generator matrix for any
linear code can be expressed as,

G = [IkB] = [g1g2 . . . gk]T (1)

where, Ik is the k × k identity matrix, and B is a k × (n− k) matrix.

The dual code C⊥ of linear code C is defined as

C⊥ =
{

x ∈ Fn
2 |x · c = ~0∀c ∈ C

}

Here, x · c represents bit-wise product. A linear code is said to be self-dual, if C⊥ = C. For any codeword c of a
self-dual linear code C, c ∈ C =⇒ c̄ ∈ C, c̄ represents the bit-wise complement of c.

2Note that
∑k

i=0

(k
i

)
= 2k.

3

3.2 Extended Golay Code

The extended Golay code, G24, is a (24, 12, 8) self-dual linear binary code. It has 4096(= 212) codewords of length
24-bits each. The minimum distance between any two codewords is 8. The weight3 distribution of this code is
01 8759 122576 16759 241. G24 contains the all zero vector ~04 and the all one vector ~1. Exactly 759 codewords have
weight 8 (known as special octads), 2576 codewords have weight 12 (known as umbral dodecads), and 759 codewords
have weight 16 (called 16-sets).

Figure 1: Relationships among the orbits of the vectors in Fn
2 w.r.t. to the codewords in G24. Circled orbits correspond

to the codewords of G24.

All the possible vectors in Fn
2 can be categorized into 49 orbits w.r.t. G24 [13]. These orbits are denoted as Sw(0 ≤

w ≤ 8), Tw(8 ≤ w ≤ 16), Uw(6 ≤ w ≤ 18), P12 and X12, where the subscript w denotes the weight of the vectors in
that orbit. Figure 1 (a portion of Figure 1 in [13])) depicts some of these orbits. An edge between orbits A and B
indicates that a vector in orbit B can be obtained from some vector in orbit A (and vice versa) by complementing
a single bit. The minimal hamming distance of a vector in orbit A from some vector in orbit B is essentially the
length of the shortest path from node A to node B in the graph of Figure 1. Orbit S8 consists of the 759 special
octads, orbit U12 consists of the 2576 umbral dodecads, and orbit S16 comprises of the 759 16-sets.

3.3 Bloom Filters

A Bloom filter [7] is a compact data-structure used to represent a set. Bloom filters are used in many network
applications [8] due to their space-efficiency, and their ability to support set membership test operation. However,
the membership test operation may result into false (erroneously) positives with a small probability.

3The number of 1-bits in a bit vector is known as its weight.
4Any linear code contains the all zero vector, ~0

4

An m-bit array is used to represent a Bloom filter. k different hash functions are also required to be defined. In
an empty Bloom filter all the bits are set to zero. To insert an element in a Bloom filter, it is hashed with the k
hash functions to obtain k positions in the bit-array and corresponding k-bits are set to 1. The membership test
process is similar to the insert process. The element, say x, to be tested for set membership, is hashed with the same
k-hash functions and corresponding k-positions in the bit-array are checked. If any of these k-bits is not 1 then x
is definitely not a member of the set represented by this Bloom filter. On the other hand, if all of these k-bits are
1, then there is a high probability that x is a member of the set. The false-positive probability for a Bloom filter,
representing an n-element set, is calculated as

ε =

(
1−

(
1− 1

m

)nk
)k

ε is minimized when k = ln 2 · (m/n). For example, with m/n = 6 and k = 3, ε ≈ 0.06. For a well designed Bloom
filter about 33− 50% of the bits are 1.

4 The New System

In this section, we define a protocol that governs the connectivity, and eventually the structure of a P2P overlay for
enabling flexible subset search.

4.1 Overview

From a functional point of view, peers in our system can be categorized as superpeers and leaf peers. In addition to
the functionalities (mostly file transfers) carried out by the regular leaf peers, superpeers are responsible for indexing
meta-information about the content published by the leaf peers and other superpeers, and for routing queries based
on this information. Superpeers connect to a larger number of peers than the leaf peers, have higher capacity
(bandwidth and processing power) and longer uptime. According to the classification presented in [5], our system
has a partially decentralized architecture utilizing structured search in the superpeer network.

Super peer

network

Leaf peer

Super peer

Meta-info. exchange

Content transfer

Routing links

Inter-network links

Legend
Super peer

network

Leaf peer

Super peer

Meta-info. exchange

Content transfer

Routing links

Inter-network links

Leaf peer

Super peer

Meta-info. exchange

Content transfer

Routing links

Inter-network links

Legend

Figure 2: Overview of the new system.

As depicted in Figure 2, superpeers collaborate in subnets for routing advertisements and queries. Each subnet is
capable of routing messages independently of the other subnets in the system. As reported in [25], the modern
two-tier Gnutella network contains around a million peers. About 18% of these peers participate as superpeers. This
implies that each subnet should contain around 4000-16000 (i.e., 212 − 214) superpeers for a network with 10-20
subnets.

We have used Bloom filters [7] as meta-information for routing. Bloom filters are used for summarizing the properties
of shared objects and for enabling subset matching.

5

Similar to DHT-based systems, we employed a three-party rendezvous mechanism for query resolution. Advertise-
ments and queries are routed to different sets of superpeers in such a way that a query set and an advertisement
set has at least one superpeer in common, whenever a query has a subset of the 1-bits, as present in an advertised
pattern. The idea is to partition the entire pattern space Fn

2 into clusters and select a unique representative for each
cluster. Let C be the set of these representative patterns. For any advertised pattern P and search pattern Q, we
need to find two sets: advSet(P) ⊂ C and qSet(Q) ⊂ C, satisfying Equation 2.

