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Abstract

Since the physical behavior of many tissues is shown to be viscoelastic,
we propose a novel registration technique for medical images via physical
principles of viscoelasticity. It allows the template and the target images
to differ by large local deformations like viscous fluid and small local
deformations like elastic solid. With an extra elastic term introduced,
the proposed model constrains the transformation by coupled viscoelastic
behavior and therefore reduces the smearing effect caused by the fluid
terms. We apply our approach to both artificial test data and MR brain
slices yielding accurate registration results.

1 Introduction

Numerous algorithms have been explored in nonrigid registration area [15] to
capture variabilities of biological structures accross individuals and at different
times. Broit [3] was the first to study this problem using physically based mod-
els. In his approach the transformation process was modeled by deformations
of an elastic solid. This approach was extended by Bajcsy et al. [1] and var-
ious variational forms [4, 8] were proposed later. Limited by the constraint of
linear elasticity, the elastic model can only accommodate locally small defor-
mations. To overcome this drawback, Christensen et al. [7] introduced another
approach which modeled the transformation process by a viscous fluid flow. The
fluid model can allow locally large deformations, but it tends to smear images
because of the fluid viscosity.

The regions of interest in medical images are usually tissues, such as brain,
corona, and ventricle. If the change of the regions is caused by the behavior of
the corresponding biophysical structures, it is quite straight forward and reason-
able to acquire the transformation by simulating the deformation as a physical
process. Since most tissues behave between elastic solid and viscous fluid [13],
either an elastic approach or a fluid approach itself may not be accurate for
registration modeling. Our idea is to develop a combined viscoelastic approach
which has the property of both elastic solid and viscous fluid to achieve better
registration.

In this paper, we present a novel viscoelastic registration technique expressed
in a fluid framework. It allows an image pair to differ by large deformations like
viscous fluid and small deformations like elastic solid. The basic idea in this
technique is to let the template image transform by simulating the deformation
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process as a viscoelastic fluid flow to the target image. By introducing an ex-
tra elastic term, the proposed model constrains the transformation by coupled
viscoelastic behavior and therefore decreases the blurring effect caused by the
fluid terms. The resulting partial differential equations are nonlinear elliptic-
hyperbolic equations of vector form whose solution describes the coordinate
transformation between the template and the target images. It can be numer-
ically solved using finite difference method. We have successfully applied the
transformation model to medical images yielding fast and accurate registrations.

A similar approach was proposed by Tang et al. [16]. However, they simplied
the linear Maxwell model by linear addition of fluid part (dashpot) and elastic
part (spring), and solved for each part separately. Such simplification is not
quite right since for viscoelastic matter those two parts are supposed to be
coupled together. Our model correctly applies the coupled constitutive law and
thus obtain a more realistic meaning in medical imaging.

The rest of the paper is organized as follows. Section 2 contains an overview
of the linear Maxwell model for viscoelastic fluid flow, followed by the pro-
posed formulation of the image registration problem in Section 3. Section 4
presents a complete numerical algorithm for solving the consequent modified
Navier’s equation. Section 5 shows experimental results of this approach on 2D
sythetic/real images. Finally, conclusions are drawn in Section 6.

2 Viscoelastic Fluid

We consider the template image as a compressible fluid. The external force
applied to the continuum is balanced by the internal force caused by the resulting
deformation. The conservation of momentum equation can be written as

∇ · T + f −∇p = ρ(
∂u
∂t

+ (u · ∇)u), (1)

where T is the extra stress tensor, f is the external force and will be defined
later by information from the template and the target images, ρ is the density
of fluid which is assumed to be constant here, u is the velocity field, and p is
the pressure. The right side of equation (1) represents the force of inertia, i.e.,
the density times the acceleration of fluid.

A simplified model is obtained [11] for very low Reynold’s number flow where
the pressure gradient ∇p and the inertial term ρ(∂u

∂t + (u · ∇)u) are neglected,
such that (1) becomes

∇ · T + f = 0. (2)

The extra stress tensor T represents the force which the material develops in
response to being deformed. To complete the mathematical formulation, we
need a constitutive law relating T to the motion.

The constitutive law for a Newtonian fluid [9] models the extra stress tensor
T by

T = λtr(D)I + 2µD, (3)
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where λ and µ are the viscosity constants, D = 1
2 (∇u + (∇u)T ) is the rate of

deformation tensor, and I is the identity tensor. In order to capture the elastic
behavior in the transformation, we model the fluid as a viscoelastic fluid [14].
The stress depends not only on the current motion of the fluid, but also on the
history of the motion. If we assume that this dependence is linear, the extra
stress tensor given by the Maxwell theory of linear viscoelasticity satisfies

Tt + βT = λtr(D)I + 2µD. (4)

Here β is a constant, the quantity 1
β has the dimension of time and is known as

a relaxation time [14]. It is, roughly speaking, a measure of the time for which
the fluid remembers the flow history. The behavior of viscoelastic fluids depend
crucially on how this time scale relates to other time scales relevant to the flow.
The ratio of a time scale for the fluid memory to a time scale of the flow is an
important dimensionless measure of the importance of elasticity.

