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ABSTRACT
Many text retrieval systems construct their index by accu-
mulating postings in main memory until there is no more
memory available and then creating an on-disk index from
the in-memory data. When the entire text collection has
been read, all on-disk indices are combined into one big in-
dex through a multiway merge process.

This paper discusses several ways to arrange postings in
memory and studies the effects on memory requirements
and indexing performance. Starting from the traditional ap-
proach that holds all postings for one term in a linked list,
we examine strategies for combining consecutive postings
into posting groups and arranging these groups in a linked
list in order to reduce the number of pointers in the linked
list. We then extend these techniques to compressed post-
ing lists and finally evaluate the effects they have on overall
indexing performance for both static and dynamic text col-
lections. Substantial improvements are achieved over the
initial approach.
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1. INTRODUCTION & RELATED WORK
Inverted files have proved to be the most efficient data

structure for large-scale text retrieval systems [15]. For every
term that appears in a given text collection, the inverted
file contains a list of all positions in the text at which the
term occurs. Inverted files that contain less information,
e.g. lists of documents identifiers instead of exact positions
or frequency-ordered lists with cut-off threshold [9], are very
similar in structure and therefore not explicitly considered
in this work.

One of the most efficient techniques to build an inverted
index from a text collection is through hash-based in-
memory inversion: For every input token (<term, position>

pair) that is read from the input file, the corresponding term
descriptor is looked up in the hash table (inserted if it is
not present yet), and the position is added to the term’s
list of postings. Because the total number of occurrences of
a term within the text corpus is not known beforehand, an
efficient, dynamic data structure is needed to maintain the
postings for a term. Usually, linked lists are used for this
purpose (cf. Witten et al. [12, pp. 228-230]).

Dictionary implementations other than hash tables, such
as burst tries [5], have been examined as well, but hash ta-
bles seem offer the greatest performance, especially when
used with move-to-front heuristics, which very accurately
models the term distribution in most English texts (as dis-
cussed by Zobel et al. [14]).

The power of the hash-based in-memory inversion with
linked lists is limited by the amount of main memory avail-
able. When the text collection is much larger than the avail-
able memory, pure in-memory inversion cannot be used. Fox
and Lee [2] and Heinz and Zobel [4] have discussed ways
to extend the in-memory approach and make it usable for
larger collections by splitting the text collection into smaller
parts, each of which can be inverted in memory. The size
of each part is defined by the amount of memory available;
whenever main memory is exhausted, an on-disk index is
created from the data in memory. After the whole collection
has been processed, the final index is generated by merging
the indices created so far through a multiway merge process.
If the on-disk data are arranged carefully, this is possible
with almost no additional storage space [7].

Although these techniques can be used to employ the



memory-inversion technique to invert text collections that
are many times the size of the available main memory, fur-
ther improvements are possible. After a short description of
our experimental setup in the next section (2), we discuss
how the space overhead caused by the linked lists in the in-
memory inversion approach described above can be reduced
in order to minimize the number of sub-indices that have to
be created (section 3). This is done by combining sequences
of postings into groups and linking these groups instead of
individual postings. In the following section (4), we give an
introduction to index compression and show how compres-
sion techniques can be used to increase memory efficiency
even further.

In section 5, we present an experimental evaluation of the
performance gains achieved by reducing the memory con-
sumption. Experimental results are given for two different
scenarios – static and dynamic document collections. The
ability to maintain a dynamic index is crucial in many ap-
plications, such as real-time file system search. Limiting the
focus to static collections is therefore not appropriate.

Depending on whether the underlying text collection is as-
sumed to be static or dynamic, different results are obtained.
For static text collections, it is known that the amount of
main memory available has only a small impact on indexing
performance [4]. For dynamic collections, however, keep-
ing as much information in memory as possible is crucial.
On-disk index structures have to be reorganized whenever
main memory is exhausted, which involves a large number
of disk operations. For the dynamic case, our experiments
have shown speedups of over 200% caused by the increased
memory efficiency.

2. EXPERIMENTAL SETUP
For all experiments described in this paper, we used two

different text collections:

• TREC disks 4+5 without the Congressional Record
(referred to as TREC4+5-CR);

• a subset of the PubMed Medline corpus used in the
TREC 2004 Genomics track (referred to as TREC-
Genomics).