Q ⊆ P =⇒ qSet(Q) ∩ advSet(P) 6= ∅ (2)

To minimize the cardinality of advSet and qSet, patterns in close proximity (w.r.t Hamming distance and not
Euclidean distance) should be grouped under the same cluster.

Clustering of pattern space has been extensively studied in Artificial Intelligence (AI) and Coding Theory literature.
AI-based clustering techniques [17] require priori knowledge of the pattern space (e.g., pattern density distribution)
and training phases. Coding theory constructs, on the other hand, assume that all the patterns are equally likely.
These techniques distinguish a set of patterns as cluster-heads (codewords), which cover the entire (or most of the)
pattern space with no (or very little) overlaps. Each superpeer is assigned a codeword and is responsible for the
patterns within its covering radius, consisting of all patterns within Hamming distance d

2 .

������ � ������ � ������ �	

� �

�

������

�

������ ������

� � ��� ����� ������

�

�

���� �� !�����"���# �"� $ ���

%�&' ��(�
��#�)� *��)��$����

+,-./,01
/20,340 5-6

7389

:/;,/;30/

+300/,6 0-
4-</=-,<
>3..56;

?-@056;

A �
B �

Figure 3: Search/advertisement process.

Figure 3 depicts the search/advertisement process. In this figure, step 1 and 2 are specific to the application under
consideration, e.g., keyword search, service discovery etc. The input to the system is a r × n bit pattern (in this
example, a Bloom filter), representing a query or an advertisement. Here, n is the length of the linear code used
for the routing process, and r is the number of subnets in the system. In our implementation, we have used the
extended Golay code G24, and thus n = 24. The input bit-vector is segregated into r chunks (step 3), each n bits
long. An n-bit chunk is then mapped to a set of codewords Si (Si ⊂ G24 for our implementation) and forwarded
to any superpeer in subnet i. The superpeer routes the message in O(1

2 |Si| log |C|) hops to the target superpeers in
Si. The algorithms for mapping an n-bit pattern to a set of codewords (Si ⊂ G24) for the search and advertisement
processes are explained in Section 4.3. The routing algorithm within a subnet is presented in Section 4.2.

If a query/advertisement message is propagated to all of the r-subnets, then the implied redundancy will be very
high. We have reduced this overhead by adopting the concept of voting algorithm as presented in [15]. In particular,
an advertisement is propagated to b r

2 +1c subnets, and a query message is propagated to b r+1
2 c subnets. This ensures

that there exists at least one subnet receiving an advertisement, and any query matching that advertisement.

6

Steps 1 and 2 in Figure 3 are always executed by a leaf peer. Steps 3 to 5 can be executed either by a leaf peer or
by a superpeer, depending on the implementation choice. We prefer the leaf peers to calculate the advSet and qSet,
since these operations are CPU intensive. The leaf peer can then submit the message, containing the list of target
codewords, to any known superpeer. It should be left as the responsibility of a superpeer to maintain extra links to
other superpeers outside its subnet, and forward a message to appropriate subnets.

4.2 Routing within a Subnet

In this section, we present an algorithm for routing within a subnet. First, we explain the mechanism for routing a
message originating at peer X to a single target peer Y . Then we provide an algorithm for multicasting the message
to multiple destinations. By “peer X” we mean a super-peer responsible for codeword X. In this section, a superpeer
is assumed to be associated with a single codeword. Later in Section 4.5, a method of associating multiple codewords
with a superpeer is described.

As discussed in Section 3.1, the codewords of a linear code (C) form a vector subspace of Fn
2 . The basis vectors of

this vector subspace are represented as the rows of the generator matrix for the code. Consider a (n, k, d) linear code
(C) with generator matrix GC = [g1, g2, . . . , gk]T . To route using this code, peer X has to maintain links to (k + 1)
superpeers with IDs X1, X2, . . . , Xk+1, computed as follows:

Xi =

{
X ⊕ gi 1 ≤ i ≤ k

X ⊕ g1 ⊕ g2 ⊕ . . .⊕ gk i = k + 1
(3)

Theorem 1. Suppose we are using a (n, k, d) linear code C and each superpeer is maintaining (k + 1) routing links
as specified in (3). In such an overlay, it is possible to route a query from any source to any destination codeword in
less than or equal to k

2 routing hops.

Proof. According to the definition of linear codes, ~0 ∈ C, the rows of GC (i.e., g1, g2 . . . gk) form a basis for the
subspace C, and C is closed under XOR operation. This implies, for any permutation (i1, i2, . . . , ik) of (1, 2, . . . , k),

X ∈ C =⇒ Y = (X ⊕ gi1 ⊕ gi2 ⊕ . . .⊕ git) ∈ C (4)

for 1 ≤ t ≤ k, i.e., 2k distinct codewords of C can be generated by XORing any combination of 1, 2, . . . , k rows of GC
with X.

Suppose peer X (source) wants to route a message to peer Y (target), as defined in Equation 4. Now, X can route
the message to any of Xj = X ⊕ gij in one hop by using its routing links (see Equation 3). Suppose X routes to
X1 = X ⊕ gi1 . X1 will evaluate Y as Y = X1 ⊕ gi2 ⊕ . . . git . Note that Y is one hope closer to X1 than X. X1 can
route the message to any of X1 ⊕ gi2 , X1 ⊕ gi3 ,. . .,X1 ⊕ git peers in one hop. In this way, the query can be routed
from X to Y in exactly t-hops.

