
CS-2005-33 Technical Report 

1 

Adding variability management to UML-based software 
product lines1 

 

Edson Alves de Oliveira Junior a, Itana M. S. Gimenes a,*, Elisa H. M. Huzita a, José 
C. Maldonado b, Paulo Alencar c 

a Departamento de Informática, Universidade Estadual de Maringá (UEM), Maringá, Paraná, Brazil 

b Departamento de Ciências de Computação e Estatística, Universidade de São Paulo (USP), São Carlos, 
São Paulo, Brazil 

c Computer System Group, School of Computer Science, University of Waterloo, Waterloo, Canada 

 

Abstract 

 The software product line (PL) approach promotes the generation of specific products from a set of 
core assets for a given domain. This approach is applicable to domains in which products have well-defined 
commonalities and variation points. Variability management is concerned with the management of the 
differences between products throughout the PL lifecycle. This paper presents a UML-based process for 
variability management that allows identification, representation and delimitation of variabilities; and, 
identification of mechanisms for variability implementation. The evaluation of the process was carried out 
as a case study within the context of an existing PL for the Workflow Management System (WfMS) 
domain. The results have shown that the proposed process includes well-defined control mechanisms that 
increase the possibility of identifying and tracing variabilities. 

Keywords: variability management, software product line, component-based development, software 
architecture. 
 

                                                 
1 This paper in an enhancement of a previous paper as referred to in (Oliveira Junior et al., 2005). 



CS-2005-33 Technical Report 

2 

1. Introduction2 
The software product line (PL) approach 

aims at promoting the generation of specific 
products of a domain that forms a product family. 
The approach is based on the reuse of a well-
defined infrastructure, called the core asset (SEI, 
2005). 

The benefits obtained with a PL approach 
include (SEI, 2005; Heymans and Trigaux, 2003): 
better understanding of the domains, more arti-
fact reuse, and less time to market. Practical evi-
dence of these benefits can be seen in 
organization reports such as Nokia (Bass et al., 
2003) and Bosch GmbH (Steger et al., 2004). As 
a result, there are several efforts; both academic 
and industrial, to reduce the difficulties in the 
adoption of the PL approach (van Der Linden, 
2002). 

According to the Product Line Practice of 
the Software Engineering Institute (PLP/SEI) 
(SEI, 2005) there are three main processes in the 
product line context: core asset development 
(domain engineering), product development (ap-
plication engineering) and management.   

The core asset, generated in the core asset 
development activity, is the main part of the PL; 
it contains the architecture of the PL, and its 
components are represented in a way that makes 
clear the common and variable aspects of the 
potential products of the PL. The simplicity of 
producing products from a PL depends on how 
well its core asset is designed. The more generic 
are the artifacts of the core asset, the more prod-
ucts can be generated from a PL. This generality 
requires the postponing of design decisions (SEI, 
2005; van Gurp et al., 2001) that allow the dis-
crimination of products. These design decision 
issues are treated as variabilities. 

Variability management is one the main ac-
tivities of the PL management. It is recognized as 
an important issue for the success of PLs. How-
ever, each existing solution is applied to only 
specific PL approaches (Heymans and Trigaux, 

                                                 
* Corresponding author. Address: Departmento de 
Informática, Universidade Estadual de Maringá, Av. 
Colombo 5790, 87020-900, Maringá-PR, Brazil. Tel.: +55 44 
3261-4324; fax: +55 44 3263-5874. 
e-mail address: itana@din.uem.br (Itana Gimenes). 
 

2003). Thus, there is a lack of an overall reason-
ing about variability management. 

This paper presents a process for variability 
management which includes tasks for identifica-
tion, representation, and delimitation of variabili-
ties; and identification of variability 
implementation mechanisms. The process sup-
ports the whole PL lifecycle. In addition, it sup-
ports variability tracing and analysis of the 
configuration of specific products. 

The process was conceived within the con-
text of an existing component-based product line 
for workflow management systems (WfMS) 
(Gimenes et al., 2003; WfMC, 2005). The 
evaluation of the process was carried out as a 
case study which followed the concepts of ex-
perimental software engineering.  

This paper is organized as follows: Section 2 
presents a discussion about important issues of 
variability management; Section 3 describes the 
PL for WfMS; Section 4 presents the proposed 
process; Sections 5 and 6 present lessons learned 
and related work. Finally, Section 6 presents the 
conclusions. 

2. Variability Management in Soft-
ware Product Line 

This section introduces the main concepts and 
issues involved in variability management. 
 Variability is the general term used to refer 
to the variable aspects of the products of a PL. It 
is described through variation points and variants. 
A variation point is the specific place in a PL 
artifact to which a design decision is connected. 
Each variation point is associated with a set of 
variants that corresponds to design alternatives to 
resolve the variability (Heymans and Trigaux, 
2003). 
 Variability management includes issues such 
as: (i) variability identification and representa-
tion; (ii) variability binding, and (iii) variability 
control. 
 According to van Gurp et al. (2001), vari-
ability can be initially identified based on the 
concept of feature. They define a feature as a 
logical unit of behavior that corresponds to a set 
of functional and quality requirements. This con-
cept comes from domain engineering (Kang, 
1990) and has been constantly improved to fit 
the demands of the product line approach 
(Simons et al., 1996; van Gurp et al., 2001; So-
chos et al., 2004; Czarnecki et al., 2005). 



