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Abstract

Cardinality estimation is a crucial part of a cost-based
optimizer. Many research efforts have been focused on XML
synopsis structures of path queries for cardinality estima-
tion in recent years. In ideal situations, a synopsis should
provide accurate estimates for different types of queries
over a wide variety of data sets, consume a small amount
of memory while being able to adjust as memory budgets
change, and be easy to construct and update. None of the
existing synopsis proposals satisfy all of the above require-
ments. In this paper, we propose a novel synopsis, XSEED,
that is accurate, robust, efficient, and adaptive to memory
budgets. We construct an XSEED Structure starting from a
very small kernel, then incrementally update information of
the synopsis. With such an incremental construction, a syn-
opsis structure can be dynamically configured to accommo-
date different memory budgets. It can also handle updates
to underlying XML documents, and be self-tuning by incor-
porating query feedback. Cardinality estimation based on
XSEED can be performed very efficiently and accurately,
with our techniques of small footprint and novel recursion
handling. Extensive experiments{]_-] on both synthetic and real
data sets are conducted, and our results show that even with
less memory, the accuracy of XSEED could achieve an or-
der of magnitude better than that of other synopsis struc-
tures. The cardinality estimation time is under 2% of the
actual querying time for a wide range of queries in all test
cases.

1 Introduction

XML is rapidly becoming a key technology for data ex-
change and data integration on the Internet. This has in-
creased the need for efficient execution of XML queries.

'The full set of testing queries can be found at |http:
//db.uwaterloo.ca/~ddbms/publications/xml/
XSeed-workload.tgz,

Cost-based optimization requires the calculation of the cost
of query operators. Usually the cost of an operator for a
given path query is heavily dependent on the number of fi-
nal results returned by the query in question, and the num-
ber of temporary results that are buffered for its sub-queries
(see e.g., [13]]). Therefore, accurate cardinality estimation
is crucial for a cost-based optimizer to be able to make the
right decision.

The problem of cardinality estimation for a path query
in XML distinguishes itself from the problem of cardinal-
ity estimation in relational database systems. One of the
major differences is that a path query specifies structural
constraints (a.k.a. tree patterns) in addition to value-based
constraints. These structural constraints suggest a combined
combinatorial and statistical solution. That is, we need to
consider not only the statistical distribution of the values
associated with each element, but also the structural rela-
tionships between different elements. Estimating cardinal-
ities of queries involving value-based constraints has been
extensively studied within the context of relational database
systems, where histograms are used to compactly represent
the distribution of values. Similar approaches have been
proposed for XML queries [6,9]. In this paper, we focus on
the structural part of the this problem and propose a novel
synopsis structure, called XSEE to estimate the cardinal-
ity for path queries that only contain structural constraints.
Although XSEED can be incorporated with the techniques
developed for value-based constraints, the general problem
is left for future work.

The XSEED synopsis is inspired by the previous work
for estimating cardinalities of structural constraints [[7} 4} 16,
10]. These approaches, usually, first summarize an XML
document into a compact graph structure called synopsis.
Vertices in the synopsis correspond to a set of nodes in the
XML tree, and edges correspond to parent-child relation-
ships. Together with statistical annotations on the vertices
and/or edges, the synopsis is used as a guide to estimate
the cardinality using a graph-based estimation algorithm. In

2X SEED stands for XML Synopsis based on Edge Encoded Digraph.
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this paper, we follow this general idea but develop a solu-
tion that meets multiple criteria. That is, we consider not
only the accuracy of the estimations, but also the types of
queries and data sets that this synopsis can cover, the adap-
tivity of the synopsis to different memory budgets, the cost
of the synopsis to be created and updated, and the estima-
tion time comparing to the actual querying time. We believe
that these are all important factors for a synopsis to be use-
ful in practice.

None of the existing approaches consider all these di-
mensions. For example, TreeSketch [[10], a synopsis for
cardinality estimation, focuses on the accuracy of the cardi-
nality estimation. It starts off by building up a bi-simulation
graph to capture the complete structural information in the
tree (i.e., cardinality estimation can be 100% accurate for
all types of queries). Then it relies on an optimization algo-
rithm to reduce the bi-simulation graph to fit into the mem-
ory budget and still retain information as much as possible.
Due to the NP-hardness of the optimization problem, the
solutions are usually sub-optimal and the construction time
could be prohibitive for large and complex data sets (e.g.,
it takes more than one day to construct the synopsis for
the 100MB XMark [11] data set on a dedicated machine).
Therefore, this synopsis is hardly affordable for a complex
data set.

