
Inferring a Serialization Order for Distributed Transactions∗

Khuzaima Daudjee and Kenneth Salem
School of Computer Science

University of Waterloo
Waterloo, Canada

{kdaudjee, kmsalem}@db.uwaterloo.ca

Abstract

Data partitioning is often used to scale-up a database
system. In a centralized database system, the serialization
order of commited update transactions can be inferred from
the database log. To achieve this in a shared-nothing dis-
tributed database, the serialization order of update trans-
actions must be inferred from multiple database logs. We
describe a technique to generate a single stream of updates
from logs of multiple database systems. This single stream
represents a valid serialization order of update transactions
at the sites over which the database is partitioned.

1. Introduction

In a centralized database system that guarantees com-
mitment ordering 1, the serialization order of transactions
that have committed at the single site can be inferred from
the database log. This can be achieved by using the log se-
quence numbers of transactions’ commit records. That is,
seq(T1) < seq(T2) if and only if T1 precedes T2 in the
local serialization order. This information can then be ex-
tracted from the database log using a standard mechanism
such as a log sniffer [5]. Since update transactions are pro-
cessed at the single site, this makes it relatively easy to de-
termine a serialization order for update transactions.

Data partitioning is often used to improve scalability by
distributing a database over a number of sites in a shared-
nothing architecture. Each site in this cluster consists of an
autonomous database system with a local concurrency con-
troller which is rigorous [2] and ensures commitment or-
dering. Rigorousness [2] is enforced by well-known con-
currency control algorithms such as strict two phase lock-
ing in which no locks are released until commit.

∗ University of Waterloo School of Computer Science Technical Report
CS-2005-34

1 Commitment ordering [10] ensures that transactions can be serialized
in the order in which they commit.

Consider a distributed database system in which each
site’s local concurrency control is rigorous and transactions
are synchronized using a two-phase (2PC) commit proto-
col. Our choice of 2PC stems from it being the most widely
used protocol for coordinating transactions in distributed
database systems [1]. Although serializability is guaranteed
at the cluster by the sites’ local concurrency controls and
the 2PC protocol, the issue is how to determine the re-
sulting serialization order. The contribution of this paper
is a technique that determines a serialization order for dis-
tributed update transactions that have executed in a parti-
tioned database over multiple sites. Our technique merges
log entries of each site into a single stream that represents a
valid serialization order for update transactions.

1.1. System Model

The database is partitioned over one or more sites. No
restrictions are placed on how the database is partitioned.
Transactions execute at the sites using a 2PC protocol
[4, 7, 9]. Each transaction executes at one or more sites. One
of these sites acts as the coordinator site for the transaction;
other sites are participant sites. Different transactions may
have different coordinating sites. Each site is autonomous
and maintains its own database log and recovery informa-
tion about its local transactions.

In the 2PC protocol, the coordinator generates a prepare
message, which is sent to all participant sites involved in the
distributed transaction. The participant sites generate and
respond with an acknowledgement message, which we shall
call prepare-ack. After acknowledgement messages are re-
ceived from all participant sites, the coordinator commits
and generates a coord-commit message that is sent to all par-
ticipants. Each participant then either commits, generating
a commit message, or aborts the transaction. Since the 2PC
protocol does not commit a transaction until all read/write
operations of the transaction have executed, and each local
concurrency control is rigorous, the cluster of sites guaran-
tees 1SR [2].



Each database log contains update, commit and abort
records. Each transaction update log record describes an up-
date executed by the corresponding update transaction. Both
update and commit log records of an update transaction con-
tain the transaction’s global transaction id (tid). If a commit
log record is that of a transaction’s coordinator (a coord-
commit record), it also contains the list of sites that are par-
ticipating in the transaction.

Update information can be extracted from the database
logs using a standard mechanism such as a log sniffer [5].
The updates from each log are merged into a single stream
using the algorithm described in Section 1.3.