CS-2005-33 Technical Report 

3 

 Features are usually represented through 
feature diagrams which are decorated trees that 
contain the features identified for a system fam-
ily (Sochos et al., 2004; Czarnecki et al., 2005). 
Important attributes usually represented in a fea-
ture diagram are: the relationship between fea-
tures and variation points, the relationship 
amongst features, and the feature binding time.  
 There are PL approaches that are purely 
based on the feature model and Domain Specific 
Languages (DSL) (Czarnecki and Eisenecker, 
2000; Batory, 2004). Another important set of 
PL approaches maps the features to UML mod-
els (Atkinson et al., 2001; ClauB, 2001a; Gomaa 
and Weber, 2004) and provides UML extensions 
to represent variability along the PL lifecycle. 
The variability management process proposed in 
this paper is based on the latter approaches. 
 Jacobson et al. (1997) propose the currently 
most popular notation to represent variability in 
use cases. A blob (“•”) is associated to the use 
case indicating that there are variable aspects 
associated with it. However, variabilities are not 
treated at the actor level. Morisio et al. (2000) 
introduce a notation for class diagram; in this 
case, the stereotypes <<V>> and <<xorV>> are 
associated to classes and methods. In our work, 
variability is represented by introducing stereo-
types to the UML models: use case, class, and 
component. In addition, UML notes are used to 
represent information regarding variation points 
and variants.  
 The variability binding time indicates the PL 
lifecycle milestone in which zero or more of the 
variants associated with the variation point will 
be chosen depending on the kind of the relation-
ship between the variants and the variation point 
(van Gurp and Bosch, 2000). Variability binding 
constrains also the choice of implementation 
mechanisms (Fritsch et al., 2002). We adopt the 
classification of binding time proposed by Anas-
tasopoulos (2000) which is: (i) compile time – 
the variability is resolved either before the pro-
gram is compiled or at compile time; (ii) link 
time – the variability is resolved during module 
or library linking, by selecting different library 
with different versions of exported operations; 
(iii) runtime – the variability is resolved during 
program execution; (iv) update time or post run-
time – the variability is resolved during the pro-
gram updates or after its execution. 
 According to Fritsch et al. (2002) and 
Becker (2003), variability management is related 

to every activity of a PL core asset development 
process. van Gurp and Bosch (2001) suggest that 
the variability management process is composed 
of the following activities: 

• Variability identification: consists of 
identifying the product differences and 
their location within the PL artifacts. 

• Variability delimitation: define the 
binding time and multiplicity. 

• Variability implementation: is the selec-
tion of implementation mechanisms. 

• Variant management: controls the vari-
ants and variation points. 

 These activities were used as a basis to con-
ceive our process. 

3. The PL for WfMS 
This section presents the PL for WfMS used as a 
basis to design the proposed process for variabil-
ity management. 
 The design of the product line for WfMS 
(Gimenes et al., 2003) was mainly based on the 
Catalysis method (D’Souza and Wills, 1999). 
Catalysis was used, as it is a general purpose 
component-based development method, based on 
UML (Rumbaugh et al., 1999) that encompasses 
important concepts such as the central role of 
software architecture, frameworks and patterns. 
The fact that we represent all artifacts of the PL 
in UML makes it easier for designers of tradi-
tional approaches to understand our specification 
and also enable us to take profit of current sup-
port tools such as IBM Rational Rose (IBM, 
2005). 
 The core asset development process of the 
PL is composed of the following phases: (i) re-
quirement analysis; (ii) system specification; (iii) 
architectural design, and (iv) component internal 
design. 
 In the requirement analysis, the domain 
model representing the objects and actions of the 
domain were developed. The domain analysis 
was based on the generic architecture and refer-
ence models for WfMS of the WfMC (WfMC, 
1995). The similarities and variabilities amongst 
product line members were identified and repre-
sented at the level of use case model following 
the notation proposed in Jacobson et al. (1997). 
 In the system specification phase, the analy-
sis of the system’s actions led to the identifica-
tion of the types and related actions. Sequence 
diagrams were designed for each use case repre-



CS-2005-33 Technical Report 

4 

senting the interactions between objects. The 
correspondent variation points were represented 
in the system specification phase based on the 
notation proposed in Morisio et al. (2000) which 
extends UML with a variability stereotype. 
 From the system specification several re-
finements were made to reach the level of archi-
tecture of components. The product line 
architecture is presented in Figure 1. 

The components of the architecture and their 
respective variation points are described as fol-
lows: 
• GraphicalInterfaceMgr: responsible 

for user interface management. One variation 
point is the user interface being via web 
browser or conventional. 

• WorkflowArchitectureMgr: supports 
the definition and maintenance of workflow 
architectures. This component makes the 
workflow definition more flexible as the 
workflow types are not static. Variation points 
include the resource type, the tool type, and 
the process language supported. Resource can 
be specialized into actor, tool and material 
types. Tool type can be either internal or ex-
ternal. Different process programming lan-
guages can be supported depending on the 
interpreter. 

• WorkflowMgr: responsible for the instantia-
tion and management of projects that are as-
sociated with a workflow. A project includes 
an instantiation of workflow architecture. For 
each workflow element in the architecture 
there is an object in the workflow instance. 
No variation points were defined for this 
component. 

• WorkflowExecutionMgr: responsible for 
the control and management of workflows. 
The main variation point in this component is 
the possibility of executing different schedul-
ing algorithms. 

• TaskScheduler:  responsible for the 
scheduling of tasks. It allows the interaction 
between the users and the tasks. Variation 
points include resources to be used: types of 
resources and tools to be used (external or in-
ternal). 

• ResourceAllocationMgr: responsible 
for resource allocation (e.g. actors, tools and 
material). In addition to the resource type and 
tool type, variation points include resource al-
location policies. 

• ExternalApplicationMgr: responsible 
for the management of external applications 
during the workflow definition and task exe-
cution. Variation points include different 
mechanisms to adapt external applications to 
the workflow.  

• ObjectMgr: responsible for the object man-
agement support. It maintains workflow data 
such as: control data, information data and 
even a whole workflow. All other components 
of the architecture use its services. This makes 
the architecture independent from the object 
management system. Variation points include 
adapters for different database management 
systems. 

• Interpreter: responsible for the execu-
tion of a workflow script written in a process 
programming language (WfMC, 1995). 

The specification of invariants, preconditions 
and post-conditions for the components was also 
carried out based on OCL (OMG, 2005).  The 
product line architecture was evaluated based on 
Rapide and its support tools (Computer Science 
Lab, 1997).  

