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Abstract. This paper deals with succinct representations of data types motivated by applications in posting lists for
search engines, in querying XML documents, and in the more general setting (which extends XML) of multi-labeled
trees, where several labels can be assigned to each node of a tree.
To find the set of references corresponding to a set of keywords, one typically intersects the list of references asso-
ciated with each keyword. We view this instead as having a single list of objects [n] = {1, . . . , n} (the references),
each of which has a subset of the labels [σ] = {1, . . . , σ} (the keywords) associated with it. We are able to find
the objects associated with an arbitrary set of keywords in time O(δk lg lg σ) using a data structure requiring only
t(lg σ+o(lg σ)) bits, where δ is the number of steps required by a non-deterministic algorithm to check the answer,
k is the number of keywords in the query, σ is the size of the set from which the keywords are chosen, and t is the
number of associations between references and keywords. The data structure is succinct in that it differs from the
space needed to write down all t occurrences of keywords by only a lower order term.
An XML document is, for our purpose, a labeled rooted tree. We deal primarily with “non-recursive labeled trees”,
where no label occurs more than once on any root to leaf path. We find the set of nodes which path from the root
include a set of keywords in the same time, O(δk lg lg σ), on a representation of the tree using essentially minimum
space, 2n + n(lg σ + o(lg σ)) bits, where n is the number of nodes in the tree. If we permit nodes to have multiple
labels, this space bound becomes 2n + t(lg σ + o(lg σ)) bits, that is the information theoretic lower bound for an
ordinal tree (a node can have an arbitrary number of children ordered from left to right) plus that for the multiple
labeling, where t is the total number of labels assigned.
In proving those results, we consider two data-structures if independant interest: we give an encoding for σ by
n boolean matrices, using optimal space and supporting in time O(lg lg σ) the operators access (the value at the
intersection of a row and a column) rank (how many matches occur in this row to the left of this entry, or how
many are in this column and above), and select (find the r-th match in this row, or in this column); and we give
an encoding for labeled trees of n nodes and σ labels, using optimal space and supporting in time O(lg lg σ) the
labeled based operator labeltree desc(a, x), which finds the first descendant of x labeled a.
Keywords: succinct data-structures, labeled trees, multi-labeled trees, conjunctive queries, intersection problem,
opt-threshold set.
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1 Introduction

We consider succinct data structures motivated by applications in posting lists for search engines, in query-
ing XML documents, and in querying multi-labeled trees (such as file systems), which generalize XML
documents in that several labels can be assigned to each node of the tree. To solve those queries, we con-
sider adaptive algorithms whose performance is expressed as a function of the non-deterministic complexity
of the instance.

Succinct data structures were introduced by Jacobson [22], to encode bit vectors, (unlabeled) trees and
planar graphs in space essentially equal to the information-theoretic lower bound, while supporting operators
on it efficiently. For bit vectors, he defined the following useful operators:

– bin rank(c, p): the number of occurences of character c ∈ {0, 1} before position p.
– bin select(c, i): the position of the ith occurence of character c ∈ {0, 1} in the sequence.

Clark and Munro [10] showed later that those operators could be supported in constant time on a bit vector
of lenght n using only n + o(n) bits. Golynski et al. [19] generalized this problem to alphabets of arbi-
trary size σ, extending the operators to string rank(a, x), the number of occurences of a before position
x, string select(a, r), the position of the r-th occurence of a in the sequence, and added an operator
string access(x), which corresponds to the character at position x of the sequence. They give two differ-
ent encodings which both use n(lg σ + o(lg σ)) bits, and support the operators in the following times:

select access

string rank(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
string select(a, r) O(1) O(lg lg σ)
string access(x) O(lg lg σ) O(1)

We extend the problem to the encoding of sequences of n objects where each object can be associated
with several labels, this association being defined by a binary relation of t pairs from [n]×[σ]. We give two
representations (Th. 1), which use t(lg σ + o(lg σ)) bits each and support the operators extended to binary
relations in the same time than G. et al., and support the orthogonal operators in sligthly larger times.

