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Abstract

Though fluid model offers a good approach to nonrigid registration
with large deformations, it suffers from the blurring artifacts introduced
by the viscosity term. To overcome this drawback, we present an inviscid
model expressed in a particle framework. Our idea is to simulate the
template image as a set of particles moving towards the target positions.
The proposed model can accommodate both small and large deformations
with sharp edges and reasonable displacement maps achieved. Because of
its simplicity, the computational cost is much smaller than other nonrigid
registration approaches.

1 INTRODUCTION

Image registration requires aligning an image pair with an optimal transforma-
tion. It has many potential applications for diagnosing in the clinic, and is an
often encountered problem in various fields especially in medical surgery.

It is well known that biological structures such as human brains, although
may contain the same global structures, differ in shape, orientation, and fine
structures across individuals and at different times. To represent such variabil-
ities, nonrigid transformation has more applications [10]. Numerous algorithms
have been explored in this area, however, more accurate and efficient methods
are still needed. Broit [3] was the first to study nonrigid registration prob-
lems using physically based models. In his approach the transformation process
was modeled by deformations of an elastic solid. This approach was extended
by Bajcsy et al. [1] and various variational forms [4, 8] were proposed later.
Since the deformation energy caused by stress increases proportionally with the
strength of the deformation, elastic models can only accommodate locally small
deformations. To overcome this drawback, Christensen et al. [6] proposed an-
other approach which modeled the transformation process by a viscous fluid
flow. Fluid models can allow relatively larger local deformations; however, the
inherent viscosity introduces an unnegligible blurring effect to the transformed
image. Also, the reported [2, 12] computational time is very large. The mod-
els discussed above are all physically based models, which try to simulate the
deformation as a physical process.

Since the viscosity term in the fluid equation causes blurring as well as
complicating computation, we propose to use an inviscid model. Instead of
regarding the template image as a fluid continuum with viscous interaction, we
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simulate the transformation process as a set of particles moving towards target
positions. It is similar to the framework of gas dynamics [9] where distances
between gas molecules are big enough that internal friction can be neglected
and each molecule can be viewed as a separate particle.

Particles are by far the easiest objects to simulate. Despite their simplicity,
particles can be made to exhibit a wide range of interesting behaviors. For
example, in graphics [7] a variety of nonrigid structures can be built by con-
necting particles with simple damped springs. However, the particle approach
has never been used in image registration area. Based on the physical behavior
of particles, we present a novel registration technique expressed in a particle
framework. The basic idea is to simulate the template image as particles mov-
ing towards the target image under external forces. Lagrangian reference frame
is often used to observe the movement of particles. However, it needs to track
individual particle and is harder to apply. As time varies, initially equally-sized
particles may become unevenly distributed which can cause problems of stability
and accuracy. Assuming there are enough particles moving around, we can fit
Eulerian reference frame to the particle registration framework. The resulting
partial differential equations are nonlinear hyperbolic equations of vector form
whose solution describes the coordinate transformation between the template
and the target images. They can be numerically solved using finite difference
method.

The proposed particle registration technique is quite simple and efficient.
Since it can be viewed as an inviscid gas model with constant pressure, the
blurring artifacts caused by fluid viscosity are overcome and large deforma-
tion can be accommodated. Also, because of its simplicity in simulation, total
computational cost is decreased. Thus, the particle registration technique can
achieve a small/large transformed image with sharp edges and reasonable dis-
placement map in less time. We have successfully applied the particle model to
medical image datasets yielding fast and accurate registrations.

A relevant approach was the level-set registration technique proposed by
Vemuri el al. [11]. As an inviscid model, their approach was derived from curve
evolution theory which had different settings and governing equations, and thus
could not be regarded as a particle framework.

The rest of the paper is organized as follows. Section 2 contains an overview
of the particle model, followed by the proposed formulation of the image regis-
tration problem. Section 3 presents some modifications of the model regarding
robustness and stability, and gives the whole numerical algorithm for solving the
consequent equations. Section 4 shows experimental results of this approach on
2D sythetic/real images. Finally, conclusions are drawn in Section 5.