Basic corpus statistics for both collections can be found in
Table 1. TREC4+5-CR has a special status, since it is in
the critical range where increasing the memory efficiency can
actually shrink the size of the inverted file enough so that
the whole index can be built in memory.

For our experiments, we used a 32-bit index address space.
This was possible because none of the test collections con-
tains more than 231 postings. However, all results are ap-
plicable to 64-bit indices as well. The only difference is that
the uncompressed postings would consume twice as much
memory if 64-bit postings (and pointers) were used.

All experiments were conducted on a PC based on an Intel
Pentium-M processor (1.6 GHz) with a 7200-rpm hard drive.
The operating system was GNU/Linux.

3. GROUPS OF POSTINGS
The additional memory requirements caused by the

pointers in the linked lists used by the in-memory inversion
method described in section 1 are dramatic. Under the
assumption that both postings and pointers have the same

Table 1: Text collections used for the experiments:
TREC disks 4+5 without the Congressional Record
(TREC4+5-CR) and the subset of the Medline
database used for the TREC 2004 Genomics track
(TREC-Genomics).

TREC4+5-CR TREC-Genomics
Corpus size 1,904 MB 14,332 MB
# documents 528,155 4,591,008
# tokens 3.23 · 108 2.05 · 109

# distinct terms 1.16 · 106 7.87 · 106

Size of final index 573 MB 3,696 MB

size (32 bits in our experiments), the space overhead is
100%. This extreme increase is able to reduce the system’s
indexing performance significantly.

One of the first solutions to this problem was proposed by
Fox and Lee [2]. If more than one pass is made over the en-
tire collection, the first pass can be used to gather collection
statistics, such as the number of occurrences of each term.
This information can then be used in the second pass to al-
locate enough memory for every vocabulary term to store
all its postings. This way, no linked lists are needed, and
the pointer overhead can be avoided. We call this the Two-
Pass strategy. Its disadvantage is that the 50% decrease in
memory consumption is likely to be outweighed by the ad-
ditional disk operations caused by the second pass over the
collection.

Another solution was presented and analyzed by Heinz
and Zobel [4]. For every term found in the text collection,
an initial array is allocated to hold all postings for the term.
Every time time the array is full, its size is doubled by al-
locating new memory. Like in the Two-Pass strategy, no
linked lists are necessary to store the postings. (The com-
pression techniques also used by Heinz and Zobel are ignored
here but considered in section 4.)

In this section, we present a third solution to the pointer
problem. We keep the general technique of organizing post-
ings for the same term in linked lists, but allow pointers in
a linked list to point to posting groups instead of individual
postings. When using posting groups of size 2, for example,
we need one pointer for every 2 postings. In the following
paragraphs, we define several families of strategies to group
uncompressed postings in the in-memory index. All strate-
gies are evaluated theoretically using a statistical approach
based on Zipf’s law and experimentally using the two test
collections.

Constn

The Constn strategy allocates a posting group of size n

for every term that is added to the vocabulary. Whenever
a group becomes full, a new group of size n is created and
added to the linked list of groups for the respective term. If
the entire collection contains less than 231 postings, every
posting can be encoded in 31 bits, which allows us to use
the 32nd bit to distinguish between postings and pointers
and thus to implicitly encode the size of a posting group in
the pointer at the end of the group.

Const1 is the special case in which the posting list for
a term is a linked list of individual postings. The Const8
strategy is visualized in Figure 1(a).
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Figure 1: Different strategies for combining postings into groups. (a) Const8: Linked list with constant group
size. (b) Exp8,2: Exponentially increasing group size. (c) ExpLimit8,2,32: Exponentially increasing group size
with upper limit.

Table 2: Memory consumption of different group-
ing strategies. Simulation results for hypothetical
text collections with 2.05 · 109 postings, 7.87 · 106 dis-
tinct terms, and different Zipf-α values. The space
required to store all postings is given relative to
Const1.

