InterJoin: Exploiting Materialized Views in
XML Query Processing

Derek Phillips, Ning Zhang, Thab F. Ilyas, and M. Tamer Ozsu

School of Computer Science
University of Waterloo
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
{djphilli,nzhang,ilyas,tozsu}@uwaterloo.ca

University of Waterloo
Technical Report CS-2005-29

Abstract. Efficient processing of XPath expressions is an integral part
of XML data query processing. Exploiting materialized views in query
processing can significantly enhance query processing performance. We
propose a novel view definition that allows for intermediate (structural)
join results to be stored and reused in XML query evaluation. Unlike
current XML view proposals, our views do not require navigation in
the original document or path-based pattern matching. Hence, they
can be evaluated significantly faster and can be more easily costed as
part of a query plan. In general, current structural joins cannot exploit
views efficiently when the view definition is not a prefix (or a suffix)
of the XPath query. To increase the applicability of our proposed view
definition, we propose a novel physical structural join operator called
InterJoin. The InterJoin operator allows for joining interleaving XPath
expressions, e.g., joining //A//C with //B to evaluate //A//B//C.
InterJoin treats structural joins as a logical operator, giving more join
alternatives in XML query plan. We propose several physical implemen-
tations for InterJoin, including a technique to exploit spatial indexes
on the inputs. We give analytic cost models for the implementations
so they can be costed in an existing join-based XML query optimizer.
Experiments on real and synthetic XML data show significant speed-ups
of up to 200% using InterJoin, as well as speed-ups of up to 400% using
our materialized views.

1 Introduction

In the last few years, much research has focused on efficiently answering path
queries on an XML database. Regardless of whether the XML database is
implemented natively [1,2] or as a separate layer of an RDBMS [3, 4], efficient
processing of XML queries requires specialized physical operators [5]. Several
techniques have been proposed for computing the results of XPath queries in an

XML query processor. These include navigational techniques that scan an XML
document to find the desired output nodes (e.g., Y-Filter [6], XTrie [7], and
TurboXPath [8]), join-based techniques that apply structural joins to tag indexes
(including binary structural joins [9,5] and holistic joins [10]), and hybrid-
techniques that combine navigation and join techniques (e.g., BlossomTrees [11]).

Many XQuery FLWOR statements contain several related XPath expressions.
For example, consider the following query Q, from the XQuery Use Cases:

Q: for $b in doc("bib.xml")//book
where $b/publisher = "Addison-Wesley"
and $b/@year > 1991
order by $b/title
return
<book>
{ $b/Qyear }
{ $b/title }
</book>

Query Q consists of several related XPath expressions. As in relational database
systems, we can reduce the processing cost by identifying commonalities among
expressions, and evaluating the expressions incrementally. In this paper, we
address the problem of reusing materialized views by extending the applicability
of structural joins.

1.1 Motivation

We consider the structural join operator as a logical operator that takes as input
the results of any two “joinable” subexpressions (i.e. related by one or more
descendant or child constraints) of an XPath expression. Current structural join
implementations (such as MPMGJN [5] and the stack-based method [9]) restrict
the space of join plans according to the limitations of the physical structural
join operators. In particular, these methods are limited to joining the results
of subexpressions that are adjacent in the XPath expression. For example, let
P, and P, be subexpressions of an XPath expression P. If there is a single
descendant or child axis relating the two expressions in P (e.g., P = P /Ps),
then current structural join implementations can be used. However, if we have
P, =P;//Psand P, = Py//Ps,and P = P3//P,/Ps//Ps then current structural
join implementations can not join these results efficiently.

We propose the InterJoin operator, a novel physical implementation of
structural joins that can interleave the results of any two joinable subexpressions.
Augmenting structural join processors with the InterJoin operator expands the
space of query plans that can be processed efficiently. InterJoin is a merge-based
operator that takes advantage of optimization opportunities in two cases:

1. If the selectivity of two non-adjacent subpaths in an XPath expression is
high, we can join these nodes first to reduce temporary result sizes. Consider
the query //book//author//name[. = ‘John Smith’] on a DBLP-style
database. We expect many occurrences of authors named ‘John Smith’

in journal articles, so the most selective operation is a structural join
that computes //book//name[. = ‘John Smith’]. We can evaluate this
expression first and then use InterJoin to join the results with author nodes.

2. If a portion of a query is expensive and it can be reused for other queries,
then we should compute the results and materialize them as a view. Future
queries can be processed using this view to save expensive computation. For
example, if y and z are expensive path queries and we need to compute
//y/A/B//z/K//L, //y//C/z, and /y//D//E//F//z, we can materialize the
results of //y//z as a view and use the structural join and InterJoin operators
to compute the results for all three queries.

A common problem with existing XML view proposals is that they generally
focus on the resulting nodes of an XPath query. For example, a view on //A//B
stores information about the B node results but throws away any information
about the A node(s) with which they matched. We propose storing the interval-
encoding of all nodes matched in an XPath expression. This provides sufficient
information to computer structural joins on the views.

A key feature of our proposed materialized views is that the view results use
a tuple-based representation similar to that of operators in current XML query
processors, such as Timber [12], Rainbow [13], and TurboXPath [8]. Thus, a
materialized view is a valid input to existing operators, and the output of these
operators can be materialized as a view. This allows significant flexibility in the
way that views are integrated into a query plan.

It is important to note that the InterJoin operator is not intended to introduce
a bushy query plan approach to evaluating XPath expressions; bushy query
plans for structural joins have already been proposed by Wu et al. [14]. Instead,
the InterJoin operator increases the number of joinable XPath expressions.
For example, in a bottom-up relation-style query plan generator, the InterJoin
operator allows for more ways to join results computed at level ¢ in order to
generate results at level ¢ + 1. In other words, we propose using structural join
as a logical operator accepting any joinable inputs, as opposed to a physical
operator that expects inputs of a specific type. This allows us to explore a larger
query plan space with fewer constraints on the legal inputs to each structural
join operator.

