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Abstract— This paper presents a novel priority queue data
structure and access operations for timer maintenance in the
context of traffic shaping and scheduling in packet networks. The
data structure and operations are used to construct an efficient
General Processor Sharing (GPS) approximation scheduler. In
contrast to existing proposals, this scheduler has constant and
near-optimal delay and fairness properties, and can be imple-
mented with bounded amortized O(1) algorithmic complexity,
and has very low absolute execution overhead. The paper presents
the data structure, the scheduling algorithm, and studies its
execution complexity. The scheduling properties are analyzed
and shown to relate nicely to existing work. Some illustrative
simulation results are presented to reaffirm those properties.

Index Terms— Communication systems, Computer network
performance, Scheduling, Data structures, Algorithms

I. INTRODUCTION

Packet scheduling algorithms are a cornerstone for the
future development of packet-switched networks as ubiquitous
communication infrastructure, integrating a wide range of net-
work technologies and offering a wide variety of application
services. Packet scheduling algorithms increase the level of
control over packet transmission and permit the support of dif-
ferent service policies. General Processor Sharing (GPS) has
been introduced in [1] as a conceptual packet scheduler with
many desirable properties. In very basic terms, GPS scheduling
works by assigning fractions of the overall forwarding capacity
to flows. These fractions are termed weights and the GPS
scheduler guarantees fluid service in proportion to a flow’s
weight compared to the sum of all other active flows’ weights.
A large variety of GPS emulation algorithms have been pro-
posed, but so far no algorithm exists that combines very close
GPS approximation with constant algorithmic complexity and
low execution overhead.

There are many application areas for packet scheduling
algorithms, ranging from detailed quality of service guarantees
for individual application flows [2] to service assurances for
aggregates [3]. In each of these scenarios, a more precise
scheduler translates into more efficient resource usage in
relation to the “quality” of the service guarantees. Because
of the significant complexity and execution cost of packet
schedulers, the sweet spot of network and capacity planning
has been in configurations with very simple schedulers, so far.
However, if truly low-cost and sophisticated packet schedulers

would become available, they would likely be useful in many
different ways.

The main criteria for evaluating the “scheduling quality” of
a packet scheduler are the delay bound, especially in a form
that can be used to determine an end-to-end delay bound as
shown in several analytical frameworks [3], [4], [5], [6], as
well as two fairness measures. Relative fairness (introduced
in [7]) denotes the capability of a scheduler to distribute
excess capacity between different sessions in proportion to
their allocated service rates. Worst-case fairness (introduced
in [8] and refined in [9]) expresses the maximum deviation
from perfect GPS scheduling. While the delay bound only
characterizes how far the actual service for a session can be
behind the ideal GPS scheduler, worst-case fairness essentially
provides an integrated bound on how far ahead or behind the
actual service can be. Fairness thus also describes the burst
characteristics of the service allocation in relation to the ideal
smooth service of GPS. The key metric for describing the qual-
ity of these service characteristics as well as the computational
complexity of a packet scheduler is the asymptotic relation
between the respective characteristic and the number of flows
in the system, which is described as constant, logarithmic, or
linear. For example, constant delay describes the property that
the delay bound is independent of the number of flows.

This paper presents a data structure called Interleaved
Stratified Timer Wheels (ISTW) in combination with new
algorithms for the findNext and transferEligible operations.
This permits to construct a novel packet scheduler termed
Stratified/Interleaved Worst-case Fair Weighted Fair Queueing
(SI-WF2Q). It has constant complexity, and constant fairness
and delay characteristics in all relevant dimensions. The ISTW
data structure is used as a compact and efficient priority queue
that enables the virtual traffic shaping necessary for constant
worst-case fairness. Constant complexity in this context is
defined as amortized execution cost over a certain amount of
input traffic. Amortized cost can be translated into buffering
and as such, additional delay. In contrast to [10] however,
the amortization period for SI-WF2Q is limited and shown to
be practical. In particular, the worst-case execution cost for
most per-packet operations is proportional to the size of the
corresponding packet. One processing step requires a longer
amortization period, but the relevant actual duration of this
period diminishes with increasing link speeds.
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The rest of the paper is organized as follows. In the next
section, existing work is examined and its relation to this work
is discussed. In Section III, the ISTW data structure and access
algorithms are introduced, which facilitate the scheduling
algorithm. Section IV establishes the key characteristics of the
resulting packet scheduler and provides a complexity analysis.
To reaffirm and further illustrate the scheduling properties,
some simulation results are presented in Section V. Section VI
presents a summary of the properties and limitations of this
scheduler and is followed by some conclusions and future
work items in Section VII.

This paper is an extended version of [11].

II. RELATED WORK

Existing GPS emulation algorithms can be classified as
timestamp schedulers, round-robin schedulers, and hybrid ver-
sions. Different schedulers provide different combinations of
the aforementioned scheduling quality characteristics, while
none of the existing proposals is optimal in all quality di-
mensions and also of low complexity and execution over-
head. There is a class of fundamentally different schedulers,
termed Service Curve Schedulers [12], [13], which can provide
delay bounds independently of throughput guarantees. These
schedulers are inherently more complex than GPS emulation
schedulers, so it seems hopeless to think about efficient imple-
mentation before solving the GPS emulation problem. Hence,
although the techniques presented here may be applicable to
such schedulers, this is out of scope for this paper.

A. Timestamp Schedulers

Timestamp schedulers approximate GPS behaviour by sim-
ulating the virtual system time in the equivalent GPS system.
The respective start and/or finish times of packets in the
reference GPS system are used to decide the order in which
packets receive service. By the same token, the simulated
virtual time is used as a starting point for newly arriving
flows, which is necessary to achieve at least some bound on
unfairness and burstiness. This challenge is well-known since
the earliest proposals for proportional packet scheduling [14],
[15]. Note that the order of packets within a flow is not affected
by the scheduler operation. Therefore, only the first packet in
each flow’s queue needs to be considered for scheduling and
the term “flow timestamp” is often used when referring to the
packet timestamp at the head of the flow’s queue.

B. Worst-case Fair Weighted Fair Queueing (WF2Q)

An optimal packet approximation of GPS is presented
in [9] and termed Worst-case Fair Weighted Fair Queueing
(WF2Q). The deviations from GPS scheduling are bound by
strictly rate-dependent values for the respective flow (or two
flows in the case of relative fairness) with provably optimal
coefficients. In particular, all scheduling errors are independent
of the number of flows in the system. Earlier attempts at
approximating GPS, such as proposed in [1], [7], [14], [16],
incur a potentially linear deviation from GPS scheduling, in
terms of either fairness or delay behaviour. In fact, it turns out

that when considering only packet start times for scheduling,
the startup delay cannot be limited effectively and the delay
bound depends on the number of flows in the system. When
scheduling packets only by increasing finish times, packet
bursts and unfairness can occur, also bound only by the number
of flows.

Conceptually, the WF2Q algorithm works by combining
both criteria, start and finish time. In a first shaping step all
eligible packets are selected, that is all packets with a start time
not later than the current system virtual time. From all these
packets, the one with the smallest finish time is sent next. This
packet selection policy, termed Start-eligible Earliest Finish-
time First (SEFF) ensures tight bounds for all quality indices.
The authors of [17] independently arrive at the same conclu-
sion that the combination of traffic shaping and finish-time
service results in optimal scheduling characteristics. While
[17] only describes a very simplified implementation in the
context of fixed-size packet networks (ATM in this case), the
original WF2Q proposal in [9] is not at all concerned with
algorithmic complexity or execution overhead.