In contrast, XSEED takes the opposite approach: an
XSEED structure is constructed by first building a very
small kernel (usually a couple of KB for most data sets that
we tested), and then by incrementally adding/deleting in-
formation to/from the synopsis. The kernel captures the
coarse structural information lies in the data, and can be
constructed easily. The purpose of the small kernel is not
to make it optimal in terms of accuracy. Rather, it has to
work for all types of queries and data sets, while, at the
same time, having a number of desirable features such as
the ease of construction and update, a small footprint, and
the efficiency of the estimation algorithm. A unique feature
of the XSEED kernel is that it captures recursions that ex-
ist in the XML documents. Recursive documents usually
represent the most difficult cases for path query processing
and cardinality estimation. None of the existing approaches
has studied recursive documents and the effects of recursion
over the accuracy of cardinality estimation. To the best of
our knowledge, this paper is the first work to treat recursive
documents and recursive queries.

Even with the small kernel, XSEED provides reasonably
good accuracy in many test cases (see Section [6]for details).
In some cases, XSEED even performs an order of magni-
tude better than other synopses (e.g., TreeSketch) that use a
larger memory budget. One of the reasons is that the kernel
captures the recursion in the document, which is not cap-
tured by other techniques. Nevertheless, the high compres-
sion ratio of the kernel introduces information loss, which
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Figure 1: Cardinality estimation process using XSEED

inevitably results in greater estimation errors in some cases.
To remedy the accuracy deficiency for these cases, we in-
troduce another layer of information, called shell, on top of
the kernel. The shell captures the special cases that are far
from the assumptions that the kernel relies on. Our exper-
iments show that even a small amount of this extra infor-
mation can greatly improve the accuracy for many cases.
The shell can be pre-computed in a similar or shorter time
than other synopses, or it can be dynamically fed by a self-
tuning optimizer if the query feedback mechanism is en-
abled. This information can be easily maintained, i.e., it can
be added/deleted to/from the synopsis whenever the mem-
ory budget changes. When the underlying XML data is
changed, the optimizer can choose to update the informa-
tion eagerly or lazily. In this way, XSEED enjoys better
accuracy and adaptivity as well.

Figure 1| depicts the process of constructing and main-
taining the XSEED kernel and shell, and utilizing them to
predict the cardinality. In the construction phase, the XML
document is first parsed to generate the NoK XML storage
structure [[16], the path tree [1]], and the XSEED kernel. The
shell is constructed based on these three data structures if
it is opt to pre-computed. In the estimation phase, the opti-
mizer calls the cardinality estimation module to predict the
cardinality for an input query, with the knowledge acquired
from the XSEED kernel and optionally from the XSEED
shell. After the execution, the optimizer may feedback the
actual cardinality of the query to the XSEED shell, which
might results in an update of the data structure.

Our contributions are the following:

e We design a novel synopsis structure, called XSEED,
with the following properties:

— The tiny kernel of XSEED captures the basic
structural information, as well as recursions (if
any), in the XML documents. The simplicity of
the kernel makes the synopsis robust, space effi-
cient, and easy to construct and update.

— The shell of XSEED provides additional informa-



tion of the tree structure. It enhances the accu-
racy of the synopsis and makes it adaptive to dif-
ferent memory budgets.

e We propose a novel and very efficient algorithm for
traversing the synopsis structure to calculate the esti-
mates. The algorithm is highly efficient and is well
suited to be embedded in a cost model.

e Extensive experiments with different types of queries
on both synthetic and real data sets demonstrate that
XSEED is accurate (an order of magnitude better than
the state-of-the-art synopsis structure) and fast (less
than 2% of actual running time for all test cases).