For unlabeled trees, Jacobson proposed a succinct data structure to store an tree of n nodes, which
supports the standard navigational operations in time O(lg n). Munro and Raman [26] gave the first repre-
sentation that supports in constant time the operators tree parent(x), the parent of x; tree degree(x),
the number of children of x; and tree nbdesc(x), the number of descendants of x. Benoit et al.
gave another tree representation that supports in constant time the operator tree child(i), which
finds the i-child, in addition to the other operators. Geary et al. [18] proposed a structure support-
ing in constant time all the operators cited above, and added to it several operators supported in con-
stant time: tree leveled ancestor(x, i), which provides the ith ancestor of a node x; tree rank(x)
and tree select(r) which provide a bijection between the nodes x of the tree and their pre-order
rank r; tree childrank(x) which provides the rank of a node among the children of its parent; and
tree depth(x) which provides the number of edges separating the root from a node x. All these struc-
tures take 2n + o(n) bits, which is asymptotically equivalent, when n is large, to the lower bound suggested
by information theory.

Geary et al. extended those operators to consider labels associated to the nodes of the tree and to support
them in constant time, but their data-structure for label-based operators on labeled trees uses 2n + n

(

lg σ +
O(σn lg lg lg n/ lg lg n)

)

bits, which is much more than the asymptotic lower bound of 2n + n(lg σ −
o(lg σ)) suggested by information theory when σ is large. Ferragina et al. [17] proposed another structure
which supports in constant time the operator labeltree child(a, x), which finds the first child3 labeled

3 Ferragina et al.’s encoding also supports finding all the children of x labeled a in constant time.
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a of x , but this structure does not support the operators labeltree anc or labeltree desc, and it uses
2n lg σ + O(n) bits, which is almost twice the minimum space required to encode the tree.

We give (see Cor. 1) an encoding for labeled trees using 2n + n(lg σ + o(lg σ)) bits, which is asymp-
totically the minimum space required to encode the labeled tree. It supports operators labeltree parent,
labeltree nbdesc, labeltree desc and labeltree anc in O(lg lg σ) on non-recursive labeled trees,
i.e. labeled trees where no label occurs more than once on any root to leaf path. We also give (see
Th. 3) a second encoding, using the same space but which supports operators labeltree parent,
labeltree nbdesc, labeltree desc and labeltree child in O(lg lg σ) on any labeled tree.

We extend the concept to multi-labeled trees, where each node can have more than one label. We com-
bine our results on multi-labeled sequences and labeled trees to represent and access multi-labeled trees: the
two resulting representations use 2n + t(lg σ + o(lg σ)) bits (see Cor. 2 and 3) and support the label-based
operators in the same time as in labeled trees, where t is the total number of labels assigned.

Adaptive algorithms are algorithms which, among instances of the same size, perform better on “easier”
instances, where the easiness has to be defined for each problem. Kirkpatrik and Seidel [23] were the first to
point the interest of such algorithms, by giving an algorithm to compute the convex-hull of a set of points,
whose complexity is expressed as a function of the size of the convex-hull rather than of the size of the
set. Adaptive algorithms for sorting were studied as functions of many distinct measures of difficulty, which
Estivill and Castro summarized in a survey [16].

Closer to our applications, Demaine et al. [14] studied adaptive algorithms for the union, intersection
and difference of sets represented by sorted arrays, motivated by applications in posting lists for search en-
gines. Their measure of difficulty is defined as the cost of encoding a certificate of the result of the instance,
and they proved that their algorithms are optimal in the comparison model with respect to this measure of
difficulty. Barbay and Kenyon [5] defined another measure of difficulty for the intersection problem, de-
noted δ, based on the number of steps required by a non-deterministic algorithm to check the answer. They
proved the optimality of their deterministic algorithm with respect to this measure of difficulty, as compared
to randomized algorithms in the comparison model. Barbay [4] proved that randomized algorithms perform
better than deterministic ones on the intersection problem, by providing a finer measure of difficulty, de-
noted ρ, such that any randomized algorithm optimal for ρ is optimal for δ, but no deterministic algorithm
could be optimal for δ.

We show that the algorithm from Barbay and Kenyon [5] can be adapted to use our data-structure for
binary relations to answer a query composed of k labels from [σ] in time O(δk lg lg σ), with the same
definition of δ (Th. 4). Denoting by t the number of relations associated with any label of the query, this
corresponds to an improvement in complexity from O(δk lg(t/δk)) to O(δk lg lg σ), which is tremendous
on most instances.

