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ABSTRACT
We examine issues in the design of fully dynamic information
retrieval systems with support for instantaneous document
insertions and deletions. We present one such system and
discuss some of the major design decisions. These decisions
affect both the indexing and the query processing efficiency
of our system and thus represent genuine trade-offs between
indexing and query processing performance.

Two aspects of the retrieval system – fast, incremental
updates and garbage collection for delayed document dele-
tions – are discussed in detail, with a focus on the respec-
tive trade-offs. Depending on the relative number of queries
and update operations, different strategies lead to optimal
overall performance. Special attention is given to a par-
ticular case of dynamic search systems – desktop and file
system search. As one of the main results of this paper, we
demonstrate how security mechanisms necessary for multi-
user support can be extended to realize efficient document
deletions.

Categories and Subject Descriptors
H.2.4 [Systems]: Textual databases; H.3.4 [Systems and
Software]: Performance evaluation

General Terms
Experimentation, Performance

Keywords
Information Retrieval, Dynamic Indexing, File System
Search, Indexing Performance, Query Performance

1. INTRODUCTION
Indexing performance and query processing performance

are two closely related aspects of information retrieval. How-
ever, when optimization techniques for either indexing per-
formance or query processing performance are discussed, the
two aspects are usually considered separate, unconnected
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entities, and optimization techniques for either aspect are
examined independently. This does not reflect reality, as
many query optimization techniques necessitate additional
work at indexing time:

• frequency-ordered lists [8] can be used to speed up
query processing but require additional work at in-
dexing time because the postings have to be sorted by
within-document frequency;

• word stemming [9], which is usually applied at index-
ing time, can also be performed at query time, allowing
for either faster indexing or faster query processing.

While the subtleties of these trade-offs do not play a great
role in traditional retrieval systems that work on static col-
lections for which a large number of queries has to be pro-
cessed (because these systems obviously require maximum
performance at query time), they are very important in dy-
namic information retrieval systems for which the underly-
ing text collection is continuously changing and the number
of queries to be processed may vary greatly.

In this paper, we discuss several opportunities for index-
ing performance vs. query processing performance trade-
offs. Because this is done in the context of a dynamic in-
formation retrieval system, indexing actually refers to index
maintenance and includes two types of index update opera-
tions: document insertions and document deletions.

In the next section, we give an overview of related work.
Section 3 gives an introduction to our indexing system, the
Wumpus1 file system search engine. It describes the general
layout of the system, the security mechanisms necessary for
use in multi-user environments, and the internal index struc-
ture. Each of the following two sections discusses one partic-
ular component of the search system involving an essential
indexing vs. query time trade-off:

• sub-index merging strategies, which are necessary for
incremental updates (section 4);

• index garbage collection, which is used to support de-
layed index updates after document deletions and is
closely related to the security subsystem (section 5).

1http://www.wumpus-search.org/



2. RELATED WORK
Methods to support dynamically changing text collections

can be divided into two categories: Support for document
insertions and support for document deletions.

Techniques to support document insertions into an exist-
ing index have been studied by many researchers over the
last decade. Most of them follow the same basic scheme.
They maintain both an on-disk and an in-memory index.
Postings for new documents are accumulated in main mem-
ory until it is exhausted, and then the data in memory are
somehow combined with the on-disk index.

Tomasic et al. [12] present an in-place update scheme for
inverted files, based on a distinction between short lists and
long lists. They also discuss how different allocation strate-
gies for the long lists affects index maintenance and query
processing performance. Lester et al. [7] give an evaluation
of three different methods to combine the in-memory infor-
mation with the on-disk data. Kabra et al. [6] present a hy-
brid IR/DB system with delayed update operations through
in-memory buffers. All of these solutions have in common
that the entire on-disk index has to be read (or written)
every time main memory is exhausted, which causes per-
formance problems for large collections. We show how the
number of disk operations can be significantly reduced, at
minimal cost for query performance.