α = 0.90 0.95 1.00 1.05 1.10
Const1 100% 100% 100% 100% 100%
Const2 75.1% 75.1% 75.1% 75.1% 75.1%
Const4 62.9% 62.9% 62.9% 62.8% 62.8%
Const8 57.0% 57.0% 57.0% 57.0% 56.9%
Const16 54.8% 54.6% 54.8% 54.5% 54.6%
Const32 55.1% 54.3% 54.3% 54.7% 55.3%
Const64 56.2% 56.7% 57.6% 58.7% 59.7%
Exp8,2.0 73.0% 73.2% 71.1% 72.7% 70.4%
Exp8,1.5 62.4% 62.9% 63.0% 61.8% 60.6%
Exp8,1.2 56.5% 56.3% 55.8% 55.6% 56.1%
Exp8,1.1 54.7% 54.4% 54.3% 53.8% 54.2%
Exp16,1.1 54.6% 54.2% 54.6% 54.1% 53.8%
ExpLimit8,2.0,256 59.5% 57.4% 56.2% 54.7% 53.5%
ExpLimit8,1.5,256 56.1% 55.2% 54.2% 53.3% 52.6%
ExpLimit8,1.2,256 54.2% 53.6% 53.1% 52.6% 52.1%
ExpLimit8,1.1,256 53.8% 53.2% 52.8% 52.4% 51.9%
ExpLimit8,1.1,512 53.8% 53.3% 52.9% 52.4% 51.9%
ExpLimit16,1.1,256 53.6% 53.1% 53.1% 52.4% 52.3%
Two-Pass 50.0% 50.0% 50.0% 50.0% 50.0%

Exp
n,k

When a new term is added to the in-memory index, an ini-
tial posting group of size n is created for that term. When-
ever a posting group is full, a new group is created and added
to the linked list of groups. The size of the new group is

max{ n, dp · (k − 1)e },

where p is the total number of postings accumulated for
that term so far and k is a tuning parameter whose optimal
value depends on the term distribution of the text corpus.
For n = 8 and k = 1.5, for example, posting groups of sizes
8, 8, 8, 12, 18, 27, . . . are created.

Exp8,2 is similar to the the growing-array strategy ana-
lyzed by Heinz and Zobel [4]. It is shown in Figure 1(b).

ExpLimit
n,k,l

This strategy is similar to Expn,k. For a new term, an
initial group of size n is created. Whenever a group is full,
the size of the new group is

min{ l, max{ n, dp · (k − 1)e } },

where p is again the total number of postings accumulated
for that term so far.

The rationale behind limiting the maximum size s of a
posting group to some constant l is that, after a certain
point, the savings caused by reducing the number of pointers
in the linked list become negligible (increasing the group size
from s = 256 to s = 512, for instance, reduces the relative
pointer overhead from 4 · 10−3 to 2 · 10−3). However, the
amount of memory that is potentially wasted – because the
last posting group for a term has been allocated but is only
partially used – increases as the group size grows.

As an example of the ExpLimit family of grouping strate-
gies, ExpLimit8,2,32 is depicted in Figure 1(c).

3.1 Theoretical Evaluation
We used a theoretical language model based on Zipf’s law

[13] [3] to evaluate the different grouping strategies. Ac-
cording to Zipf, the number of occurrences of the i-th most
frequent term in a text collection of size s with t different
terms is

fi =
s

iα · Hα(t)
,

where Hα(t) is the t-th harmonic number of order α, and α

is close to 1 (in his original work, Zipf claimed α = 1). Thus,
Zipf’s law can be used to approximate the distribution of the
posting lists.

For any given triple (s, t, α), the total amount of memory
needed to build an in-memory index for the whole collection
consisting of s tokens can be simulated very efficiently. We
ran simulations for hypothetical text collections of the same
size as the TREC-Genomics corpus and different values of
the Zipf parameter α.

The results (shown in Table 2) are surprising in that,
due to the properties of the Zipfian distribution, even a
very simple strategy like Const16 can reduce the amount
of memory needed by 45% (compared to the initial strategy,
Const1). Group sizes bigger than 16, however, increase the
memory consumption for the Const strategies by increas-
ing the amount of memory that is allocated but not used.
The same reason prevents Exp8,2.0 from decreasing memory
consumption beyond a certain point; for long lists, one can
expect that about 50% of the last group (and thus 25% of
the total amount of memory allocated) is unused. As a re-
sult, Exp8,2.0 reduces the memory consumption by less than
30%. Decreasing the growth factor k, however, can improve
this strategy significantly; Exp8,1.1 achieves a 45-46% space
reduction, which is slightly better than Const16.

The savings caused by the Exp family of grouping strate-
gies can be improved further by introducing the group size
limit that is used by ExpLimit. The ExpLimit8,1.1,256 strat-
egy is among the best in this family. For the hypothetical
test collections, it is able to decrease memory consumption
by 46-48%. Compared to the optimal allocation strategy of
a two-pass indexing process, ExpLimit8,1.1,256 requires only



Table 3: Memory consumption of different grouping
strategies. Experimental results for the TREC4+5-
CR and TREC-Genomics test collections without in-
memory index compression. The space required to
store all postings is given in MB.