C. WF2Q Approximation

There are two proposals for implementing an approximation
to WF2Q with lower complexity: WF2Q+ [18] and Leap
Forward Virtual Clock (LFVC) [10]. The work in [17] contains
a similar concept, but does not elaborate on all details. In
general, all SEFF-based algorithms contain three parts that
are relevant for their execution overhead and complexity:

• Flows are sorted according to timestamps.
• The SEFF policy requires consideration of both the start

and the finish timestamp for the scheduling decision.
• The virtual time of the GPS reference system needs to

be simulated or approximated.

Sorting and priority queues are among the best-studied
problems in Computer Science. Without further restrictions,
maintaining a sorted container has O(log N) complexity in
the number of elements. In the context of GPS emulation
schedulers, however, it can be a very acceptable trade-off to
use rounded time values (and incur some additional scheduling
error) in exchange for a finite universe of sorting values,
which enables more efficient solutions to the sorting problem.
For example, the van Emde Boas priority queue [19] has
O(log log N) access complexity for insertion, removal and
finding the lowest value. Similarly, a timer wheel [20] could
operate in O(1) for insertion or removal and, in combination
with hierarchical bitmaps and a priority encoder of width K,
with O(logK N) complexity for searching for lowest value
(see Section 5 in [21] for a brief discussion). In both cases, a
finite time horizon must be assumed, which translates into a
maximum specifiable inter-arrival time of packets. Since the
maximum packet inter-arrival time is part of the lower bound
on the startup delay, one can assume that there is an upper
limit to this value and it will not change in future networks.
Then, if the desired delay precision is also fixed in terms of
wall-clock time, one could argue that these algorithms operate
with constant complexity in all relevant dimensions.
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Unfortunately, the SEFF policy makes the above considera-
tions somewhat irrelevant. It basically requires keeping flows
in a two-dimensional container where they are sorted by both
their start and finish times. This approach has been chosen
for WF2Q+, but inevitably requires a tree-based data structure
and consequently O(log N) access complexity. Alternatively,
flows can be kept in two one-dimensional containers, as
proposed for LFVC, and exploit the lower access complexity
discussed above. However, this two-container solution requires
the transfer of all newly eligible flows from one container
to the other in between the processing of two consecutive
packets. Since all flows may end up with the same or very
close start times, this number cannot be limited and effectively
results in O(N) worst-case complexity. While the transfer cost
could be amortized over the number of packets transferred, this
amortization would require O(N) buffer space and result in a
corresponding scheduling error.

D. Virtual Time

Traditionally, the precise simulation of GPS virtual time has
been considered as being an operation with linear complexity,
since it needs to keep track of all changes in the set of flows
backlogged in the GPS reference system. A recent proposal
[22] allows for the exact simulation of GPS virtual time with
O(log N) algorithmic complexity in the number of flows.
Independent analysis in [23] shows O(log N) to be a lower
bound. Both WF2Q+ and LFVC (along with other algorithms)
use a simpler approximation of GPS virtual time. Basically,
the approximated virtual time progresses with real time during
actual service, that is, it is incremented by the duration of the
current packet at each scheduling step. If however the smallest
start time of all backlogged flows (which is readily available
in WF2Q+ and LFVC) is larger than the current virtual time,
the virtual time jumps forward to this minimum start time.

This approximation of GPS virtual time has some negative
effects on the scheduling quality of WF2Q+ and LFVC, as
pointed out in [22]. Under certain circumstances, the approxi-
mation of virtual time could lead to unfairness and burstiness
being linear in the number of flows. This observation is not
a contradiction of the findings for WF2Q+ and LFVC, but
results from different assumptions. Normally, GPS emulation
schedulers are considered in a context where some kind of
delay guarantees are sought. Such delay guarantees can only
be given if the sum of rates of all flows does not exceed the
link capacity. In terms of the GPS definition, this denotes a
situation where the sum of weights is less than or equal to 1.
In this case, all previous results about WF2Q+ and LFVC
hold, and burstiness is independent of the number of flows. If
this restriction is removed, then the observations reported in
[22] become an issue. However, it is somewhat questionable
whether any application scenario requires the support for sum
of weights exceeding 1. Certainly, all scenarios that aim at
providing some form of delay guarantee do not qualify.

Along the same lines, there is another seeming contradic-
tion between the results of [24] and the results presented
for SI-WF2Q. This discrepancy is also rooted in different
assumptions about weights. In the most general case, the

lower complexity bounds established in [24] presumably hold
(this author has not personally checked them). However, in
a somewhat restricted but very realistic scenario, the sum of
weights is limited by 1, as discussed above. Furthermore, the
maximum spread between the highest and lowest service rate
is limited. For such a scenario, SI-WF2Q is a better scheduling
solution with a small and constant execution overhead.

E. Low Complexity Implementation

A number of techniques for the efficient implementation of
timestamp schedulers are presented and discussed in [25]. For
the particular case of fixed packet sizes in ATM networks, the
article presents an implementation of WF2Q+ with constant
execution overhead. In the case of variable packet sizes,
a different solution is presented, which technically can be
regarded as having O(1) complexity in the number of flows,
but there are shortcomings. The scheduler implementation uses
stratification in the virtual service time of packets to reduce
the complexity of the one-container solution referred to in
[18]. This results in a number of stratified groups which is
logarithmic to the ratio of the maximum over the minimum
supported service rate. For example, if the system were to
support service rates between 16 Kbit/s and 40 Gbit/s at packet
sizes ranging from 64 to 1500 bytes, this would result in 26
stratified groups. The algorithm then specifies that between
each scheduling step, it is necessary to inspect the start and
finish times of the front flow in each group to determine the
next one to receive service under the SEFF policy. This se-
quence of comparisons is a nontrivial and costly operation and
is hardly possible within the strict timing bounds of high-speed
links. In other words, this sequence of comparisons introduces
too high an absolute constant overhead per scheduling step.
Further, the proof of the main Theorem 2 in [25] uses the
condition that a flow always has an eligible packet during a
time period, which restricts the general applicability of the
result. The analysis of SI-WF2Q arrives at basically the same
conclusion and thereby remedies this situation.

F. Round Robin and Hybrid Schedulers

Round robin schedulers take a fundamentally different aim
at emulating GPS scheduling. Instead of timestamp computa-
tions and sorting, service slots are assigned in some modified
round robin fashion. This dramatically reduces the algorithmic
complexity of such schedulers, but most early proposals suffer
from rather large error terms in their fairness and delay
properties. A more recent example, Smoothed Round Robin
(SRR) [26], uses a fixed weight matrix to achieve very low
computational complexity. Its relative fairness only depends
on the order of the weight matrix and is thus independent of
the number of flows. However, the weight matrix cannot be
changed easily and the delay and worst-case fairness of SRR is
linear in the number of flows. Recent proposals, such Stratified
Round Robin (STRR) [27], Fair Round Robin (FRR) [28], and
Group Round Robin (GRR) [29], use flow stratification along
service rates and a two-level scheduling hierarchy to solve the
problem of dynamically adding and removing flows.
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The critical parameter determining the trade-off between
quality and complexity of a round robin scheduler is the size of
the quantum used for each scheduling round. Any round robin
scheduler has an error term of a×MTU

flow rate due to the minimum
quantum. Such a scheduling error poses a problem for low-
rate flows with small packet sizes, such as voice. Further, if
the quantum is chosen too small, this can lead to multiple
processing steps without output (slip processing) and thus
break O(1) complexity. On the other hand, a larger quantum
results in even larger error terms.