1.2 Contributions
The main contributions of the paper are as follows:

— We propose a new definition for views that can be integrated into a join-based
XML processor and can be used to boost query processing performance.

— We propose efficient algorithms for a novel InterJoin physical operator. The
InterJoin operator extends the query plan space for structural join-based
processors and provides more possibilities for the use of materialized views.

— We provide cost models for the algorithms so that the CPU and I/O costs
can be estimated in a query plan. This allows the InterJoin operator to be
integrated into a cost-based optimizer.

— We provide experimental results that demonstrate the improvements ob-
tained using the InterJoin operator in a query plan, as well as the speed-ups
that can be achieved with our proposed views.

The rest of the paper is organized as follows. In Section 2, we introduce some
background concepts. In Section 3, we present the major contributions of the
paper: our view definition proposal and several implementations of the InterJoin
operator. In Section 4, we present cost estimates for the InterJoin operator. We
experimentally study the performance of the algorithms in Section 5. Related
work is described in Section 6. Finally, in Section 7 we state our conclusions.

2 Preliminaries

We consider path queries on XML databases consisting of forests of rooted,
ordered, labeled trees. These documents can be stored using any of the proposed
physical storage mechanisms (e.g., shredded into relations, B-Trees, etc.);
however, we require a constant-time method to check if one XML node is a
descendant or child of another. Assigning an appropriate interval-encoding label
to each node provides this functionality. For example, the XPath Accelerator ID
[15] allows for constant-time checks for these relationships.

Query Pattern Matching Our focus is on pattern matching, in the sense
described by Wu et al. [14], where we have a rooted node-labeled tree T =
(Vir, E7), representing the database, and a smaller rooted node-labeled tree QQ =
(Vg, Eq), called the query pattern. The edges in) are labeled as either child or
descendant. Figure 1 shows an example of a simple query pattern tree (QPT)
for an XPath query with single edges to represent child axes and double edges
for descendant axes. Evaluating a query @ involves finding all nodes in T that
represent a total mapping from nodes in @) to those in 7. Formal definitions of
these concepts are given in Section 2.1 of [14].

book\
editor author
name name

Fig. 1. A simple pattern tree.

Structural Joins A number of techniques have been proposed for binary
structural joins (e.g., [9,5]). A structural join operator outputs all node tuples
that satisfy the relationship specified by a single XPath (descendant or child)
axis, which is equivalent to an edge in a QPT.

There are two key requirements in order for this approach to work. First,
in order to perform a structural join on the tuple outputs of two XPath
expressions, the tuples must have the nodes of interest in document order.
The other requirement for joining two XPath expression results is that they
represent non-interleaving expressions from the XPath query. For example, the
query //A//B//C can be evaluated either as (A X ; B) X ; C or as A X ; (B
M,; C), where A,B,C are lists of XML nodes and X,; is a structural join. The
third option, (A X,; C) X;; B, where X;; is an InterJoin operator that joins
tuples of (A,C) matches with B matches, is not handled efficiently with current
structural join algorithms.

Matches and Tuple Orderings Throughout the paper, we will use the term
matches to indicate the tuple outputs of a join operator. For example, the set
of (A,B) matches corresponds to the tuples output by evaluating //A//B (or
//A/B).

An important part of XML processing is handling the document order of
XML nodes. Suppose we have a list of tuples of the form (Aq, As, ..., Ax). We
say that the list is sorted by (A;,, ..., 4;,), if the tuples are first sorted by the
document order of A;,, then the document order of A;,, and so on. We call the
first and second sort nodes the primary and secondary sort nodes, respectively.

3 Materialized Views and InterJoin

In this section, we propose a method for storing materialized views that can be
used in combination with other view proposals, such as [16]. Our views differ
from existing proposals in that the information stored in our views allows them
to be used in a join-based XML processor. To take full advantage of these views,
we propose four implementations of a new InterJoin physical operator that can
be used in a structural-join based processor.

3.1 Temporary Results as Materialized Views

Balmin et al. [16] propose four classes of XPath views. The most relevant to our
discussion are the path views, which store a list of ancestor tags and a value for
each node output by a path expression. Value predicates can be applied to the
results of a query and subsequence matching can be used to filter according to
(ancestral) structural constraints. Structural joins can not be applied to these
views since they do not contain sufficient structural information.

We propose a class of views storing a tuple of XML node encodings
corresponding to each axis step in an XPath expression. The node encoding
method must support efficient ancestor and parent checking. These views now
contain sufficient information to be used in structural join processors.

For example, if we compute a view for //book [@price > 40]//author/name,
we can use structural joins, InterJoin, and selection operators to answer:

//book [@price > 100]//author/name,

//book[@price > 40]//author/name/lastName[fn:contains(., ‘King’)],
/mall/bookStore/book [@price > 40]//author/name

//book [@price > 40]/contributors/author/name.

3.2 InterJoin: Physical Structural Join Operators

In this section, we present several implementations of the binary InterJoin
operator which assume that an interval encoding is used for the nodes. The
algorithms use the following constraints to check if an (A,C) pair matches with a
B node: (1) A.open < B.open, (2) B.open < C.open, and (3) C.open < B.close.

InterJoinNR: InterJoin over Non-recursive Documents The simplest
case for performing an InterJoin of (A,C) and B matches occurs when the B
nodes are non-recursive (i.e., no B node is a descendant of another B node). In
this case, every (A,C) pair can match with at most one B node. We can perform
an InterJoin by keeping a single B node buffered and loop through all (A,C) pair
inputs. This requires that the input (A,C) pairs be ordered by (C) and that
the B list be in order. The output will be ordered by (C,B) and if the A nodes
are also non-recursive, then the output will have the A, B, and C nodes all in
document order.

Note that if the B nodes are recursive, we can not use a similar technique of
buffering a single (A,C) pair. This is because a B node will match with several
(A,C) pairs and all or some of these may match with one of its descendant B
node. In this case, we can use one of the other InterJoin implementations.