If t ≤ k
2 , then our claim is justified. Now let t > k

2 . For this case, we can write Y = Xk+1 ⊕ git+1 ⊕ git+2 ⊕ . . .⊕ gik
,

according to the definitions of Xk+1 and Y in Equation 3 and 4, respectively. Now using the (k + 1)-th link X can
route the message to Xk+1 in one hop, and Xk+1 can route the message to Y in (k − t − 1) hops. Hence for t > k

2

we will need at most (k − t− 1 + 1) ≤ k
2 hops.

Given the above mentioned routing protocol, peer X will need a way to find the rows of GC , satisfying eqation (4),
in order to route a message to peer Y . To deal with this problem, the standard form of the generator matrix,
GC = [Ik|B] is used in conjunction with the following theorem.

Theorem 2. Suppose peer X wants to route to peer Y and needs to find the gij ’s satisfying Equation 4. If GC is in
standard form, then the first k-bits of X ⊕ Y have 1-bits in exactly {i1, i2, . . . , it} positions.

Proof. Let θ = X ⊕Y . By using the definition of Y in Equation 4, we get θ = gi1 ⊕ gi2 ⊕ . . .⊕ git . Since GC is in the
standard form, only ij-th row of GC (i.e., gij) has a 1-bit in ij-th bit position for any ij ∈ {1, 2, . . . , k}. Therefore,
row gij has to be present in the linear combination of the rows of GC producing θ

7

The extended Golay code, G24, (like other linear codes) can be defined using different sets of basis vectors (i.e.,
generator matrices). The generator matrix used in our implementation is G24 = [I12|B12], where

B12 =




1 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0 1 0 1 0
0 1 1 1 0 1 1 0 1 0 0 1
1 0 1 1 1 0 0 1 0 1 1 0
0 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 1 1 1 0 0 1 0 1
0 1 1 0 0 1 1 1 0 1 1 0
1 0 0 1 1 0 1 1 1 0 0 1
0 1 1 0 1 0 0 1 1 1 0 1
1 0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 1 0 1 1




This generator matrix has two desirable properties:

1. g1 ⊕ g2 ⊕ . . .⊕ gk = ~1

2. ∀X ∈ G24, d(X, X ⊕ gi) = |X ⊕X ⊕ gi| = 8

The first property implies that Xk+1 = X ⊕ g1 ⊕ g2 ⊕ . . . ⊕ gk = X ⊕ ~1 = X̄, and according to Equation 4
Xk+1 = X̄ ∈ G24. This construct is possible because G24 is a self-dual code. The second property ensures the
minimum distance of 8 between any peer and any of its first k-neighbors (X1, . . . , Xk). These two properties influence
the routing strategy based on G24 as follows.

In any 3-party rendezvous architecture the negotiating middle entity can become a performance and a single point of
failure unless appropriate measures are taken. Replication is employed to mitigate the performance problem, arising
from the failure of a rendezvous peer. The information indexed at peer Y is replicated at peer Ȳ . The choice of Ȳ
as the replica for Y can be justified by the following observations.

Firstly, Y = X⊕gi1⊕ . . . git =⇒ Ȳ = X⊕git+1⊕ . . . gik
(using Property 1 and Equation 4). Thus, any path from X

to Y and Ȳ is disjoint. This increases fault-resilience and influences uniform distribution of query traffic, especially
in cases where peer Y is holding a popular index. Secondly, for ensuring at most k

2 hop routing, a link to peer Xk+1

must be maintained. Since Xk+1 = X̄, the same link can be used for replication and routing purposes. Finally, as
explained in Section 4.3, the 759 special octads in S8 are likely to face a higher number of advertisements and queries
than the 2576 umbral dodecads in U12. On the other hand, advSet and qSet do not contain any codeword from S16

(the 759 special 16-sets). Since, X ∈ S8 =⇒ X̄ ∈ S16, we can shed the extra load on X ∈ S8 by replicating to
X̄ ∈ S16. Note that, X ∈ U12 =⇒ X̄ ∈ U12

As depicted in Figure 3 (step 5), the routing algorithm will always be subjected to a set of target peers instead of just
one target. The routing algorithm can reduce a significant portion of routing hops by utilizing the shared common
paths to different targets. Algorithm 1 presents a psedocode for multicasting a message from source peer X to a set
of destination peers {Y1, Y2, . . . , Yu}.
The pseudocode presented in Algorithm 1 is a simplified version of the routing algorithm used in the simulator. It
should be noted that the msg parameter contains a field named msg.hops, which is incremented at each hop. The
routing of a message is suspended, if msg.hops reaches a value of k

2 + 2. Suppose, peer Y has failed, and a query
targeted towards Y reaches one of its neighbors Yi(= Y ⊕gi). Yi can route the query to Ȳ in two hops as Ȳ = Ȳi⊕gi,
and Ȳi is one hop away from Yi. The maximum length of a path between any two peers is k

2 . Hence, in the presence
of failures, a maximum of k

2 + 2 hops will be required to reach any peer or its replica.