STRR uses a large quantum and has perfect O(1) complex-
ity. However, the algorithm’s general delay bound and worst-
case fairness is linear in the number of flows. FRR does not
specify a particular quantum, but any quantum that can avoid
linear scheduling errors inevitably leads to slip processing in
the round robin loop. This effectively breaks O(1) complexity.
GRR is a general technique for hierarchical scheduling using
round robin as intra-group scheduler. The quantum problem is
approached differently then in other hierarchical round robin
schedulers. GRR allocates a large quantum to each group,
but interleaves group service according to the inter-group
scheduler. While this results in the best scheduling properties
of all round robin schedulers, it poses the risk of breaking
O(1) complexity through slip processing: A flow that becomes
non-backlogged cannot be removed from the round robin list
immediately. Instead, if it is still non-backlogged during the
next round, it is considered departed and effectively removed
from the list. However, the number of departed flows may
be arbitrarily large in any round and therefore, may result
in O(N) processing steps between the processing of two
consecutive packets.

G. Hierarchical Scheduling

Hierarchical scheduling allows for increased control over
link sharing and resource allocation. Some of the shortcomings
of the early fair-queueing schedulers become very apparent in
the context of hierarchical packet scheduling [18]. Hierarchical
rate-based scheduling invariably increases the delay bounds
for leaf classes and as such, service curve schedulers such as
SCED [12] and HFSC [13] are more suitable to achieve both
link sharing and tight delay goals at the same time, albeit
with increased complexity. For the purpose of this work, we
do not argue in favour or against the usefulness of hierar-
chical scheduling. However, as noted from [18], hierarchical
configurations can be regarded as an excellent litmus test for
the fairness characteristics of a packet scheduling algorithm.
It is strictly for this reason that the simulation experiments use
hierarchical scheduling.

III. PACKET SCHEDULER DESCRIPTION

The ISTW data structure can be used as a sorted timer con-
tainer with desirable properties in the context of a timestamp
packet scheduler. Essentially, the following proposal describes
a modified version of LFVC scheduling [10] with the original
shortcomings being addressed by the new data structure and
access operations.

A. SI-WF2Q System

As with other packet approximation algorithms of GPS, the
system is defined as a set of flows F . Each flow i is assigned
a relative rate ri, such that

∑

i∈F

ri ≤ 1. (1)

Further, the start time Si(·) and finish time Fi(·) of a flow i
are defined as follows, based on the system virtual time V (·):

Si(t) =

{

max(V (t), Fi(t−)) activation of flow i
Fi(t−) next packet of flow i

(2)

Fi(t) = Si(t) + li
ri

for next packet with length li (3)

The service time of a packet li
ri

is termed virtual packet time.
The system uses rounded timestamps for scheduling (see next
sections for details) and the system virtual time V (·) is based
on the rounded start time function Ŝi(·) (equivalent to the
definitions in [10] and [25]) as

V (t + τ) = max(V (t) + τ, min
i∈B(t+τ)

(Ŝi(t + τ))) (4)

with B(t + τ) being the set of all flows that are backlogged
at time t + τ . In simplified terms, among all flows i with
Ŝi(t) ≥ V (t), the flow with the smallest rounded finish time
is served next. The virtual time is updated immediately after
a packet is selected for service. We assume that the reference
time t elapses at the speed of link transmissions and measure
both reference and virtual time in bytes. We omit the reference
time where it is not needed.

B. Problem Statement

LFVC proposes uniform rounding of timestamps and use
of the van Emde Boas priority queue for sorting. Alterna-
tively, one could imagine using a timer wheel enhanced by
hierarchical bitmaps and a priority encoder. In both cases, the
algorithmic complexity is quite low (and can technically be
regarded O(1), as discussed in Section II), but the absolute
execution overhead is non-trivial. In [10], for example, 200-
300 instructions are reported per packet operation. Further-
more, both the van Emde Boas data structure and hierarchical
bitmaps consume a considerable amount of memory, which
likely exceeds the amount of on-chip memory. In contrast, SI-
WF2Q uses stratified timestamp rounding. This reduces the
corresponding execution overhead to a few instructions and
keeps all relevant state in a compact data structure, suitable
for a small memory footprint.

LFVC implements the SEFF packet selection policy by
storing each flow in either of two containers, termed Low
and High, depending on the eligibility of the respective front
packet. If the flow’s start time is later than the current virtual
time, the flow is kept in Low, which is sorted by start times.
Otherwise, the flow is stored in High, which is sorted by finish
times. After each scheduling step, the eligibility of flows in
Low is tested. All flows that have become eligible need to
be transferred to High. This may result in O(N) transfer
operations, as illustrated in Figure 1. Note that LVFC uses
an implicit notion of start times, which is results in slightly
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Fig. 1. Flow Transfer Problem in LFVC

different scheduling characteristics, but does not change the
big picture. Consider the case where the virtual time changes
from t1 to t2 after a packet of corresponding size has been
scheduled for transmission. At that point, all flows need to be
examined to ensure that Flow 9 is transferred into High, which
is necessary to serve it before its impending deadline. With
SI-WF2Q, it is possible to sensibly choose between different
flows to control the number of transfers at each time while
also ensuring that each flow is transferred “on time”.

C. Data Structure

The ISTW data structure consists of a set of timer wheels,
each representing a group of flows with similar weight alloca-
tions. Comparable to [27], [28], [29], but different from [25],
flows are “stratified” into flow classes based on their relative
rates. Formally, the set of flows F is partitioned into K flow
classes Gk for level k = 1, ..., K and defined as

Gk =

{

i :
1

2k−1
≥ ri >

1

2k

}

. (5)

Each of these classes is represented by a separate timer wheel,
which consists of a fixed number of buckets. We denote the
smallest possible packet size with λ and the maximum packet
size with L. In the context of the ISTW data structure, virtual
time is expressed in time slots, each of which covers the
time equivalent to send λ bytes on the link. A timer wheel
bucket at level k then covers 2k time slots, which represents
the virtual transmission time of a minimum size packet at
the lower-end service rate of that level. According to (5),
the maximum virtual packet time of any packet at level k
is 2kL. The ISTW data structure must at least support this
time horizon for each class. Therefore, the timer wheel at
each level contains L ≥ dL

λ
e buckets. Buckets are assigned a

unique number establishing a global ordering between buckets,
as shown in Figure 2. The global bucket number hk(j) is
equivalent to the first slot number covered by the bucket and
is computed for any time slot j and level k as

hk(j) = 2k

⌊

j − 2k−1

2k

⌋

+ 2k−1. (6)

Given a global bucket number h, the level k can be computed
by finding the smallest bit set in h as

k = ffs(h). (7)

Only the next L buckets need to be present in each level at
any time, so the timer wheels can wrap around. We denote
the set of flows stored in bucket x with Ex and the number
of elements in this set with ‖ Ex ‖. Note that ‖ Exk

‖< 2k

Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

Level K

Level 7

in time slots
virtual time

bu
ck

et
 n

um
be

rs

1 10 20 30

1 3 5 7 9

1062 14

1311 1715 19 21 23 25 27 29 31 33 35

18 22 26 30 34

8 24

32

362820124

16

37

Fig. 2. Interleaved Stratified Timer Wheels (ISTW)

at any time, since according to (5), there must be less than 2k

flows with a rate greater than 1
2k . Bucket 0 and all buckets h

with ffs(h) > k do not belong to any level and are ignored
during processing.