We also adapt those results to the search in multi-labeled trees. We define the answer to a Path query
Q, constituted of k labels, as the set of nodes x for which the trace of labels in a rooted path contains the
k labels of Q. For this type of queries, only the first occurence of a label on a branch matters, hence a
multi-labeled tree can be encoded as a non-recursive multi-labeled tree without changing the result of the
query, by removing the redundant labels and removing the nodes left without labels. We extend the adaptive
algorithm from Barbay and Kenyon [5] to solve a Path queries on non-recursive multi-labeled trees with the
same time performance (Th. 5) than queries on binary relations.

The paper is organized as follows. In the next Section, we present our succinct data structures for the
three objects considered: binary relations in Section 2.1, labeled trees in Section 2.2 and multi-labeled trees
in Section 2.3. The encoding of binary relations is independant from the encoding of labeled trees, and
both are combined to encode multi-labeled trees. We describe in Section 3 the algorithms using those data
structures to search the objects efficiently: the adaptive algorithm for the intersection using our encoding of
binary relations in Section 3.1, and our new adaptive algorithm for searching non-recursive multi-labeled
trees in Section 3.2. We conclude in Section 4 with some perspectives for future work.
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2 Succinct Indexes

2.1 Binary relations

Consider a sequence of n objects, an ordered set of σ labels and r pairs from [n] × [σ], forming a binary
relation R.

In the context where objects are references to web-pages, and labels are keywords associated to the
web-pages, such relations are used as an index to answer conjunctive queries through the intersection of sets
of references [4, 5, 14, 15]. Such indexes support the operators string rank(a, x), string select(a, r)
and string access(x)4, and are traditionally encoded as a set of postings lists, which associates a sorted
list of objects to each label. This encoding takes t lg n + σ lg t bits, and supports string select and
string access in constant time, but string rank requires a time logarithmic in the number of objects
associated to label a.

Each posting list can also be represented by a binary string of lenght n, and encoded using Clark and
Munro’s encoding to support the operators string rank and string select on it in constant time, but
this representation uses σn+o(σn) bits, which is too much in practice, especially when the number of pairs
t is much smaller than σn.

We propose a succinct encoding that takes asymptotic minimal space and supports operators on both
dimension of the binary relation. Let a be a label from [σ], x be an object from [n], and r be an integer. We
define the following operators:
- label rank(a, x), the number of objects labeled a preceding x;
- label select(a, r), the r-th object labeled a if any, or ∞ otherwise;
- object rank(x, a), the number of labels associated with object x preceding label a;
- object select(a, r), the r-th label associate with object x if any, or ∞ otherwise;
- table access(x, a), check whether object x is associated with label a.

The operators label rank and label select are mere extenstions of the operators string rank and
string select, and are supported in the same time, the only difference with the work of G. et al. being
that each object can be associated to several labels. The new operators are object rank, object select,
and table access: their meaning is specific to binary relations, and their implementation require different
techniques than label rank and label select.

Theorem 1. Consider a set of objects [n] and an object x, a set of labels [σ] and a label a, an integer r and
a binary relation formed by t pairs from [n] × [σ]. There are two encodings, each using t(lg σ + o(lg σ))
bits that support the defined operators with the following run-times:

select access

label rank(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
label select(a, r) O(1) O(lg lg σ)
object rank(x, a) O

(

(lg lg σ)2
)

O(lg lg σ)
object select(x, r) O(lg lg σ) O(1)
table access(a, x) O(lg lg σ) O(lg lg σ)

Proof (sketch). First, we reduce the problem to the encoding of matrices of size σ × σ using the same tech-
nique than G. et al [19]. This reduce the problem to support operators bin rank and bin select on both
dimensions of the binary relation, which we call row select(i, j), column select(i, j), row rank(i, j)
and column rank(i, j).