8

Algorithm 1 X.route(msg,Y)
1: Inputs:

msg: Message e.g. search, advertise, join, etc.
Y: {Y1, Y2, . . . , Yu} set of target peers

2: Externals:
k: Dimension of the self-dual linear code
X1, . . . , Xk+1: (k + 1) neighbors of X {see (3)}

{update Y}
3: for each Yi ∈ Y do
4: if X = Yi then
5: Y ← Y − {Yi}
6: process-message(msg)
7: else if d(X, Yi) > k

2

∨
(d(X, Yi) = 1 ∧ !isAlive(Yi)) then

8: Y ← (Y − {Yi}) ∪ {Ȳi}
9: end if

10: end for
{find suitability of each neighbor as next hop}

11: R ← {T1, . . . , Tk+1| Ti ⊆ Y∧
Y ∈ Ti =⇒ Xi is alive and on X Ã Y }

{do actual routing}
12: while Y not empty do
13: find s s.t. ∀Ti ∈ R, |Ts| ≥ |Ti|
14: if no such s exists then
15: break {remaining peers in Y are not reachable}
16: end if
17: R ← R − {Ts}
18: Y ← Y − Ts

19: Xs.route(msg, Ts)

20: end while

9

Table 1: Distance distribution of orbits from octads and dodecads
S8 U12 S8 U12

S3 5 : 21 S11 3:1,5:2 5 : 16
S4 4 : 5 T11 5 : 5 3 : 1, 5 : 15
S5 3:1,5:20 U11 1 : 1
S6 2 : 1 6 : 16 S12 4 : 1 4 : 4, 6 : 48
U6 4 : 6 6 : 18 T12 4 : 6, 6 : 40
S7 1 : 1 U12 0 : 1
U7 3:1,5:15 5 : 6 X12 4 : 3 6 : 64
S8 0 : 1 P12 2 : 1, 6 : 55
T8 2 : 1 6 : 42 S13 5 : 3 5 : 16
U8 4 : 4 4 : 2, 6 : 32 T13 5 : 1 3 : 1, 5 : 15
S9 1 : 1 U13 1 : 1
T9 3:1,5:7 5 : 14 S14 6 : 56
U9 5 : 12 3 : 1, 5 : 9 T14 4 : 4, 6 : 42
S10 2 : 1 6 : 56 U14 2 : 1, 6 : 45
T10 4 : 2 4 : 4, 6 : 42
U10 2 : 1, 6 : 45

4.3 Mapping Patterns to Codewords

This section presents the algorithms for finding qSet(Q) and advSet(P). The discussion in this section is specific to
G24. Special consideration is required to adopt these algorithms for other linear codes.

As explained in Section 3.2, any pattern Q of length 24 belongs to one of the 49 orbits w.r.t. G24. Any vector in a
given orbit has the same distance properties as listed in Table 1. In this table, the construct d : x stands for distance
(d) and number of codewords(x) at distance d. For vectors in a given orbit, we have listed only the number of octads
and dodecads within distance 5 and 6, respectively.

The number of one bits in a query or advertisement is restricted to the range of 3 to 14. The reason behind this
restriction can be justified by observing the property of Bloom filters. As discussed in Section 3.3, 33− 50% bits of
a well-designed Bloom-filter are 1. Therefore, for a 24-bit chunk from a Bloom-filter 8− 12 bits are expected to be
1. Queries having fewer than three 1-bits are too generic, and are likely to match a large number of advertisements.

Due to this restriction, we only need to consider the octads and dodecads in qSet and advSet calculation. Most
queries (involving 3 − 8 1-bits) are closer to the octads than the dodecads or the 16-sets. This results in a bias for
the qSet (and eventually the advSet) to have an octad:dodecad ratio higher than 2 : 7(≈ 759 : 2576). To reduce the
effect of this bias, the codewords in S16 are adopted as replicas of the octads (S8). This helps in reducing the volume
of query traffic at the octads.

Algorithm 2 find qSet(Q)
1: Input: Q ∈ F24

2

2: External: τ controls size of qSet and advSet
3: Returns: Q ⊂ G24

4: Q ← {Y |(Y ∈ S8 ∧ d(Y, Q) ≤ 5)∨
(Y ∈ U12 ∧ d(Y, Q) ≤ 6)}

5: if |Q| < τ then
6: Q′ ← ∅
7: for each Y ∈ Q do
8: Q′ ← Q′ ∪ {Z|Z ∈ neighbors(Y) ∧ |Z| = 12}
9: end for

10: Q ← Q∪Q′
11: end if

12: return Q

Pseudocodes for finding qSet and advSet are presented in Algorithm 2 and Algorithm 3, respectively, in light of the
preceding discussion. The algorithm for finding qSet starts with finding the set Q of the octads and dodecads that
are within distance 5 and 6, respectively, from the query pattern Q. If Q contains fewer than τ codewords, then it
is appended with the dodecads5 that are reachable in one hop from the current members of Q. The average size of
advSet is inversely proportional to the value of τ . Hence, τ can be tuned to achieve a desirable ratio of search and

5Octads are not selected for load-balancing purpose.

10

advertisement traffic. For our experiments, τ = 20 is chosen, which fixes the average size of qSet and advSet to 25
and 28, respectively. A lower value of τ can be used if the anticipated number of queries is much higher than the
number of advertisements.

The algorithm for finding advSet has two stages. The first stage (lines 3-6) is to find set P of qSets that will be
searched by all possible queries matching the advertised pattern P . Now the problem is to find a small (preferably
minimum) set of codewords A such that A contains at least one element from each set in P. This is essentially the
minimum hitting set problem, which in turn, is equivalent to the minimum set cover problem. To find A , we have
applied the greedy heuristic as presented in [10].