In contrast to the case of document insertions, a thor-
ough evaluation of techniques for document deletions is not
available. Chiueh and Huang [2] present a lazy invalidation
approach that keeps an in-memory list of all deleted docu-
ments and performs a postprocessing step for every query,
taking the contents of that list into account. The approach
to document deletions presented in this paper is similar to
theirs, but more general, and is not done as a postprocessing
step, but integrated into the actual query processing.

None of this related work provides a general discussion
of how different index maintenance strategies affect query
processing performance and how this implies opportunities
for indexing versus query processing performance trade-offs.

3. THE WUMPUS SEARCH SYSTEM
The retrieval system described in this paper is the Wum-

pus file system search engine. Wumpus is similar to other
file system search engines, such as Google Desktop Search2,
Apple Spotlight3, or Beagle4. Unlike most desktop search
systems (except Spotlight), it is a true multi-user search sys-
tem; only a single index is used for all files in the file system,
and security restrictions are applied at query time in order
to guarantee that the query results are consistent with all
file permissions.

In addition to mere file system search cabilities, Wum-
pus supports several standard information retrieval meth-
ods, such as Okapi BM25 [10] and MultiText QAP [4]. The
search system is based on the GCL query language and the
implementation framework proposed by Clarke et al. [3].

In the remainder of this section, we give a short intro-
duction to the specific requirements of file system search,
explain how our system deals with the individual aspects of
file system search, and describe the basic experimental setup
as well as our performance evaluation methodology.

2http://desktop.google.com/
3http://www.apple.com/macosx/features/spotlight/
4http://www.gnome.org/projects/beagle/
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Figure 1: General Layout of the Wumpus search
system. Wumpus maintains an in-memory index for
recent updates and several on-disk indices for per-
sistent storage. User-specific security restrictions
are applied to all data that are transferred from the
index manager to the query processor.

3.1 File System Search
File system search is different from the traditional infor-

mation retrieval task. The search engine not only has to
deal with a large heterogeneous document collection, but a
file system is also a truly dynamic environment: files are
constantly created, modified, and deleted. The expected
number of index update operations is much greater than
the number of queries to be processed. Using Wumpus, one
of the authors counted more than 4,000 index update op-
erations (document insertions and deletions) on his laptop
computer during a typical work day.

Furthermore, when an e-mail arrives, or a new file is
created, the user expects the search system to reflect this
change immediately. Delays greater than a few seconds are
not acceptable. This, together with the great number of
update operations that have to be performed, suggest that
indexing performance plays a much greater role than query
processing performance in this particular domain. Wumpus
supports fast instantaneous updates (i.e., changes to the file
system are reflected by the search system within fractions
of a second). The indexing techniques used to achieve this
are presented in section 3.2.

In addition to being a dynamic environment, file system
search is a multi-user application. In order to avoid wasting
disk space due to indexing the same file many times, a single
index has to be used for all users in the system. Special
care has then to be taken so as to guarantee file system
security. Wumpus’ built-in security mechanisms guarantee
that query results only depend on the content of files that
are readable by the user who submitted the query. The
security subsystem, which is also used to support document
deletions, is briefly discussed in section 3.5.

3.2 Indexing (Document Insertions)
Wumpus uses inverted files [15] as its main index struc-

ture. All posting lists contain fully positional information
(i.e., the exact locations of all occurrences of a term). Posi-
tional indexing is, for instance, necessary for phrase queries
and term proximity ranking [5], both of which are supported
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(a) In-memory index with hash table and linked lists. (b) On-disk index with 2-level search tree.
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Figure 2: Basic structure of in-memory index and on-disk index. Vocabulary terms in memory are arranged in
a hash table. Terms on disk are sorted in lexicographical order, allowing for efficient prefix search operations.

by Wumpus. However, the results presented in this paper,
can easily be applied to document-centered search systems
that do not maintain a fully positional index.