4 As defined in the Introduction.
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We represent a boolean matrix M of size σ × σ by two strings: COLUMNS, of alphabet [σ] and of lenght
t, such that the k-th symbol of COLUMNS corresponds to the column index of the k-th pair in the row-
major order5 traversal of M ; and ROWS, a binary string of lenght σ + t, such that the k-th one of ROWS
signals which symbol of COLUMNS corresponds to the last pair of its row. For instance, the strings COLUMNS=
“1, 3, 2, 3, 1, 2, 3” and ROWS= “0, 0, 1, 0, 0, 1, 0, 0, 1” would correspond to the binary relation defined by the
pairs {(1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

The operators column select(i, j) and column rank(i, j) are based on searching for occurences of
symbol j in the string COLUMNS, which is done through the string rank and string select operators
defined by G. et al [19]. The operator row select(i, j) corresponds to a string select operator on a
substring of COLUMNS. The operator row rank(i, j) is the most complicated to support. It is reduced to a
binary search over lg σ elements, where each comparison costs lg lg σ. As such a binary search performs
lg lg σ comparisons, the operator is supported in time O

(

(lg lg σ)2
)

. The operator table access(i, j) is
reduced to the difference between row rank(i, j) and row rank(i, j+1), or equivalently to the difference
between column rank(i, j) and column rank(i+1, j), hence its uniform cost in both encodings. ut

The operators label nb(a), the number of objects with a label a; and object nb(x), the number of
labels associated to object x; correspond to particular cases of the data-structure from G. et al: they are
supported in constant time.

The space used by the above data structure is optimal (asymptotically equal to the information theoretical
minimum) under the assumption that the average number of ones per column is quite small, namely if
r/n = σo(1): It uses t(lg σ + o(lg σ)) bits when the lower bound suggested by information theory is

lg

(

nσ

t

)

= t
(

lg(nσ) − lg t + O(1)
)

= t
(

lg σ − o(lg σ)
)

.

2.2 Labeled Trees

Consider a set of σ labels, and an ordinal tree of n nodes such that each node is assigned a label: this is a
labeled tree [17, 18]. Let a be a label from [σ], and x be a node from [n]. We define the following operators
on labeled trees:
- labeltree desc(a, x), the first descendant of x labeled a in some order, or ∞ if there is none;
- labeltree nbdesc(a, x), the number of descendants of x associated to label a;
- labeltree anc(a, x), the first ancestor of x labeled a in some order, or ∞ if there is none;
- labeltree child(a, x), the first child of x labeled a in the natural order.
- labeltree parent(a, x), the parent of x labeled a, or ∞ if there is none;

The structure proposed by Geary et al. [18] partitions the tree in smaller trees, and supports both the
navigation operators and the label-based operators in constant time. But as small trees on large alphabets
are taking a lot of space, the whole structure requires 2n + n

(

lg σ + O(σ lg lg n/ lg n)
)

bits, which is much
more than the lower bound of 2n + n(lg σ − o(lg σ)) suggested by information theory.

The structure proposed by Ferragina et al. [17] is based on a different concept: it codes the struc-
ture of the tree and of the labels separately. Their structure supports in constant time the operators
labeltree parent, and labeltree child, but it does not support the operators labeltree anc or
labeltree desc, and it uses 2n lg σ + O(n) bits, which is twice more than what is necessary.

As Ferragina et al., we encode the structure of the tree separately from the labels, but we encode it as
the trace of the pre-order traversal of the tree, and we encode the structure of the tree using Geary et al.’s
encoding for unlabeled trees.

5 The Row-Major order lists the elements from the first row, then from the second one, and so on.
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Theorem 2. Consider a labeled tree of n nodes and σ labels. Let a be a label from [σ], x be a node from
[n], d be the depth of x, na be the number of descendants of x which are labeled a, and r be the number of
pre-order predecessors of x which are labeled a. There are two encodings, each using 2n+n(lg σ+o(lg σ))
bits, which supports:
- the non-labeled operators supported by Geary et al.’s data-structure in constant time;
- the labeled operators of Theorem 1 on the pre-order traversal of the labels of the tree;
- the following operators, in the time indicated below, for the pre-order rank:

select access

labeltree parent(a, x) O(lg lg σ) O(1)
labeltree desc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree nbdesc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree child(a, x) O(na lg lg σ) O(lg lg σ lg lg lg σ+na)
labeltree anc(a, x) O(min(lg lg σ+r, d lg lg σ)) O(min(r lg lg σ, lg lg σ lg lg lg σ+d))

Proof (sketch). We represent a labeled tree of n nodes and σ labels in two parts: a string LABELS encoding
the labels of the noded listed in pre-order (using our structure from Theorem 1 or the encoding of G. et
al. [19]), and an encoding TREE encoding the structure of the tree (using the encoding from Geary et al. [18]).
In addition to the usual navigation operators, the operators on TREE provide a bijection between its nodes
and their pre-order rank, i.e. the position of their label in LABELS.