Each timer wheel bucket stores flows in an unsorted FIFO
list. This corresponds to rounded timestamps, first by λ and
second by the level-dependent time coverage of buckets.
According to the findings in [10] and [25], rounded timestamps
work well, if the start time is rounded down while the
finish time is rounded up. In the case of SI-WF2Q, this is
accomplished by adjusting the start and finish time slots before
computing the respective bucket numbers according to (6) as

ŝi = hk(
Si

λ
− 2k) (8)

and
f̂i = hk(

Fi

λ
+ 2k). (9)

for flow i in class k. The corresponding timestamps are

Ŝi = ŝiλ, and F̂i = f̂iλ. (10)

Given a current virtual time Vc, the current virtual time slot vc

is always computed as vc =
⌊

Vc

λ

⌋

. Note that these formulae
can be implemented with a few simple arithmetic operations,
if λ is a power of 2.

To explain the above rounding, consider a flow in class k
with a start time in the interval [b, b+ 2k] where h is a global
bucket number for level k. If the start time would simply be
rounded down to h, the flow may end up at the end of the FIFO
list and it may only be processed near time h + 2k, which
is too late (usage of Lemma 3/T2a in proof of Lemma 5).
Therefore, the start time must be rounded down to the previous
bucket covering [b− 2k, b] as in (8), so that the flow is surely
processed before its actual start time. For finish times, the
opposite consideration applies and results in (9).

The ISTW data structure has two key characteristics that
make it very suitable for building an efficient packet scheduler.
First, the stratification of timer wheels amounts to timestamp
rounding with an error proportional to the service rate of
flows. This results in a relatively small number of buckets,
but limits the corresponding scheduling error. Second, the
interleaving of stratified timer wheels facilitates browsing
through flow classes, such that the frequency of visits is
roughly proportional to the service rate. This is essential for
a controlled transfer of flows from Low to High.

D. Scheduling Algorithm

The SI-WF2Q scheduler is built similar to the LFVC sched-
uler. The ISTW data structure is used for both the Low (start
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Fig. 3. Searching ISTW

time sorting) and the High (finish time sorting) container. The
findNext operation is used to search for the lowest timestamp
in an ISTW container, while the transferEligible operation
performs regulated but timely transfers from Low to High.

1) Lowest Timestamp Search - findNext: To facilitate an
efficient search for the smallest element, a bitmap anybits
of size K is kept, such that the bit at position k indicates
whether any element is currently stored at level k. Searching
starts by determining the lowest bit set in this bitmap. This
denotes the search level kc. Applying (6) with parameter kc to
the current virtual time slot vc gives the starting bucket for the
second step. Since there are no elements in any level smaller
than kc, the second step is a linear search with an increment
of 2kc−1. As an example, consider Figure 3. Assume that the
current virtual time slot is 7. The lowest set bit in anybits
indicates 2 as the smallest level with an element. Assume
this element is stored in Bucket 26. The linear search then
starts searching at Bucket 6, which is the bucket in Level 2
covering Slot 7. The linear search browses through buckets by
incrementing in steps of 2. If an “earlier” bucket at a greater
level contains an element, this is found appropriately. In this
example, if Level 3 contains an element in Bucket 12, then this
is found appropriately - before the search reaches Bucket 26.
The following pseudo-code describes the operation:

function findNext( inout curr slot ) {
k = ffs(anybits);
curr slot = hk(curr slot);
while (getBucket(curr slot,k).empty()) {
curr slot += 2k−1;
k = ffs(curr slot);

}
return getBucket(curr slot,k).front();

}

2) Regulated Flow Transfer - transferEligible: By applying
(6) to the current virtual time slot, it is possible to identify the
“current” bucket hk(vc) for level k. A bitmap frontbits of
size K is maintained to indicate which levels have elements
stored in their respective current buckets. When the virtual
time is incremented by the size of last packet, the virtual time
slot vc is incremented accordingly. For each increment by one
slot, the following operations are executed:

• If the bucket with number vc is not empty, compute the
level number as ffs(vc) and set its bit in frontbits.

• Find the lowest bit k in frontbits. If found, transfer
one flow from the current bucket of level k to High.

Essentially, if several flows are eligible for transfer, the sec-
ond step ensures that flows with a higher service rate are
transferred first. However, as shown below in Lemma 1, no

flow is left behind. Instead, the transfer operation exploits the
fact that flows at different rate levels have different timing
requirements. The operation is illustrated by pseudo-code:

function transferEligible() {
curr slot = virt time / λ;
virt time += last packet size;
while (curr slot ≤ virt time / λ) {

k = ffs(curr slot);
if (!getBucket(curr slot,k).empty())

set bit(frontbits,k);
if (frontbits > 0) {

k = ffs(frontbits);
f = getBucket(curr slot,k).front();
transferToHigh(f);
if (getBucket(curr slot,k).empty())
clear bit(frontbits,k);

}
curr slot += 1;

}
}

3) Packet Service - chooseFlow: During each processing
step, the next flow is selected from the High container using
findNext. While this packet is transmitted, the scheduler trans-
fers eligible packets from Low to High using transferEligible.
If High is empty, the next start time is searched in Low using
findNext. The virtual system time is updated according to (4).
The corresponding pseudo-code is given below:

function chooseFlow() {
old slot = virt time / λ;
Low.transferEligible();
if (High.empty()) {

curr slot = virt time / λ;
f = Low.findNext( curr slot );
transferToHigh(f);
virt time = curr slot * λ;

}
return High.findNext( old slot );

}

IV. ANALYSIS

The basic scheduling properties of SI-WF2Q are analyzed
using a similar proving strategy and adapted proofs from [10].
In a second step, the algorithmic complexity and its relation
to scheduling properties is studied.

A. Scheduling Properties

In contrast to WF2Q+ and LFVC, SI-WF2Q does not strictly
adhere to the SEFF policy, but instead mediates transfers from
Low to High with the transferEligible operation. Lemmas 1
and 2 establish that each flow is transferred “on time”, which
is a crucial prerequisite to use the proving strategy from [10].