The rest of the paper is organized as follows: in Section2]
we introduce the basic definitions and preliminaries for the
rest of the paper. In Section[3] we introduce the main idea of
constructing the basic part of XSEED kernel from an XML
document. In Section 4] we present the algorithm for es-
timating cardinality on the XSEED kernel, and analysis its
complexity. In Section [5] we introduce the cases where the
XSEED kernel makes estimation errors and how to acquire
additional knowledge to compensate them. In Section[6] we
report the experimental results on the accuracy of the syn-
opsis on different data sets and workloads under different
memory budgets. The running time of the estimation al-
gorithm is also reported. We compare our approach with
related work in Section[7] Finally, we conclude in Section|g]
by a summary and final remarks.

2 Preliminaries

In this section, we give the basic definitions related to
the XSEED synopsis structure. Due to space limitations, we
omit the formal definitions of XML data model and path
expressionsﬂ Rather we start by giving an example to il-
lustrate the basic ideas, and briefly review concepts when-
ever necessary. Throughout the paper, we use a n-tuple
(u1,us,...,u,) to denote a path uy — ug — -+ — u,
in an XML tree or a synopsis structure, and use |p| to de-
note the cardinality of a path expression p.

Example 1 The following DTD describes the structure of
an article document.

<!ELEMENT article (title, authors, chapterx)>
<!ELEMENT chapter (title, parax*, sectx)>
<!ELEMENT sect (title?, parax, sectx)>

By common practice, element names can be mapped to
an alphabet consisting of compact labels. For example, the
following mapping f maps the element names in the above
DTD to the alphabet {a, t,u, c,p, s}:

3The formal definitions can be found in [3].

f(title)=t
f (para)=p

f (article)=
f (chapter) =

a f (authors)=u
c f (sect)=s

An example XML tree instance conforming to this DTD
and the above element name mapping is depicted in Fig-
ure To avoid possible confusion, we use a framed
character, e.g., @ to represent the abbreviated XML tree
node label whenever possible throughout the rest of the pa-

per. o

An interesting property of the XML document is that it
could be recursive, i.e., an element could be directly or indi-
rectly nested in an element with the same name. For exam-
ple, a sect element could contain another sect subele-
ment. In the XML tree, recursion represents itself as mul-
tiple occurrences of the same label in a rooted path. We
define the recursion levels with respect to a path, node, and
document as follows:

Definition 1 (Recursion Levels) Given a rooted path in
the XML tree, the maximum number of occurrences of any
label minus 1 is the path recursion level (PRL). The recur-
sion level of a node in the XML tree is defined to be the
PRL of the path from root to this node. The document re-
cursion level (DRL) is defined to be the maximum PRL over
all rooted paths in the XML tree. a

As an example, the recursion level of the path
(a,c, s,p) in Figure is 0 since there is no dupli-
cated nodes in the path, and the recursion level of path
(a,c,s,s,s,p) is 2 since there are three s nodes in the
path.

Recursion could also exist in a path expression. Recall
that a path expression consists of a list of location steps,
each of which consists of an axis, a NodeTest, and zero or
more predicates. Each predicate could be another path ex-
pression. When matching with the nodes in an XML tree,
the NodeTests specify the tag name constraints, and the axes
specify the structural constraints.

Definition 2 (Recursive Path Expression) A path expres-
sion is recursive with respect to an XML document if an
element in the document could be matched to two or more
NodeTests in the expression. o

For example, a path expression / /s / /s on the XML tree in
Figure is recursive since an | s | node at recursion level
greater than one could be matched to both the NodeTests.
It is straightforward to see that path expressions consisting
of only /-axis cannot be recursive. Recursive path queries
always contain //-axes, and they usually present themselves
on recursive documents. However, it is also possible to have
recursive path queries on non-recursive documents, when
the queries contain the sub-expression /// /. Similarly,
we define the query recursion level (QRL) of a path expres-
sion as the maximum number of occurrences of the same



NodeTests with //-axis along any rooted path in the query
tree. In general, recursive documents and recursive queries
are the hardest documents to summarize and the hardest
queries to evaluate and estimate.