Currently we are populating the architecture 
by either developing novel components or reen-
gineering components developed previously not 
following the PL approach. Each component 
internal design also follows the Catalysis method.



CS-2005-33 Technical Report 

5 

 
Fig. 1. Architecture of the PL for WfMS. 

As far as we progress in their design, the ar-
chitecture is revaluated. The implementation of 
the core product line components was carried out 
based on open source tools which include: Java, 
the Swing (Java 2) toolkit (Sun, 2005) and the 
JHotDraw framework (JHotDraw, 2005); 
CORBA JacORB (JacORB, 2005), an Object 
Request Broker (ORB) implemented in Java that 
has many functionalities not identified in similar 
products; and, MySQL (MySQL, 2005) together 
with the ObjectBridge framework (Apache, 
2005). 

4. The Variability Management Proc-
ess 
This section presents the overall variability man-
agement process (Oliveira Junior et al., 2005), its 

activities and its relationship with the PL devel-
opment process. 
 Figure 2 presents the interaction between the 
core asset development process, represented by 
the activities vertically aligned on the left, and 
the variability management process, represented 
by the activities defined inside the right rectangle. 
The variability management process is iterative 
and incremental, and runs in parallel with the 
core asset development. After the execution of 
each activity of the core asset development, the 
variability management process is executed, thus 
progressively taking as input the output artifacts 
of the core asset development. As the activities 
are executed the number of variabilities tends to 
increase. Given that the process is iterative, vari-
ability updates are allowed from any activity.
  

 



CS-2005-33 Technical Report 

6 

 
Fig. 2. The variability management process and its interaction with the PL development process.

  
 The activities of the proposed process and 
their respective input and output artifacts are 
presented in Table 1. However, note that the in-
put artifacts are made available according to the 
progress of the core asset development activities. 
The process is supported by a metadata model 
which describes the relationships among the PL 
artifacts. This model is described in Section 4.6. 

 The process consumes artifacts from the PL 
core asset as well as producing information for it. 
An example is the use case model and the static 
type model. They feed the variability manage-
ment process and return to the core asset with the 
variabilities identified and limited. However, 
there are models, such as the variability tracing 
and implementation models that are originated in 
the variability management process. 

 
Activity Input Artifacts Output Artifacts 

Variability tracing definition Use case and feature models Variability tracing model 

Variability identification Use case, static type, feature and 
component models  

Use case, static type, feature and 
component models with variabilities 
identified 

Variability delimitation Use case, static type, feature and 
component models with variabilities identified 

Use case, static type, feature and 
component models with variabilities 
limited 

Identification of mechanisms for 
variability implementation 

Static type and component models with 
variabilities limited 

Variability implementation model 

Tab. 1. Input and output artifacts of the variability management process activities. 
 



CS-2005-33 Technical Report 

7 

 The following subsections provide a sum-
mary of the case study undertaken to evaluate the 
proposed process and describe the process activi-
ties. 

4.1 Case Study 

The case study was conceived based on the con-
cepts of experimental software engineering and 
the evaluation of software engineering methods 
and tools (Kitchenham et al., 1995; Pfleeger, 
1995; Kitchenham, 1996). An evaluation plan 
was developed consisting of the following activi-
ties: identification of the case study context, 
definition of hypotheses, selection of the pilot 
project, identification of comparison methods, 
planning of the case study, execution of the case 
study and analysis of results. 
 The context of the case study was the PL for 
WfMS described in Section 3. Its objective was 
to re-specify the existing product line with the 
introduction of the proposed variability man-
agement process in order to observe the impact 
on the accuracy of variability identification and 
support for variability tracing. Thus, the PL de-
velopment activities were carried out interacting 
with the variability management activities, as 
established in the proposed process. The number 
of variabilities identified in the following models 
was measured: use case model, static type model, 
and component model. These numbers were 
compared to the number of variabilities identi-
fied in the previous process. 
 The results confirmed that there was an im-
provement on the variability representation after 
the introduction of the variability management 
process. This led to a more explicit representa-
tion of the potential products that can be devel-
oped from the PL. 
 As support tool we used IBM/Rational Rose 
and Requisite Pro (IBM, 2005). 
 The activities described in the following 
sections are illustrated with an excerpt of the 
case study. For space reasons, the activities of 
identification and delimitation of variabilities are 
illustrated through the use case model. The rep-
resentation of variabilities for other artifacts is 
similar. 

4.2 Variability Tracing Definition 

Variability tracing definition receives as input 
the use case model and the feature model built in 
the PL development process. The variability trac-
ing model is built as follows:   

• the captured features of the PL are listed; 
• the captured use cases are listed; 
• the relationship between features and 

use cases are re-analyzed; 
• crossing relations between use cases 

and features are marked with a blob. 
 This model is represented in tabular form. 
An example of a row in the model is for the fea-
ture User Communication. It is related to 
the use cases (see Figure 3): Communicate 
with Users, Communicate Via E-mail, 
Communicate Via Chat and Communi-
cate Via Teleconference, so the corre-
sponding columns of the table are marked. The 
model will support the tracing from the features 
to all UML models that are related to variable 
aspects throughout the lifecycle. Thus, if a cer-
tain feature needs to be removed from a given 
product, it is necessary to know the impact of the 
removal over related artifacts. The tracing is pos-
sible because the features are related to the use 
case model that is related to the static type model 
and the component model. For instance, if the 
feature User Communication is not selected 
for a certain product, the related use cases, static 
type and component models have to be updated 
to reflect this. 
 The variability tracing model is based on the 
representation used for feature and use case trac-
ing in the tool IBM/Rational Requisite Pro (IBM, 
2005). This tool allows indicating which use 
cases are related to the features and vice-versa. 