InterJoinSL: InterJoin with the Ancestor-Match Property We can
efficiently compute an InterJoin when the inputs satisfy the ancestor-match
property. This property guarantees that if A; is an ancestor of A and (As,Cq)
is a match, then (A;,C4) is a match. Note that if there is a predicate relating
the subexpressions that generated the A and C match lists (e.g. in a complex
view), then this property may not hold. The following XQuery Q returns results
where the (cat, item) pairs do not have the ancestor-match property:

Q: for $c in doc("cat.xml")//cat
for $i in $c//item
where $i/@price < 5 and $c/@price + $i/@price > 10

In a case where the inputs are known to have the ancestor-match property, we
can use the InterJoinSL algorithm shown in Algorithm 1. This algorithm keeps a
stack of A nodes and a single list of C nodes corresponding to those nodes matched
by the bottom A node on the stack. The other A nodes on the stack keep a pointer
(in the form of a list index) to the last C node with which they matched. The
ancestor-match property guarantees that any A node on the stack will only match
consecutive nodes beginning at the head of the C list. The algorithm requires
that the (A,C) inputs be ordered by (A,C) and outputs the results ordered by
(B, A). A simple modification to the algorithm allows output tuples to be ordered

Algorithm 1 InterJoin with a single C' node list.

INTERJOINSL(AC : NodePairList, B : NodeList)

1 Initialize empty stack S and list C'List
2 while AC, S, and B not empty
3 do minOpen «— min(ACtop.A.open, Biop.open);

4 removed «— 0
5 while CList.first() < minOpen
6 do CList.removeFirst()
7 removed < removed +1
8 for each a € S
9 do a.end < a.end — removed
10 if a.end < 1
11 S.pop()
12 if ACiop.A.open < Biop.open
13 a < new stack node;
14 a.end «— 1;
15 curA «— ACiop.A.open;
16 AC .next()
17 while AC}op.A.open = curA
18 do a.end «— a.end +1;
19 AC .next()
20 S.push(a)
21 else
22 for each a € S
23 do for each i =1 to a.end
24 do Stop when CList[i].open > Biop.close
25 Output (a, Biop, €)
26 B.next()

by (B,C). A further modification (similar to the ones proposed in [9]) allows us
to buffer tuples and output the results ordered by (C,B) and (A,B).

InterJoinML: InterJoin using Multiple C-node Lists The second
implementation uses a stack of A nodes where each item in the stack maintains
its own list of C nodes. These lists correspond to the matched (A,C) pairs in
the input. The algorithm requires that the input (A,C) pairs be ordered by
(A,C) and produces outputs ordered by (B, A). Buffering can be used to output
matches ordered by (A,B). The pseudocode is given in Algorithm 2.

InterJoinPQ: InterJoin using a Priority-Queue The third implementation
uses a priority queue keyed on (C.open, A.open) and requires that the inputs
be ordered by (A). The pseudocode is given in Algorithm 3.

The algorithm outputs tuples ordered by (B,C). If we buffer tuples, then the
output can be ordered by (C,B). A modification to the InterJoinPQ algorithm
allows it to handle input tuples ordered by (C). In this case, the priority

Algorithm 2 InterJoin with multiple C' node lists.

INTERJOINML(AC : NodePairList, B : NodeList)

1 Initialize empty stack S
2 while AC, S, and B not empty
3 do minOpen «— min(ACiop.A.open, Biop.open)

4 for each a € S
5 do while a.CList[1].0open < minOpen
6 do a.CList.removeFirst()
7 if ACiop.A.open < Biop.open
8 a < new stack node
9 curA «— ACiop.A.open
10 while AC}op.A.open = cur A
11 do a.Clist.add(AChop.C.open)
12 AC .next()
13 S.push(a)
14 else
15 for each a € S
16 do for each c € a.CList
17 do Stop when c.open > Biop.close
18 Output (a, Biop, €)
19 B.next()

Algorithm 3 InterJoin with a priority queue.

INTERJOINPQ(AC : NodePairList, B : NodeList)

1 [Initialize empty priority queue PQ
2 while AC, PQ, and B not empty
3 do minOpen «— min(ACtop.A.open, Biop.open)

4 while PQiop.C.open < minOpen

5 do PQ.removeTop()

6 if ACiop.A.open < Biop.open

7 PQ.add(ACtop); AC .next()

8 else

9 pq — PQrop
10 while pq.C.open < Bigp.close
11 do Output (pg.A, Biop, pq.C); pqg — PQ.next()
12 B.next()

queue is keyed on (A.open, C.open) and we need to read (A,C) tuples until
ACop.C.open > By,p.open. The output can be ordered by (B,A) or (A,B).

InterJoinRT: Index-InterJoin Operator (R-Trees) We can implement
the InterJoin operator as a spatial join between node intervals. For inputs
(A.open,C.open) and (B.open,B.close), the two intervals must overlap such

Algorithm 4 R-Tree search for B matches.

RTREESEARCH(RT : RTree, AC : Rectangle)
PQ «— empty priority queue
PQ.add(RT.root)
while PQ not empty
do if PQiop is a leaf
Output match with PQ;op
else
temp «— PQ.removeTop()
for each child ch of temp
do if ch intersects AC
PQ.add(ch)

O © 00O Ui W

[

that C.open is in the B interval but A.open is not, or equivalently that B.open
is in the AC interval but B.close is not.

We can impose these constraints using region queries in the plane. Given
a point (A.open,C.open), we build a rectangle with top-left and bottom-
right corners (A.open, o), (C.open,C.open). A B node matches with (A,C)
precisely when the point (B.open,B.close) is contained in the rectangle.
Similarly, if we are given a B node, then a point (A.open,C.open) will match
if it is contained in the rectangle (0, B.close), (B.open,B.close). Figure 2
depicts how these constrai,%xppear in 2-D.

