
Optimal lower bounds for rank and

select indexes

Alexander Golynski

David R. Cheriton School of Computer Science, University of Waterloo
agolynski@cs.uwaterloo.ca

Technical report CS-2006-03, Version: February 10, 2006

Abstract. We develop a new lower bound technique for data struc-
tures. We show an optimal Ω(n lg lgn/ lgn) space lower bounds for stor-
ing an index that allows to implement rank and select queries on a bit
vector B provided that B is stored explicitly. These results improve
upon [Miltersen, SODA’05]. We show Ω((m/t) lg t) lower bounds for
storing rank/select index in the case where B has m 1-bits in it (e.g.
low 0-th entropy) and the algorithm is allowed to probe t bits of B.
We simplify select index given in [Raman et al., SODA’02] and show
how to implement both rank and select queries with an index of size
(1+o(1))(n lg lgn/ lgn)+O(n/ lgn) (i.e. we give an explicit constant for
storage) in the RAM model with word size lgn.

1 Introduction

The term succinct data structure was first used by Jacobson in [2], where
he defined and proposed a solution to the following problem of imple-
menting rank and select queries. We are given a bit vector B of length
n. The goal is to represent B in such a way that rank and select queries
about B can be answered efficiently. Query rankB(i) returns the number
of 1 in B before position i, and selectB(i) query returns the position of
the i-th occurrence of 1 in B. We require that the representation should
be succinct, that is, the amount of space S it occupies is close to the
information-theoretic minimum, namely S = n+ o(n) in the case of bit
vectors of length n. We consider this problem in the RAM model with
word size w = Θ(lgn). Jacobson proposed a data structure to perform
rank queries that uses n + O(n lg lgn/ lgn) bits of space and requires
only O(1) time to compute the answer. His implementation of select
queries requires O(lgn) bit accesses, but it does not take advantage of
word parallelism and runs in time that is more than a constant in RAM
model.
It was subsequently improved by Clark [1], Munro et al. [4, 5], and
Raman et al. [6]. The index proposed by Raman et al. [6] occupies
O(n lg lgn/ lgn) bits, and the select query is implemented in O(1) time.
All these data structures belong to a class of indexing data structures.
An indexing data structure stores data in “raw form” (i.e. B is stored

explicitly) plus a small index I to facilitate implementation of queries,
such as rank and select. We denote the size of the index by r.

Miltersen [3] showed that any indexing data structure that allows O(1)
time implementation of rank (select) queries must use an index of size
at least Ω(n lg lgn/ lgn) bits (respectively Ω(n/ lgn) bits). The purpose
of this paper is to develop a new technique for showing lower bounds for
indexing data structures. This technique allows to improve lower bounds
of Miltersen [3] for both rank and select problems to match the cor-
responding upper bounds. We show that any algorithm that performs
rank or select queries and uses O(lgn) bit accesses to a bit vector B,
plus unlimited number of accesses to an index I, and is not limited in
computation time, must use an index of size at least Ω(n lg lgn/ lgn).
Hence,
(i) in the case of select queries, we improve his lower bound and show
the optimal one;
(ii) in the case of rank queries, we show optimal lower bound, but in a
more general setting.

We also consider the case where the number of 1-bits in a bit vector
B is some given number m (we call it cardinality). In this setting, for
both rank and select problems, we prove a theorem that any algorithm
that uses t bit probes to B to compute the answer must use an index of
size at least (m/t) lg t. In particular this lower bound is optimal for bit
vectors of constant 0-th order entropy. This theorem also yields strong
lower bounds in the case m > n/ lg lgn.

We also give an implementation of select query that is simpler than the
one proposed by Raman et al. [6]. We also give an index that allows
to implement both rank and select queries in O(1) time and uses space
(1 + o(1))(n lg lgn/ lgn) +O(n/ lgn). Thus, we give an explicit constant
in front of the leading term n lg lgn/ lgn. This index is simple and space
efficient, and it might of interest to practitioners.