Algorithm 3 find advSet(P)
1: Input: P ∈ F24

2

2: Returns: A ⊂ G24

3: P ← ∅
4: for each Q s.t. Q ∧ P = Q ∧ |Q| ≥ 3 do
5: P ← P ∪ {qSet(Q)}
6: end for
{use greedy heuristic to find minimum hitting set}

7: A ← ∅
8: while P not empty do
9: find Y s.t. Y is in maximum no. of sets S ∈ P

10: A ← A ∪ Y
11: P ← P − {S |S ∈ P ∧ Y ∈ S }
12: end while

13: return A

4.4 Analysis

In this section, we estimate the expected number of visited superpeers during an advertisement or a search process.
Let r be the number of subnets present in the system. Assume that an (n, k, d) linear code C is used. Let |A | and |Q|
be the average size of advSet and qSet, respectively. γQ and γA stands for the fraction of routing hops reduced due
the presence of multicasting during search and advertisement, respectively. If N is the total number of superpeers
in the system, then the number of superpeers in a subnet is 2k ≈ N

r . Now, according to Theorem 1 it will require
k
2 ≈ 1

2 log2
N
r hops to route a message within a subnet. Consequently, considering the use of voting algorithm, the

expected number of hops required for routing an advertisement is computed to be

HA =
1
2

⌊r

2
+ 1

⌋
(1− γA) |A | log2

N

r
(5)

Similarly, the expected number of routing hops for routing a search message can be computed as

HQ =
1
2

⌊
r + 1

2

⌋
(1− γQ) |Q| log2

N

r
(6)

Now, we can compute an upper bound on |Q| as follows. The number of points covered by a codeword in C is given
by

λ =
∑

i≤e

(
n

i

)

where e = d
2 . Suppose, we want to discover all the advertisements within distance t(= e+f) from a query pattern. We

can imagine a sphere of radius t around the query pattern Q. We want to count the number of smaller spheres (around
each codeword) required to cover the larger sphere around Q. This number will be maximum when d(Q,C) = e

11

for some codeword C. In that case, at least 50% of the points from the sphere around C will fall within the sphere
around Q. Thus, the bound on |Q| can be computed as

|Q| ≤
∑

i≤t

(
n
i

)
1
2

∑
j≤e

(
n
j

)

Clearly, for small values of f(= t− e) this bound will be a small constant. |Q| will be smaller with larger values of d.
Hence, we can infer from Equation 6 that HQ is a logarithmic function of N . This claim has also been validated by
our simulation results. However, a similar bound cannot be obtained for |A |. Our experiments with the extended
Golay code demonstrate that the average value of |A | is 28, and this value varies from 7 to 52 for patterns with
weight 5 and 14, respectively.

4.5 Mapping Codewords to Superpeers

So far, it is assumed that each subnet is saturated, i.e., has close to (2k) superpeers, and each superpeer is responsible
for an unique codeword. But, this is not a practical assumption. In this section, we present a way of partitioning
the codeword space, and assigning multiple codewords to a superpeer.

An (n, k, d) linear code C has k information bits and (n − k) parity check (or redundant) bits. The k information
bits correspond to the identity matrix, Ik, part of the generator matrix GC , and uniquely identifies each of the 2k

codewords present in C (consider X = ~0 in Equation 4). The codewords can be partitioned using a logical binary
partitioning tree with a height of at most k. At i-th level of the tree, partitioning takes place based on the presence
of gi (the i-th row of GC) in a codeword. Figure 4 presents an example. Each superpeer is assigned a leaf node in
this tree and takes responsibility for all the codewords having that particular combination of gis. The routing table
entries at each superpeer are set to point to the appropriate superpeer responsible for the corresponding codeword.
Figure 4 illustrates the routing table entries for superpeer X = g1⊕g3⊕g6⊕g9 with an equivalent prefix of g1ḡ2g3ḡ4.

�

����

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� ��

��
��

�� ��

�����

��	�

Figure 4: Logical binary partitioning tree for assigning codewords to superpeers. The routing table entries for peer
X are also presented.

It is worth noting that the partition process presented in this section has some level of similarity with the Kademlia [21]
protocol. Both techniques partition the key space based on the shortest unique prefix of alive peers. In Kademlia,
each peer keeps track of a set of peers in every maximal subtree that does not contain it. In contrast, we keep
track of a specific peer in every maximal subtree that does not contain it. In addition, the concept of linking to the
complemented node Xk+1 = X̄ is not present in the Kademlia routing protocol.

In order to incorporate the concept of partitioning codeword space in Algorithm 1, the comparison, X = Yi, in line 4
should be replaced with Yi ∈ ℵ, where ℵ represents the set of codewords managed by peer X.

12

4.6 The Join Process

The first superpeer in the system begins with a random codeword, and all entries in its routing table points to itself.
A new superpeer joins the system by taking over a part of the codeword space from an existing peer, say, with
codeword X. Assume that the string representation of X = ρ1 · ρ2 . . . ρt · ρt+1 . . . ρk and the prefix in peer X has t
terms. Here, ρi is gi or ḡi, based on the presence or absence of the i-th row in the formation of X. Peer X extends
its prefix by one term and takes responsibility of all the codewords starting with prefix ρ1 ·ρ2 . . . ρt ·ρt+1. The joining
peer chooses a codeword, say Y , conforming to prefix ρ1 · ρ2 . . . ρt · ρ̄t+1 and by selecting a random combination for
the rest of the (k − t− 1) rows from GC .