The actual indexing is a one-pass process. It can be de-
scribed as in-memory inversion with ad-hoc text-based par-
titioning (cf. Witten et al. [13, pp. 245-253]). When a
new document is added to the index, tokens are read from
the input file, and an inverted index is built in memory un-
til the memory consumption reaches a predefined threshold.
At that point, an on-disk inverted file is created from the
postings in memory, the in-memory index is deleted, and the
system continues to read further tokens from the input file.
Wumpus is able to maintain multiple on-disk indices at the
same time. Different strategies for merging these sub-indices
are discussed in section 4.

In the in-memory index, a hash table with move-to-front
heuristics [14] is used to efficiently search for existing terms
and add new terms to the vocabulary. All postings are
stored in compressed form (byte-aligned gap compression
[11]), using linked lists to allow for flexibility and efficient
insertion of new postings. This is shown in Figure 2(a).

When new data is added to the in-memory index, post-
ings are immediately assigned to vocabulary terms using the
hash table. After a posting has been added to a posting list,
it can be accessed by the query processor without any fur-
ther delay. Thus, instantaneous updates, which are needed
for real-time file system search, are supported by this data
structure.

In the on-disk index, as in memory, all postings are stored
in compressed form. Terms are sorted in lexicographical or-
der, which minimizes the number of disk seeks necessary for
prefix searches and query-time stemming (a special kind of
prefix search). Terms and their postings are kept together,
which again decreases the number of disk seeks at query
time. For every on-disk index that is part of the indexing
system’s main index, some meta-information is kept in mem-
ory. Conceptually, this meta-information can be thought of
as a B-tree of height 2 that is used to reduce the search
space when postings have to be fetched from the on-disk
index (shown in Figure 2(b)).

3.3 Multiple Sub-Indices
Wumpus is able to maintain multiple on-disk indices at

the same time. An important property of these sub-indices
is that they form an ordered partitioning of the index ad-
dress space, i.e. the postings in sub-index Ik come always
before those in sub-index Ik+1. This property is preserved
by all index maintenance operations (sub-index merging and
garbage collection). It has two important implications:

• during query processing, the posting list for a given

term can be created by concatenating the sub-lists re-
trieved from the individual sub-indices;

• during a sub-index merge process, postings do not have
to be decompressed, but may simply be copied in their
compressed form, avoiding expensive within-list merg-
ing and thus allowing for very fast sub-index merge
operations.

3.4 Query Processing
Wumpus’ query processor is based the GCL query lan-

guage and its shortest-substring paradigm [3]. GCL sup-
ports a variety of operators that can be used to impose
structural constraints on query results. In the context of
this paper, we only need two of them:

• A · · ·B generates all intervals [x, y] (called index ex-
tents), such that A occurs at index address x and B

occurs at index address y.

• E1 � E2 generates all index extents that satisfy the
GCL expression E1 and are contained in an extent that
satisfies E2.

The exact sequence of operations performed by the sys-
tem when a query is being processed, of course, depends on
the scoring function used to rank the documents in the col-
lection. In general, query processing consists of four steps:

1. Create a list of all index extents that are to be scored.
Traditionally, this is the list of documents in the col-
lection, but Wumpus supports arbitrary GCL expres-
sions. For the text collections used in our experiments,
document extents are generated by the GCL expres-
sion <doc>· · · </doc>.

2. Fetch all postings for all query terms from the on-disk
indices and the in-memory index.

3. Compute the score for every extent from Step 1, using
the information found in the posting lists collected in
Step 2.

4. Report the top n extents, along with their scores, to
the user.

Since all on-disk indices and the in-memory index form an
ordered partitioning of the index address space, the posting
list for a given term can be created by concatenating the
lists found in the individual sub-indices. The number of
disk seeks necessary to fetch all postings for one term is
therefore linear in the number of sub-indices, which is why
at some point it is advisable to merge all sub-indices in order
to increase query processing performance.