A structural summary is a graph that summarizes the
nodes and edges in the XML tree. Preferably, the summary
graph should preserve all the structural relations and cap-
ture the statistical properties in the XML tree. There are
many possible levels of abstractions depending on the de-
sired tradeoff between the space constraints and informa-
tion preservation. For example, we can choose to only pre-
serve the basic properties such as the node label and edge
relation, or we can preserve the cardinality of the edge rela-
tion as well. There are a number of proposed structures. In
the following, we only introduce the label-split graph [S8],
which is the basis of XSEED.

Definition 3 (Label-split Graph) Given an XML tree
T(V;, Ey), a label-split graph G(Vs, E5) can be uniquely
derived from a mapping f : V; — V; as follows:

e Forevery u € Vi, thereis a f(u) € V.

e A node u € V; is mapped to f(u) € Vs if and only if
their labels are the same.

o For every pair of nodes u, v € V, if u is the parent of v
in T, then there is a directed edge (f(u), f(v)) € Es.

e No other vertices and edges are present in G(V;, E;).o

Figure [2(b)| without the edge labels, depicts the label-
split graph of the XML document shown in Figure
The label-split graph preserves the node label and edge re-
lation in the XML tree, but not the cardinality of the rela-
tions. The XSEED, as described in the following section,
preserves more information.

3 Basic Synopsis Structures—XSEED kernel

In this section, we first give an overview of the basic syn-
opsis structure—the XSEED kernel. An efficient algorithm
that constructs the kernel from parsing the XML document
is also presented. We then introduce the cardinality estima-
tion process using the kernel.

3.1 Overview

Definition 4 (XSEED Kernel) The XSEED kernel for an
XML tree is an edge-labeled label-split graph. Each edge
e = (u,v) in the graph is labeled with a vector of integer
pairs (po:co, P1:C1, - - -, PniCn ). The i-th integer pair (p;:c;),
referred as e[i], indicates that at recursion level i: there are
a total of p; elements mapped to the synopsis vertex u and
¢; elements mapped to the synopsis vertex v. The p; and ¢;
are called parent-count (referred as e[i][P_CNT]) and child-
count (referred as e[i][C_CNT]), respectively. 0

Example 2 The XSEED kernel shown in Figure is
constructed from the XML tree in Figure 2(a)] In the XML
tree, there is totally one |a|node and it has two | c | children.
Correspondingly in the XSEED kernel, the edge of (a, ¢) is
labeled with integer pair (1:2). Out of these two | c|nodes in
the XML tree, there are five | s | child nodes. Therefore, the
edge (c, s) in the kernel is labeled with (2:5). Out of the five
nodes, two of them have one |s | node each (for a totally
two [s] nodes having two [s] children). Since the two
child nodes are at recursion level 1, the integer pair at posi-
tion 1 of the label of (s, s) is 2:2. Since the recursion level
could not be 0 for any path having an edge (s, s), therefore
the integer pair at position 0 for the edge(s, s) is 0:0. Fur-
thermore, one of the two |s|nodes at recursion level 1 has
two [s] children, which makes the integer pair at position 2
of the edge label (s, s) 1:2. o

With this simple structure, the algorithm introduced in
Sectiond]can estimate the cardinality of all types of queries,
including recursive queries, and queries containing wild-
cards (*). This algorithm is based on the following obser-
vations.

Observation 1:

For every path (u1,us, ..., u,) in the XML tree, there
is a corresponding path (v;,ve, ..., v,) in the kernel,
where the label of v; is the same as the label of wu;.
Furthermore, for each edge (v;,v;+1), the number of
integer pairs in the label is greater than the recursion
level of the path (u1, ..., u;11). For example, the path
(a,c,s,s,s,p) in Figure[2(a)|has a corresponding path
(a,c,s,s,s,p) in the XSEED kernel in Figure m
Furthermore, the number of integer pairs in the label
vector prevents a path with recursion level larger than
2,e.g., (a,c,s,s,s,s,p), being derived from the syn-
opsis.

Observation 2: For every node u in the XML tree, if its
children have m distinct labels (not necessarily be dif-
ferent from w«’s label), then the corresponding vertex v
in the kernel has at least m out-edges, where the la-
bels of the destination nodes match the labels of the
children of u. This observation directly follows from
the first observation. For example, the children of
nodes in the XML tree in Figure[2(a)|have three differ-
ent labels, thus the [c| vertex in the XSEED kernel in

Figure has three out-edges.