4.3 Variability Identification 

Variability identification receives as input the 
use case, feature, static type, and component 
models from the development activity in each 
interaction between the PL development and the 
variability management process. It aims at pro-
gressively identifying the variability associated 
with the models. 
 Table 2 presents the stereotypes used to rep-
resent variability on the artifacts of the PL. For 
each model there are two columns. The first in-
dicates the UML relation used to represent the 



CS-2005-33 Technical Report 

8 

type of variability between the variation point 
and its variants. The second indicates the stereo-

type used to indicate variability. 

 
Use Case Diagram Class Diagram Component Diagram 

 UML 
Relation 

Element  
Stereotype 

UML 
Relation 

Element  
Stereotype 

UML 
Relation 

Element  
Stereotype 

Variation 
Point -------- <<variationPoint>> -------- <<variationPoint>> Dependency <<variable>> 

Mandatory 
Variant 

Association 
Aggregation 
Composition 
Dependency 

<<mandatory>> 
Association 
Aggregation 
Composition 
Dependency 

<<mandatory>> Dependency <<mandatory>> 

Optional 
Variant 

Association 
Aggregation 
Composition 
Dependency 

<<optional>> 
Association 
Aggregation 
Composition 
Dependency 

<<optional>> Dependency <<optional>> 

Inclusive 
Alternative 

Variant 

Spec./ Gen-
eral. with the 
stereotype 

<<extend>> 
<<alternative_OR>> Inheritance <<alternative_OR>> Dependency <<alternative_OR>> 

Exclusive 
Alternative 

Variant 

Spec./ Gen-
eral. with the 
stereotype 

<<extend>> 
<<alternative_XOR>> Inheritance <<alternative_XOR>> Dependency <<alternative_XOR>> 

Mutually 
Exclusive 

Variant 
Dependency <<mutex>> Dependency <<mutex>> Dependency <<mutex>> 

Inclusive 
Variant Dependency <<requires>> Dependency <<requires>> Dependency <<requires>> 

Tab. 2. UML relations and stereotypes of the graphical representation of the variation points and variants. 
 

 The stereotype <<variationPoint>> 
indicates that a model element represents a varia-
tion point and has associated variants. These 
variants can be represented with one of the fol-
lowing stereotypes: <<mandatory>>, indicat-
ing a compulsory variant; <<optional>>, 
indicating a variant that need not be chosen; 
<<alternative_OR>>, indicating that one 
or more variants can be chosen; and, <<alter-
native_XOR>>, indicating that only one of the 
variants can be chosen. 
 The stereotypes <<requires>> and 
<<mutex>> are used to indicate dependency 
relationship between variants. The former indi-
cates that once a source variant is chosen, also 
the target variants have to be chosen. In contrast, 
the latter indicates that once a source variant is 
chosen, the target variants cannot be chosen. 
 UML notes are also used to support graphi-
cal representation of variabilities. A UML note 
has essential information that allows answering 
questions such as: 

• Which variants are related to a certain 
variation point? 

• What is the binding time of the variants 
associated to a variation point? 

• Is it possible to add new variants to the 
variant set associated with a given 
variation point? 

 The UML note associated with a variation 
point defines: 

• the type of the relationship between the 
variation point and its variants, which 
are: {} indicating a mandatory or op-
tional relation, {or} indicating an in-
clusive relation and {xor} indicating an 
exclusive relation; 

• the name of the variation point; 
• the multiplicity of the variation point, 

indicating the minimum number of 
variants to be chosen to resolve such 
variation point; 

• the binding time of the variation point; 
and, 

• true or false indicating whether the 
variation point supports the addition of 
new variants to its associated set.  

 Figure 3 presents an example of variability 
identification in a use case model. In this figure, 
the UML notes has three “?” because the vari-
abilities were not limited yet.  



CS-2005-33 Technical Report 

9 

 Two variabilities were identified in this 
figure. One is concerned with different forms of 
workflow execution, and the other is related to 
the kind of communication between workflow 
users. The former is represented by the use case 
Execute Workflow. The associated variants 
include Execute Workflow with 
Priority Control and Execute 
Workflow Serial. The kind of variability 
relationship is <<alternative_XOR>> 
because only one of the execution algorithms can 
be selected. The latter is represented by the use 
case Communicate With Users. The 
associated variants are Communicate Via 
Chat, Communicate Via E-mail and 
Communicate Via Teleconference. 
The kind of variability relationship is 
<<alternative_OR>> as more than one 
kind of communication can be used. 
 Variability identification is a domain de-
pendent activity which requires abilities of the 
PL managers and analysts. However, some 
guidelines may be offered, such as:  

• elements of the use case model related 
with the stereotype <<extend>> or 
elements of the static type model related 
by inheritance suggest variation points 
with associated variants which are in-
clusive or exclusive alternative. For in-
stance, in Figure 3, the use cases 
Execute Workflow with Pri-
ority Control and Execute 
Workflow Serial represent exclu-
sive alternatives associated with the 
variation point Execute Workflow. 

• elements of the artifacts related to the 
stereotype <<include>> in the use 
case model or association in the static 
type model suggest either mandatory or 

optional variation points. For instance, 
in Figure 3, the use case Execute 
Script represents a compulsory vari-
ant. 

4.4 Variability Delimitation 

Variability delimitation aims at defining the fol-
lowing attributes of a variation point: (i) multi-
plicity; (ii) binding time, and (iii) possibility, or 
not, of adding new elements to the associated 
variant set. 
 The multiplicity of a variation point indi-
cates the minimum number of elements of the 
associated variant set that must be chosen to re-
solve the variability. The following rules are 
applied: 

• a variation point with relation type op-
tional has multiplicity 0 (zero), indicat-
ing that a variant can be chosen or not;  

• a variation point with relation type 
mandatory has multiplicity 1 (one), in-
dicating that the associated variant must 
be selected; 

• a variation point with relation type ex-
clusive alternative has multiplicity 1 
(one), indicating that only one element 
of the possible set of variants must be 
selected; and,  

• a variation point with relation type in-
clusive alternative has multiplicity rang-
ing from 0 (zero) to the maximum 
number of variants associated with the 
variation point, indicating that any 
number of variants of this interval can 
be chosen. 