3.5 Security Restrictions and Document Dele-
tions

As pointed out in section 3.1, special security mechanisms
are needed for a file system search engine if all users in the
system share one global index. Wumpus’ security manager
keeps track of file system meta-information, such as direc-
tory structure, file ownership, and file permissions. When-
ever a user U submits a query, these meta-data are used
to generate a list VU of index extents that correspond to all
files which may be searched by that user. While the query is
being processed, every time a posting P list is fetched from
the index, VU is used to create a new list

PU ≡ (P � VU ),

which consists of all parts of P that refer to files that may
be searched by U . The query processor never accesses P
directly, but always through PU . This guarantees that all
query results are consistent with the user’s view of the file
system and that all security permissions are respected. In
our implementation, PU allows lazy evaluation so that the
security restrictions only have to be applied to those parts
of the original list P that are needed to process the query.

This security mechanism can be used to delay applying
update operations to the index. When a file is deleted, the
postings for that file are not immediately removed from the
index. Instead, only the index extent corresponding to the
file is removed from the security manager’s database. This
is equivalent to marking the file as “cannot be read by any-
body”. The next time a query is processed, VU does not
contain the extent in question any more, and the query pro-
cessor behaves as if the postings in the interval had been
physically removed from the index. Since the index is fully
positional, partial document deletions, such as file trunca-
tions, are also supported.

Our invalidation scheme has certain advantages over the
scheme presented by Chiueh and Huang [2]. Their post-
processing approach uses outdated (and therefore slightly
wrong) collection statistics to compute query term weights,
and it is unable to restrict the number of result candidates
during query processing: Even if the user is only interested
in the top 20 documents, scores for all documents examined
have to be kept because arbitrarily many documents may be
removed from the result set in the postprocessing step. Both
problems are solved by integrating the invalidation into the
actual query processing.

Although the security subsystem can be used to delay
hard index updates, postings that belong to deleted files
have to be removed from the index at some point. Garbage
collection strategies are discussed in section 5.

3.6 Experimental Setup
For our experiments, we used two text collections, having

different size and different collection characteristics:

• TREC disks 4 and 5 (without Congressional Record),
referred to as TREC4+5-CR; our query set were 100
topics from the TREC 2003 Robust track.

• the 2004 TREC Genomics collection (subset of the
PubMed Medline corpus), referred to as TREC-
Genomics; as queries, we used the 50 ad hoc topics
from the 2004 Genomics track.

For both collections, general corpus statistics and basic per-
formance figures are given by Table 1. The performance val-

Table 1: Collection statistics and performance fig-
ures for different trade-off levels. Indexing a static
text collection: (1) with final sub-index merging, (2)
without sub-index merging, (A) stemming at index-
ing time, (B) stemming at query time.

TREC4+5-CR TREC-Genomics
Collection size 1,904 MB 14,332 MB
# documents 528,155 4,591,008
# tokens 3.23 · 108 2.05 · 109

# distinct terms 1.16 · 106 7.87 · 106

Index size 550 MB 3.613 MB
(1A) Indexing time 3m08s 21m42s

Qry. performance 4.6 queries/s 0.56 queries/s
Index size 573 MB 3,696 MB

(1B) Indexing time 2m35s 19m36s
Qry. performance 3.6 queries/s 0.44 queries/s
Index size 569 MB 4,004 MB

(2A) Indexing time 2m34s 16m09s
Qry. performance 3.8 queries/s 0.33 queries/s
Index size 595 MB 4,117 MB

(2B) Indexing time 1m59s 13m56s
Qry. performance 2.7 queries/s 0.26 queries/s

ues represent systems configured for different levels of trade-
off between indexing and query processing performance.