TREC4+5-CR TREC-Genomics
Const1 2451 (100%) 15640 (100%)
Const8 1407 (57.4%) 9010 (57.6%)
Const16 1363 (55.6%) 8751 (56.0%)
Exp8,2.0 1837 (74.9%) 11965 (76.5%)
Exp8,1.1 1322 (53.9%) 8431 (53.9%)
ExpLimit8,2.0,256 1294 (52.8%) 8168 (52.2%)
ExpLimit8,1.1,256 1274 (52.0%) 8105 (51.8%)
Two-Pass 1226 (50.0%) 7820 (50.0%)

4-8% more memory. ExpLimit’s advantage over the other
grouping strategies grows as the collection parameter α be-
comes larger.

3.2 Experimental Results
In addition to the theoretical results presented above, we

conducted experiments using the two test collections sum-
marized in Table 1. The set of strategies evaluated on the
test collections was restricted to the ones that were most
space-efficient in the simulations described above. The re-
sults of our experiments are shown in Table 3.

In general, all numbers are very close to those obtained
in the simulations run before, showing once more that the
Zipfian distribution can be used to realistically model term
distributions for large text collections. Exp8,1.1 and the
ExpLimit strategies perform slightly better in the exper-
iments than in the simulations (for both text collections,
ExpLimit8,1.1,256 stays within 4% of the optimal, two-pass
allocation strategy), while all other strategies perform
slightly worse than in the simulations.

4. ON-THE-FLY INDEX COMPRESSION
It is known that the memory efficiency of an indexing

system can be increased by storing postings in a compressed
form. Most compression techniques work by transforming
the list of postings for a term into a list of word gaps, i.e.
a list of distances between two consecutive postings of the
same term. Gap lists can then be compressed using various
compression algorithms, such as Gamma encoding [1], the
Hyperbolic method [11], or Interpolative compression [8].

Compression algorithms for posting lists can be divided
into two categories: parameterized and non-parameterized
methods. Parameterized compression models assume the
availability of some information about the distribution of
the gaps between two consecutive occurrences of the same
term. If no such information is available, they cannot be
used, and a non-parameterized method has to be chosen
instead.

We use the byte-aligned compression algorithm evaluated
by Scholer et al. [10]. It is a non-parameterized method,
similar to Elias’ Gamma encoding, that can be used to com-
press postings on-the-fly as they are appended to existing in-
memory posting lists. Gaps between two consecutive post-
ings for the same term are stored in a variable number of
bytes. The lower 7 bits of every byte are used to store the

Table 4: Memory consumption of different grouping
strategies. Experimental results for the TREC4+5-
CR and TREC-Genomics test collections with byte-
aligned on-the-fly compression. The space required
to store all postings is given in MB.

TREC4+5-CR TREC-Genomics
Const1 2451 (100%) 15640 (100%)

Const
(C)
32 622 (25.4%) 4005 (25.6%)

Const
(C)
64 615 (25.1%) 3979 (25.4%)

Const
(C)
128 662 (27.0%) 4315 (27.6%)

ExpLimit
(C)
16,2.0,512 550 (22.4%) 3479 (22.2%)

ExpLimit
(C)
16,1.1,512 547 (22.3%) 3464 (22.1%)

Two-Pass(C) 512 (20.9%) 3278 (21.0%)

actual gap information, while the most significant bit is used
as a continuation indicator, i.e. it is 0 if the last byte of the
current gap has been reached and 1 otherwise.

Because the compression algorithm operates on whole
bytes instead of individual bits, as most of the other com-
pression schemes, it is extremely fast, yet offers compression
rates close to those of the best bitwise methods. C code for
the compression and decompression of posting lists is given
in Figure 2.

The grouping strategies defined and reviewed in the previ-
ous section can be extended to support compressed posting
lists. Instead of allocating chunks of memory that can hold
a certain number of postings, the system allocates byte ar-
rays that are used to store posting lists in compressed forms.
These byte arrays are then arranged in linked lists as before.
The compressed representation of a single gap may cross
chunk boundaries, having the first 2 bytes in one chunk and
the remaining 2 bytes in the next, for example.