CS-2005-33 Technical Report 

10 

 
Fig. 3. Variability identification in a use case model. 

 
 We have extended the Anastasopoulos and 
Gracek (2001) binding time classification by 
adding the design and implementation steps. 
Thus, the binding time of a variation point were 
defined as follows: 

• Design: the variation point is resolved 
during the specification of the PL or of 
its products. 

• Implementation: the variation point is 
resolved at programming time, before 
compilation. 

• Compiling: the variation point is re-
solved during the compilation process. 

• Linking: the variation point is resolved 
during the module or library linkage 
process. 

• Runtime: the variation point is resolved 
at the PL product execution time. 

• Updating: the variation point is resolved 
during the PL product update. An ex-
ample is the inclusion of a new module 

in a PL product when it is already run-
ning. 

 The definition of the binding time is essen-
tial to determine the choice of implementation 
mechanisms, which are described in the next 
section. Figure 4 presents an example of variabil-
ity delimitation in a use case model, for the 
variation points Execute Workflow and 
Communicate With Users, identified in 
Figure 3. The variability “scheduling” has 
multiplicity 1 as it requires the selection of only 
one of the variants: Execute Workflow 
with Priority Control or Execute 
Workflow Serial. The fourth line indicates 
that the binding time is “compiling” whereas 
the fifth line is set to false to indicate that addi-
tion of new variants is not allowed. The note 
with the variability “communication” indi-
cates that 0 or more variants can be selected; the 
binding time is “runtime”, and the addition 
of new variants is not allowed. 
 

 



CS-2005-33 Technical Report 

11 

 
Fig. 4. Representation of multiplicity and binding time of variation points in use case models.

4.5 Identification of Mechanisms for 
Variability Implementation  

Identification of mechanisms for variability im-
plementation aims at selecting the mechanisms 
to be used to implement the variabilities. The 
input artifacts are static type and component 
models with their respective variabilities repre-
sented and limited, as a result of the previous 
activity. 
 The output artifact of this activity is an im-
plementation model which is represented as a 
table. Each row of the table indicates the name of 
a variability, the artifact element in which it oc-
curs, the binding time, the implementation 
mechanism and the implementation strategy. The 
model was built based on the variability imple-
mentation techniques proposed by Svahnberg et 

al. (2002), Jacobson (1997), and Anastasopoulos 
and Gracek (2001). These techniques include 
inheritance, extension and parameterization.  
 The implementation mechanism and strategy 
are chosen based on the binding time and the 
class or component in which it occurs. 
 As an example, Figure 5 presents the static 
type model for the WfMS PL. The class Type-
Tool represents a variation point and the classes 
TypeInternalTool and TypeExternal-
Tool are the associated variants. The variability 
“tool class type” occurs at the class 
level and it is bound at compiling time. Thus, a 
possible implementation mechanism (Svahnberg 
et al., 2002) is “Code Fragment Superpo-
sition”. The strategy “override ge-
neric source code with specific 
one using aspect-oriented pro-
gramming” guides the variability implementa-
tion. 

 



CS-2005-33 Technical Report 

12 

 
Fig. 5. Static Type Model for WfMS. 

4.6 Variability Tracing and Control 

Variability tracing and control aims at tracing 
and controlling variabilities. It is supported by 
the process metadata model, presented in Figure 
6. This model describes the relationships among 
the PL artifacts. It was conceived based on the 
generic variability model proposed by Becker 
(2003) to support variability management tools.  
 The metadata model defines the relation-
ships between variant artifacts of a PL and their 
variation points, variants, binding time, and im-
plementation mechanisms. This metadata model 
together with the variability tracing model allows 
the association of a feature to the related use 
cases and therefore to the elements of the static 
type and component model. The execution of 
this activity consists of the instantiation of the 
metadata model for the PL. 

4.7 Configuration Analysis of Specific 
Products 

Configuration analysis of specific products aims 
at investigating the impact of selecting possible 
features of the PL artifacts in order to analyze the 
feasibility of the production of a specific product 
which is a PL member. The selection of a feature 
may imply the selection of a product configura-
tion according to the variation points described. 
Moreover, if the product requires an additional 
feature there has to be an analysis of the intro-
duction of this feature in the PL artifacts.  
 The fact that the metadata model makes ex-
plicit the relationships among artifacts enables 
the execution of algorithms of analysis to inspect 
the PL artifacts. However, we still lack a tool 
that makes this analysis possible. 
 The completion of this activity represents 
the end of an iteration of the variability man-
agement process, and thus a return to the core 
asset development activity which triggered the 
beginning of the iteration. 



CS-2005-33 Technical Report 

13 

 

 
Fig. 6. Metadata model to support the variability management process.

  

5. Lessons Learned 
In this section, we present the lessons learned 
from the development and the exercising of the 
variability management process. 
 Variability Management Process: the key 
issue of a PL is the way it articulates and man-
ages its variable aspects. A variability manage-
ment process must coexist with any PL core 
asset development and product development in 
order to support the clear specification, tracing, 
and control of variabilities. Our studies provided 
evidence that the variability management process 
enables better representation, and therefore better 
control of variabilities, compared to the existing 
PL. Moreover, it makes explicit the most impor-

tant decisions, such as the number of variants 
associated with a variation point and the type of 
choices allowed; the binding time; and the im-
plementation mechanisms. 
 Empirical Evaluation of a PL: the evaluation 
of the proposed variability management process 
was carried out based on an empirical study in 
the form of a quantitative case study (Kitchen-
ham et al., 1995; Kitchenham, 1996) which en-
abled the demonstration of the need of a 
variability management process. The case study 
controlled variables such as: (i) the number of 
artifacts in each activity of the process; (ii) num-
ber of variabilities in each artifact, given by the 
sum of variable elements in each artifact; and, 
(iii) variability types associated with each varia-