This paper is organized as follows. In the section 2, we give an imple-
mentation for rank and select queries. In the section 3, we prove lower
bounds for rank and select indexes. In the section 4, we consider the case
of bit vectors with given cardinality.

2 Upper Bounds

In this section, we will simplify the result of Raman et. al [6] that
gives an optimal index for the select query of size O(n lg lgn/ lgn). 1

Then we will construct an optimal index for rank query of size (1 +
o(1))(n lg lgn/ lgn)+O(n/ lgn). A similar result was obtained by Jacob-
son [2]; however we implement both rank and select index simultaneously,
such that the space used is just n+(1+o(1))(n lg lgn/ lgn)+O(n/ lgn).

Both of these indexes share a component of size (1+o(1))(n lg lgn/ lgn)
that we call a count index. The count index is constructed as follows: we
split our bit string B into chunks of size lgn − 3 lg lgn. Then we store

1 In this section, we assume that word size w = lgn

the number of 1-bits in each chunk (we call it cardinality of a chunk) in
equally spaced fields of size lg lgn for a total of n lg lgn/(lgn−3 lg lgn) =
(1 + o(1))n lg lgn/ lgn bits.

2.1 Optimal Select Index

In this subsection, we describe a new simplified select index that uses
count index plus an additional O(n/ lgn) bits. Let B be the bit vector
of length n. Let S1 = (lgn)2. We store the locations of each (iS1)-th
occurrence of 1-bit in B, for each 1 ≤ i ≤ n/S1. This takes O(n/ lgn) bits
in total. We call regions from position select(iS1) to position select((i+
1)S1)−1 upper blocks. To perform selectB(i), we first compute j = bi/S1c
the number of the upper block that the i-th bit is in, so that

selectB(i) = selectB(jS1) + selectUBi(i mod S1)

where selectUBi denotes the select query with respect to the i-th upper
block. We call such an operation reduction from cardinality n to S1. Now
we need to implement the select query for upper blocks. We call an upper
block sparse if its length is at least (lgn)4. For a sparse block, we can
just explicitly write all answers for all possible select queries, this will use
at most (lgn)3 bits, so that we use 1/ lgn bits for an index per each bit
in the original bit vector B. Hence we use at most n/ lgn for all sparse
upper blocks.
Let us consider a non-sparse upper block. It is a bit vector of cardinality
S1 and length at most (lgn)4. Thus, it takes O(lg lgn) bits to encode a
pointer within such a block. We perform cardinality reduction from S1

to S2 = lgn lg lgn. As above, we introduce middle blocks, each having
cardinality S2. That is, encode every (iS2)-th occurrence of 1-bit in an
upper block. This information occupies O(lg lgn · lgn/ lg lgn) = O(lgn)
bits for an upper block of length at least (lgn)2, so that we use 1/ lgn
bits for index per one bit from B, for a total of at most O(n/ lgn) bits.
We call a middle block sparse if it has length more than (lgn lg lgn)2.
If a middle block is sparse, then we can explicitly write positions of all
occurrences of 1-bits in it, this uses at most lgn(lg lgn)2 bits (we use at
most 1/ lgn indexing bits per one original bit). We call a middle block

dense if its length is at most (lg n)2

4 lg lg n
.

If a middle block is neither sparse nor dense, then use cardinality reduc-
tion from S2 to S3 = (lg lgn)3. Call the resulting blocks of cardinality
S3 lower blocks. That is, store every (iS3)-th occurrence of 1 in a middle

block. This uses lgn/ lg lgn bits per block of length at least (lg n)2

2 lg lg n
, e.g.

we use 1/ lgn indexing bits per one bit from B. We say that lower block
is sparse if it has length at least lgn(lg lgn)4 and dense otherwise. If a
lower block is sparse, then we can explicitly encode all 1-bit occurrences
in it.
It remains to implement select query for dense middle and lower blocks.
Consider, for example, a dense middle blockMB and implement selectMB(i)
on it. We first assume that MB is aligned with chunks, i.e. its starting
(ending) position coincide with starting (ending) position of some chunk