In order to be able discuss indexing time vs. query time
trade-offs with respect to the amount of work the indexing
subsystem and the query processor have to do, all exper-
iments discussed in the following sections were conducted
with varying degrees of system dynamics. The dynamics of a
search system can be expressed by the number of update op-
erations (document insertions or deletions) per search query,
denoted as DU

Q. A system with DU
Q = 0 processes queries

for a static text collection. D
U
Q = ∞, on the other hand, de-

scribes a system which only performs update operations and
never processes any queries. A dynamic retrieval system has
a D

U
Q value somewhere between these two extremes. For file

system search, due to the high frequency of file changes on a
typical computer system, DU

Q ∈ [102, 105] can be expected.

In addition to DU
Q, we also use D

Q
U , the number of queries

per update operation.
In order to decrease the number of disk seeks necessary

to read the input files and thus be able to conduct all ex-
periments in a timely manner, documents were grouped into
files containing 100 documents each (45,911 files for TREC-
Genomics). This uniformly decreases the running time for
all experiments and thus does not affect our conclusions.

All experiments were conducted on a PC based on an
AMD Athlon64 3500+ processor with 2 GB main memory
and a 7200-rpm SATA hard drive. The operating system
was GNU/Linux.

4. SUB-INDEX MERGING
Many retrieval systems build an index for a given text

collection by partitioning the collection into smaller parts,
whose size is determined by the amount of available memory.
Postings are accumulated in memory until main memory is
exhausted. At that point, all in-memory postings are sorted
and written to disk, forming a new sub-index. When the
entire collection has been indexed, all sub-indices that have
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Figure 3: Logarithmic Merge by example. A new
sub-index is added from in-memory postings. Sub-
indices of the same generation n are merged into
into a new sub-index of generation n + 1.

been created during the indexing process are merged into
one big inverted file that represents the whole collection.

While this technique is perfectly reasonable for static col-
lections, it cannot be used for dynamic collections, because
the index is continuously updated and the point at which the
whole collection has been indexed is never reached. How-
ever, the indices should be merged at some point, since
a large number of sub-indices significantly decreases query
processing performance due to disk seek latency. Therefore,
we have to decide when it is acceptable to have multiple sub-
indices and when it is sensible to merge them. We present
three different merge strategies and evaluate their perfor-
mance under different conditions.

Strategy 1: Immediate Merge

The first merge strategy has been proposed by Lester et
al. [7]. They analyze three different techniques to deal with
dynamically growing text collections. Out of these tech-
niques, a strategy called Re-Merge exhibits the best per-
formance. The indexing system maintains one on-disk and
one in-memory index. As soon as main memory is full, Re-
Merge sorts the in-memory postings and merges them with
the existing on-disk index, creating a new on-disk index that
contains all postings gathered so far. We call it Immediate
Merge because in-memory postings are immediately merged
with the on-disk index when they are written to disk.

The advantage of this strategy is that, in order to fetch a
posting list, in most cases only a single disk seek is necessary,
since there is only one sub-index from which postings have
to be retrieved. The disadvantage is that for every merge
operation the entire index has to be scanned. Therefore, the
number of disk operations necessary to create the index is

Dindex(C,M) ∈ Θ

„

C2

M

«

,

where C is the size of the text collection and M is the
amount of available main memory. This is devastating for
very large text collections and for systems with little avail-
able main memory (halving the available main memory dou-
bles the number of disk operations).

Strategy 2: No Merge

The second strategy does not perform any merge opera-
tions. When memory is full, postings are sorted and written
to disk, creating a new on-disk sub-index. On-disk indices
are never merged. When the posting list for a given term
has to be retrieved from the index, sub-lists are fetched from
all sub-indices. Since the sub-indices are ordered, the term’s
posting list can be created by concatenating the sub-lists.

The advantage of No Merge is its high indexing perfor-
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Figure 4: Development of query performance for a
growing index. Logarithmic Merge and Immediate
Merge stay very close to each other. No Merge gets
worse as the number of sub-indices increases.

mance – each sub-index is accessed exactly once: when it is
created from the in-memory postings. This implies

Dindex(C, M) ∈ Θ(C).