The operator labeltree parent(a, x) corresponds trivially to a test of the label of the parent. The
operators labeltree desc(a, x) and labeltree nbdesc(a, x) are just using the fact that the labels of
all descendants of x are consecutive in the string encoding the labels of the tree. The first descendant of x
corresponds to the first symbol a in LABELS after the position corresponding to x; and the number of such
descendants corresponds to the number of symbols a in a substring of LABELS, both easily obtained using
the operators string rank and string select on LABELS. The operators labeltree child(a, x) and
labeltree anc(a, x) both correspond to some naive algorithms listing all children or all descendants of
label a or all ancestors of x labeled a: they are not supported efficiently. ut

The operator labeltree anc is efficiently supported in the particular case where for each label a, each
node has at most one ancestor associated with a, as then the labeled ancestor of a node is unique and can be
found efficiently.

Definition 1. A Non-Recursive Labeled Tree is a labeled tree where for each label a and each leaf x of the
tree, x has at most one ancestor of label a.

Corollary 1. Consider a non-recursive labeled tree of n nodes and σ labels. Let be a a label from [σ], and
x a node from [n]. The encoding described in Theorem 2 supports labeltree anc(a, x) in time O(lg lg σ)
for the encoding select and in time O(lg lg σ lg lg lg σ) for the encoding access.

Proof (sketch). The last node y labeled a preceding x in the pre-order is the only possile candidate for
ancestor of x that is labeled a: any node that comes in between y and x in the pre-order is a descendant of
y, and can be labeled a if and only only x and y have no common ancestor labeled a.

We can find y in time O(lg lg σ) using the operator string rank, and check in constant time whether it
is an ancestor of x, using the tree depth and tree leveled ancestor operators from Geary et al.. ut

This restriction to non-recursive labeled trees is more practical than it looks: Zhang et al. [31] measured
the number of nodes sharing a label and a branch in several XML benchmarks and found that it was very low.
In particular, for any label a, the documents from DBLP, XMark10 and XMark100 have at most two nodes
labeled a in any rooted path. All based-operators are supported in the times described in Theorem 2 and
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Corollary 1 on those documents, even though they are not strictly non-recursive labeled trees: it is sufficient
to double the size of the alphabet and the time needed by the operators.

In some application it might be necessary to support both labeltree child and labeltree desc

operators. The order in which the labels are stored, which keeps consecutive the descendants of a node and
allows efficient labeltree desc operators in the structure of Theorem 2. Ferragina et al. store the labels in
an order which keeps consecutive the children of a node, to allow efficient labeled labeltree child op-
erators, but as this order does not keep the descendants consecutive, they can not support labeltree desc

operators.
Listing the labels of the tree in DFUDS6 [6] order, the labels of a subtree of root x are encoded as one

isolated character, corresponding to the label of x, and one substring which lists the children of x followed
by its other descendants. Replacing the pre-order by the DFUDS order in the structure of the Theorem 2
yields better results for the complexity of the operator labeltree child:

Theorem 3. Consider a labeled tree of n nodes and σ labels. Let a be a label from [σ], x be a node from [n],
and d be the depth of x. There are two encodings, each using 2n + n(lg σ + o(lg σ)) bits, which supports:
- the non-labeled operators supported by Benoit et al. [6]’s data-structure in constant time;
- the labeled operators of Theorem 1 on the DFUDS traversal of the labels of the tree;
- the following operators in the time indicated below, for the DFUDS order:

select access

labeltree parent(a, x) O(lg lg σ) O(1)
labeltree nbchildren(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree child(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree nbdesc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree desc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree anc(a, x) O(d lg lg σ) O(d)