(chunks are of the size lgn−3 lg lgn). Recall that the length of MB is at
most (lgn)2/4 lg lgn, so that the part P of the count index that covers
block MB (i.e. P encodes cardinality of each chunk inside MB) is of the
size at most (lgn)/2. Hence, we can read P in one word and perform a
lookup to a table T to compute the number of the chunk where i-th 1-bit
of MB is located. Table T is of size at most

√
n lgn lg lgn× lg lgn, and

it stores for each possible choice of P and for each j = O(lgn lg lgn) the
number of the chunk where j-th occurrence of 1 is located (denote the
corresponding chunk by C), and the rank of that occurrence inside C
(denote it by p). Now we can compute selectMB(j) by reading chunk C
and performing selectC(p) using a lookup to a table Q. Table Q is of size
at most O(2lg n−3 lg lg n · lgn× lg lgn) = O(n/ lgn), and it stores for each
possible chunk C and for each position k the result of selectC(k). The
case where MB is not aligned with chunks can be resolved by counting
number of 1-bits in the first chunk that partially belongs to MB (e.g.
a lookup to a table that computes rank within a chunk, we discuss this
table later in the next subsection) and adjusting j accordingly. Clearly,
select query for the case of dense lower blocks can be implemented in the
same way.

2.2 Optimal Rank Index

In this subsection, we show how to design rank index using count index
and additional O(n/ lgn) bits.
We divide the bit vector B into equally sized upper blocks of size S1 =
(lgn)2 bits each. For each upper block, we write the rank of the posi-
tion preceding its first position (rankB(0) = 0). This information uses
O(n/ lgn) bits total. Now we can compute rankB(i) as follows: first we
compute j = bi/S1c, the number of the upper block that contains i-th
bit of B (denote the upper chunk by UC), so that

rankB(i) = rankB(jS1 − 1) + rankUC(i mod S1)

We call such an operation a length reduction from n to S1. Then we
perform another length reduction from S1 to S2 = lgn lg lgn. We call
the corresponding blocks of length S2 middle blocks. It takes lgn bits
per an upper block of length (lgn)2 to describe ranks of the starting
positions of middle blocks (each rank uses lg lgn bits), so that we use
1/ lgn bits for index per one bit of B. Without loss of generality, we can
assume that middle blocks are always aligned with chunks. Let MB be
a middle block, we implement rankMB(i) as follows. Let j = O(lg lgn)
be the number of the chunk (denote it by C) that contains the i-th bit
of MB, j = bi/S3c, where S3 = lgn − 3 lg lgn denotes the length of a
chunk. One middle block of size S2 corresponds to a part P of counting
index of size at most O(lg lgn)2 bits, so that we can read it in one word
and use one lookup to a table T to compute rankMB(jS3 − 1). Table T
is of size (lgn)O(1) lg lg lgn × lg lgn, and it stores rankMB(jS3 − 1) for
each possible part P and chunk number j. Thus,

rankMB(i) = rankMB(jS3 − 1) + rankC(j mod S3)

and the latter rank can be also computed by one lookup to the table Q.
Recall that table Q of size O(n/ lgn) stores for each possible chunk C
and for each position k the result of selectC(k).

3 Lower Bounds

In this section, we prove a lower bound on the index size for any algorithm
that has unlimited access to an index I, has unlimited computation, and
is allowed to perform at most O(lgn) bit probes to the bit vector B.
Note that this setting is general enough; in particular, it covers O(1)
RAM algorithms.