Lemma 1: In Low, for each level k, all buckets earlier than
the current bucket are empty. Formally:

‖ Exk
‖= 0 for all k, xk with xk < hk(vc) (11)
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Proof: A bucket hk at level k covers a virtual time
period equivalent to 2k time slots. In other words, each level
is “visited” once every 2k slots by transferEligible and each
bucket hk remains as the current bucket (and in frontbits
if necessary) for 2k time slots. We are only concerned with
time periods during which frontbits 6= 0, because other-
wise, all current buckets are empty and the Lemma holds. For
each time slot during such a busy period, exactly one flow
is transferred from Low to High by transferEligible. Each
flow can only occur once in each bucket of Low. While two
consecutive start timestamps might fall in the same bucket, this
also results in identical rounded start times and consequently,
the flows simply stays in High for the second packet. We
prove by induction over k that for an arbitrary time period
of 2k slots, at most 2k timestamps of flows in levels 1..k are
ever encountered. Flows at levels k + 1..K can be ignored
when considering level k, since they have lower priority in
frontbits. Because of (1), this shows that each bucket
is drained, before switching to the next bucket in that level.
Define the union of flow classes up to level k as Uk with

Uk =
k
⋃

i=1

Gk. (12)

Induction Hypothesis: For an arbitrary v ∈ N0,

v+2k−1
∑

x=v

‖ Ex ‖ ≤ 2k
∑

i∈Uk

ri + ‖ Ez ‖ with z > k. (13)

Base Case (k = 1): One of the buckets Ev and Ev+1

belongs to level 1. Assume without loss of generality Ev.
Then Ev+1 belongs level z with z > 1. If Ev contains an
element, U1 is not empty and the inequality evaluates to

1+ ‖ Ev+1 ‖ ≤ 2ri + ‖ Ev+1 ‖ (14)

and otherwise (no element in Ev) to

‖ Ev+1 ‖ ≤ ‖ Ev+1 ‖ . (15)

Because ri > 0.5 for k = 1, (14) is correct, while (15) is
trivial. Therefore, the hypothesis is verified for k = 1.

Inductive Step: Assume the hypothesis holds for k. Then

v+2k+1−1
∑

x=v

‖ Ex ‖ =

v+2k−1
∑

x=v

‖ Ex ‖ +

v+2k+1−1
∑

x=v+2k

‖ Ex ‖ (16)

≤ 2k
∑

i∈Uk

ri+ ‖ Ez1
‖ + 2k

∑

i∈Uk

ri+ ‖ Ez2
‖ (17)

= 2k+1
∑

i∈Uk

ri + ‖ Ez1
‖ + ‖ Ez2

‖ with z1, z2 > k (18)

≤ 2k+1
∑

i∈Uk+1

ri + ‖ Ez2
‖ with z2 > k + 1. (19)

The first equation simply splits the 2k+1 time slots into
two terms. In the transformation step to (17), the induction
hypothesis is applied and the transformation to (18) rearranges
the terms. The last step uses the following consideration: For
any 2k consecutive slot numbers, 2n buckets belong to level
k − n for n in 1..k, while one bucket belongs in to level
x > k. This can easily be verified using (6) and Figure 2.

Consequently, one of the buckets Ez1
and Ez2

belongs to level
k+1. Assume without loss of generality Ez1

. From (5) follows

‖ Ehk+1
‖ < 2k+1

∑

i∈Gk+1

ri. (20)

Since Uk ∪ Gk+1 = Uk+1, inserting (20) into (18) leads to
(19). Thus, the induction hypothesis is verified for k + 1.

The next lemma proves that no flow is transferred to High
too late. Essentially, each flow is transferred within the time
frame of one bucket in its level, which in turn is equivalent
to the virtual transmission time of a minimum size packet at
the lower-end service rate of that level. In fact, each flow is
transferred before its original (non-rounded) start time. Define
the effective start time as the virtual time at which a flow is
transferred from Low to High and denote it with e.

Lemma 2: The effective start time ei of flow i at level k is
bound by

Ŝi ≤ ei ≤ (Ŝi + 2kλ) ≤ Si ≤ (Ŝi + 2k+1λ). (21)

Proof: The relation between Ŝi and Si follows directly
from (8) and (10).

Lower Bound of ei: According to (8), a flow with start
time Si is stored in bucket ŝi. During transferEligible, this
bucket is inspected not earlier than at virtual time Ŝi and only
afterwards can the flow be transferred. If bucket ŝi is reached
by start-time searching (cf. Section III-D), the virtual time is
also set to Ŝi.

Upper Bound of ei: Lemma 1 proves that each bucket is
emptied, before the next bucket in the same level is inspected
by transferEligible. The next bucket has the number ŝi + 2k

and is inspected at Ŝi + 2kλ.

Lemma 3: Let Li denote the maximum packet size for a
flow i. The following timestamp invariants hold.

T1a: If flow i is in High, then Si ≤ V + 2k+1λ

T1b: If flow i is in High, then Fi ≤ V + li
ri

+ 2k+1λ

T2a: If flow i is in Low, then Si ≥ V

T2b: If flow i is in Low, then Fi ≥ V + li
ri

T3a: For head packet size li: Si ≤ V + Li

ri
+ 2k+1λ

T3b: For head packet size li: Fi ≤ V + li
ri

+ Li

ri
+ 2k+1λ

Proof: T1 and T2 follow from Lemma 2 and the
definition of rounded timestamps in (8) and (10).

T3, Case 1: Packet becomes new head of queue. T1 holds
before service. Service of previous packet increases Si and Fi

by at most Li

ri
.

T3, Case 2: Packet arrives at empty queue. If last Fi ≤ V ,
then new Si = V and T3 follows. Otherwise same as Case 1:
T1 holds before last service and increment by at most Li

ri
.

The remaining lemmas and theorems are basically an adap-
tation of the corresponding analysis in [10].

Lemma 4: If, for all V ′ ≥ V , every backlogged flow i with
F̂i ≤ V ′ satisfies li ≤ (Fi − V )ri, i.e. Si ≥ V , then the
following inequality holds:

∑

i:F̂i≤V ′

li +
∑

i:F̂i≤V ′

(V ′ − Fi)ri ≤ V ′ − V (22)
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Proof: Since li ≤ (Fi − V )ri for all flows, the set of
flows satisfies

∑

i:F̂i≤V ′

li ≤
∑

i:F̂i≤V ′

(Fi − V )ri (23)

=
∑

i:F̂i≤V ′

(V ′ − V )ri −
∑

i:F̂i≤V ′

(V ′ − Fi)ri (24)

≤ (V ′ − V ) −
∑

i:F̂i≤V ′

(V ′ − Fi)ri (25)

The first step uses V ′ − V − (V ′ − Fi) = Fi − V and the
second step uses

∑

i:F̂i≤V ′ ri ≤ 1, based on (1).

Lemma 5: At any virtual time V , the Backlog Inequality
holds for all future virtual time values V ′, i.e.

∑

i:F̂i≤V ′

li +
∑

i:F̂i≤V ′

(V ′ − Fi)ri ≤ L + V ′ − V (26)

with li being the size of the first packet in flow i’s queue. If a
flow j is not backlogged, lj = 0 and Fj ≥ V , because of (2).

Proof: By induction over possible events in the system.
The base case is trivial.

Packet Enqueue: Packet p arrives at the head of the queue.
Denote the size of new packet with lp, and flow rate and
rounded finish time with rp and F̂p. If F̂p > V ′, noth-
ing changes and the lemma holds. Otherwise, the first term
∑

i:F̂i≤V ′ li is incremented by lp, but since the flow’s finish

time is incremented by the virtual packet time lp
rp

, the second
term

∑

i:F̂i≤V ′(V ′ − Fi)ri is decremented by lp.
Packet Transfer: No relevant variables are changed.
Virtual Time Jump: After a virtual time jump Si ≥ V is

true for all flows in the system. Therefore, Lemma 4 holds.
Packet Service: Denote the size of the current packet with

lp, and flow rate and rounded finish time with rp and F̂p. We
have to distinguish two cases, depending on V ′ and F̂p.

Case 1: If V ′ ≥ F̂p, then the first term
∑

i:F̂i≤V ′ li is
decremented by lp. Since V is incremented by lp, the right-
hand side of the inequality is decremented by the same
amount. Therefore, the lemma holds. For the next packet in
the queue, the case ’Packet Enqueue’ applies.