In order to be able to employ on-the-fly gap compression,
the last posting for every term has to be kept in memory
as part of the term descriptor. This increase in memory
consumption (≈ 5 MB for TREC4+5-CR and ≈ 30 MB for
TREC-Genomics) is not reflected by the experimental re-
sults shown in this section because we focus on the amount
of memory occupied by the postings themselves and disre-
gard the memory consumption of the term descriptors. It
is, however, taken into account in the experiments discussed
in section 5, which focus on overall indexing performance
instead of the memory consumed by the postings.

In analogy to the previous section, we define three differ-
ent families of grouping strategies:

Const
(C)
n

A byte array of size n is allocated for every new term.
Every time the array is full, a new array of size n is allocated.
Because the compressed postings that are stored in the byte
array can take arbitrary values, it is no longer possible to
use the most significant bit to distinguish between postings
and pointers (cf. section 3). Therefore, the size of each
chunk is stored explicitly as a 1-byte integer. Including the
next pointer, this leads to a total overhead of 5 bytes per

chunk. Thus, Const
(C)
16 , for instance, would allocate memory

in pieces of 21 bytes each.

Exp
(C)
n,k



int compress(int *uncompressed, byte *compressed, int count) {

  int pos = 0;

  for (int i = 0; i < count; i++) {

    int delta = uncompressed[i];

    if (i > 0)

      delta = delta - uncompressed[i - 1];

    while (delta >= 128) {

      compressed[pos++] = (delta % 128) + 128;

      delta = delta / 128;

    }

    compressed[pos++] = delta;

  }

  return pos;

}

void uncompress(byte *compressed, int *uncompressed, int count) {

  int pos = 0;

  for (int i = 0; i < count; i++) {

    int delta = 0, shift = 1;

    while (compressed[pos] >= 128) {

      delta = delta + shift * (compressed[pos++] % 128);

      shift = shift * 128;

    }

    delta = delta + shift * compressed[pos++];

    uncompressed[i] = delta;

    if (i > 0)

      uncompressed[i] += uncompressed[i - 1];

  }

}

Figure 2: Compression and decompression routines for the byte-aligned word gap compressor. An efficient
implementation would use bit shifts instead of the multiplications/divisions shown here.

Because we decided to encode the size of each chunk in
a 1-byte integer, it cannot grow beyond a certain bound.

Thus, no experimental results for Exp
(C)
n,k are available. We

conjecture, however, that the effect of index compression on
the Exp strategies is similar to that on ExpLimit.

ExpLimit
(C)
n,k,l

Initially, n bytes are allocated for every new vocabulary
term. Every time the memory allocated for a term is ex-
hausted, a new byte array of size

min{ l, max{ n, dp · (k − 1)e } }

is created, where p is the total number of bytes consumed
by the term’s postings so far.

4.1 Experimental Results
The experimental results for the grouping strategies with

built-in compression are shown in Table 4. From the results
for the Two-Pass strategy, we can see that the compression
method employed decreases the net memory consumption of
the postings by about 58% (comparing TwoPass in Table 3

and TwoPass(C) in Table 4). The reason why this increase

is not completely reflected by the other strategies (Const
(C)
64

saves 55% compared to Const16; ExpLimit
(C)
16,1.1,512 saves

57% compared to ExpLimit8,1.1,256) is the relative increase
of the overhead introduced by pointers and the additional
chunk size information.

However, the loss of space efficiency is minimal. Even if

compression is used, ExpLimit
(C)
16,1.1,512 is still within 6-7%

of the optimal Two-Pass strategy for both test collections.

5. INDEXING PERFORMANCE
So far, we have discussed the impact that different group-

ing strategies have on the memory consumption of the in-
dexing system. The more relevant aspect, however, is their
effect on overall indexing performance. In this section, we
study their influence on performance. For this purpose, we
consider two different scenarios: indexing a static document
collection and indexing a dynamically growing collection.

Traditionally, indexing performance has only been stud-
ied for static collections, which do not change over time.
However, for most applications, having a static collection is
not a realistic assumption and an oversimplification of the
actual conditions. For some collections, the degree of dy-
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Figure 3: Query processing performance on a dy-
namic text collection (TREC-Genomics), using the

ExpLimit
(C)
16,1.1,256 grouping strategy. As the collec-

tion grows, merging the individual inverted files be-
comes more and more important. Performance is
decreased significantly by the large number of disk
seeks necessary if sub-indices are not merged.

namics might even be so great that the number of updates
to the index is bigger than the number of queries that have
to be answered. One such application is file system search,
in which every change to an indexable file leads to an in-
dex update operation. Static and dynamic collections have
to be studied separately, as they require different indexing
approaches.