3.1 Rank Index

In this subsection, we give an argument that techniques from Miltersen
[3] does not allow to obtain

r = Ω(n lgn/ lg lgn) (1)

in the case (i) where we can perform O(lgn) bit probes to the bit vector
B; although in the case (ii) where only O(1) word probes are allowed
his lower bound (1) is optimal. Next, we develop a new combinatorial
technique and obtain (1) bound for the case (i).
Miltersen [3] showed that the rank index has to be of size r, such that

2(2r + lg(w + 1))tw ≥ n lg(w + 1)

where w denotes the word size, t denotes the number of word probes,
and r is the size of an index. In the case w = 1 and t = O(lgn), his
lower bound only gives r = Ω(n/ lgn). Miltersen reduces (i) a set of
n/ lgn independent problems: problem i is to compute ni, the number
of 1’s in the region [i lgn, (i + 1) lgn] modulo 2 to (ii) the problem of
computing rank. He shows r = Ω(n lgn/ lg lgn) lower bound (1) for (i)
when w = Θ(lgn). However for the case w = 2, it suffices to store all the
n lgn answer bits as the index, so that no bit probes are needed to solve
(i). One can try to generalize the problem and compute ni’s modulo lgn
but using O(lgn) bit probes instead of O(1) word probes. In his proof,
he encodes a number i ∈ [lg lgn] 2 using unary representation 1i0lg n−i.
In the RAM model with word of size lgn, it takes one probe to access
i, however we can recognize i using binary search in lg lgn bit probes,
so that (i) can be solved in lg lgn bit probes and without any index.
One can also try to “shuffle” bits in unary representation to disallow
such binary searches, however it is not clear whether such a proof can
be completed.
Now we describe a different technique and use it to show stronger lower
bounds on indexes. Fix the mapping between bit vectors B and indexes
I and fix an algorithm that performs the rank query (i.e. it computes

2 [n] denotes the set {0, 1, . . . , n-1}

rankB(p) for a given p). As we mentioned before, an algorithm is allowed
to perform unlimited number of bit probes to I and has unlimited com-
putation power; we only limit the number of bit probes it can perform to
the bit vector B. Let us fix the number of bit probes t = f lgn for some
constant f > 0. We split the bit vector B into p blocks of size k = t+lgn
each. Let ni be the number of 1-bits in the i-th block, we call ni the car-
dinality of i-th block. For each block i, 1 ≤ i ≤ p, we simulate the rank
query on the last position of the i-th block, si = rankB(ik − 1), so that
ni = si+1 − si. Note that we will have at least n − pt = p lgn = Ω(n)
unprobed bits after the computation is complete. Now we will construct
a binary choices tree. The first r levels correspond to all possible choices
of index. At each node at depth r of the tree constructed so far, we will
attach the decision tree of the computation that rank algorithm per-
formed for the query rankB(k − 1) when index I is fixed. The nodes
are labeled by the positions in the bit vector that algorithm probes and
two outgoing edges are labeled 0 or 1 depending on the outcome of the
probe; we call the corresponding probe a 0-probe or 1-probe respectively.
At each leaf the previously constructed tree, we attach the decision tree
for rankB(2k−1) and so on. Thus, the height of the tree is at most r+tp.
If the computation probes the same bit twice (even if the previous probe
was performed for a different rank query), we do not create a binary node
for the second and latter probes; instead we use the result of the first
probe to the bit. At the leaves of the tree all block cardinalities ni are
computed. Let us fix a leaf x, we call a bit vector B compatible with x iff:
(1) index (i.e. first r nodes) on the root to leaf path correspond to the
B’s index; and (2) remaining nodes on the root to leaf path correspond
to the choices made by the computation described above.

Let us bound the number C(x) of bit strings B that are compatible with
a given leaf x (in what follows we will use C to denote C(x)).

Choices tree. Leaves could be at
different levels. (Notation Gy will
be defined in the section 4)

Bit vector at a leaf x. Number of
1-bits in each block is determined
by the computation along root to
leaf path.

Let ui be the number of unprobed bits in the block i, so that ui ≤ k and

pX
i=1

ui = U

where U is the total number of unprobed bits. At a given leaf, we have
computed all ni’s, and hence the sum of all unprobed bits (denote it by
vi) in the block i equals to ni minus the number of 1-probes in the i-th
block. Therefore, we can bound the number of bit vectors compatible
with x by

C

2U
≤
`

u1
v1

´
2u1

`
u2
v2

´
2u2

. . .