S b
S o
,,,,,, 555 - [A
- 3 : d”§Amvcnw

| | SN o
Ay [=====Fmmmm Ao B ! :

A C, B, B,

Fig. 2. InterJoin join conditions for the R-tree based algorithms in 2-D.

We can now build an R-tree on points representing items from one input list
and then probe the R-tree using rectangles built from the other input list. We
can enforce order on the results by modifying the R-tree search algorithm to
use a priority queue. Algorithm 4 describes the new R-tree search algorithm and
Algorithm 5 presents INTERJOINRT, using (A,C) pairs in the R-tree. Using the
search algorithm, we can output results ordered by (B,A), (B,C), and (A,B),
regardless of the input orders. Note that one advantage to the R-tree approach is
that neither of the input lists need to be sorted. Algorithm 6 gives the analogous
algorithm when the R-Tree is built on (B.open,B.close) pairs.

The R-tree structure can be generalized from the 2-dimensional case using
the open index of several nodes in a query. For example, the points in an R-tree
for the materialized view of //A//C//F//H will be 4-dimensional points of the
form (A.open, C.open, F.open, H.open). The input to the search algorithm

Algorithm 5 InterJoin with R-tree on AC nodes.

INTERJOINRT_AC(AC : NodePairList, B : NodeList)

RT «— empty R-tree
for each pair (a,c) in AC
do Add point (a.open,c.open) to RT
for each item p in B
do Build rectangle R := (0, b.close), (b.open, b.close)
for each point ac in RT that intersects R
do Output (ac.a,b,ac.c)

N O U W N

Algorithm 6 InterJoin with R-tree on B nodes.

INTERJOINRT_B(AC : NodePairList, B : NodeList)

RT «— empty R-tree
for each item p in B
do Add point (b.open,b.close) to RT
for each pair (a,c) in AC
do Rectangle R := (a.open, 00), (c.open, c.open)
for each point p in RT that intersects R
do Output (a,b,c)

N O Ut W N

will now be a multi-dimensional box with boundaries in two of the dimensions
and minimum and maximum values of 0 and oo in every other dimension. This is
a projection of the multi-dimensional points into the two dimensions of interest
and a region query in the plane.

With the new R-tree search procedure, we can use this materialized view to
perform InterJoin operations at any point in the original query. For example, we
can answer queries such as //A//B/C//¥//Hand //A//C//F//G//H.

3.3 Complex Interleaving and Predicates

So far, we have considered the case where InterJoin is used to join path
expressions consisting of single nodes. In many cases, interleaving joins are
required. For example, if we have a materialized view for //V//Z and another for
//W/X/Y, we may want to use these views to answer the query //V//W/X/Y/Z.
This is a more difficult problem because we need to check for the V//W
relationship and the Y/Z relationship simultaneously. Similarly, if we have a
materialized view for //H//J and another for //I//K, we may want to use these
views to answer the query //H//1//3//K.

We solve this problem in an ad-hoc manner. For the first example, we use
the InterJoin operator to join the (V,Z) tuples in the first view with the (W,X,Y)
tuples, using the W nodes for the join (i.e. as the B nodes in the algorithm
descriptions). Before a match is output, we check each potential output match
to ensure that the corresponding Y node is a parent of the Z node. Another

approach is to apply an InterJoin using the (V,Z) entries in the first tuple and
the Y entry in the second tuple. Filter the results to ensure that each W node is
a descendant of V.

The second example can be solved in a similar manner by applying an
InterJoin with the (H,J) entries from the first view tuples and the I entries from
the second view tuples, using a filter to ensure that the K node in a potential
match is a descendant of the J node. This situation can be generalized to
arbitrary levels of interleaving, however every interleaving increases the number
of filters.

Predicates can also be included with our materialized views and Inter-
Join operators to answer queries. For example, we can create a view on
//person//agel. > 50] which will consist of tuples of the form (person,age)
for all people aged over 50. This can now be used to answer queries adding
additional structural or value predicates, such as the following queries:

//department//person//age[. > 50]
//person/info/personal/age[. > 50]
//person//personal [@private=0]//age[. > 50]

4 Analysis

In this section, we investigate the complexity of the InterJoin algorithms and
develop cost models of the CPU and I/O costs. The cost models allow for the
algorithms to be integrated into a cost-based structural join processor.

4.1 Complexity of the InterJoin Algorithms

The InterJoinSL algorithm maintains a stack of A nodes and a single list of
C nodes. Insertions and deletions for each structure take constant time, and
updating the end field for each stack node can be done without revisiting any
C mnodes in the list. Thus, the algorithm requires O(|AC| + | B|) time.

The InterJoinML algorithm maintains a stack of A nodes and each stack
node has a list of C' nodes. Insertions and deletions take constant time, giving
an optimal runtime of O(] AC | + | B|).

The InterJoinPQ algorithm adds (and removes) each AC pair at most once to
the priority queue. In the worst case, the priority queue can have size O(] AC'|),
shown in the following example document X:

<A>
<A>
<A>

<C/>
<C/>

<C/>

There are at most h nested A nodes, where h is the height of the XML tree;
thus, there can be at most h-Cy;s items in the priority queue, where Cy;q: is the
number of distinct C' nodes (i.e. nodes that matched with at least one A node)
in the input pair list. The maximum size of the priority queue will be PQ,q: =
min(| AC |, h - Cgist), so the worst-case runtime is O(| AC' | 1g(PQmaz) + |B))-
The space required is O(PQaz)-

The space usage for InterJoinPQ and InterJoinML is O(] AC' |+ h- Cg;st) since
we may need to buffer all (A,C) tuples (as in the worst-case example shown
above). The InterJoinSL algorithm requires only O(h+ Cly;st) since we only buffer
one copy of each A and C node.

Each of the algorithms can be modified to buffer matches in order to output
the results in the orders described in Section 3.2. Using a similar argument to
the one given by Al-Khalifa et al. [9], we can show that the asymptotic runtime
and space for each of the algorithms remains the same after these modifications.