For the static collection, the standard indexing approach
with text-based partitioning described in section 1 is taken.
A sub-index is created every time main memory is full; after
the whole collection has been indexed, all sub-indices are
merged into the final index. In order to avoid unnecessary
disk operations, no on-disk index is created for the last part
of the collection. Instead, the in-memory postings are fed
directly into the merge process.

For the growing collection, the situation is fundamentally
different. Because the collection is dynamic, we do not know
at what point the entire collection has been indexed (in fact,
that point is never reached). In addition, the system has
to be able to efficiently process queries that are submitted
while the indexing takes place. Therefore, instead of keeping
a large number of sub-indices that are eventually merged, a
new on-disk inverted file is created by immediately merging



Table 5: Experimental results for static text collections. The number of sub-indices created during index
construction is proportional to the memory consumption of the respective strategy.

TREC4+5-CR TREC-Genomics
# Sub-indices Disk I/O Indexing time # Sub-indices Disk I/O Indexing time

Const1 11 3,674 MB 4m09s (100%) 68 26,714 MB 29m01s (100%)
Const8 7 3,643 MB 3m28s (84%) 42 26,271 MB 24m29s (84%)
Const16 6 3,648 MB 3m23s (82%) 43 26,393 MB 24m06s (83%)
Exp8,2.0 8 3,620 MB 3m25s (82%) 48 26,428 MB 24m33s (85%)
ExpLimit8,2.0,256 6 3,499 MB 3m19s (80%) 40 26,325 MB 23m30s (81%)
ExpLimit8,1.1,256 6 3,525 MB 3m18s (80%) 39 26,265 MB 23m34s (81%)
Two-Pass 6 5,419 MB 4m36s (111%) 36 38,037 MB 31m26s (108%)

Const
(C)
16 4 3,586 MB 3m21s (81%) 22 25,945 MB 22m49s (79%)

Const
(C)
32 3 3,280 MB 3m06s (75%) 20 25,837 MB 22m12s (76%)

ExpLimit
(C)
16,2.0,256 3 3,355 MB 3m05s (74%) 18 25,556 MB 21m45s (75%)

ExpLimit
(C)
16,1.1,256 3 3,356 MB 3m07s (75%) 18 25,581 MB 21m58s (76%)

the existing one with the in-memory postings every time the
system runs out of main memory. This technique, called Im-
mediate Re-Merge, has been analyzed by Lester et al. [6] and
is their suggested way to deal with a growing text collection.

One could argue that, even if the collection is dynamic and
queries have to be processed while the indexing takes place,
the on-disk sub-indices do not necessarily have to be merged.
This is true. It is in fact possible to keep multiple on-disk
inverted files and combine the posting lists retrieved from
the individual indices into a bigger list whenever a query
has to be processed (we call this the No Merge strategy).

However, the potentially large number of additional disk
seek operations caused by having more than one on-disk
index is likely to significantly deteriorate query processing
performance. The relative query processing performance of
No Merge and Immediate Re-Merge on a growing text col-

lection is shown in Figure 3. Using ExpLimit
(C)
16,1.1,256 to

group postings in memory, the 18 on-disk indices that ex-
ist after 4.5 million documents have been indexed cause No
Merge to have a query processing performance that is ap-
proximately 35% lower than that of Immediate Re-Merge.
This demonstrates how important sub-index merging is in
dynamic environments.

5.1 Experimental Results
All experiments were conducted with 256 MB of main

memory available for all in-memory data. This includes the
hash table, term descriptors, and postings. Therefore, the
number of sub-indices created in the individual experiments
differs from what would have been expected, given the mem-
ory consumption figures from the previous sections.

Nonetheless, the results for the static text collections
(shown in Table 5) are roughly in line with what we have
seen in sections 3 and 4. The number of sub-indices can be
decreased by up to 74% relative to Const1. The strategies
with on-the-fly compression slightly outperform the strate-
gies that do not use compression, mainly by reducing the
amount of redundant data (term descriptors) written to
the individual sub-indices. The best strategy reduces the
indexing time by 25% compared to the initial approach.