The disadvantage is that, in order to fetch a term’s posting
list,

Dfetch(C, M) ∈ Ω

„

C

M

«

disk operations (and in particular Ω( C
M

) disk seeks) are nec-
essary, causing a low query processing performance for col-
lections that are much larger than the available main mem-
ory. This behavior is shown in Figure 4.

Strategy 3: Logarithmic Merge

The two strategies described so far (Immediate Merge and
No Merge) represent the two extremes. The third strategy is
a compromise: A newly created on-disk sub-index is some-
times merged with an existing one, but not always.

In order to determine when to merge two sub-indices, we
introduce a new concept: index generation. An on-disk in-
dex that was created directly from in-memory postings is of
generation 0. An index that was created by merging several
other indices is of generation g + 1, where g is the highest
generation of any of the indices involved in the merging pro-
cess. If, after a new on-disk index has been created, there
are two indices of the same generation, they are merged.
This is repeated until there are no more such collisions.

We call this strategy Logarithmic Merge after the loga-
rithmic method by Bentley and Saxe [1]. It is similar to the
incremental indexing scheme used by Lucene5.

When Logarithmic Merge is used, the vector

−→a = (a0, a1, . . .), ai :=



0: no sub-index of generation i
1: otherwise

behaves like a binary number that is increased by 1 every
time a new on-disk index is created.

It follows immediately that at a given point in time the
number of sub-indices is bounded by

O

„

log

„

C

M

««

,

where C and M are again the size of the collection and the
available main memory, respectively. This is much better

5http://lucene.apache.org/
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Figure 5: Comparison of sub-index merging strategies for growing text collections: (a) TREC-Genomics with
128 MB main memory, (b) TREC-Genomics with 256 MB main memory. Every data point represents one
experiment (indexing the whole collection and processing relevance queries in parallel). The time given is

the total time for indexing the collection and processing all queries. D
Q
U is varied between 0 and 10−2.

Table 2: Exact times for the experimental results
shown in Figure 5(b). Extrapolated point of equality

for Log. Merge and Immediate Merge: D
Q
U ≈ 0.024.

D
Q

U No Merge Log. Merge Imm. Merge
0.000 13m40s 21m08s 57m01s
0.002 228m45s 205m17s 238m05s
0.004 433m29s 389m22s 416m05s
0.006 647m41s 571m08s 595m11s
0.008 752m54s 774m26s

0.024 ≈ 2207m ≈ 2208m

than for the No Merge strategy and implies increased query
processing performance. The number of disk operations nec-
essary to build the index is

Dindex(C, M) ∈ Θ

„

C · log

„

C

M

««

,

which is much smaller than for Immediate Merge.
The number of disk operations can be reduced by a con-

stant factor by anticipating future merge operations and
starting a multi-way merge process whenever merging two
indices would cause a new collision and thus a new merge
process. This process is shown in Figure 3.

Results

The experiments run to evaluate the different merging
strategies under different query/update conditions involve a
monotonically growing document collection. For the TREC-
Genomics collection, we ran two series of experiments, with
128 and 256 MB for the in-memory index, respectively. Ex-
periments for TREC4+5-CR are not shown here, because
the collection is too small to allow any conclusions.

Starting from an empty index, the system concurrently
adds documents to the index and processes relevance queries
until the whole collection has been indexed. The number
of relevance queries per update operation (document inser-
tion) is varied in order to examine the effect that each of
the merge strategies has on both indexing performance and
query processing performance. The total time needed by the
system to finish the job, i.e. index the entire collection and
process all queries, is measured. Results for both series of
experiments are shown in Figure 5. In addition, the exact
numbers for the 256 MB series are given by Table 2.

As expected, No Merge is the best strategy under a very
light query load (DQ

U < 5 · 10−4). As the number of queries
per update operation increases, No Merge becomes worse
and worse, due to the high number of sub-indices that have
to be accessed every time a query is processed.