4.2 Analytic Cost Models

A cost-based optimizer needs a cost model for each physical operator. In this
section, we present analytic cost models for the new physical operators based on
path statistics. Statistics maintained by the database can be used to estimate the
costs in order to facilitate query plan optimization and pruning. We break down
the cost of an operator into its I/O cost and CPU cost. In relational databases,
the dominant factor is the I/O cost; however, since the XML operators are more
complex than relational operators, it has been shown that CPU cost can be
upwards of 30% of the total cost [8].

The cost of the InterJoinSL algorithm is determined by the input size, the
output size, the stack size, and the CList size. Define T'(X1Xo...X}) as the
number of tuples satisfying //X1//X2//...//Xk. If A is non-recursive, then
T(AC) =1//A//C|; if not, then we can use path statistics to get:

T(AC) = [//A][CI +1//A//A]]Cl + -+
+I/A- AT
—_——

MaxRec
MaxRec

Rz el

i=1

where Max Rec is the maximum recursion depth of A, (i.e., the maximum number
of As that appear in a root-to-leaf path) and (//A)? denotes i concatenations of
the string //A. The input and output sizes |[AC| and |ABC|, will be T(AC) and
T(ABC), respectively.

Thus, the CPU and I/O costs of InterJoinSL are:

CPU~a;-T(AC)+az - |B|+ a3 -T(ABC)+ a4 -|//A]/C]

IO = a5 -T(AC) + as - |B| + a7 - T(ABC)

where the «;’s represent implementation-dependent costs for a single operation.

The cost of InterJoinML is determined by the input size, the output size, the
stack size, and the sum of the CList sizes. For each input (A,C) tuple, the A
node will be put on the stack S, if it is not already there, and the C' node will be
put into the C'List. Therefore, the number of pushes and pops of S is at most
|//A|, and the number of insertions and deletions in the C'Lists is at most |AC|.
Therefore, the number of update operations on S and the CLists is at most
2x(I//Al + |ACY).

In addition to the update operations, there are lookup operations to the
heads of the C'Lists (lines 4-5) that do not contribute to updates. The number
of lookup operations is determined by the size of S (i.e., the recursion depth
of the A nodes) and the number of A and B elements at that recursion depth.
Define W(AB) in the following manner:

W(AB)=1x|//A//B|+2x|//A//A//B|---+ MaxzRecx*|//A---//A//B|

MaxRec
MaxRec

= Y il(//A)//BI

=1

Now, if the ancestor-match property holds, then the number of lookup
operations is given by W(AB)+ W (AA). If the property does not hold, then the
number can be estimated using the proportion of the input size |AC| to T'(AC).
Similarly, the output size |ABC| can be estimated using the same proportion
and T(ABC) in the following way:

MaxRec MaxRec

T(ABC) Z Z (//4)(//BY //C|

Thus, the CPU and I/O costs of InterJoinML are:

CPU ~ Oég|//A|+Ot9|AO|+O[10|B|

AC|
+ 7040y (011 (W(AB) + W(44)) + a1z - T(ABC))
AC
10 = a1z - |[AC| + ca - |B[+ a5 - T|(TC|’) -T(ABC)

The CPU cost of the InterJoinPQ is determined by the size of the input lists,
the output lists, and the operations on the priority queue. The cost of inserting

into or deleting from the priority queue is logarithmic in the size of the priority
queue at the time that the action occurs. This number is hard to estimate using
only path statistics. Assuming uniformity of matching B nodes with (A,C) pairs,
the average size of the priority queue PQ, is:

T(AC)
maz{|//A//B[.//C]|, 1}

From this, we propose the following CPU and I/O cost estimates for
InterJoinPQ:

PQa:

CPU ~ a6 T(AC) . IOg‘PQa|

1

We are currently developing an XML synopsis structure that can efficiently
and accurately estimate T'(X;X2...X}). With this capability, we can effectively
cost each of the algorithms in an XML query optimizer.

The INTERJOINRT algorithm is similar to an index nested-loop join in a
relational processor with an R-tree index on the inner relation. Estimates for
the INTERJOINRT costs can be derived using existing R-tree cost models (e.g.,
[17]). The cost depends on the number of probes in the R-tree, the number of
pages visited in an R-tree search, and the number of items in the priority queue.

5 Experimental Studies

We implemented the proposed InterJoin algorithms (including some of the result-
buffering alternatives), the stack-based structural join algorithms [9], and the
holistic twig join [10] in Java. B-Tree indexes were built for every distinct tag
name in the input. All experiments were run using J2RE 1.5 on a 1.5GHz Intel
Pentium 4 running Debian Linux 3.0 with KDE 3.3.2.

5.1 Test Set

We used both synthetic and real XML data sets to evaluate the implementations
described in the paper. For synthetic data, we used the COMET data generator
[18]. COMET is a tool that generates large XML datasets from DTD-style
definition files. We generated XML files ranging in size from about 10 Megabytes
to about 1 Gigabyte, with recursion levels varying from 0 to 50. Note that these
files are actually contain far more elements than a standard XML file of this
size. This is because we did not add any attributes, values, etc (since they do
not affect query processing on node indexes). Furthermore, we do not add any
XML elements that are not relevant to our queries since they do not affect the
processing. Thus, a 10 Megabyte file, for example, consists of over one million
XML elements that must be processed to answer the queries.

Some real test data was also taken from the University of Washington XML
Data Repository [19]. The NASA dataset consists of 23 Megabytes of data,
with average node depth of about 5.6, and no recursion. The Protein Sequence
Database consists of 683 Megabytes of data, with average node depth of about
5.2, and no recursion. The TreeBank dataset consists of 82 Megabytes of data,
with average node depth of 7.9 and significant recursion. The first two datasets
are used to evaluate simple non-recursive data of very different sizes. The last
dataset provides highly recursive data with considerable nesting that poses
greater challenges for efficient query processing.