The biggest performance improvement happens when go-
ing from Const1 to Const8. For the most part, it does not
stem from the decrease in the number of disk operations,

but from a decrease in CPU time! In order to understand
this, one has to realize that for Const1 the traversal of an in-
memory posting list is a random walk through the available
memory, causing a large number of CPU cache misses.

The results for the dynamic collection (Table 6) are fun-
damentally different from the static case. When indexing a
dynamic collection, reducing the indexing system’s memory
consumption decreases the number of re-merge operations
and thus significantly increases the system’s indexing per-
formance. In fact, the total indexing time is almost propor-
tional to the number of merge operations performed. This
means that – in contrast to the static case – the amount of
main memory available and the memory efficiency of the sys-
tem greatly affect indexing performance for dynamic collec-
tions; the time needed to build the whole index is essentially
linear in the memory consumption caused by the in-memory
posting lists. Compared to Const1, the total time needed to

build the index can be decreased by 70% if ExpLimit
(C)
16,2.0,256

is used.
For both static collections, it can be seen that Two-Pass

is not a competitive strategy, exhibiting worse performance
than Const1. The additional disk operations caused by the
second pass are not compensated for by increased mem-
ory efficiency. In the dynamic case, the situation is dif-
ferent. On the smaller TREC4+5-CR collection, Two-Pass
can beat Const1, and its advantage over the single-pass
strategies grows as the collection becomes larger: on the
TREC-Genomics collection, Two-Pass shows performance
very close to the ExpLimit strategies. However, this is not a
fair comparison. Two-Pass is inherently non-dynamic, as it
needs to wait until the available main memory is exhausted
before new documents are actually added to the index. No-
body would actually use it in a dynamic environment.

6. CONCLUSION
We have studied the most popular indexing technique

used in text retrieval systems, hash-based in-memory in-
version, and examined the effect that different strategies
to organize in-memory postings have on both memory con-
sumption and indexing performance. A theoretical and ex-
perimental evaluation of different strategies has shown that,
in conjunction with on-the fly index compression, the right
strategy is able to decrease the indexing system’s memory



Table 6: Experimental results for dynamic text collections. The number of merge operations corresponds to
the number of sub-indices created in the static case.

TREC4+5-CR TREC-Genomics
# Merge op’s Disk I/O Indexing time # Merge op’s Disk I/O Indexing time

Const1 10 8,614 MB 7m41s (100%) 67 264,042 MB 205m58s (100%)
Const8 6 6,403 MB 5m20s (69%) 41 168,945 MB 127m18s (62%)
Const16 5 5,333 MB 4m35s (60%) 42 174,714 MB 137m30s (67%)
Exp8,2.0 7 7,009 MB 5m53s (77%) 47 192,076 MB 146m55s (71%)
ExpLimit8,2.0,256 5 5,467 MB 4m43s (61%) 39 163,689 MB 124m15s (61%)
ExpLimit8,1.1,256 5 5,543 MB 4m44s (62%) 38 159,282 MB 124m59s (61%)
Two-Pass 5 7,551 MB 6m03s (79%) 35 159,997 MB 125m20s (61%)

Const
(C)
16 3 4,672 MB 4m08s (54%) 21 98,000 MB 76m36s (37%)

Const
(C)
32 2 3,677 MB 3m23s (44%) 20 89,972 MB 69m06s (34%)

ExpLimit
(C)
16,2.0,256 2 3,793 MB 3m22s (44%) 17 80,868 MB 61m52s (30%)

ExpLimit
(C)
16,1.1,256 2 3,795 MB 3m25s (44%) 17 81,075 MB 62m44s (30%)

consumption by more than 75%.
Unfortunately, the reduced memory consumption only

leads to a small, sub-linear speedup when following the tra-
ditional information retrieval paradigm of indexing static
document collections. This result is consistent with earlier
findings [4].

For modern retrieval systems, however, which support dy-
namically growing collections, the performance increase is
dramatic, since the number of merge operations involving
on-disk inverted files (and thus the number of disk opera-
tions) is inversely proportional to the memory efficiency of
the indexing system. Speedups of more than 200% can be
achieved by choosing the right strategy to organize postings
in memory.

As a main contribution of this paper, we have presented a
one-pass indexing technique whose memory consumption is
very close to that of the optimal two-pass strategy, but which
does not require the significant overhead of a second pass
over the text collection and does therefore deliver superior
performance, especially in dynamic environments.
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