1.2. Timestamps

In this section, we describe the use of Lamport times-
tamps to capture causal relationships between updates at
multiple sites. These timestamps, together with the up-
dates committed by transactions, are entered into each site’s
database log. In the next section, we describe an algorithm
that uses these timestamps to merge the updates from the
database logs of the sites.

Each site maintains a Lamport clock [6], which is sim-
ply a monotonically increasing integer counter. A Lamport
timestamp is the value of a site’s Lamport clock at some par-
ticular time. When a 2PC participant generates a prepare-
ack message, it increments its clock, and piggybacks the
resulting timestamp onto the message. When the coordina-
tor has received all of the prepare-ack messages, it sets its
Lamport clock to the maximum of its current value and the
values of the timestamps attached to the prepare-ack mes-
sages, plus one. Assuming that the transaction commits,
this value becomes the transaction’s coord-commit times-
tamp, and it is logged along with the transaction’s com-
mit record at the coordinator. The coordinator also piggy-
backs the coord-commit timestamp onto the commit mes-
sages it sends to the participants. When a participant re-
ceives a commit message, it sets its Lamport clock to the
maximum of its current value and the coord-commit times-
tamp, plus one. The resulting timestamp is also logged with
the commit record at the participant. A simple example of
message exchange using 2PC and the logging of records is
shown in Figure 1.

1.3. Algorithm

In this section, we describe our algorithm, which merges
database log entries of sites into a single stream that repre-
sents a valid global serialization order for update transac-
tions.

The log merging algorithm is executed by a log merger
process, which runs at one of the sites. The algorithm reads
update and commit records from sites’ database logs in a

LC: 1

LC: 3

SITE s1 SITE s2

log: update(T1)log: update(T1)

participants={s1,s2}
ts(T1)=2

log: coord−commit(T1), 

log: commit(T1)

ts(T1)=3

Lamport Clock (LC): 1

LC: 2 prepare−ack(T1), LC=1

commit(T1), LC=2

LC: 0

Figure 1. 2PC Message Exchange

round-robin fashion and writes this information to records
in a list called the record list, or r-list2, at the log merger
site.

There is one r-list record per transaction. Each record
in the r-list is uniquely identified by a global transaction
id (tid) and stores information from all commit and update
records for that transaction from all sites’ database logs.
Each r-list record holds the minimum transaction times-
tamp, which is read from the transaction’s coord-commit
record. The r-list record also holds the site id of each log
record read, and the participant list of the coord-commit
record. Lastly, the updates of each update record with the
same tid are kept in the r-list record.

The log merger visits the database sites in a round-robin
fashion. Pseudocode for the actions of the log merger when
it visits a site s is shown in Algorithm 1. The log merger
can choose any size for the batch of records to read at site s

since it does not matter for the correctness of the algorithm
(though it may impact the rate at which records are output).
A site can be skipped by the log merger if that site does not
have any log records available to be read.

Step 14 ensures that a transaction’s r-list record will ulti-
mately contain that transaction’s coord-commit timestamp,
which is always the smallest timestamp from among all
commit records of that transaction.

Let ts(T s

i
) be the commit timestamp of the subtransac-

tion of Ti running at site s. Let ts′(T s

i
) be the prepare-ack

2 All fields of a newly created r-list record are initialized to null.



Algorithm 1 Merging of Update Streams

1 read batch of log records from head of log site s

2 for each record r in the batch
3 do let t be r-list entry for which t.tid = r.tid
4 if no such t

5 then /* create and initialize */
6 create t in r-list
7 t.tid = r.tid
8 t.ts = ∞
9 t.sites = ∅

10 t.participants = ∅
11 t.updates = ∅
12 if r is a coord-commit record
13 then t.participants = r.participants
14 t.ts = r.ts
15 if r is a coord-commit record or commit record
16 then t.sites = t.sites ∪ s

17 if r is an update record
18 then t.updates = t.updates ∪ r.updates
19 for each t in r-list in ascending order of t.ts
20 do
21 if t.sites = t.participants /*t is complete */
22 then output t

23 else break /* exit loop */

timestamp of Ti’s subtransaction at site s.3 Let ts(Ti) be
the timestamp of transaction Ti, which is equal to the com-
mit timestamp of Ti’s coordinating subtransaction. From
the operation of the two phase commit protocol, we can
establish the following properties of timestamps. First, be-
cause of timestamps piggybacked on prepare-ack messages,
we have:

Property 1 For all sites s at which Ti runs, ts′(T s

i
) ≤

ts(Ti).