5.2 Queries

In our experiments, we consider only the structural join parts of a query. For
example, suppose we have the following query:

//person//info/personal [flags/@private=0]//age[. > 50]
We ignore the filtering steps and project the query to the following form
//person//info/personal [flags]//age

Value predicates, positional predicates, and other filters can be applied indepen-
dent of the method used to verify structural relationship; thus, we will consider
processing only the projected form of each query.

Random queries were generated for each of the synthetic and real data sets
using COMET and the resulting queries were projected to include only the
relevant parts. This resulted in queries consisting of descendant and child queries
with between three and six axis steps. Some sample queries, along with their
projections, for the NASA dataset are included in the following table.

Generated Query Projected Query
//ds//ob[//*]/ /i //d//ob//fn
//d/ob/para//fn[/ /tableLink]|//d/ob/para//in//tableLink
//f[//para/fn/ob[//bibcode]]|//in//para/Mm/ob//bibcode |

To ensure that the best query plan was chosen in all cases, we enumerated
every legal query plan and ran every one. The best plan was recorded and
reported in the results. In a real XML processor, a generator would prune and
select plans based on cost estimates; however, cost-based pruning of XML query
plans is not well studied and we risk penalizing approaches based on poor query
plan choices if we do not run all plans. All experiments were run 5 times and
the results were based on the average of all the results except the first run.

5.3 InterJoin and Materialized Views on Real XML Data

We conducted some initial experiments on real data sets using randomly
generated queries to identify those that can be sped-up by using InterJoin with

or without materialized views. Table 1 shows the number of queries that were
processed more quickly by augmenting binary structural joins with the InterJoin
operator, and the average speed-up for the improved queries. The right columns
show the corresponding improvements when a materialized view is added.

Runtime and I/Os on Real Data
Using InterJoin Materialized Views
Time I/0s Time I/Os
Num. [Avg. Num. [Avg. Num. [Avg. Num. [Avg.

Faster |Speedup|Faster |Speedup|Faster | Speedup|Faster | Speedup
NASA 10 2 176% 3 169% 5 332% 9 207%

PSD 8 2 106% 2 130% 4 170% 8 183%
TreeBank| 16 5 184% 7 186% 14 199% 16 225%

Dataset |Queries

Table 1. Using InterJoin and materialized views to evaluate queries on real XML data.

The biggest speed-ups occur with queries on the NASA and TreeBank
datasets. The NASA dataset contains several nodes that appear sporadically in
the document. Joining these nodes first eliminates a significant number of tem-
porary results, improving processing time and reducing memory requirements.
For the TreeBank dataset, the data is highly recursive and so structural joins
of common elements resulted in a large amount of temporary results. In cases
where a selective join was performed first, InterJoin provided savings of up to
407%.

Building materialized views on query subpaths gives speedups when the result
size of the query subpaths is as much as 150% of the result sizes of each of the
axis step matches in the expression. For example, if we construct a view for
//A//B//C and the result size is at most 1.5 times the size of |//Al + |//B| +
|//Cl, then further queries against this view are almost always more efficient.

Selective Non-Adjacent Node Predicates To simulate predicates relating
non-adjacent nodes, we performed a structural join of two non-adjacent nodes in
an XPath query and then randomly deleted some of the results before continuing
the processing of the query. We used this approach to evaluate the performance
of InterJoin on a real data set in the presence of (artificial) predicates. Figure
3 shows the effect of varying the selectivity of two non-adjacent nodes on the
query evaluation time for five representative queries.

The processing time for some queries can be reduced to less than 10% of
the original query time with highly selective predicates (filtering between 95%
and 99% of the matches). This suggests that query processing can be improved
dramatically by recognizing highly selective predicates relating two nodes in an
XPath query and evaluating these axes first.

5.4 InterJoin and Materialized Views on Synthetic XML Data

Having identified the queries where InterJoin and the tuple-based materialized
views provide the greatest reductions in CPU and I/O costs, we generated

500 .
PLT ——
Q2 —--x-—--
450 33 T
R4 =
400 FO5 —-m-
&
— 300
=
@
£ 200
= /
|_ 150
e
100 b
50 f s
o BEEET JERCIRN S RS ER S
0 10 20 30 40 50 60 70 8 90 100
Join Selectivity (%)

Fig. 3. Examples of query processing times for queries with predicates relating two
non-adjacent nodes. The selectivity represents the number of matched tuples that are
produced as output.

synthetic data to further explore these cases. The data was generated using
a DTD-style schema, similar to the schema S shown below, for paths of length
three up to six. By varying the parameters, we can specify approximately how
many tuples will be returned by a path query for two non-adjacent nodes in the
schema.

S: root -> a.1*[5,15,uniform], a.2%[35,45,uniform],
a.3%[40,60,uniform], d.1*[40,60,uniform];
b.1*[5,15,uniform] ;
c.1%[3,7,uniform] ;

-> b.2*x[400,600,uniform] ;
b.3*[35,45,uniform] ;
c.2x[5,15,uniform] ;
c.3*[5,15,uniform] ;

p O TP
W WL NP -
|
\%

Figure 4 shows the time required to answer a descendant-only query using
the best plan consisting of (1) only binary structural joins, (2) a combination of
InterJoin and binary structural joins, (3) the holistic twig join, and (4) InterJoin
on a materialized view for //A//C. The numbers along the x-axis show the
percentage of (A,C) tuples relative to the number of (A,B) and (B,C) tuples.
The results are for files of about 70 Megabytes and are representative of all of
the results.