Proof (sketch). As before, the operator labeltree parent(a, x) is trivial. The operators
labeltree nbdesc(a, x) and labeltree desc(a, x) are solved as before, because the labels of all
the descendants are consecutive in the string encoding the labels. The operator labeltree child(a, x) is
solved in a similar way to labeltree desc(a, x) because the labels of the children are also consecutive
in the string. But the operator labeltree anc(a, x) cannot be computed efficiently, even in the particular
case of non-recursive labeled trees: it is computed by scanning all the ancestors of x. ut

The information theoretic lower bound for storing a labeled tree on n nodes with σ labels is asymptoti-
cally 2n+n(lg σ−o(lg σ)), hence our encodings, which use 2n+n(lg σ+o(lg σ)) bits, are asymptotically
optimal when σ is large.

2.3 Multi-Labeled Trees

File systems can be seen as tree-structured documents, but the XML [30] model is too restrictive to represent
them, as several keywords can be associated to each folder and file. We consider an extension of labeled trees
to represent and search efficiently the indexes of file systems.

Definition 2 (multi-labeled trees and non-recursive multi-labeled trees). Consider an ordinal tree of n
nodes, a set of σ labels, and a set of t pairs from [n] × [σ]: we call it a multi-labeled tree, and we extend
to it the operators on labeled trees. As for labeled trees, we study the particular case where for each label
a and each leaf x of the tree, x has at most one ancestor of label a: we call such a multi-labeled tree a
non-recursive multi-labeled tree.

6 For Depth First Unary Degree Sequence. Siblings are stored consecutively, followed recursively by their subtrees in left to right
order.
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We will see in Section 3.2 that the restriction from multi-labeled trees to non-recursive multi-labeled
trees is not a problem for pratical queries on file-systems. The results on binary relations from Section 2.1
combine very easily with the results on labeled trees from Section 2.2 to give efficient encodings and oper-
ators on non-recursive multi-labeled trees:

Corollary 2. Consider a non-recursive multi-labeled tree of n nodes and σ labels, associated in t pairs. Let
a be a label from [σ], x be a node from [n], and na be the number of descendants of x which are labeled a.
There are two encodings, each using 2n + t(lg σ + o(lg σ)) bits, which supports the same operators than
the encodings of Theorem 2 and Corrolary 1, and in the same time:
- the non-labeled operators supported by Geary et al.’s data-structure in constant time;
- the labeled operators of Theorem 1 on the pre-order traversal of the labels of the tree;
- the following operators in the time indicated below:

select access

labeltree parent(a, x) O(lg lg σ) O(1)
labeltree desc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree nbdesc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree anc(a, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
labeltree child(a, x) O(na lg lg σ) O(lg lg σ lg lg lg σ+na)

Proof. The encoding for labeled trees described in Theorem 2 and Corrolary 1 supports the same operators
using only the operators string rank, string select and string access, which are directly extended
to the operators label rank, label select and table access, and supported in the same times. The
operators supported on labeled trees are extended to multi-labeled trees by replacing each operator defined
on strings by its equivalent on binary relations. ut

Corollary 3. Consider a multi-labeled tree of n nodes and σ labels, associated in t pairs. Let a be a label
from [σ], x and y be some nodes from [n], and d be the depth of x. There are two encodings, each using
2n+t(lg σ+o(lg σ)) bits, which supports the same operators, in the same time, than described in Theorem 3.

As in Section 2.1, the space used by our structure is optimal under the assumption r/n = σo(1).

3 Applications

3.1 Efficient Posting Lists

Several algorithms have been proposed for computing the union [9, 12, 13, 14, 20, 21, 24], intersection [3, 4,
5, 14, 15] or difference [14] of ordered sets. These algorithms assume that the sets are represented as sorted
arrays and perform searches on arrays, such as binary search, doubling search, or interpolation search, with a
worst case complexity logarithmic in the size of the array. Using our structure for binary relations described
in Section 2.1 improves the performance of those algorithms:

Theorem 4. Consider a set of objects [n], a set of labels [σ], associated in r pairs from [n] × [σ], and a
set Q of k from [σ]. There is a deterministic algorithm wolving the conjunctive query formed by Q in time
O(δk lg lg σ), where δ is the minimum number of operations performed by any non-deterministic algorithm
to check the result of Q.