CS-2005-33 Technical Report 

14 

tion points. The proposed variability representa-
tion allowed a more precise estimation of the 
number of products that can be derived from a 
PL, thus offering a better support for PL configu-
ration analysis. This case study together with the 
results of previous work (Gimenes et al., 2003) 
made it possible to create an experimental base-
line for a PL. However, investigation has to pro-
ceed to increase the volume of data available for 
experiments. On going work aims at building an 
experimental basis for PL that allows inference 
of quality attributes of the PL itself and of poten-
tial products. 
 UML Models: the proposed process is based 
on the UML models. It extends these models by 
adding stereotypes to represent variability in the 
feature, use case, static type, and component 
models. Most of the stereotypes used in our 
process were inherited from previous work 
(ClauB, 2001a; ClauB, 2001b; Gomaa and Shin, 
2002; Gomaa, 2005). In our process, we intro-
duced the idea of using UML notes to make ex-
plicit the multiplicity and binding time 
associated with variation points. One of the ad-
vantages of using notes is that, because the notes 
belong to the UML meta-models, they can be 
read from any commercial tool that supports 
UML modeling.  
 Feature Modeling: in previous work (Gime-
nes et al., 2003), we did not use the feature 
model because we gave priority to modify a tra-
ditional software process to reduce the impact of 
a PL adoption. The feature model is not, as yet, a 
familiar artifact from the software engineers 
point of view. However, we introduced the fea-
ture model in our variability management proc-
ess because it proved to be important from both 
the reuse and variability tracing perspectives. 
Moreover, the introduction of the feature model 
made our PL approach compatible with most 
existing approaches (Atkinson, 2001; Gomaa, 
2005; PURE-SYSTEMS, 2004). In particular, it 
is important for a PL to keep a clear relationship 
between the feature model and the PL’s architec-
ture (Sochos et al., 2004). 
 Metadata Model: the metadata model was an 
important result of our process design. It pro-
vides information about the relationships be-
tween artifacts, thus allowing navigation 
throughout them. Moreover, it forms a basis for 
building a tool to automate the variability man-
agement process. We note that there is still few 
tools to support the PL approach, e.g. Ménage 

(van Der Hoek, 2000), Holmes (Succi et al., 
2001) e pure:variants (PURE-SYSTEMS, 2004). 
The proposed metadata model can be represented 
in XML to facilitate exchange of data with other 
PL support tools. IBM/Rational Requisite Pro 
and Rose have shown to be potentially feasible 
to support variability management. Requisite Pro 
supports the specification of the relationship be-
tween use cases and features. However, it still 
does not allow graphical representation of the 
feature model and it is not well integrated with 
Rose models. Rose allows the manipulation of 
the UML models to represent variability, and it 
already provides some mechanisms to support 
artifact tracing. We believe that the harmoniza-
tion of tools such as the IBM/Rational suite with 
PL principles can be fruitful and should facilitate 
PL adoption.  

6. Related Work 
The PL variability management process pro-
posed in this paper took into account previous 
work on PL approaches mainly related to the 
following issues: management activities, artifact 
notation, variability attributes, metadata model-
ing and experimental software engineering. 
 The management activities defined for the 
proposed process is inline with the essential ac-
tivities of the SEI PLP (SEI, 2005). Variability 
management is considered a subprocess of the 
PL management activity. Thus, it has a close 
interaction with the core asset development and 
the product development activities. 
 The activities defined in our process were 
initially based on van Gurp et al. (2001) variabil-
ity management activities. However, in their 
work the activities were listed, but not described 
within the context of a well-defined process with 
roles, input and output artifacts. Our activities 
and their associated roles and artifacts are fully 
specified. 
 The proposed process uses UML as the no-
tation in which to represent the PL artifacts. It 
took into consideration similar approaches such 
as those of Gomaa and Weber (2004), Kobra 
(Atkinson et al., 2001), and Clauß (2001a, 
2001b). These approaches extend the UML nota-
tions to represent variability aspects. Our process 
focused on the use case, feature, static type, and 
component models because they were considered 
the most important in variability tracing. How-
ever, on going work is evaluating the inclusion 



CS-2005-33 Technical Report 

15 

of the representation of variability in sequence 
and collaboration diagrams. They will allow the 
analysis of the impact of variability on interac-
tions as proposed in general methods such as 
Gomaa (2005). 
 In order to define the activities of the proc-
ess, it was important to consider previous at-
tempts to define variability attributes such as 
(van Gurp et al., 2001; van Gurp and Bosch, 
2000; Anastasopoulos, 2000; Becker, 2003; 
Clauß, 2001). On the end, we define the follow-
ing attributes for variability: type, binding time 
and implementation mechanisms. Recent work 
presented by Czarnecki (2005) and Cechticky 
(2004) contains well-defined feature attributes 
and representation. However, they are not based 
on UML. 
 The metadata model proposed to support our 
process was based on that of Becker (2003). 
However, we have eliminated elements that were 
not compatible with our approach like those 
which represent the product family such as 
ProductFamily and FamilyMember; and 
those which represent the variability implemen-
tation mechanism such as Selection, Gen-
eration, and Substitution. Morever, we 
added the following elements to support the 
variability tracing over all the PL artifacts: 
VariantArtifact, FeatureModel, Fea-
ture, UseCaseModel, UseCase, Trac-
ingModel, and TracingElement. 
 Existing experimental works were used as 
the basis on which to undertake the case study. 
In particular, Basili (1986) discusses experiment 
planning and Kitchenham (1995, 1996) proposes 
a terminology, steps for an experiment, and how 
to analyze the results. 