Case 2: If V ′ < F̂p, then all flows with F̂i ≤ V ′ have
F̂i < F̂p. All these flows must have been in Low, otherwise the
current packet would not have been chosen. By Lemma 3/T2a,
Si ≥ V holds for all backlogged flows before the packet
service and consequently, Lemma 4 holds then. Since packet
service increments V (and decrements V ′ −V ) by at most L,
the lemma holds afterwards.

The next lemma establishes that all packets are served when
the virtual time reaches their respective rounded finish time
with an error term of one maximum packet size L.

Lemma 6: For any backlogged flow i in class k

Fi + 2kλ ≥ F̂i ≥ V − L. (27)

Proof: The proof of the right invariant is by contradic-
tion. The only event that could lead to a violation of the lemma
is serving a packet during a busy period. Assume that at V1

the lemma holds. A packet p with rounded finish time F̂1 and
length l is served and afterwards at V2, there is a packet q with

rounded finish time F̂2, such that F̂2+L < V2. Denote with S1

and S2 the corresponding start times. We need to distinguish
three cases.

Case 1: Packet q is eligible at V1. Then, F̂2 ≥ F̂1 (both
packets were eligible at V1). Applying Lemma 5 with V = V1

and V ′ = F̂2 results in:

lp ≤
∑

i:F̂i≤F̂2

li ≤ L + F̂2 − V1 (28)

V2 − V1 ≤ L + F̂2 − V1 since lp = V2 − V1 (29)

V2 ≤ L + F̂2 (30)

Case 2: A virtual time jump happens before serving q:

V2 ≤ S2 ≤ F̂2 (31)

Case 3: Packet q becomes eligible between V1 and V2.
Virtual time progresses by at most L, therefore:

F̂2 ≥ S2 ≥ V1 ≥ V2 − L (32)

F̂2 + L ≥ V2 (33)

The left invariant in the lemma follows from the definition
of rounding in (9) and (10).

The last lemma establishes a bound between the virtual time
V and real time R, expressed as bytes, assuming a finite output
buffer and a fixed link capacity. This is a generalization of
Lemma 4.5 in [10].

Lemma 7: Let I be the last time when the system was
idle and the output buffer empty. Let J be the amount of
virtual time “jumping” that has be done during the current
busy period. Let B be the maximum output buffer. Then

R ≤ V + I − J ≤ R + B. (34)

Proof: Assume that b be the amount of data from this
busy period that is currently stored in the output buffer. Since
the output buffer is drained in sequential order, independent
of the scheduler, we can model it as fluid. We first prove

V + I − J = R + b. (35)

The following events influence the variables in the invariant
(35). When a packet is chosen for service and stored in the
output buffer, V and b increase by the same amount. When
the virtual time jumps, V and J increase by the same amount.
During link transmission, R increases at the same speed at
which b decreases. The fact that b is bound by B leads to the
lemma.

Essentially, the above lemmas provide a lower and upper
bound on service in relation to virtual time, as well as a bound
between virtual time and real time. Further note that virtual
time is never slower than real time. In particular, each packet
p is served no later than F̂p +L+B+I−J . Traditionally, the
output buffer has been considered to be of size L and empty
when a busy period starts. Using these results, it is possible
to derive bounds for the service characteristics of SI-WF2Q.
However, note that the bounds below are not necessarily tight.
In particular, the error term L from Lemmas 5 and 6 is
probably already included in the error term B from Lemma 7.
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Theorem 1: (End-to-End Delay) SI-WF2Q is a Guaranteed
Rate (GR) scheduler as defined in [4], with error term β for
a flow in rate level k with

β ≤ L + 2kλ + B (36)

Proof: Let pj
i and lji denote the jth packet of flow i and

its size. Let AR(pj
i ) denote the real-time arrival time of packet

pj
i . The guaranteed rate clock values are defined as is [4]:

GRC(pj
i ) = max(AR(pj

i ), GRC(pj−1
i )) +

lji
ri

(37)

with GRC(p0
i ) = 0.

Denote with F p
i the finish time of the jth packet. Let

I(pj
i ) and J(pj

i ), respectively, be the values of I and J from
Lemma 7 when service of pj

i is completed. Let I ′(pj
i ) and

J ′(pj
i ), respectively, be the values of I and J when pj

i arrives
at the head of its queue. We first prove that during a busy
period

F j
i + I(pj

i ) − J(pj
i ) ≤ GRC(pj

i ) + B (38)

We prove (38) by induction on j. The base case is trivial. The
virtual time of a packet arrival is denoted by A(pj

i ).
Inductive Step: Assume (38) holds for j − 1. We need to

distinguish two cases.
Case 1: A(pj

i ) > F j−1
i . Then

F j
i = A(pj

i ) +
lji
ri

. (39)

Using Lemma 7 we can characterize the packet arrival time
as

A(pj
i ) + I ′(pj

i ) − J ′(pj
i ) ≤ AR(pj

i ) + B. (40)

Adding l
j

i

ri
results in

A(pj
i ) +

lji
ri

+ I ′(pj
i ) − J ′(pj

i ) ≤ AR(pj
i ) + B +

lji
ri

. (41)

Rearranging the terms, using (39), and replacing AR by a
maximum, results in

F j
i + I ′(pj

i )−J ′(pj
i ) ≤ max(AR(pj

i ), GRC(pj−1
i ))+

lji
ri

+B.

(42)
The right hand side shows the definition of GRC. Since we
are in a busy period, I ′(pj

i ) = I(pj
i ) and J ′(pj

i ) ≤ J(pj
i ).

Therefore

F j
i + I(pj

i ) − J(pj
i ) ≤ GRC(pj

i ) + B (43)

which establishes (38) for Case 1.

Case 2: A(pj
i ) ≤ F j−1

i . In this case, F j
i = F j−1

i +
l
j

i

ri
. By

induction hypothesis, we have

F j−1
i + I(pj−1

i ) − J(pj−1
i ) ≤ GRC(pj−1

i ) + B (44)

Adding l
j

i

ri
and replacing GRC by a maximum results in

F j
i +I(pj−1

i )−J(pj−1
i ) ≤ max(AR(pj

i ), GRC(pj−1
i ))+

lji
ri

+B.

(45)

The right hand side shows the definition of GRC. Since we
are in a busy period, I(pj−1

i ) = I(pj
i ) and J(pj−1

i ) ≤ J(pj
i ).

Therefore

F j
i + I(pj

i ) − J(pj
i ) ≤ GRC(pj

i ) + B (46)

which establishes (38) for Case 2.
Using (38), we can now prove the lemma. A packet pj

i is
served no later than F j

i + L + 2kλ (Lemma 6). At the end of
transmission, the real time equals F j

i +L+2kλ+I(pj
i )−J(pj

i )
by Lemma 7. By (38), this is bound by GRC(pj

i ) + B + L +
2kλ.