Proof (sketch). Barbay and Kenyon proposed a deterministic algorithm for the conjunctive query that uses
O(δσ) doubling searches [5, Th. 3.3]. We replace the doubling search by label rank operator, and the
result follows. ut

As the algorithm using doubling searches runs in time O(kδ lg(t/δk)), the improvement factor is
lg(n/kδ)/ lg lg σ, which is very large when n is much larger than σ.
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3.2 File System Search

We already argued that the XML model was ill-adapted for indexing file-systems, and we introduced multi-
labeled trees as a better alternative. The search in file-systems (and hence in multi-labeled trees) is an impor-
tant application, and the tools [1, 2, 8, 25] used to search in XML documents can be extended to multi-labeled
trees. But the structural queries [7, 11] on XML documents are not adequate for the search in file systems,
as their structure is too heavy for the user and as some natural queries are very hard to express.

We introduce a new type of query to search in labeled and multi-labeled trees, which corresponds to one
of the most natural search query that one can perform in a file-system.

Definition 3 (Path Query). Given a non-recursive multi-labeled tree and a set Q of k labels, find the set of
nodes x, such that:
1. the rooted path to x contains nodes matching all the labels from Q;
2. and this path contains no node satisfying (1) other than x.

The query has a simple syntax, however its description in XPath is very long, as it must describe all
possible orders of labels. For this type of queries, only the first occurence of a label on a branch matters: a
multi-labeled tree can be encoded as a non-recursive multi-labeled tree without changing the result of the
query, by removing the redundant labels and removing the nodes left without labels.

Such queries are motivated by the search in file systems, where the result corresponds to folders or files
whose path match the set of keywords. Multi-labeled trees associate several keywords to each folder or
file (such as the words and extension composing its name) in an index of the file-system. Using techniques
similar to those used for the intersection problem, we prove the following results:

Theorem 5. Consider a non-recursive multi-labeled tree of n objects and σ labels, associated in t pairs.
Given a path query composed of k labels, there is an algorithm solving it which performs O(δk) opera-
tions in time O(δk lg lg σ), where δ is the minimum number of operation performed by a non-deterministic
algorithm to solve the query.

Proof (sketch). Consider the following algorithm:

Set x to the first node labeled a1; Initialize R to the empty set, YES and s to one;
while x belongs to the tree do

Set s to the next label in cyclic order;
if x has an ancestor labeled a then

Increment YES;
else if x has a descendant labeled a then

Set x to this descendant, and increment YES;
else

Set x to the next node labeld a in pre-order, and reset YES to one;
end if
if YES = k then

Add x to R;
Set x to the next node labeld a in pre-order, and reset YES to one;

end if
end while
return R;

This algorithm cycles through the labels indexed by s, maintains in x the lowest node of the current
potential match, counts in YES how many labels are currently matched, and eventually adds x to the list R
when YES = k.

The pre-order rank of successive nodes pointed to by x strictly increases at each update, so that
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– at any time, all pre-order predecessors of x have been considered and added to L if necessary;
– every k iterations of the loop the algorithm considered at least as many nodes than a non-deterministic

algorithm would have in a single operation.

When the pre-order rank of x reaches its final value, all nodes have been considered (hence the cor-
rectness), and the algorithm performed 2δk operations where a non-deterministic algorithm would have
performed at least δ (hence the complexity result). ut

Unless the operators defined in Section 2.1 can be encoded more efficiently, we prove that this result is
optimal for deterministic algorithms:

Lemma 1. Consider any deterministic algorithm Alg solving path queries, and δ ≥ 1, k ≥ 2, n ≥
δ(2k+1)+1, σ ≥ 2k+1, and t ≥ n. There is a random distribution D on non-recursive multi-labeled trees
of O(n) objects and O(σ) labels, associated in O(t) pairs, and a path query composed of k labels which can
be solved by a non-deterministic algorithm in at most O(δ) operations on any non-recursive multi-labeled
tree from D, such that Alg performs O(δk lg lg σ) operations on average on D.