2 METHODOLOGY

We define the template image as I1(x) and the target image as I2(x), where
0 ≤ I1(x), I2(x) ≤ 1, and x ∈ Ω is the image region. The purpose of image
registration is to determine a coordinate transformation r(x) of I1(x) onto I2(x)
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such that the difference between the transformed template image I1(x − r(x))
and the target image I2(x) will be small in some measure M . Therefore the
registration can also be stated as a minimization problem

min
r(x)

M(I1(x), I2(x), r(x)). (1)

Here we use a Gaussian sensor model [5] to induce the matching criteria:

M(I1(x), I2(x), r(x, t)) =
α′

2

∫

Ω

‖I1(x− r(x, t))− I2(x)‖2dx, (2)

where α′ is a parameter.
We consider the template image as a set of particles, each with mass m,

position x, velocity u, displacement r, and responding to force. The image
deformation process is simulated as the particles moving towards the target
positions. The total number of particles is assumed to be big enough such that
at anytime there is a particle passing through each observation point. Thus,
we can use Eulerian reference frame for simulation. The image region Ω is
discretized into a fixed grid and motion of particles is controlled in each cell.
The velocity field u(x) and the displacement field r(x) are both defined based
on current positions of particles. A particle at position x at time t originated
at position x− r(x, t).

The movement of a particle is governed by Newton’s Law of Motion. If we
assume that there is no internal interaction between particles, the conservation
of momentum equation can be written as

m
du
dt

= f , (3)

where f is the external force applied to that particle and will be defined later
by information from the template and the target images, m is the mass of each
particle which is assumed to be a constant here, u is the consequent velocity
which describes the speed of image deformation, and t is the time.

In an Eulerian framework, we have the following relationship between total
derivative and partial derivative of velocity with respect to time

du
dt

=
∂u
∂t

+ (u · ∇)u, (4)

where ∇ is the gradient operator. Thus, equation (3) can be rewritten as

m
∂u
∂t

+ m(u · ∇)u = f . (5)

The left side represents the force of inertia, i.e., the mass times the acceleration
of a particle. Equation (5) neglects internal friction and therefore is an inviscid
model. It is similar to the Euler equation commonly used in gas dynamics (the
study of compressible but inviscid fluids)

ρ
∂u
∂t

+ ρ(u · ∇)u +∇p = f , (6)
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where ρ is the density or unit mass, and p is the pressure. For isothermal gas
with constant density, ∇p is neglected and equation (6) becomes equation (5).

Since velocity is the total derivative of displacement with respect to time,
the velocity field and the displacement field are related by

u(x, t) =
dr(x, t)

dt
=

∂r(x, t)
∂t

+∇r(x, t)u(x, t). (7)

The force field f(x, r(x)) is used to drive the particles from image I1(x) to
image I2(x). It is defined as the derivative of the matching criteria M on the
image pair. Taking the variation of equation (2) with respect to displacement,
r(x, t), gives the force field

f(x, r(x, t)) = α′(I1(x− r(x, t))− I2(x))∇I1(x− r(x, t)). (8)

Since the movement of particles should only slow down when the difference
term I1(x− r(x, t))− I2(x) becomes smaller, we need to normalize the gradient
term in the force field. Therefore we choose α = α′

‖∇I1‖ such that equation (8)
becomes

f(x, r(x, t)) = α(I1(x− r(x, t))− I2(x))
∇I1(x− r(x, t))
‖∇I1(x− r(x, t))‖ . (9)

3 IMPLEMENTATION

Solution of the particle registration problem requires solving the following PDEs

∂u(x, t)
∂t

=
f(x, r(x, t))

m
− (u · ∇)u(x, t),

∂r(x, t)
∂t

= u(x, t)−∇r(x, t)u(x, t),

f(x, t) = α(I1(x− r(x, t))− I2(x))
∇I1(x− r(x, t))
‖∇I1(x− r(x, t))‖ ,

which include nonlinearity introduced by the external force and the kinematic
derivatives.

Two issues arise in calculating the external force field. The first is the
undetermination of external force when ‖∇I1(x − r(x, t))‖ equals to zero. To
make our model more robust, we apply an additive external force definition in
that case:

f(x, r(x, t)) = 0. (10)

The second is the computation of gradient ∇I1(x− r(x, t)). Since the gradient
operator is sensitive to the noise in the image, we convolve I1(x−r(x, t)) with a
Gaussian kernel prior to the gradient computation. Thus (9) and (10) become

f(x, r(x, t)) =

{
0, if ‖∇(Gσ ∗ I(x, t))‖ = 0;
α(I(x, t)− I2(x)) ∇(Gσ∗I(x,t))

‖∇(Gσ∗I(x,t))‖ , otherwise; (11)
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where I(x, t) = I1(x − r(x, t)) denotes the deformed template image at time
t, Gσ denotes the Gaussian kernel with standard deviation of σ, and ∗ is the
convolution operator.