Routing table entries in peer X remain unchanged. Peer Y has to construct its routing table using the routing
information from peer X. During this process, two situations can arise. First, the length of the prefix for peer Xi

can be greater than t. In this case, Y has to lookup and contact the peer responsible for codeword Yi(= Y ⊕ gi).
Peer Y requires at most (k

2 − t) hops to reach peer Yi via peer Xi. For the second case, the length of the prefix for
peer Xi is less than or equal to t. In this case, peer Y sets Yi = Xi and sends a join message to peer Xi. Peer Xi

handles a join message by updating its routing table entry for link Xt(= Xi⊕ gt) with the address of peer X or peer
Y depending on the presence of gt in Xi.

To reduce the possibility of unbalanced partitioning of the codeword space, a joining peer should crawl the neigh-
borhood of the seed peer, until a minima is reached, and join the minima. By minima we refer to a peer having a
prefix of length equal to or less than that of any of its neighbors.

4.7 Handling Peer Failure

The Failure of a peer (say Y) does not hamper the routing process as long as its replica (Ȳ) is alive. This way
temporary failures (or disconnections) of superpeers are automatically handled. Measures adopted to deal with
permanent (long term) failures are discussed below.

Failure of peer Y will be detected by one of its neighbors, say Yi. To avoid unbalanced partitioning of the codeword
space, Yi should crawl its neighborhood until a maxima, say Z, is reached. By maxima, we refer to a peer having
a prefix of length equal to or greater than that of any of its neighbors. Clearly, if Z has t terms in its prefix, then
Zt(= Z ⊕ gt) will be a neighbor of Z having a prefix of length t. Z will reassign its portion of codewords to Zt; will
replace itself with Zt from the routing tables of all of its neighbors; and finally will rejoin the system as Y . Zt has
to reduce its prefix string by one, in order to accommodate the changes.

To handle the failure of leaf peers, we adopt the hybrid (soft state/hard state) technique as presented in [6]. A
leaf peer connects to a superpeer for publishing the meta-information about its shared content. A superpeer uses
soft-state registration mechanism for tracking the failure of a leaf-peer, and explicitly removes (i.e., hard-state) the
patterns, advertised by the failed leaf-peer, from the superpeer topology. This hybrid technique can handle churn
problem in leaf peers and reduces traffic due to periodic re-advertisement in the superpeer network.

5 Experimental Evaluation

In this section, we present simulation results to validate the concept presented in this work. Our prototype im-
plementation simulates keyword search for a music sharing P2P system. We focus on three aspects of the system:
routing efficiency, search completeness, and fault-tolerance.

5.1 Simulation Setup

The music information database used in our simulation contains about 46,500 records of <song-title,artist> pairs,
extracted from http://www.leoslyrics.com/ (an online database of song lyrics). For each <song-title,artist> pair, we
constructed a Bloom-filter with parameters m = 120 and k = 3. Each Bloom filter represents the set of trigrams

13

extracted from a <song-title,artist> pair. The average number trigrams present in a record is n ≈ 16.

The routing algorithm used in the simulator is based on the pseudocode presented in Algorithm 1. The qSet and
advSet are calculated as discussed in Section 4.3. We have not incorporated the codeword to superpeer mapping
algorithm, discussed in Section 4.5, to this preliminary version of the simulator. This implies a complete binary
partitioning tree, where each superpeer is responsible for a single codeword. With this setup, the maximum number
of hops will be required while routing a message. Failures are simulated by deactivating randomly selected superpeers
and by inhibiting any traffic through them.

5.2 Impact of Query Content on Search Completeness

The completeness of a search result is measured as the percentage of advertised patterns, matching the query string,
that were discovered by the search. To form a query we first randomly choose a <song-title,artist> pair, then take
a certain percentage (say β) of trigrams from all the trigrams present in that pair, and then create the query Bloom
filter (with m = 120 and k = 3) from these trigrams. For this experiment we have used a system with 5 (= 120

24)
subnets corresponding to about 20,000 superpeers.

% of ngrams in query

fr
ac

tio
n

of
m

at
ch

es
di

sc
ov

er
ed

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

95% confidence interval

Figure 5: Effect of the Information content of a query on search completeness.

Figure 5 presents search completeness as a function of the percentage of trigrams selected for the construction of the
query Bloom filter. In this experiment, β is varied from 10%− 95% in 5% steps. For each step, we performed 5000
random queries and gathered statistics. The number of 24-bit chunks having at least three 1-bits decreases as lower
percentage of trigrams are taken from the original advertisement. Hence, read quorum for the voting algorithm could
not be met for lower values of β, which decreases the level of completeness. It can be observed from Figure 5 that a
completeness level of around 97% is achieved for β = 33% and only 2% increase is achievable for higher values of β.
For the subsequent experiments we have used β = 33%.

5.3 Scalability and Routing Efficiency

The impact of network size on routing efficiency is considered in this section. For this experiment, the number of
subnets (r) in the system is varied from 1 to 5, with each subnet containing approximately 4000 (≈ 212) superpeers.
The corresponding variation in length of the patterns that can be advertised in the system is from 24-bits to 120-bits.
For a system with r subnets, we have taken b r+1

2 c chunks (each 24-bit long), with at least three 1-bits, from the first
r chunks of the query Bloom filter. If more than b r+1

2 c chunks had three 1-bit, then we preferred the chunks with
higher number of 1-bits. For each instance of the system we have advertised all the tuples; performed 5000 random

14

queries and gathered statistics.