Theorem 2: (Relative Fairness) For SI-WF2Q, the relative
fairness, as defined in [7], of any two flows i and j is bound
by ζ with

ζi,j ≤ 2L + 3max(
Li

ri

,
Lj

rj

) + min(
Li

ri

,
Lj

rj

) + 12λ. (47)

Proof: The earliest and latest start and finish times of a
packet from flow i in level k that receives service after virtual
time V follow from Lemma 6 and Lemma 3/T3:

Smin ≥ V − L − 2kλ −
Li

ri

, (48)

Smax ≤ V +
Li

ri

+ 2k+1λ, (49)

F min ≥ V − L − 2kλ, (50)

F max ≤ V + 2 ×
Li

ri

+ 2k+1λ. (51)

For an interval [V1, V2] during which the flow is backlogged,
this results in the following service bounds:

(F min − Smax)ri ≤ servicei ≤ (F max − Smin)ri. (52)

For relative fairness, it is not necessary to convert the virtual
times V1 and V2 to real time, since both flows are backlogged
during the whole interval. The normalized service is then
obtained by dividing the amount of service through the service
rate and the maximum normalized difference between any two
flows i and j is computed as

ζi,j ≤ (F max − Smin) − (F min − Smax) (53)

The lemma follows from inserting (48) - (51) into (53) and
using max and min appropriately.

Theorem 3: (Worst-case Fairness) Let Qi(p) be the new
backlog of an arbitrary flow i at the time when packet p arrives.
The time δ to clear this backlog is bound as

δ ≤
Qi(p)

ri

+ L +
Li

ri

+ 3 × 2kλ + B. (54)

Proof: Consider a packet p for flow i. Suppose that
when p arrives, the packet at the head of flow i’s queue is
pj

i . Suppose further that there are m ≥ 0 packets in the queue
in front of p, meaning p = pj+m

i . Let R1 denote the real arrival
time and R2 the real time when p’s service is complete. Let V1,
V2 (resp. F1, F2) denote the virtual time (resp. finish times)
corresponding to the real times R1 and R2. Lemma 3/T3b
guarantees the following inequality:

F1 ≤ V1 +
lji
ri

+
Li

ri

+ 2k+1λ (55)
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or

−V1 ≤ −F1 +
lji
ri

+
Li

ri

+ 2k+1λ. (56)

The Service Time lemma gives the bound V2 ≤ F2 +L+2kλ.
Subtracting V1 from V2, i.e. adding (56) to the bound for V2,
results in

V2 − V1 ≤ F2 − F1 +
lji
ri

+ L +
Li

ri

+ 3 × 2kλ. (57)

Since flow i is backlogged during the interval [F1, F2], we get

F2 = F1 +
∑m

n=1
l
j+n

i

ri
, which can be inserted into (57):

V2 − V1 ≤
m

∑

n=1

lj+n
i

ri

+
lji
ri

+ L +
Li

ri

+ 3 × 2kλ. (58)

The queue size Qi(p) satisfies
m

∑

n=1

lj+n
i

ri

≤ Qi(p). (59)

Plugging this into (58) yields

V2 − V1 ≤
Qi(p)

ri

+ L +
Li

ri

+ 3 × 2kλ. (60)

Using the bounds between virtual time and real time from
Lemma 7, we can obtain a lower bound for R1 and an upper
bound for R2:

V1 + I − J ≤ R1 + B and V2 + I − J ≥ R2. (61)

Therefore

R2 − R1 ≤ V2 + I − J − (V1 + I − J − B) (62)

= V2 − V1 + B (63)

≤
Qi(p)

ri

+ L +
Li

ri

+ 3 × 2kλ + B. (64)

This concludes the proof.

The above theorems do not explicitly specify the link speed,
because real time is modelled as the amount of data sent over
the link and service rates ri are expressed as relative to the
link speed. To transform these formulae into the time domain,
the bounds need to be divided by the link speed.

B. Algorithmic Complexity

We devise a logical system model as shown in Figure 4.
Low and High are the main flow containers, as described
before. After a flow is selected from High, its front packet
is appended to a link output queue, the flow is potentially re-
inserted into either Low or High, the virtual time is updated,
and transferEligible is executed. A separate Link Output thread
pulls packets from the output queue and transmits them onto
the link. Note that this system model does not necessarily
require explicit thread programming, but an implementation
can easily utilize multiple threads. The size of the link output
queue is related to the error terms of the scheduler, since it
determines the maximum deviation between virtual time and
real time (see Lemma 7). As discussed below, it is necessary
to add some amortization buffer to balance out fluctuations
in the processing cost for individual packets. The operations
that need to be considered for algorithmic complexity are
transferEligible and findNext.

High

deactivate
backlog = 0

activate
S = V

Low

activate
S > V

S > V
next packet

transferEligible
OR
findNext transmitLink

Output

flow transfer
packet transfer

next packet
S <= V

findNext

Fig. 4. Execution Model

1) Complexity of transferEligible: As described in Sec-
tion III-D.3, transferEligible is invoked once for each packet
being sent. The description in Section III-D.2 shows how it
operates in proportion to the length of the packet in service. In
particular, the number of processing steps is at most d 2l

λ
e for a

packet with length l and 2l
λ

on average. Therefore, in relation
to the number of flows and all other relevant dimensions,
transferEligible executes with constant complexity.

2) Complexity of findNext for High: The findNext opera-
tion on the High container amounts to a linear search from
the current virtual time slot to the finish time slot of the
eventually chosen packet in steps of 2k−1 slots, where k is
the lowest level that has an element in the High container.
Since all flows in the High container are eligible, the search
starts from a slot equal or greater than the start time of the
packet. Since start time slots are rounded down while finish
time slots are rounded up, the number of traversed slots is
limited by d 2l

λ
e+2, and again 2l

λ
on average, for a packet with

length l. Because the findNext operation is executed before the
packet is transmitted, an amortization buffer of the maximum
packet size L is necessary to ensure continuous operation at
an amortized complexity of O(1).

3) Complexity of findNext for Low: The findNext operation
on the Low container poses a somewhat more complicated
scenario. We present a worst-case analysis here, which still
results in a practical configuration. However, a better solution
might exist, either by means of a tighter analysis or a different
search mechanism. The maximum search distance for the next
start time in Low is related to the size of the previous packet in
the same class, while in the case of High it is the next packet.
Therefore, while the search cost in High can be amortized
immediately, this is not necessarily the case for searching
Low. Assume that a large packet is followed by a smaller
packet in the same class, but after serving the larger packet,
the search is no fully carried out, because another eligible
packet is found. Eventually the system might need to search
this particular level, so a temporary output buffer of the size
of the original packet is required to keep the link busy during
this later search. Without further detailed analysis, this can
happen at most once per stratified class and results in a worst-
case amortization buffer of one a maximum packet size per
rate level. The effect of such a buffer is expressed as error
term B in the theorems presented in the previous section.

A simple analysis shows the limited real-world impact of the
amortization buffer. The amount only grows logarithmically
with the link speed, because the number of stratified classes
only grows logarithmically. This results in a diminished abso-
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Fig. 5. Amortization Delay for findNext on Low

lute error, which can be quantified as

delay ≤
MTU × log2(

link speed
minimum rate )

link speed
. (65)

As an example, assuming a minimum rate of 8 Kbit/s, the
resulting amortization delay for different MTU sizes is shown
in Figure 5. While at a link speed of 100 Mbit/s, the amortiza-
tion delay is on the order of several milliseconds, it is reduced
below one millisecond very quickly. For a 1 Gbit/s link with
an MTU size of 1500 bytes, the amortization delay already
shrinks to approximately 0.2 ms. With an MTU size of 8000
bytes, the worst-case amortization delay is less than 0.5 ms for
a link speed of 2.4 Gbit/s. Clearly, for even higher link rates
in future networks, the amortization delay will be negligible.