Logarithmic Merge shows excellent indexing performance;
it is only 35% slower than No Merge for DQ

U = 0 and 256 MB

of memory. As DQ
U increases, Logarithmic Merge soon over-

takes No Merge and becomes the best strategy. In all our
experiments, overall performance for Logarithmic Merge was
better than for Immediate Merge. However, by extrapolat-
ing from the experimental results, we can predict that Imme-
diate Merge becomes the optimal strategy for D

Q
U > 0.024

(24 queries per 1,000 update operations). But even then,
Logarithmic Merge stays very close. Its asymptotical per-
formance (DQ

U → ∞) is less than 3% lower than that of
Immediate Merge on our test collection.

It also has to be pointed out that Logarithmic Merge is
very robust against decreasing the available memory. While
going from 256 MB down to 128 MB significantly decreases
No Merge’s query performance and doubles indexing time
with Immediate Merge, both indexing and query perfor-
mance remain almost constant when Logarithmic Merge is
used as the sub-index merging strategy.

Discussion

We have shown that, depending on how dynamic the
underlying text collection is, different sub-index merging
strategies have to be chosen in order to achieve optimal
overall performance for the search system. The No Merge
strategy, which offers the best indexing performance, should
only be used if the number of queries to be processed is
extremely small. For most applications, Logarithmic Merge
is the best choice, since it scales very well and can therefore
be used to index very large text collections, where Imme-
diate Merge causes problems because of its Θ(C2) indexing
complexity.

5. GARBAGE COLLECTION
In the previous section, we have discussed sub-index

merging strategies for continuously growing document col-
lections. In a truly dynamic environment, however, the
collection does not grow monotonically. Update operations
may be either document insertions or deletions.

Postings that are added during an insert operation can
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simply be appended to existing posting lists (assuming that
newly added documents reside at the very end of the index
address space). Therefore, it is possible to create a new on-
disk sub-index from the in-memory postings without having
to access the other on-disk sub-indices – a great reduction in
the number of disk accesses. This is not true for document
deletions, as they can potentially affect the entire address
space. Hence, their impact is not limited to a single sub-
index (a small part of the index address space), which makes
deletions more difficult to deal with than insertions.

Wumpus’ security mechanism helps deal with document
deletions. Every user can only access the part of a posting
list that lies within files that may be read by that user, since
the respective file permissions are automatically applied ev-
ery time a query is processed (cf. section 3). This mech-
anism can be used to support document deletions: When
a document is deleted from the collection, the file associ-
ated with that document is marked as “cannot be read by
anybody”. After that, all postings lying within the file are
ignored by the query processor.

However, filtering posting lists during query processing
can only be one part of the solution. At some point, post-
ings that belong to deleted documents have to be removed,
because the time it takes to process a query is essentially lin-
ear in the total number of postings in the index (as shown
in Figure 6). We need a garbage collection strategy.

Threshold-based Garbage Collection

A relatively simple strategy is to keep track of the relative
number of postings in the index that belong to documents
that have been deleted:

r =
#deleted postings

#postings
.

As soon as this number exceeds a predefined threshold (i.e.,
r > ρ, for some ρ ∈ (0, 1]), the garbage collector is started,
and all superfluous postings are removed from the index.

This is the basic garbage collection strategy used by
Wumpus. Different values for ρ affect indexing performance
and query processing performance in different ways: If the
garbage collector is run after every single document deletion
(ρ ≈ 0), this guarantees maximum query performance – at
the cost of very bad indexing performance. If, on the other
hand, the garbage collector is never run (ρ = 1), indexing

performance is maximal, but the query processor spends a
great amount of time fetching and decompressing postings
that are irrelevant to the query because they belong to
deleted documents.

Since during garbage collection all sub-indexes have to
be read completely anyway, Wumpus automatically merges
all sub-indexes into one big index every time the garbage
collector is run.