To update movement of particles through time, we discretize time domain
[0,+∞] into small intervals 0 = t0 < t1 < . . . < tn < tn+1 < . . . and apply
Euler explicit integration over time. The discretized time formula is given by

un+1(x) = un(x) +
∆t

m
fn(x),

rn+1(x) = rn(x) + ∆t(I −∇rn(x))un(x), (12)

where

un+1(x) ≈ u(x, tn+1) is the approximation of velocity field at time tn+1,
rn+1(x) ≈ r(x, tn+1) is the approximation of displacement field at time tn+1,
∆t = tn+1 − tn is the time interval.

We require the Jacobian J = ‖I −∇rn‖ [6] greater than zero in order to ob-
tain a regular transformation. The complete algorithm for solving the particle
registration problem consequently becomes

1. Initialize u0(x) = 0 and r0(x) = 0.

2. Calculate the external force fn(x) at time tn using equation (11).

3. If fn(x) is below a stopping criteria for all x or the maximum number of
iterations is reached, STOP.

4. Perform Euler explicit integration using equation (12) at time tn.

5. If the Jacobian J = ‖I −∇rn(x)‖ is less than 0.1, regrid the template.

6. n = n + 1, GOTO step 2.

The remaining question is how to perform steps 2, 4, and 5 in discretized
space domain. Note that they all have gradient computation included. We
choose minmod finite difference scheme since it is known to preserve local
max/min and yield acceptable accuracy. The minmod function [11] is defined
as

minmod(x, y) =
{

sign(x)min(|x|, |y|), if xy > 0;
0, if xy ≤ 0; (13)

and consequently the gradient is computed by

∇F (x, y) =
[

minmod(D−
x F, D+

x F )
minmod(D−

y F, D+
y F )

]
, (14)

where F (x, y) is any 2D function, D+
x , D−

x , and D+
y , D−

y are standard forward
and backward difference operators in the x and y directions, respectively.
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To update movement of particles through space, we discretize space domain
Ω into small cells/pixels. Each particle is initially located at the center of the
cell/pixel with position xij = (xi, yj) and grid spacing h. Applying minmod
finite difference over space, we obtain the discretized time discretized space
formula

fn
ij = α(In

ij − I2,ij)
minmod(

In
ij−In

i−1,j
h ,

In
i+1,j−In

ij
h )

‖minmod(
In
ij
−In

i−1,j
h ,

In
i+1,j

−In
ij

h )‖
,

gn
ij = α(In

ij − I2,ij)
minmod(

Iij−Ii,j−1
h ,

Ii,j+1−Iij
h )

‖minmod(
In
ij
−In

i,j−1
h ,

In
i,j+1−In

ij
h )‖

,

un+1
ij = un

ij + ∆tfn
ij ,

vn+1
ij = vn

ij + ∆tgn
ij ,

rn+1
ij = rn

ij + ∆t((1−minmod( rn
ij−rn

i−1,j

h ,
rn

i+1,j−rn
ij

h ))un
ij −minmod( rn

ij−rn
i,j−1

h ,
rn

i,j+1−rn
ij

h )vn
ij),

sn+1
ij = sn

ij + ∆t((1−minmod( sn
ij−sn

i,j−1
h ,

sn
i,j+1−sn

ij

h ))vn
ij −minmod( sn

ij−sn
i−1,j

h ,
sn

i+1,j−sn
ij

h )un
ij),

where

(fn
ij , g

n
ij) ≈ f(xij , r(xij , tn)) is the approximation of force at position xij time tn,

(un+1
ij , vn+1

ij ) ≈ u(xij , tn+1) is the approximation of velocity at position xij time tn+1,
(rn+1

ij , sn+1
ij ) ≈ r(xij , tn+1) is the approximation of displacement at position xij time tn+1,

∆t = tn+1 − tn is the time interval,
In
ij = Gσ ∗ I1,xi−rn

ij ,yj−sn
ij

is the smoothed deformed template.

The discretization is easily extendable to 3D.