Second, because of the timestamps that are piggybacked on
commit messages, we have:

Property 2 For all sites s at which Ti runs, ts(Ti) ≤
ts(T s

i
).

The transaction serialization graph is consistent with the
transaction timestamps. This is established by the follow-
ing Lemma.

Lemma 1 If T1 conflicts with and precedes T2, then
ts(T1) < ts(T2).

Proof: T1 and T2 must have conflicting subtransactions at
at least one site, since they conflict. Consider any such site,
and call it s. There are four cases to consider:

3 For notational convenience, we define ts
′(T s

i
) to be equal to ts(T s

i
)

when s is the site of Ti’s coordinating subtransaction, which does not
have its own prepare-ack timestamp.

Case 1: The coordinators of T1 and T2 run at site s. Since
T1 conflicts with and precedes T2, T s

1
must be serialized

before T s

2
. Since the local concurrency control at site s en-

sures commitment ordering, T s

1
commits before T s

2
. Since

the timestamping protocol increments timestamps on each
commit operation, ts(T s

1
) < ts(T s

2
) and thus ts(T1) <

ts(T2).
Case 2: T1’s coordinator runs at site s but T2’s does not.
Since T1 conflicts with and precedes T2, and the local con-
currency control at site s is rigorous, ts(T s

1
) < ts′(T s

2
).

From Property 1, ts′(T s

2
) ≤ ts(T2). Because ts(T1) =

ts(T s

1
), this gives ts(T1) < ts(T2).

Case 3: T2’s coordinator runs at site s but T1’s does not.
Since T1 conflicts with and precedes T2 and the local con-
currency control at site s ensures commitment ordering,
ts(T s

1
) < ts(T s

2
). From Property 2, ts(Ti) ≤ ts(T s

i
). Since

ts(T2) = ts(T s

2
), we have ts(T1) < ts(T2).

Case 4: Neither transaction’s coordinator runs at site s.
Since T1 conflicts with and precedes T2, and the local con-
currency control at site s is rigorous, ts(T s

1
) < ts′(T s

2
).

Properties 1 and 2 give ts(T1) ≤ ts(T s

1
) < ts′(T s

2
) ≤

ts(T2). 2

Theorem 1 The log merging algorithm outputs transaction
(r-list) records in a valid serialization order.

Proof: It is sufficient to show that for every pair of transac-
tions T1 and T2, if T1 conflicts with and precedes T2, then
T1 is propagated before T2. Suppose that this is false, so
that there exists at least one such transaction pair for which
T2 is propagated first. Let t̂s(Ti) represent the timestamp of
transaction Ti as recorded in the log merger’s r-list record
for Ti. According to the log merging algorithm, T2 is not
propagated until it is complete. Since T2 is complete, Prop-
erty 2 and the fact that the log merger records the minimum
commit timestamp for each transaction in its r-list imply
that t̂s(T2) = ts(T2) when T2 is propagated. Furthermore,
if T2 is propagated first, the log merging algorithm demands
that either T1 does not exist in the r-list when T2 is propa-
gated, or it exists in the r-list with t̂s(T1) > ts(T2). We will
show that these conditions cannot occur.
Since T1 conflicts with and precedes T2, there exists at
least one site s at which T s