`
up
vp

´
2up

(2)

Let us classify blocks into two categories: determined and undetermined.
We call block i determined if ui ≤ U/(2p) (intuitively, when it has less
than half of the “average” number of unprobed bits) and call it undeter-
mined otherwise. Let d be the number of determined blocks. Then

U =
X

i

ui ≤ dU/(2p) + (p− d)k

hence

d ≤ p
k − U/p

k − U/(2p)
≤ (1− a)p

where 0 < a < 1 is a constant. Thus, there is at least a constant fraction
of undetermined blocks. We bound`

ui
si

´
2ui

< 1

for determined blocks, and`
ui
si

´
2ui

≤

`
ui

ui/2

´
2ui

<
b√
ui

≤ bp
U/(2p)

<
c√
lgn

for undetermined blocks using Stirling formula, where b > 0 and c > 0
are constants. Thus (2) can be bounded by

C

2U
≤
„

c√
lgn

«ap

(3)

Recall that both C and U depend on x, so that U(x) = n+r−depth(x).
We can compute the following sumX

x is a leaf

2U(x) = 2n+r
X

x is a leaf

2−depth(x) = 2n+r

The total number of bit vectors B compatible with some leaf is at mostX
x is a leaf

C(x) ≤ 2n+r

„
c√
lgn

«ap

(4)

However, each bit vector has to be compatible with at least one leaf

2n ≤
X

x is a leaf

C(x) (5)

Thus
r = Ω(n lg lgn/ lgn)

The index presented in the previous section matches this lower bound
up to a constant factor.

3.2 Select Index

In this section, we give an argument that techniques from Miltersen [3]
that establish a lower bound O(lgn) for select index when we allow to
probe O(lgn) bit probes

r = Ω(n/ lgn) (6)

cannot be improved to obtain

r = Ω(n lg lgn/ lgn) (7)

Miltersen used only bit vectors that only have O(n/ lgn) 1-bits. However,
for such vectors, we can construct an index of size O(n/ lgn) that allows
O(1) select queries. Let us divide B into p subregions of size (lgn)/2,
for each subregion we count number of 1 bits in it (denote it by ni) and
represent it in unary. We construct the following bit vector

L = 1n101n20 . . . 01np

of length p + O(n/ lgn) = O(n/ lgn). To perform selectB(j) on B, we
first find x = selectL(i) and then i = x− rankL(x), the number of 0-bits
before the position x in L. Hence i gives us the number of the block of
B where j-th 1-bit is located (denote the block K). Next, we compute
z = select0L(i) (where select0L(j) gives position of j-th occurrence of
0-bit in L), the starting position of i-th block in L. And then compute
t = x−z, so that j-th 1-bit of B is t-th 1-bit of K. Finally, selectK(j) can
be done by a lookup to a table of size

√
n(lg lgn)2 bits that stores results

of all possible select queries for all possible blocks. Note that rank and
select on L requires at most o(n/ lgn) bits in addition to storing L as we
discussed in the previous section. Thus, the total space requirement for
the index is O(n/ lgn) bits. It follows that for such bit vectors B indexes
of size O(n/ lgn) are optimal.
Let us apply a combinatorial technique similar to the one that we used
for rank index to show a stronger lower bound. Fix the number of probes
to the bit vector B to be t = f lgn (for some constant f > 0) that select
algorithm uses and let k = t+ lgn as before.
Let us restrict ourselves to bit vectors B of cardinality n/2 (n/2 bits
are 0 and n/2 bits are 1). Let us perform the following p = n/(2k)
queries: for each 1 ≤ i ≤ p we simulate select(ik). Similarly, we construct
choices tree for these queries. To compute the number of compatible bit
vectors for a given leaf, we split each string B into p blocks, i-th block
is from position selectB((i − 1)k) + 1 to position selectB(ik) (we define
selectB(0) = 0 for convenience). Note that there are exactly k ones in
each block. The number of unprobed bits U for the whole string is at

least n−pt = n(1−t/k) = Ω(n). We can count the number of compatible
nodes C for each leaf x by applying the same technique as for rank, and
obtain (similarly to (3))