It should be noted that, with this setup, search completeness was not same for all values of r. The k different hash
functions of a Bloom filter are expected to evenly distribute the 1-bits over all the chunks. Yet, for some rare cases
b r+1

2 c 24-bit chunks from the first r chunks of the Bloom filter did not contain more than three 1-bits. During
advertising or querying such Bloom filters, the read/write quorum for the voting algorithm could not be fulfilled. To
remove the impact of such patterns on the simulation results, we have refrained from advertising or querying those
patterns.

No. of peers(x 1000)

%
o

fv
is

ite
d

pe
er

s

5 10 15 20
0.7

0.75

0.8

0.85

0.9

0.95

95% confidence interval

(a) Advertisement

No. of peers(x 1000)

%
o

fv
is

ite
d

pe
er

s

5 10 15 20

0.6

0.7

0.8

0.9

1

1.1

1.2

95% confidence interval

(b) Query

Figure 6: Routing efficiency: percentage of visited peers as function of total peer.

Figure 6 presents the percentage of visited peers as a function of the number of total peers in the system for the
advertisement (Figure 6(a)) and query (Figure 6(b)) process. For r = 1, i.e., with about 4000 super peers each query
or advertisement is handled by a single subnet. As the number of subnets increases, not all queries or advertisements
are sent to all subnets. Hence the reduction in the percentage of visited peers. The query/advertisement load is
distributed over different subnets in the system. From the curves in Figure 5 and 6, we can observe that for a system
with 5 subnets we can discover about 97% of the matching patterns by visiting only 0.6% of the superpeers in the
system. Yet, in the query string, we need to specify only 33% of the trigrams from the advertised pattern.

5.4 Effectiveness of Multicast Routing

The routing algorithm described in Section 4.2 routes a message to multiple targets simultaneously. This design
choice saves a portion of the routing hops that might have occurred if we had used pair-wise routing. Figure 7 shows
the reduction in routing hops (rrh) calculated as

rrh =
(

1− no. of hops with multicast routing
no. of hops for pair-wise routing

)
× 100

The reduction in routing hops takes place within a subnet and so does not depend on the number of subnets present
in the system. For this experiment we have advertised the patterns in a system with r = 5. For advertisements in
each subnet we recorded the number of targets and required number of hops. The bar chart in Figure 7 displays the
average rrh for groups of 5 targets, i.e. 6− 10, 11− 15, etc. The denominator for rrh equation (i.e., no. of hops for
pair-wise routing) was calculated as:

∑
Y ∈advSet(P) d(φ(X), φ(Y)), where X is the source peer and φ(X) returns the

15

k-bits of a codeword corresponding to the Ik part of GC . Figure 7 presents rrh for advertisements only. For queries,
the savings is much higher in the range of 72− 82% because many members of qSet are immediate neighbors.

no. of destinations

%
re

du
ct

io
n

in
ro

u
tin

g
ho

p
s

(r
rh

)

10 20 30 40
60

63

66

69

72

Figure 7: Effectiveness of simultaneous routing to multiple targets: reduction in routing hops as a function of the
number of targets.

5.5 Fault Tolerance

In this section, we analyze the robustness of our system in the presence of simultaneous failure of superpeers. We
have conducted the experiment in a network with r = 5. We first advertise the patterns and then deactivated
5% − 45% randomly selected superpeers in 5% steps. After each step, 5000 random queries were performed and
statistics were gathered. There were no rearrangement in topology to redistribute the responsibility of failed peers
to an existing peer. Only the immediate neighbors of a failed peer have the knowledge of the failure. This setup
suppresses the effect of recovery mechanism and allows us to observe the effectiveness of replication and multi-path
routing in presence of simultaneous peer-failure.

We focus on the impact of simultaneous failures on two metrics: search completeness (Figure 8(a)) and query routing
efficiency (Figure 8(b)). Number of patterns lost from the superpeer network increases with the number of failed
peers. This results into the decrease in search completeness.

The failure of a peer can not be detected until reaching a neighbor of the failed peer. The percentage of visited
peers increases as many hops are wasted in trying to reach a failed peer and its replica, which may also have failed.
However, the good thing is that in such cases two extra hops are required to reach the replica, as discussed in
Section 4.2.

It can be observed from the results that the system can achieve a high level of search completeness (about 90%),
even when 30% of the peers have failed. Even with this level (30%) of failure the percentage of visited peers raises
to 0.78% from 0.6% (no failure case). This was possible because of the existence of multiple paths connecting any
two superpeers within a subnet.

6 Conclusion and Future Work

In this paper we have presented a partially decentralized architecture, and a protocol for structured and flexible
routing within the superpeer network. Subset search has application in many Distributed systems. We have provided
an efficient solution to this challenging problem. As demonstrated by the simulation results, only 0.6% of the
superpeers are needed to be visited in order to resolve a query and can discover about 97% of the advertised patterns

16

% of failed peers

fr
ac

tio
n

of
m

at
ch

es
di

sc
ov

er
ed

0 10 20 30 40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

95% confidence interval

(a) Search completeness

% of failed peers

%
of

vi
si

te
d

p
ee

rs
(a

liv
e)

0 10 20 30 40
0.6

0.65

0.7

0.75

0.8

0.85

95% confidence interval

(b) Query routing traffic

Figure 8: Fault resilience.

matching a query. For achieving this level of completeness, the query needs to contain only 33% of the trigrams from
an advertised pattern that it should match against. We can achieve a high level of fault-resilience by using replication
and redundant routing paths. Even with 30% failed superpeers, we can attain a high level of search completeness
(about 90%) by visiting only 0.78% of the superpeers. Queries and advertisements can be routed to target peers in
O(logN) hops and by using O(logN) links.