4 RESULTS

The proposed approach is implemented in C and executed at a desktop PC of P4
2.8GHZ with 1GB memory. The parameters are set to m = 1, α = 100, and the
stopping criteria is set to 0.01. We have applied the proposed algorithm to three
experiments. Four sets of images are presented for each registration: 1. template
image; 2. target image; 3. transformed image after registration; 4. difference
image between transformed image and target image. The computational cost
for each experiment is summarized in Table 1.

The first experiment is designed to demonstrate that our model can accom-
modate large deformation like fluid algorithm as well as achieving a reasonable
displacement map. The test data is a synthetic image with size 64 × 64 pixels
which is similar to the image used by [6]. The results are shown in Figure 1
with comparison to fluid model. It is what we desire that the transformed image

Time(s) experiment 1 experiment 2 experiment 3
Fluid 43 927 892

Proposed 32 644 532

Table 1: computational cost for each experiment
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Figure 1: qualitative results of experiment 1. From left to right, top to bottom:
(a)template image; (b)target image; (c)transformed image obtained by fluid
model; (d)difference image between (b) and (c); (e)transformed image obtained
by proposed model; (f)difference image between (b) and (f); (g)displacement
map obtained by fluid model; (h)displacement map obtained by proposed model.

obtain by proposed model is almost the same as the target, and the difference
image is better than that obtained by fluid model. Besides the four sets of
images mentioned above, we include displacement map as well. For proposed
model, it is largely curved from a small patch of letter ”C” to the whole letter
”C”, and anywhere else is zero. This contrasts with the displacement map ob-
tained by fluid model where background field also has nonzero displacements.

The second experiment is designed to demonstrate that our model can over-
come the blurring drawback of fluid approach. The test data is a synthetic
image with size 256× 256 pixels which is similar to the image used by [12]. The
results are shown in Figure 2 with comparison to fluid model. Again we include
displacement map in addition to the four sets of images mentioned above. From
comparison we can see clearly that the difference image obtained by fluid model
is more blurry than that obtained by the proposed model. Thus, we demon-
strate that our model achieves a transformed image with clearer texture than
the fluid approach.
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Figure 2: qualitative results of experiment 2. From left to right, top to bottom:
(a)template image; (b)target image; (c)transformed image obtained by fluid
model; (d)difference image between (b) and (c); (e)transformed image obtained
by proposed model; (f)difference image between (b) and (f); (g)displacement
map obtained by fluid model; (h)displacement map obtained by proposed model.
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Figure 3: qualitative results of experiment 3. From left to right, top to bottom:
(a)template image; (b)target image; (c)transformed image obtained by fluid
model; (d)difference image between (b) and (c); (e)transformed image obtained
by proposed model; (f)difference image between (b) and (f).

The third experiment is designed to demonstrate that our model can capture
complex deformations in medical images. The test data is an MRI image of
human brain with size 256× 256 pixels. The results are shown in Figure 3. The
registration has successfully transformed the template image towards the target
image, and the transformed image persists sharp edges.

To further assess the quality of the registration in the above experiments,
mean and variance of the squared sum of intensity difference (SSD), and corre-
lation coefficient (CC) have been calculated and are listed in tables 2.

5 CONCLUSIONS

In this paper we present a novel registration technique expressed in a particle
framework. It is an inviscid model designed for nonrigid registration problems.
The key features of our model are (a) it can accommodate both small and
large deformations, (b) it overcomes the blurring drawback of fluid models and
achieves transformed images with clear textures and sharp edges, (c) it is very
simple and fast. We have demonstrated the performance of our approach on a
variety of images including synthetic and real data. The results of experiments
are desiring and satisfying. Future efforts will be made to explore more com-
plicated simulation frameworks where internal interaction is added to particle
systems.
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Experiment 1 Mean(SSD) Var(SSD) CC
No registration 0.103760 0.092994 0.447277

Fluid 0.000271 0.000027 0.998853
Proposed 0.000017 0.000000 0.999968

Experiment 2 Mean(SSD) Var(SSD) CC
No registration 0.137189 0.056491 0.385506

Fluid 0.000899 0.000023 0.995851
Proposed 0.000738 0.000014 0.996772

Experiment 3 Mean(SSD) Var(SSD) CC
No registration 0.054380 0.021933 0.523169

Fluid 0.002417 0.000278 0.977904
Proposed 0.001993 0.000439 0.981655

Table 2: qualitative measure for 3 experiments
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