The equations (2) and (4) for a viscoelastic fluid are coupled together, we
have to reformulate the mixed system in a way that tries to separate the motion
from the constitutive law. Thus, we split the extra tensor term to an ordinary
compressible fluid part plus an elastic part

T = λtr(D)I + 2µD + E , (5)

where E is the elastic tensor. This is known as the elastic-viscous stress-splitting
(EVSS) method [10]. Substitute (5) into (2) we obtain

µ4u + (µ + λ)∇(∇ · u) +∇ · E + f = 0, (6)

where 4 is the Laplacian operator, ∇ is the gradient operator, and ∇· is the
divergence operator. This is the main PDE we are solving for viscoelastic reg-
istration. It is an extension for the Newtonian fluid case where E = 0 and the
momentum equation (6) assumes the usual Navier-Stokes form

µ4u + (µ + λ)∇(∇ · u) + +f = 0. (7)

3 Registration Formulation

We define the template image as I1(x) and the target image as I2(x), where 0 ≤
I1(x), I2(x) ≤ 1, and x ∈ Ω is the image region. The purpose of the registration
is to determine a coordinate transformation r(x) of I1(x) onto I2(x) such that
I1(x − r(x)) will be small in some measure M . Therefore the registration can
also be stated as a minimization problem

min
r(x)

M(I1(x), I2(x), r(x)). (8)

The force field f(x, r(x)) is used to drive the flow from image I1(x) to image
I2(x). It is defined as the derivative of any matching criteria M on the image
pair. Here we use a Gaussian sensor model [5] to induce the matching criteria:

M(I1(x), I2(x), r(x, t)) =
α

2

∫

Ω

‖I1(x− r(x, t))− I2(x)‖2dx, (9)
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where α is a parameter. Taking the variation of this cost function with respect
to displacement, r(x, t), gives the force field

f(x, r(x, t)) = α(I1(x− r(x, t))− I2(x))∇I1(x− r(x, t)). (10)

We use an Eulerian reference frame to update movement of the viscoelastic
fluid in the image. The displacement field r(x) and velocity filed u(x) are both
defined based on spatial positions. Consequently, we use a fixed spatial grid
to track the deformation. Since u(x, t) and r(x, t) describe the velocity and
the displacement of fluid as it move through x at time t, we have the following
relationship

u(x, t) =
∂r(x, t)

∂t
+∇r(x, t)u(x, t). (11)

Combining equations (4), (5), (6), (10), and (11), the viscoelastic registration
model requires solving the following PDE system

µ4u(x, t) + (λ + µ)∇(∇ · u)(x, t) +∇ · E + f(x, r(x, t)) = 0,

∂r(x, t)
∂t

= u(x, t)−∇r(x, t)u(x, t),

∂T (x, t)
∂t

= −βT (x, t) + µ∆u(x, t) + (µ + λ)∇(∇ · u(x, t)),

E(x, t) = T (x, t)− µ∆u(x, t)− (µ + λ)∇(∇ · u(x, t)),
f(x, r(x, t)) = α(I1(x− r(x, t))− I2(x))∇I1(x− r(x, t)),

which includes nonlinearity introduced by the external force and the kinematic
derivatives.

4 Implementation

Because the gradient operator is sensitive to the noise in the image, we convolve
the deformed template I1(x−r(x, t)) with a Gaussian kernel prior to the gradient
computation. This leads equation (10) to the following

f(x, r(x, t)) = α(I1(x− r(x, t))− I2(x))∇(Gσ ∗ I1(x− r(x, t))), (12)

where Gσ denotes the Gaussian kernel with standard deviation of σ and ∗ is the
convolution operator.

To update movement of fluid through time, we discretize time domain [0,+∞]
into small intervals 0 = t0 < t1 < . . . < tn < tn+1 < . . . and apply Euler explicit
integration over time. The discretized time formula is given by

T n+1(x) = (1− β∆t)T n(x) + ∆t(µ∆un(x) + (λ + µ)∇(∇ · un(x))), (13)

rn+1(x) = rn(x) + ∆t(I −∇rn(x))un(x), (14)
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where

T n+1(x) ≈ T (x, tn+1) is the approximation of extra stress tensor field at time tn+1,
un+1(x) ≈ u(x, tn+1) is the approximation of velocity field at time tn+1,
rn+1(x) ≈ r(x, tn+1) is the approximation of displacement field at time tn+1,
∆t = tn+1 − tn is the time interval.