A plan that uses the InterJoin operator requires between 30% and 68% of the
processing time required if using only structural joins when the (A,C) tuple ratio
is up to 50%. The holistic twig join consistently outperforms the binary operators
except for the case when the selectivity of the (A,C) join is very high (99.5%), in
which case the runtime for the InterJoin operator is similar. The discrepancy is
greater for larger XPath queries as the number of I/Os saved by using the holistic

175
m Bin. struct. joins
150 @ Add InterJoin
Z Holistic twig join
125
— - Materialized view
)
g 100
= B
v B N Ve
g 75 5) S
& (3 %
50 < ;
¢ P
25 . N
¢ D
al
0
X X X X X
0 0 o (] o
S N Y S

Ratio of (A,C)/((A,B)+(B,0))

Fig. 4. Performance of InterJoin and materialized views on a query of the form
//A//B//C. Here, the AC matches represent the number of matches between the two
non-adjacent nodes of interest. B is an XPath subexpression consisting of between one
and three steps.

twig join becomes increasingly significant. This can be predicted from the cost
models since the CPU and I/0O costs for the holistic twig join are linear in the size
of the input node lists, while the CPU and I/O costs for the InterJoin operator
depend on the number of (A,C) tuples. The materialized views outperform all
other algorithms when the tuple ratio is 50% or less, requiring only 65% of the
processing time of holistic twig join when the tuple ratio is 5%.

Highly Recursive Documents If an XML file is structured such that some
nodes are deeply nested, then performing structural joins of adjacent nodes can
cause the temporary result sizes to grow very large. For example, a document of
the form <A>...<C><C>...<C><D> will result in a significant number
of (A,B), (B,C), (C,D) pairs. If a predicate restricts the D nodes to match with
a single A or B node, then the query can be evaluated faster using an InterJoin.

Figures 5 and 6 show the time and memory usage for each of the InterJoin
algorithms with increasingly recursive documents. We fixed the number of XML
elements at around 20,000 and varied the recursive depth of elements in the
document. The runtime scales well with increasing recursive depth, allowing
highly recursive documents to be processed efficiently. The memory usage
becomes considerably worse for the InterJoinPQ and InterJoinML algorithms
since the highly recursive documents require buffering many (A,C) pairs during
processing. The InterJoinSL algorithm requires only 320k of memory since it
retains only one copy of each C node.

40

InterJoinSL —+—
InterJoinML ---x---
35 (__InterJoinPQ ---*---
30
0 25
c
=~ 2
Q
g 15
=
10
5
0
0 5 10 15 20 25 30 35 40 45 50
Max Recursive Depth
Fig. 5. Impact of recursion on runtime.
7000 -
InterJoinSL —+—
InterJoinML ---%---
@ 6000 H InterJoinPQ ---*---
=
5000
a4
X 000
c
=
3000
P
@]
% 2000
2 1000
,/”/
0

0 5 10 15 20 25 30 35 40 45 50

Max Recursive Depth

Fig. 6. Impact of recursion on memory.

Large XML Documents To test the scalability of InterJoin, we processed
queries over increasingly large XML documents. Figure 7 shows the time required
to answer five representative queries on the documents, using binary structural
joins and InterJoinSL. We fixed the match ratio for the queries to be 50% to
test the effect of the larger file sizes. The cost models for algorithms predict the
linear trend shown in the picture.

Complex Interleaving with InterJoin We conducted a few preliminary
experiments for answering XPath expression queries by combining the results of
interleaving subexpressions. At this point, we have only considered the impact
of adding additional interleaving “filters” to check for the required relationships
among output nodes.

In order to test the impact of adding additional filters to the InterJoin
operator, we conducted experiments on the TreeBank dataset by interleaving
the results of some of the queries used in Section 5.3. We evaluated five different

2500

" Tnterdoin & Struct Joins —r—
Only Struct Joins —--Xx-—-

2000

1500

1000

Time(ins)

500 e

0 100 200 300 400 500 600 700 800 900 1000

Filesize (in Mb)

0

Fig. 7. Scalability of InterJoin.

queries consisting of four axis steps (for example, //EMPTY//S//NP//PP) and
then interleaved the results. Figure 8 shows the average CPU time required to
interleave the results for one up to six interleaving conditions.

When the number of interleaving conditions increase, we expect the number
of successful matches to decrease. Despite the extra work involved in filtering
the unsuccessful matches according to additional interleaving join conditions,
the savings in output construction lead to more efficient processing times. This
suggests that the extra work involved when applying additional interleaving filter
conditions does not significantly hinder query processing.

16000

l : Query Result Size ——
Run Time ---x---

14000

12000

10000

8000

6000

4000

2000
1

Interleaving Conditions

Fig. 8. Impact of interleaving.

InterJoin with R-tree Views We created an R-tree index of the form
//A//C//D//E and used the R-tree based InterJoin operators to answer a query
of the form //A//B//C//D//E. First, we set the number of B matches to be small

(i.e., about 0.01% of the view size), resulting in few probes in the R-tree. The
left-most column of Figure 9 compares the number of I/Os required to answer
this query. The results show that the R-tree incurs fewer than 2% of the I/Os
required by the best plan using tuple-based views.

Next, we considered a case where there were many probes into the R-tree. We
created R-tree indexes on (A,C) pairs, for the experiments described in Section
5.4 and then used INTERJOINRT to evaluate the query //A//B//C. The middle
column of Figure 9 shows the number of I/Os required to answer the query. The
number of 1/0s is almost twice as large since for every B node, at least one or
two I/Os are used to probe the B-Tree. The structural join and other InterJoin
algorithms use main-memory structures and so they perform better in this case.

An advantage of the R-tree is that it does not require that the B nodes be
in document order to perform an InterJoin. The right-most column of Figure 9
shows the number of 1/Os required to answer a query of the form //A//B//C
when the input list is not ordered. The R-tree view incurs fewer than 2% of the
I/Os required by the other approaches since it does not need to sort the B nodes.

3804

No views
Tuple views ;
R-tree views

4000

3000

2000 (N

I/Os (in thousands)

1000
Y

25 10

Bs 0.1% of Bs 200% of Bs not in

view size view size doc. order

Fig. 9. Performance of R-tree views.