1
conflicts with and precedes

T s

2
. Since the local concurrency control at site s is rigor-

ous and ensures commitment ordering, ts(T s

1
) < ts′(T s

2
) <

ts(T s

2
). Because of Property 1, ts′(T s

2
) < ts(T2), and since

ts(T2) = t̂s(T2), we have ts(T s

1
) < t̂s(T2). Since T2

is complete, the log merger must have read T2’s commit
record from site s. Since T1’s commit record precedes T2’s
at site s, the log merger must have also read T1’s commit
record at s, and thus T1 must appear in the log merger’s r-
list. Furthermore, since the log merger tracks the minimum
timestamp it has observed for each transaction, t̂s(T1) ≤
ts(T s

1
). Thus, we have t̂s(T1) ≤ ts(T s

1
) < t̂s(T2), which is



the desired contradiction. 2
We would like to point out that Algorithm 1 might not

output transactions in timestamp order though this order is
also a valid serialization order. The output order and the
timestamp order may differ when there are concurrent, non-
conflicting transactions that can be serialized in either or-
der. In this case, the algorithm outputs transactions as soon
as their r-list entries are complete.

2. Related Work

Georgakopoulos and colleagues [3] proposed a tech-
nique for generating tickets that represent the serialization
order over a cluster of sites by forcing transactions to con-
flict on a serialization sequence counter. They did not con-
sider inferring this order through the merging of updates.

Liu and colleagues proposed an algorithm that uses Lam-
port timestamps to merge log entries into a single stream
that represents a global order for update transactions [8].
To avoid processing log entries out of order, their approach
uses a set of complex rules to determine the log entry with
the minimum timestamp that should be processed next.
When multiple entries in a log are present, their technique
may read only one entry if the next entry with the mini-
mum timestamp belongs to another site’s log. As a result,
their technique can cause frequent switching between sites.
Unlike their approach, our log merging algorithm does not
depend on reading entries from the database log in times-
tamped order and eliminates the complex rules needed for
processing the log entries in this order. Since log records
may not be read in timestamped order, space is required at
the log merging site for storing the r-list. The simplicity of
our approach makes it relatively easy to prove its correct-
ness.

3. Conclusion

In this paper, we described a technique that determines
the serialization order of update transactions. Using the log
merging technique that we presented, a valid global seri-
alization order can be determined for update transactions.
The log merging technique works with the widely-used two-
phase commit protocol to coordinate distributed transac-
tions over partitioned databases.

References

[1] P. Bernstein and E. Newcomer. Principles of transaction pro-
cessing: for the systems professional. Morgan Kaufmann
Publishers Inc., 1997.

[2] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and
A. Silberschatz. On Rigorous Transaction Scheduling. IEEE
Trans. Software Eng., 17(9):954–960, 1991.

[3] D. Georgakopoulos, M. Rusinkiewicz, and A. P. Sheth. On
serializability of multidatabase transactions through forced
local conflicts. In ICDE, pages 314–323, 1991.

[4] J. Gray. Notes on data base operating systems. In Operating
Systems, An Advanced Course, volume 60 of Lecture Notes
in Computer Science, pages 393–481. Springer, 1978.

[5] IBM. DB2 Universal Database Replication Guide and Ref-
erence, 2000. version 7.

[6] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM, 21(7):558–565, 1978.

[7] B. W. Lampson. Distributed systems - architecture and im-
plementation, an advanced course. In Advanced Course: Dis-
tributed Systems, volume 105 of Lecture Notes in Computer
Science. Springer, 1981.

[8] C. Liu, B. G. Lindsay, S. Bourbonnais, E. Hamel, T. C.
Truong, and J. Stankiewitz. Capturing global transactions
from multiple recovery log files in a partitioned database sys-
tem. In VLDB, pages 987–996, 2003.

[9] C. Mohan, B. G. Lindsay, and R. Obermarck. Transaction
Management in the R* Distributed Database Management
System. ACM Trans. Database Syst., 11(4):378–396, 1986.

[10] Y. Raz. The principle of commitment ordering, or guarantee-
ing serializability in a heterogeneous environment of mul-
tiple autonomous resource managers using atomic commit-
ment. In VLDB, pages 292–312, Aug. 1992.