We need ∆t to be small enough for stable Euler explicit integration. Thus
we introduce a threshold dmax [2] for displacement per timestep such that
∆t(I−∇r(x, t))u(x, t) < dmax. Besides, We require the Jacobian J = ‖I−∇rn‖
[7] greater than zero in order to obtain a regular transformation. The complete
algorithm for solving the viscoelastic registration problem consequently becomes

1. Initialize u0(x) = 0, r0(x) = 0, and T 0(x) = I.

2. Calculate the external force fn(x) at time tn using equation (11).

3. If fn(x) is below a stopping criteria for all x or the maximum number of
iterations is reached, STOP.

4. Calculate the extra stress tensor T n(x) at time tn using equation (13).

5. Calculate the elastic tensor En(x) at time tn using equation (5).

6. Solve equation (6) by SOR [6] for instantaneous velocity un(x) under
fixed force fn(x) at time tn.

7. Choose ∆t < dmax/(I − ∇rn(x))un(x), to perform Euler explicit inte-
gration using equation (14).

8. If the Jacobian J = ‖I −∇rn(x)‖ is less than 0.5, regrid the template.

9. n = n + 1, GOTO step 2.

5 Results

The proposed approach is implemented in C and executed at a desktop PC of
P4 2.8GHz with 1GB memory. The parameters are set to m = 1 and α = 100.
The maximum number of iterations is set to 250 and the stopping criteria is set
to 0.01. We have applied the proposed algorithm to three experiments. Four
sets of images are presented for each registration: 1. template image; 2. target
image; 3. transformed image after registration; 4. difference image between
transformed image and target image.

The first experiment is designed to demonstrate that our model can accom-
modate large deformation like fluid algorithm as well as achieving a similar
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Figure 1: qualitative results of experiment 1. From left to right, top to bottom:
(a)template image; (b)target image; (c)transformed image obtained by fluid
model; (d)difference image between (b) and (c); (e)transformed image obtained
by proposed model; (f)difference image between (b) and (f).

displacement map. The test data is a synthetic image with size 64 × 64 pixels
which is similar to the image used by [7]. The results are shown in Figure 1 with
comparison to fluid model. Besides the four sets of images mentioned above, we
include the displacement map as well. It is what we desire that the transformed
image is almost the same as the target image, and the displacement map is
largely curved from a small patch to the whole letter ”C”.

The second experiment is designed to demonstrate that our model can de-
crease the smearing artifacts caused by fluid approach. The test data is a
synthetic image with size 128 × 128 pixels which is similar to the image used
by [12]. The results are shown in Figure 2 with comparison to fluid model.
From the difference images, we can see clearly that the proposed model achieve
a transformed image with sharper edges than the fluid approach. Thus, the
blurring effect introduced by the viscosity term is successfully bounded by the
extra elastic term.

The third experiment is designed to demonstrate that our model can capture
complex transformation in medical images. The test data is an MRI image of
human brain with size 256× 256 pixels. The results are shown in Figure 3. We
can see that the proposed model has successfully registered the template image
towards the target image.

To further assess the quality of the registration in the above experiments,
mean and variance of the squared sum of intensity difference (SSD), and corre-
lation coefficient (CC) have been calculated and are listed in Table 1.
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Figure 2: qualitative results of experiment 2. From left to right, top to bottom:
(a)template image; (b)target image; (c)transformed image obtained by fluid
model; (d)difference image between (b) and (c); (e)transformed image obtained
by proposed model; (f)difference image between (b) and (f).

Figure 3: qualitative results of experiment 3. From left to right, top to bottom:
(a)template image; (b)target image; (c)transformed image obtained by proposed
model; (d)difference image between (b) and (c).
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Experiment 1 Mean(SSD) Var(SSD) CC
No registration 0.103760 0.092994 0.447277

Fluid 0.000271 0.000027 0.998853
Proposed 0.000015 0.000000 0.999958

Experiment 2 Mean(SSD) Var(SSD) CC
No registration 0.046775 0.013727 0.705199

Fluid 0.000154 0.000000 0.999049
Proposed 0.000072 0.000000 0.999545

Experiment 3 Mean(SSD) Var(SSD) CC
No registration 0.054380 0.021933 0.523169

Fluid 0.002417 0.000278 0.977904
Proposed 0.002139 0.000269 0.980353

Table 1: qualitative measures for 3 experiments

6 Conclusions

Based on the fact that mechanical behavior of most tissues turns out to be
viscoelastic, we propose a novel registration technique for medical images using
Maxwell’s theory of linear viscoelasticity. The basic idea is to simulate the
image deformation process as a viscoelastic fluid flow from the template to
the target. The combined viscoelastic model can successfully capture small
deformations caused by elastic behaviors as well as large deformations caused
by fluid behaviors. Also, the blurring effect is decreased in the proposed model
because the viscosity term, which tends to smear images, is bounded by the
extra elastic term. Finally, we demonstrate the performance of our approach
with comparison to fluid model on synthetic and real images. Future work will
be focused on two issues: more efficient numerical algorithms and nonlinear
viscoelastic estimation of image deformations.
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