6 Related Work

The XML literature most relevant to our work are the proposals dealing with
structural join algorithms and the use of materialized views. Zhang et al. [5]
noted that relational database systems were not well suited to direct evaluation of
XPath queries. They proposed the MPMGJN to perform structural joins on two
node lists. Al-Khalifa et al. [9] gave a stack-based implementation for structural
joins that is CPU and I/0O optimal for ancestor-descendant queries. Bruno et al.
[10] gave a stack-based holistic twig join algorithm that computes entire XPath
expression results (for a subset of XPath queries) in a single pass of all the node

list inputs. Several other papers proposed extensions to the structural join and
holistic join algorithms to take advantage of indexes on the inputs and to deal
with a larger subset of XPath (for example, see [20]).

Recently, proposals have been made for generating and answering queries
using materialized views. Some of the proposals are based on identifying and
caching frequent XPath queries (such as [21] and [22]) and can be extended to
take advantage of the InterJoin operator.

Balmin et al. [16] proposed a framework for deciding view containment and
compensation for four materialization options. These views can be composed
of references to the output nodes, absolute paths of each node, copies of
corresponding subtrees, or the values contained in the nodes. Views composed
of references can be used to answer many queries, but require navigation in the
document to compute the compensation results. Path-based views can get large
for some XML documents, and require pattern matching for many queries.

Our views can be used in conjunction with the views proposed by Balmin et
al. [16], allowing for more options for view materialization and query processing.
For example, if a view of the form //A//Z contains results with long paths, it is
preferable to use our method, storing only the information about the matched
A and Z nodes. Our views are also preferable in cases where it is expensive (or
impossible) to navigate the XML document.

7 Conclusions and Future Work

We have proposed a materialized view representation that is suitable for
structural-join-based XML query processors. The views can be treated as
temporary results in an XML query physical plan, making it easy to integrate
them into an existing processor. To take advantage of these materialized views,
we have proposed InterJoin, a new binary structural join physical operator that
allows for joining interleaving fragments of a path expression. Hence, the new
operator can exploit a large number of materialized views and temporary results
in evaluating path queries.

We propose several efficient implementations of the InterJoin operator. In
the presence of an R-tree data structure, we have shown how to build multi-
dimensional indexes on temporary results in order to answer multiple queries
on this data efficiently. The InterJoin operator results in lower CPU and 1/0
cost than traditional structural joins, for a large number of queries. Materialized
views achieve additional speedups of up to a factor of four. As in the case of
relational views, the view construction time is amortized by reusing the views
in evaluating several path queries.

We have provided simple cost models for the algorithms based on statistics
on the data. The formulas can be used to identify situations where InterJoin is
a better alternative to structural joins and situations where a materialized view
is favored over the holistic twig join.

We are currently looking at other temporary result formats that would allow
materialized views to be used with the holistic twig join. For example, if we

represent the results of a query //A//B by removing all tags from the XML
document except those that participate in a successful match and annotate these
with a interval encoding, these results can now be considered as a merged queue
input to the holistic twig join. The same approach does not work with tuple-
based temporary results because document order is not guaranteed for all of the
tags.

References

Ferndndez, M., Siméon, J.: (Galax) http://www.galaxquery.org/.

2. Fiebig, T., Helmer, S., Kanne, C.C., Moerkotte, G., Neumann, J., Schiele, R.,

10.

11.

12.

13.

14.

15.

16.

17.

18.

Westmann, T.: Anatomy of a native XML base management system. The VLDB
Journal 11 (2002) 292-314

DeHaan, D., Toman, D., Consens, M., Ozsu, M.: A comprehensive XQuery to SQL
translation using dynamic interval encoding. In: SIGMOD. (2003) 623-634
Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.:
Relational databases for querying XML documents: Limitations and opportunities.
In: VLDB. (1999) 302-314

. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting

containment queries in relational database management systems. In: SIGMOD.
(2001) 425-436

Diao, Y., Altinel, M., Franklin, M., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. TODS 28 (2003) 267—
516

Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient filtering of XML
documents with XPath expressions. In: ICDE. (2002)

. Josifovski, V., Fontoura, M., Barta, A.: Querying XML streams. The VLDB

Journal 14 (2005) 197-210

Al-Khalifa, S., Jagadish, H., Koudas, N., Patel, J., Srivastava, D., Wu, Y.:
Structural joins: A primitive for efficient XML query pattern matching. In: ICDE.
(2002) 141-152

Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Optimal XML pattern
matching. In: SIGMOD. (2002) 310-321

Zhang, N., Agrawal, S., Ozsu, M.: BlossomTree: Evaluating XPaths in FLWOR
expressions. Technical Report CS-2004-58, University of Waterloo (2004)
Jagadish, H., Al-Khalifa, S., Chapman, A., Lakshmanan, L., Nierman, A.,
Paparizos, S., Patel, J., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.:
TIMBER: A native XML database. The VLDB Journal 11 (2002) 274-291

et al.,, E.R.: (Rainbow) http://davis.wpi.edu/~dsrg/rainbow/.

Wu, Y., Patel, J., Jagadish, H.: Structural join order selection for XML query
optimization. In: ICDE. (2003) 443-454

Grust, T.: Accelerating XPath location steps. In: SIGMOD. (2002) 109-120
Balmin, A., Ozcan, F., Beyer, K., Cochrane, R., Pirahesh, H.: A framework for
using materialized XPath views in XML query processing. In: SIGMOD. (2004)
60-71

Béhm, C.: A cost model for query processing in high dimensional data spaces.
TODS 25 (2000) 129-178

Zhang, N., Haas, P., Josifovski, V., Lohman, G., Zhang, C.: Statistical learning
techniques for costing XML queries. In: VLDB. (2005)

19.

20.

21.

22.

Miklau, G.: (UW XML repository) http://www.cs.washington.edu/research/
xmldatasets/www/repository.html.

Jiang, H., Lu, H., Wang, W.: Efficient processing of XML twig queries with OR-
predicates. In: SIGMOD. (2004) 59-70

Mandhani, B., Suciu, D.: Query caching and view selection for XML databases.
In: VLDB. (2005) 469-480

Xu, W, Ozsoyoglu, Z.: Rewriting XPath queries using materialized views. In:
VLDB. (2005) 121-132