7. Conclusions 
The variability management process is one of the 
most important activities of PL development and 
evolution. It is the variability management that 
enables the clear identification and tracing of the 
differences amongst products of a PL.  
 This paper proposes a variability manage-
ment process which: (i) defines the activities, 
artifacts, and roles necessary to control variabil-
ity in UML-based PL approaches; (ii) makes 
explicit important decisions, such as the alterna-
tives for variation points, binding times and im-
plementation mechanisms; (iii) introduces UML 
notes to make explicit the multiplicity and bind-

ing time associated with variation points; (iv) 
allows a clear relationship between features and 
the PL architecture; and (v) defines a metadata 
model that forms the basis to design a tool to 
support variability management. As the variabil-
ity management process is triggered from the PL 
development activities, it can be easily adapted 
to also PL approaches that are based on UML. 
 The proposed process was evaluated within 
a case study that compares a PL approach to the 
same with the introduction of variability man-
agement. The quantitative results show that more 
variability elements were represented throughout 
the PL artifacts. However, meanwhile the most 
significant results are qualitative. The experi-
ments show that the variability management 
process guides the PL developers to better repre-
sent and control variability issues. Thus, the 
process offers support for PL configuration 
analysis. The case study enabled the definition of 
a baseline for empirical PL experiments. On go-
ing work aims at enhance the volume of data of 
the experimental basis so that more quantitative 
measures can be obtained when different PL 
aspects are introduced. 
 Further work includes the definition of sup-
port to make automated product configuration 
analysis possible, thus, providing the organiza-
tions with mechanisms to evaluate PL adoption 
and evolution.  

References 
Anastasopoulos, M.; Gacek, C., Implementing Product 

Line Variabilities, in: ACM SIGSOFT Software 
Engineering Notes, New York, v. 26, n. 3, pp. 109-
117, May. 2001. 

Apache DB Project: ObJectRelationalBridge - 
http://db.apache.org/ojb - 2005. 

Atkinson, C.; Bayer, J.; Bunse, C.; Kamsties, E.; 
Laitenberger, O.; Laqua, R.; Muthing, D.; Paech, 
B.; Wurst, J.; Zeitel, J. Component-Based Product-
Line Engineering with UML. [S.l.]: Addison-
Wesley, 2001. 

Basili, V. R.; Selby, R. W.; Hutchens, D. H., Experi-
mentation in software engineering. IEEE Transac-
tions on Software Engineering, Piscataway, v. 12, 
n. 7, p. 733-743, 1986. 

Bass, L.; Clements, P.; Kazman, R., Software architec-
ture in practice. 2. ed. Boston: Addison-Wesley, 
2003. 560 p. 

Batory, D. The Road to Utopia: A Future for Genera-
tive Programming, in: Domain Specific Genera-
tion, Lengauer et al. (eds.), LNCS 3016, p1-18, 
2004. 



CS-2005-33 Technical Report 

16 

Becker, M., Towards a general model of variability in 
product families. in: Proceedings of Software Vari-
ability Management Workshop. Portland, USA. 
2003. pp. 19-27. 

Cechticky, V.; Passetti, A.; Rohlik, O.; Schaufelber-
ger, W., XML-based feature modelling. in: Pro-
ceedings of International Conference on Software 
Reuse. Madrid. pp. 101-114, LNCS 3107, Jul. 
2004. 

Clauß, M. Generic modeling using UML extensions 
for variability. in: Proceedings of Workshop on 
Domain Specific Visual Languages. Tampa Bay, 
2001a. p. 11-18. 

Clauß, M. Modeling variability with UML. In  Pro-
ceedings of Young Researches Workshop, 2001, 
Erfurt, 2001b. 

Computer Science Lab. DRAFT Guide to Rapide 1.0 – 
Language Reference Manuals, Rapide Design 
Team – Program Analysis and Verification Group. 
Stanford University, 1997. 

Czarnecki, K., Eisenecker, U., Generative Program-
ming. Methods, Tools, and Applications. Addison-
Wesley, 2000. 832 p. 

Czarnecki, K.; Helsen, S.; Eisenecker, U., Staged con-
figuration through specialization and multi-level 
configuration of feature models. To appear in spe-
cial issue on "Software Variability: Process and 
Management," Software Process Improvement and 
Practice, 10(2), 2005 

D’Souza, D. F.; Wills, A. C. Objects, Components and 
Frameworks with UML – The Catalysis Approach. 
Addison Wesley Publishing Company, 1999. 

Fritsch, C.; Lehn, A.; Strohm, T., Evaluating variabil-
ity implementation mechanisms. in: Proceedings of 
International Workshop on Product Line Engineer-
ing Seattle, 2002. p. 59-64. 

Gimenes, I. M. S.; Oliveira Junior, E. A.; Lazilha, F. 
R.; Barroca, L. M. A Product Line Architecture for 
Workflow Management Systems with Component-
based Development, in: 2003 Proc. The IEEE Con-
ference on Information Reuse and Integration, pp. 
112-119. 

Gomaa, H.; Shin, M. E., Multiple-view meta-modeling 
of software product lines. in: 8th International Con-
ference on Engineering of Complex Computer Sys-
tems (ICECCS 2002), IEEE Computer Society 
2002, ISBN 0-7695-1757-9, pp. 238-246, 2002. 

Gomaa, H.; Webber, D., Modeling adaptive and ev-
olvable software product lines using the variation 
point model. in: Proceedings of Hawaii Interna-
tional Conference on System Sciences, Hawaii, 
2004. p. 01-10. 

Gomaa, H. Designing software product lines with 
UML: from use cases to pattern-based software ar-
chitectures. Addison-Wesley, 2005, 736 p. 

Heymans, P.; Trigaux, J. C., Software product line: 
state of the art. Technical report for PLENTY pro-
ject, Institut d’Informatique FUNDP, Namur, 2003. 

IBM Rational Software – http://www-
306.ibm.com/software/rational/ - 2005. 

Jacobson, I.; Griss, M.; Jonsson, P. Software Reuse – 
Architecture Process and Organization for Business 
Success, New York: Addison-Wesley, 1997. 528 p. 