V. SIMULATIONS

We have performed numerous simulations using ns-2 to
verify the scheduling characteristics of the SI-WF2Q sched-
uler. In all cases, the simulations confirm the predictions
from Section IV-A. For this paper, the focus is on the worst-
case fairness property of the new scheduler compared to
WF2Q+. We therefore reproduce the corresponding simulation
experiments from Section VI.A in [18]. As mentioned before,
hierarchical scheduling is an excellent litmus test to verify
and illustrate the worst-case fairness properties of a packet
scheduler. In contrast to the experiments in [18], we only
compare to the non-shaped Starting Potential Fair Queueing
(SPFQ) scheduler from [21]. Its worst-case fairness properties
are comparable to the WFQ, SCFQ, and SFQ schedulers
chosen in [18]. The experiment setup uses a simple dumbbell
topology with a single bottleneck and multiple sender and
receiver nodes. The bottleneck is configured with a hierarchy
of scheduling classes as shown in Figure 6 and reproduces the
setup from [18]. For each leaf class, there is a corresponding
traffic source sending on average with the given rate. The PS-n
sources send Poisson traffic with an on-period of 75 ms and
an off-period of 25 ms. The BE-1 source is always backlogged
and the RT-1 source sends CBR traffic with an on-period of
75 ms and an off-period of 25 ms. In one scenario, the CS-n
sources do not produce any traffic and the background traffic

31 Mbit/s
Link

500 Kbit/s 500 Kbit/s

500 Kbit/s 500 Kbit/s

PS−1 PS−20

CS−10CS−1PS−21

9 Mbit/s
RT−1 BE−1

N1

N2PS−40
333 Kbit/s 333 Kbit/s 11 Mbit/s 333 Kbit/s 333 Kbit/s

333 Kbit/s 333 Kbit/s21 Mbit/s

1 Mbit/s

333 Kbit/s 333 Kbit/s

9 Mbit/s 40 Mbit/s

average sending rate

rate allocation

Fig. 6. Experiment Scheduling Hierarchy

is mostly uncorrelated. In a second scenario, the CS-n sources
send CBR traffic and produce correlated background traffic.
All packet sizes are set to 8000 bytes. The main observation
parameter for these experiments is the devolution of the delay
for the RT-1 traffic over the duration of the experiment.

The results of the experiments are shown in Figure 7. The
graphs show the worst-case delay of the RT-1 traffic over
intervals of 50 ms. For illustrative purposes, the SI-WF2Q
delay is shown excluding the amortization buffer discussed
in Section IV-B. Similar to the original results in [18], a non-
SEFF scheduler causes significant delay variations for the real-
time traffic class. Correlated cross traffic further amplifies this
characteristic. The superior worst-case fairness of WF2Q+ re-
sults in significantly reduced delay fluctuations, independent of
the type of cross traffic. As predicted by the analytical results,
SI-WF2Q provides basically the same service as WF2Q+.

It is predicted in Section IV-A that the scheduling charac-
teristics of SI-WF2Q depend on the minimum packet size λ,
which is used for timestamp rounding and establishing O(1)
execution complexity. For example, a realistic setting of λ
could be 64 bytes and this number is used for the above
simulation experiments. To illustrate this dependency, the SI-
WF2Q experiments are repeated with λ changed to 16384 and
32768 bytes. These values are chosen to exceed the packet
size of 8000 bytes used in the experiments. The results are
shown in Figure 8. It can be observed that the increase of λ
results in an increased delay and delay variation, as predicted.

VI. SUMMARY

SI-WF2Q offers superior properties compared to all other
known packet schedulers. The major benefits of SI-WF2Q and
other contributions in this paper are as follows:

• SI-WF2Q has constant small scheduling errors, only de-
pending on flow characteristics and constants depending
on the link speed. In particular, there is no error term
component of Li/ri, as in round robin schedulers.

• SI-WF2Q can be executed in amortized O(1) complexity
with reasonable amortization bounds. This is the key
improvement over the high speed proposal for WF2Q+,
which requires up to 2N comparisons (for N classes) to
carry out the complete SEFF decision for each packet.

• The absolute execution overhead and memory footprint is
small. At the core of the algorithm, the findNext operation
only accesses the ISTW bitmaps frequently.
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Fig. 7. Delay of RT-1 with Different Schedulers

• Interleaving and stratification of timer wheels allows for
controlled but timely processing of timers. This is the key
improvement over LFVC.

• The analysis of SI-WF2Q covers the additional error term
resulting from an output buffer.

• The paper introduces a new concept of constant execution
complexity. Constant complexity is not defined in relation
to an arbitrarily sized unit of work. Instead, as long as
the execution overhead is strictly proportional to the size
of the unit of work (a packet in this case), it is considered
constant. Note that the basic complexity consideration is
independent of whether the actual execution speed on any

particular platform is fast enough to achieve line speed.

In contrast to optimal GPS approximations, such as WF2Q
[9] or the improved version in [22], the main limitations
of SI-WF2Q are given below. However, these are practical
conditions for most realistic configurations.

• A minimum packet size and service rate are required.
• A priority encoder of width log2(

link speed
minimum rate ) bits is

needed. For example, 32 bits can support a range of
service rates between 1 Kbit/s and 4 Tbit/s.

• The sum of relative rates must be less than 1.
• Timestamp rounding introduces additional error terms.
• An amortization buffer is required for O(1) complexity.
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Fig. 8. Delay of RT-1 with Different Settings of λ

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the ISTW data structure for packet
scheduling. In conjunction with the given findNext and trans-
ferEligible functions, it enables the construction of the SI-
WF2Q packet scheduler that has all desirable properties. The
scheduler has low execution overhead and seems very suitable
for a low-level implementation sustaining very high packet
rates. We are currently in the process of implementing this
scheduler on a network processor to verify this assumption.

The bounds shown for SI-WF2Q are not necessarily tight.
In particular, it may be possible to find a cheaper alternative
to the current start-time search, which can be fully amortized
over a shorter time. There is also good reason to believe that
just a tighter analysis of the current findNext operation on the
Low container can already reduce the worst-case amortization
buffer.

In order to further reduce the execution overhead, it seems
feasible to build a pure start-time scheduler using the ISTW
data structure. As a start-time scheduler, it should have good
fairness properties. On the other hand, the stratification and
interleaving of timer wheels should result in improved delay
behaviour over traditional start-time schedulers. Typically, the
main delay component for a flow i in a finish-time scheduler is
Li

ri
. For such a Stratified/Interleaved Start-time Fair Queueing

(SI-SFQ) scheduler, we expect this term to grow to L
ri

with the
other properties unchanged. However, a detailed investigation

of this proposal is a matter of future work.
Both SI-WF2Q and SI-SFQ can be used in regulated mode,

that is without work-conservation through start time search
and virtual time jumps. In this case, the ISTW data structure
provides an efficient technique for real-time traffic regulation.

Last not least, a packet scheduler is only one component
in a very complex network architecture. The overall trade-offs
of different architecture proposals and service models with
respect to the viability of business models, which are mainly
shaped by application demand, remain fundamentally unclear.
Nevertheless, the availability of an efficient and sophisticated
packet scheduler hopefully opens new avenues for the design
and operation of packet-switched communication networks.

ERRATA

If necessary in the future, errata will be available through
the author’s web page.
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