On-the-Fly Garbage Collection

The threshold-based garbage collection strategy descibed
above has the disadvantage that it is completely indepen-
dent of the sub-index merging strategy employed and there-
fore causes additional disk access operations that could have
been avoided if the garbage collector had been integrated
into the sub-index merging process. We call this integra-
tion on-the-fly garbage collection: Every time two or more
sub-indices are merged into a bigger sub-index, the garbage
collector can be used to filter the postings that are read from
the input indices and only write those postings to the output
index that belong to documents that have not been deleted.
On-the-fly garbage collection is employed in addition to the
simple threshold-based approach.

Since garbage collection requires the decompression of
posting lists, it causes a notable reduction of sub-index
merging performance (ordinary sub-index merging does not
require the decompression of postings – see section 3.3). It
is therefore not desirable to run it for every merge operation.
Instead, we define a new threshold value ρ′; the garbage
collector is integrated into a merge process if

Pk

i=1
#deleted postings in index Ii

Pk

i=1
#postings in index Ii

> ρ
′

,

where I1 . . . Ik are the input indices of the merge operation.
Reasonable choices for ρ′ are in the interval (0, ρ].

Experimental Results

We conducted several experiments to compare different
garbage collection threshold values ρ and study how the in-
tegration of the garbage collector into sub-index merging
can increase overall system performance. For each text col-
lection (TREC4+5-CR and TREC-Genomics), one series of
experiments was conducted. For all experiments, we lim-
ited the size of the in-memory index to 256 MB and used
Logarithmic Merge as the sub-index merging strategy.

Starting from an index that contains 50% of the docu-
ments in the text collection (≈2.3 million documents for
TREC-Genomics and ≈260,000 documents for TREC4+5-
CR), documents are added and removed in a random fash-
ion, with equal probabilities for insertions and deletions. In
contrast to the experiments described in the previous sec-
tion, we had the system process a fixed number of queries
(5,000) and varied D

U
Q, the number of update operations

between two queries, between 0 and 10,000.
The results visualized in Figure 7 show that for most up-

date loads ρ = 0.50 is a safe choice, leading to an acceptable
query performance. Only on TREC-Genomics, it is outper-
formed by ρ = 0.25 for 0 ≤ D

U
Q ≤ 5000. This means that

the additional work caused by eager garbage collection is
usually not rewarded by superior query performance, even
for low update loads. For both collection, the integration
of on-the-fly garbage collection into the merge process im-
proves the system’s performance only marginally, indicating
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that the relatively simple threshold-based method is in fact
not as bad as we had thought and is suited very well for
most scenarios.

6. CONCLUSION AND FUTURE WORK
We have presented a fully dynamic information retrieval

system, supporting document insertions and deletions. Our
contribution is two-fold: We have pointed out different ways
to realize index update operations and examined their re-
spective effect on both indexing and query processing per-
formance, leading to a discussion of the associated index-
ing vs. query processing performance trade-offs. We have
shown that for a broad range of relative query and update
loads, including those typical for desktop and file system
search, a combination of logarithmic sub-index merging and
threshold-based garbage collection with a garbage thresh-
old around 50% is an appropriate way to address index up-
dates. Only under extreme conditions (very large or very
small number of updates per query), other configurations
exhibit better performance.

As one of the main results of this paper, we have demon-
strated how security mechanisms necessary for multi-user
support can easily be extended to support efficient docu-
ment deletions with delayed index garbage collection.

Using D
U
Q, the number of index updates per query, to de-

scribe how dynamic a text collection is, is a rather ad-hoc
approach. We chose it because of its immediate perspicuity.
Other measures, such as the relative number of documents
or the relative number of postings changed between two con-
secutive queries, might give a better characterization of the
system. An experimental evaluation using a large number
of different corpora will be necessary to find a good measure
for the degree of a retrieval system’s dynamics.
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