Proof (sketch). We define a distribution D on non-recursive multi-labeled trees such as each tree has O(n),
O(σ), associated in O(t) pairs in δ branches of 2k +1 nodes; and such that any non-deterministic algorithm
can show in δ operations that the query composed of labels {1, . . . , k} has no match. As no deterministic
algorithm can check that this query has no match in less than δk operations on average, this proves our lower
bound. ut

The result on deterministic algorithms from Lemma 1 is combines trivially with the Yao-von Neumann
principle [27, 28, 29] to prove a lower bound on the complexity of any randomized algorithms:

Theorem 6. Consider any randomized algorithm RandAlg solving path queries, and δ ≥ 1, n ≥
δ(2k+1) + 1, k ≥ 2, σ ≥ 2k + 1, and t ≥ n. There is a non-recursive multi-labeled tree of O(n) ob-
jects and O(σ) labels, associated in O(t) pairs, and a path query composed of k labels which can be solved
by a non-deterministic algorithm in at most O(δ) operations, such that RandAlg performs on average
O(δk lg lg σ) operations.

Proof. This is a simple application of Lemma 1 and of the Yao-von Neumann principle [27, 28, 29]:
– Lemma 1 gives a distribution on which any deterministic algorithm performs poorly on average.
– The Yao-von Neumann principle permits to deduce from this distribution a lower bound on the worst

case complexity of randomized algorithms. ut

The proof of those results is similar to their counterpart on the intersection problem [5]. In particular,
Theorems 5 and 6 show that a deterministic algorithm performs as well as any randomized algorithm for
Path queries.

4 Conclusion

In this paper, we consider succinct data steructures for binary relations, labeled trees and multi-labeled
trees. We propose two encodings for each, supporting efficiently the basic operators on it, and we use those
operators to efficiently solve conjunctive queries on binary relations and Path queries on labeled and multi-
labeled treees.

Given a sequence of n objects, a set of σ labels, associated f t pairs from [n] × [σ], we give two rep-
resentations using asymptotically optimal space and efficiently supporting in different time trade-offs the
operators label rank(a, x), label select(a, r), label access(x), label nb(x), object rank(x, a),
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object select(x, r), object access(a), and object nb(a), where x is an object, a is a label, and r is
an integer.

We give two new representations for labeled trees, which we combine with multi-labeled sequences
to represent multi-labeled trees, each being defined as an ordinal tree of n nodes, a set of σ labels, and
t pairs from [n] × [σ]: a labeled tree is a particular case of multi-labeled tree and our results apply to
it with t=n. Both our representations for multi-labeled trees use 2n + t(lg σ + o(lg σ)) bits and support
efficiently the operators labeltree parent(a, x), labeltree nbdesc(a, x), labeltree desc(a, x). As
they do not support the operators labeltree anc(a, x) and labeltree child(a, x) efficiently, we show
that the operator labeltree anc(a, x) is supported in O(lg lg σ) in the special case of “Non-Recursive
Multi-Labeled Trees”, where no node has two ancestors with the same label. We also define two encodings
based on a different technique, which use the same space, support efficiently labeltree child(a, x) in
addition to the other operators, but can not support labeltree anc(a, x) efficiently, even on non-recursive
multi-labeled trees.

We describe how the complexity of some intersection algorithm can be improved by a huge factor using
our data-structure to replace traditional sorted arrays. We describe how the concept of non-recursive multi-
labeled treefits the indexing and searching in file systems through unstructured queries, and we give an
adaptive algorithm solving those queries in time O(δk lg lg σ) using our first encoding for a non-recursive
multi-labeled tree of n nodes and σ labels, associated in t pairs.

The structures defined in [19] allowed us to efficiently extend succinct encodings for unlabeled trees
to the multi-labeled case, so it is only natural to consider applying the same techniques to extend other
unlabeled structures, such as graphs or relational data of dimension more than two, to labeled versions. The
bounds can, undoubtly, be extended to be phrased in terms of entropy. While our structures use an amount
of space asymptotically optimal, the time improvements they provided are significant, and allow us to solve
queries in time much closer to a constant factor of the time needed by a non-deterministic algorithm. It
would be nice to consider the lower bounds associated with queries for structures working on limited space.
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