C

2U
≤
„

c√
lgn

«ap

where 0 < a < 1 and 0 < c are positive constants. Next, we can obtain
the bound on the total number of bit vectors B that are compatible with
at least one node in the choices tree. Similarly to (4), we have

2n+r

„
c√
lgn

«ap

The total number of bit vectors we are considering is
`

n
n/2

´
, thus

n

n/2

!
≤ 2n+r

„
c√
lgn

«ap

and hence

r =
lg
`

n
n/2

´
n

Ω

„
n lg lgn

lgn

«
= Ω

„
n lg lgn

lgn

«
We state the results for rank and select indexes as the following

Theorem 1. Let B be a bit string of length n. Assume that there is an
algorithm that uses O(lgn) bit probes to B (plus unlimited access to an
index of size r and unlimited computation power) to answer rank (select)
queries. Then r = Ω(n lg lg n

lg n
).

4 Density-Sensitive Lower Bounds

In this section, we consider the case where the bit vector B contains some
fixed number m of 1-bits and express lower bounds for rank and select
in terms of m. We will use techniques similar to the previous section,
however, the calculations are slightly more involved in this case. We will
a lower bound for rank and select query and omit the proof for select
query.
First, we assume that all nodes in the choices tree are at the same level
pt+r, i.e. on every root to leaf path the rank algorithm probes exactly pt
bits. If some node x is z levels above it, we perform z fake probes, in order
to split it into 2z nodes at the required level, so that U = n− pt for all
leaves. We will choose parameter p, such that pt ≤ n/2, so that at least
half of the bits are unprobed at the end. We will partition all the leaves
x into m groups depending on the total number of 1-probes on the root
to leaf path to x (excluding the first r levels for the index). Let Gy be the
group of leaves for which we performed y 1-probes. Clearly, |Gy| ≤ 2r

`
pt
y

´
.

For each leaf x ∈ Gy we can bound the number of compatible bit vectors
by:

u1

v1

!
u2

v2

!
. . .

up

vp

!
(8)

where

u1 + u2 + . . .+ up = U (9)

v1 + v2 + . . .+ vp = V (10)

where U = n − pt is the number of unprobed bits and V = m − y.
Similar to the previous section, ui denotes the number of uncovered bits
in i-th block and vi ≤ ui denotes the sum of these bits. Recall that
vi equals to ni minus number of 1-probes in i-th block, and hence is
fixed for a given leaf. We will combine blocks into larger superblocks as
follows. The 1-st superblock will contain blocks 1, 2, . . . , z1, such that
k ≤ u1 + u2 + . . . uz1 ≤ 2k, the i-th superblock will contain blocks
zi−1, . . . , zi such that k ≤ us

i ≤ 2k, where

us
i = uzi−1+1 + uzi−1+2 + . . .+ uzi

is the size of i-th superblock. Note that this is always possible, since ui ≤
k for all i. Let q be the number of superblocks, clearly n/(4k) ≤ q ≤ n/k
(equivalently p/4 ≤ q ≤ p), since U ≥ n/2.

For each superblock, we will use the inequality
uzi−1+1

vzi−1+1

!
uzi−1+2

vzi−1+2

!
. . .

uzi

vzi

!
≤

us

i

vs
i

!

where

vs
i = vzi−1+1 + vzi−1+2 + . . .+ vzi

So that
u1

v1

!
u2

v2

!
. . .

up

vp

!
≤

us

1

vs
1

!
us

2

vs
2

!
. . .

us

q

vs
q

!
(11)