The originality of our approach lies on the application of coding theoretic construct for solving the subset matching
problem in distributed systems. We believe that this concept will aid in solving a number of other problems pertaining
to P2P networking research, including P2P databases, P2P semantic search and P2P information retrieval.

In light of our experience with the prototype and current design choices, we would like to extend this work in the
following directions.

A major reason behind selecting the Extended Golay code for our implementation was its size (= 212 = 4096
codewords). The proposed algorithm for finding qSet requires to find all codewords within a specified distance from
a given 24-bit vector. We had to use linear search for this step, as no efficient algorithm for this task is known. Use
of linear search is not feasible with larger codes with tens of thousands of codewords. It is certainly a very interesting
issue that we will further investigate.

Use of the voting algorithm introduces a lot of redundancy to the system. This type of redundancy is good for
fault resilience. But, with larger number of subnets in the system, this will become an overhead. With careful
observation, it can be realized that selecting appropriate subnets for advertisements and queries is essentially the
same problem as that of finding advSet and qSet satisfying Equation 2. Hence, with larger number of subnets we
can reduce redundancy in the number of selected subnets by using some linear code with large distance, e.g. 1st
order Reed-Muller codes. Another possibility is to use a set of locality preserving hash functions to map the query
and advertisements to some of the subnets, such that there exists a common subnet with high probability.

As mentioned in Section 5, read/write quorum can not be met for a Bloom filter exhibiting non-uniform distribution
of 1-bits. Although the percentage of such cases is very low, we can avoid or minimize these cases by adopting a
slightly different implementation of the Bloom filters [8]. For this variant of Bloom filters, the m bits are partitioned
into m

k chunks, and the i-th hash function sets the bits only within the i-th chunk. With a proper alignment of m
k

with the length of selected code, better results can be achieved. But for this setup, the allowable number of elements
in a Bloom filter becomes an issue, requiring further investigation.

17

Finally, we would like to run experiments on a larger distributed testbed like PlanetLab, with a large number of
participating sites and track the system’s performance for various load levels and with a transient population of
virtual hosts.

References

[1] Fasttrack peer-to-peer technology, http://www.fasttrack.nu/.

[2] Gnutella website, http://www.gnutella.com.

[3] R. Ahmed and R. Boutaba. Distributed pattern matching for p2p systems. In Proc. of NOMS’06 (to appear),
Online [http://bcr2.uwaterloo.ca/∼rboutaba/
Papers/Conferences/noms2006.pdf] 2006.

[4] A. Amir, E. Porat, and M. Lewenstein. Approximate subset matching with don’t cares. In Proc. of SODA,
pages 305–306, 2001.

[5] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution technologies. ACM
Computing Surveys, 45(2):195–205, December 2004.

[6] M. Balazinska, H. Balakrishnan, and D. Karger. Ins/twine: A scalable peer-to-peer architecture for intentional
resource discovery. In Proceedings of the First International Conference on Pervasive Computing, pages 195–210.
Springer-Verlag, 2002.

[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. of ACM, 13(7):422–426,
1970.

[8] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet Mathematics,
1(4):485–509, 2003.

[9] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like P2P systems scalable.
In Proc. of ACM SIGCOMM, pages 407–418, 2003.

[10] V. Chvtal. A greedy heuristic for the set covering problem. Math. Oper. Res., 4:233–235, 1979.

[11] E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer to peer networks: Harnessing latent semantics.
In Proc. of IEEE INFOCOM, 2003.

[12] R. Cole and R. Harihan. Tree pattern matching and subset matching in randomized o(n log3 m) time. In Proc.
of ACM STOC, pages 66–75, 1997.

[13] J. Conway and N. Sloane. Orbit and coset analysis of the golay and related codes. IEEE Transactions on
Information Theory, 36(5):1038–1050, September 1990.

[14] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An Architecture for a Secure Service
Discovery Service. In Proc. of MOBICOM, pages 24–35, 1999.

[15] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the seventh Symposium on Operating
Systems Principles, pages 150–162, 1979.

[16] M. J. E. Golay. Notes on digital coding. In Proceedings of the IEEE, volume 37, 1949.

[17] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264–323, September
1999.

[18] C. Lee and S. Helal. Protocols for service discovery in dynamic and mobile networks. International Journal of
Computer Research, 11(1):1–12, 2002.

[19] M. Li, W. Lee, and A. Sivasubramaniam. Neighborhood signatures for searching p2p networks. In Proc. of
IDEAS, pages 149–159, 2003.

18

[20] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-to-peer networks.
In Proc. of ICS, 2002.

[21] P. Maymounkov and D. Mazi. Kademlia: A peer-to-peer information system based on the XOR metric. In Proc.
of IPTPS, pages 53–65, 2002.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM, pages 161–172, 2001.

[23] C. Schmidt and M. Parashar. Enabling flexible queries with guarantees in p2p systems. IEEE Internet Com-
puting, 8(3):19–26, 2004.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a
scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. on Networking, 11(1):17–32,
2003.

[25] D. Stutzbach and R. Rejaie. Characterizing unstructured overlay topologies in modern p2p file-sharing systems.
In Internet Measurement Conference, October 2005.

[26] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information retrieval in structured overlays. In ACM HotNets-I,
October 2002.

[27] D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic search for peer-to-peer networks. In IEEE Intl.
Conf. on P2P Computing, 2003.

[28] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In Proc. of ICDCS, 2002.

19