JacORB - http://www.jacorb.org - 2005. 
JHotDraw - http://www.jhotdraw.org - 2005. 
Kang, K. Feature-oriented domain analysis (FODA) - 

feasibility study. Technical Report CMU/SEI-90-
TR-21, SEI/CMU, Pittsburgh, 1990. 

Kitchenham, B.; Pickard, L.; Pfleeger, S. L., Case 
studies for method and tool evaluation. IEEE Soft-
ware, v.11, p. 52-62, 1995. 

Kitchenham, B., DESMET: a method for evaluating 
software engineering methods and tools. Technical 
Report TR96-09, Keele, United Kingdom, 1996. 49 
p. 

Morisio, M.; Travassos, G. H.;  Stark, M. Extending 
UML to Support Domain Analysis, in: 2000 Proc. 
IEEE International Conference on Automated 
Software Engineering, Grenoble, France. pp. 321-
324. 

MySQL - http://dev.mysql.com - 2005. 
Object Management Group. OMG Document: UML 

2.0 OCL 2nd Revised submission – 
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 - 
2005. 

Oliveira Junior, E. A., Gimenes, I. M. S., Huzita, E. H. 
M., Maldonado, J. C. A Variability Management 
Process for Software Product Lines. To appear in 
Proc. of  CASCON 2005. Toronto, Canada, Octo-
ber 2005. 

Pfleeger, S. L., Experimental design and analysis in 
software engineering – how to set up an experi-
ment. ACM SIGSOFT – software Engineering 
Notes. v. 20, n. 1, p. 22-26, 1995. 

PURE-SYSTEMS - pure-variants: Variant Manage-
ment – <http://web.pure- sys-
tems.com/Variant_Management.49.0.html> - 
Access: Nov. 2004. 

Rumbaugh, J., Jacobson, I., Booch, G. The Unified 
Modeling Language Reference Manual, Addison-
Wesley Pub. Company, 1999. 

SEI - Software Engineering Institute. A framework for 
software product line practice 4.2. Pittsburgh. 
<http://www.sei.cmu.edu/productlines/framework.
html >. Access: June, 01 2005. 

Simons, M.; Creps, D.; Klingler, C.; Levine, L.; Alle-
mang, D., Organization domain modeling (ODM) 
guidebook, version 2.0. Technical Report STARS-
VC-A025/001/00, Lockheed Martin Tactical De-
fence Systems, 1996. 

Sochos, P.; Philippow, I.; Riebish, M., Feature-
oriented development of software product lines: 
mapping feature models to the architecture. 
Springer, LNCS 3263, 2004, p. 138-152. 

Succi, G.; Yip, J.; Pedrycz, W. Holmes: an intelligent 
system to support software product line Develop-
ment. in: International Conference on Software 



CS-2005-33 Technical Report 

17 

Engineering, 23., 2001, Toronto. Proceedings of 
the International Conference on Software Engi-
neering, 2001, pp.829-832. 

Sun Microsystems. Java Technology - 
http://www.java.sun.com - 2005. 

Svahnberg, M.; Van Gurp, J.; Bosch, J., A taxonomy 
of variability realization techniques. Technical re-
port, Blekinge Institute of Technology, Sweden, 
2002. 

Steger, M., Tischer, C., Boss, B., Müller, A., Pertler, 
O., Stolz, W., Ferber, S. Introducing PLA in Bosch 
Gasoline System: Experiences and Practices. In: 
Software Product Lines: Third International Con-
ference, SPLC 2004. Nord, R.. (ed.), LNCS 3154, 
p34-50, 2004. 

van der Hoek, A. Capturing product line architectures. 
in: International Software Architecture Workshop. 
4., 2000, Limerick. in: Proceedings of the 4th In-
ternational Software Architecture Workshop, 2000. 
pp. 95-99. 

van der Linden, F., Software Product families in 
Europe: The Esaps and Café Projects, IEEE Soft-
ware, July/August 2002, pp. 41-49. 

van Gurp, J.; Bosch, J., Managing variability in soft-
ware product lines. in: Proceedings of the Landelijk 
Architectuur Congres. Amsterdam, 2000. 

van Gurp, J., Bosch, J., Svahnberg, M. On the notion 
of variability in software product lines, in: Proc. 
The Working IEEE/IFIP Conference on Software 
Architecture (WICSA), Amsterdam, The Nether-
lands, 2001. pp. 45-54. 

Workflow Management Coalition. Workflow Refer-
ence Model. Document number TC00-1003, Janu-
ary, 1995. 

Workflow Management Coalition (WfMC) – 
http://www.wfmc.org - 2005 

 
 
Edson Alves de Oliveira Junior has a bachelor 
and master degree in computer science from 
Universidade Estadual de Maringá, Brazil. He is 
currently taking a doctoral degree in computer 
science at Universidade de São Paulo (ICMC-
USP), Brazil. 
 
Itana M. S. Gimenes is full professor of Soft-
ware Engineering at Universidade Estadual de 
Maringá (DIN-UEM), Brazil, and Ph.D. from 
The University of York, Department of Com-
puter Science, UK. She is currently in a sabbati-
cal license at CSG/SCS/University of Waterloo. 

José C. Maldonado is full professor at the 
Instituto de Ciências Matemáticas e de 
Computação (ICMC-USP) of the Universidade 
de São Paulo, Brazil. He is vice-president of the 

Brazilian Computer Society, and member of the 
ACM and IEEE. 

Elisa H. M. Huzita is associate professor at the 
Departamento de Informática of the 
Universidade Estadual de Maringá (DIN-UEM), 
Brazil.  She is member of IEEE and ACM. 

Paulo Alencar is a Research Associate Professor 
in the School of Computer Science at the Uni-
versity of Waterloo. He is member of IEEE and 
ACM. 
 
Acknowledgements: the authors would like to 
thank Prof. Daniel Berry for his review of this 
paper. 

 