Observe that for any q1 < p1 and p2 < q2`
p1

q1+1

´`
p2
q2

´`
p1
q1

´`
p2

q2+1

´ =

p1−q1
q1+1

p2−q2
q2+1

That is
p1

q1 + 1

!
p2

q2

!
>

p1

q1

!
p2

q2 + 1

!
, if

q1 + 1

p1 + 1
<
q2 + 1

p2 + 1

We can interpret this inequality as follows. Let us maximize the product
(11) with fixed values of us

i ’s, subject to the constraint vs
1+vs

2+. . .+vs
q =

V . The point (vs
1, v

s
2, . . . , v

s
q) is a local maximum if we cannot increase

vs
i by 1 and decrease vs

j by 1 for some i 6= j, so that (11) increases.
Intuitively, at a local maximum all fractions vs

i /u
s
i are roughly equal for

otherwise we can transfer 1 from smaller fractions to bigger ones. We
can show (proof omited) that if V > 2q then |vs

i /u
s
i −V/U | < 2/k (recall

that all us
i satisfy k ≤ us

i ≤ 2k, so that each “transfer” does not change
each of vs

i /u
s
i fractions by more than 1/k).

We will use the Stirling approximation
u

v

!
= Θ

„ √
u√

v
√
u− v

(u/e)u

(v/e)v((u− v)/e)u−v

«

= Θ

1√
v

„
1

ξ

«v „
1

1− ξ

«u−v
!

where ξ = v/u, here we assumed that v is large enough, so that we can
use the Stirling approximation for v!, but v/u ≤ 1/2. Now we can bound`

us
1

vs
1

´`
us
2

vs
2

´
. . .
`us

q
vs

q

´
`

U
V

´ = 2Θ(q)

„
1

kV/U

«q/2„
φ

ψ

«V „
1− φ

1− ψ

«U−V

(12)

where φ = V/U ≤ 1/2 and ψ is some number, such that |ψ − φ| < 2/k
(again, we assumed V/U ≤ 1/2). The latter expression is less than

2Θ(q)

„
1

kV/U

«q/2„
1 +

4

kV/U

«V „
1 +

4

k

«U

≤

≤ 2Θ(q)

„
1

kV/U

«q/2

2Θ(U/k) ≤ 2Θ(q)

„
1

kV/U

«q/2

Here we used two facts (i) (1 + 1/α)β = 2Θ(β/α) for large enough α; and
(ii) U/k ≤ q/2.
Note that there are could have at most pt different groups of leaves
(y ≤ pt). For a given group, we bound the total number of compatible
bit vectors by (12). Denote V ∗ = m−pt, and note that V = m−y ≥ V ∗.
So that the total number of compatible bit vectors for all groups is at
most

2r
ptX

y=0

pt

y

!
n− pt

m− y

!„
O(1)

kV ∗/U

«Θ(p)

= 2r

n

m

!„
O(1)

kV ∗/U

«Θ(p)

However, all possible bit vectors of length n with m ones have to be
compatible with at least one leaf, so that

r = Ω(p lg
n(m− pt)

p(n− pt)
) = Ω(p lg(m/p− t))

Choosing p = m/(2t) gives

r = Ω((m/t) lg t)

Essentially the same technique is applicable to the case of select index
(proof omited).

Theorem 2. Let B be a bit string of length n with m ones in it. Assume
that there is an algorithm that uses t bit probes to B (plus unlimited access
to an index of size r and unlimited computation power) to answer rank
(select) queries. Then r = Ω((m/t) lg t).

Note that this theorem gives an optimal lower bound for the case of
constant density bit vectors (i.e. when m/n = Θ(1)).

5 Acknowledgments

We thank Ian Munro, Prabhakar Ragde, and Jeremy Barbay for fruitful
discussions and proof reading this paper. We also thank Srinivasa S. Rao
for bringing the problem to our attention and pointing out the results of
Miltersen.

References

1. David R. Clark. Compact Pat Trees. PhD thesis, University of Wa-
terloo, 1996.

2. Guy Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie
Mellon University, January 1989.

3. Peter Bro Miltersen. Lower bounds on the size of selection and rank
indexes. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 11–12, 2005.

4. J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient
suffix trees. In Proceedings of the 18th Conference on the Foundations
of Software Technology and Theoretical Computer Science, volume
1530 of Lecture Notes in Computer Science, pages 186–196. Springer,
1998.

5. J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient
suffix trees. Journal of Algorithms, 39(2):205–222, 2001.

6. Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
indexable dictionaries with applications to encoding k-ary trees and
multisets. In Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 233–242, 2002.