Observation 3: For any edge (u,v) in the kernel, the sum
of the child-counts over all recursive level ¢ and greater
is exactly the total number of elements that should be
returned by the path expression p//u/ /v, where p is
a path expression and the recursion level of p//u/ /v
is . As an example, the number of results of expres-
sion //s//s//p onthe XML tree in Figure[2(a)]is 5,



(a) An example XML tree

(5:9, 1:2, 2:3)

(0.0, 2:2, 1:2)
(b) The XSEED kernel

Figure 2: An example XML tree and its XSEED synopsis kernel

which is exactly the sum of the child-counts of the la-
bel associated with edge (s, p) at recursion level 1 and
2.

The first observation guarantees that the synopsis pre-
serves the complete information of the simple paths in the
XML tree. However, some simple rooted paths that can be
derived from the synopsis may not exist in the XML tree.
That is, the kernel may contain false positives for a simple
path query. The second observation guarantees that, for any
branching path query, if it has a match in the XML tree, it
also has a match in the synopsis. Again, false positives for
branching path queries are also possible. The third obser-
vation connects the recursion levels in the data and in the
query. This is useful in answering complex queries contain-
ing //-axes.

3.2 Construction

The XSEED kernel can be generated while parsing the
XML document. The pseudo-code in Algorithm [I] can be
implemented using a SAX event-driven XML parser.

The path_stk in line[T] of the algorithm is a stack of ver-
tices (and other information) representing the path while
traversing in the kernel. Each stack entry ((u, vst_set) in
line @ is a 2-tuple, in which the first item indicates which
vertex in the kernel corresponds to the current XML ele-
ment, and the second item keeps a set of the out-edges of
this vertex that have been explored in the XML subtree.
The set of out-edges in the tuple is used to increment the
parent-count of these edges in the case of a close tag event
(line [T9).

The rl_cnt in line [2]is a “counter stacks” data structure
to efficiently calculate the recursion level of a path. Since
the vertices in the path are pushed and popped as in a stack,

Algorithm 1 Constructing XSEED Kernel

CONSTRUCT-KERNEL(SS : Synopsis, X : XMLDoc)

1 path_stk «— empty stack;
2 rl_cnt < initialize to empty;
3 while the parser generates more events from X
4 do x < next event from X;
5 if = is an opening tag event
6 v < GET-VERTEX(S, x);
7 if path_stk # ()
8 (u, vst_set) < path_stk.pop();
9 e « GET-EDGE(S, u, v);
10 vst_set < vst_set U {e};
11 path_stk.push({u, vst_set));
12 I — rl_ent.push(v);
13 ell][c_CNT] « e[l][C_CNT] + 1;
14 path_stk.push({v,0));
15 else path_stk .push({v,0));
16 elseif z is a closing tag event
17 (v, vst_set) — path_stk.pop();
18 for each edge e € vst_set
19 do ¢[l][P_CNT] « e[l][P_CNT] + 1,
20 rl_ent .pop(v);

the recursion level can be computed in expected O(1) ev-
ery time a new item is pushed onto (line[I2)) or popped out
(line 20) from the data structure . The key idea to guar-
antee the efficiency is to partition the items into different
stacks based on their number of occurrences. A hash table
is kept to give the number of occurrences for any item (that
is why the complexity is expected O(1), not O(1)). When-
ever an item is pushed onto the rl_cnt, the hash table is
checked, the counter is incremented, and the item is pushed



Hash table Counter Stacks

a=>1 1[ablc
b ==> 3 2:[b[c
c ==> 2 3:E

Figure 3: Counter stacks for efficient recursion level calculation

onto the corresponding stack maintained in the data struc-
ture. When an item is popped from rl_cnt, its occurrence
is looked up in the hash table, popped from the correspond-
ing stack, and the occurrence counter in the hash table is
decremented. The recursion level of the whole path is indi-
cated by the number of stacks minus 1. As an example, af-
ter pushing the sequence of (a, b, b, ¢, ¢, b) the
data structure is shown in Figure [3] When pushing a and
b into the counter stacks, they are pushed to stack 1 since
their occurrences are 0 before inserting. When the second
b is pushed, the counter of b is already 1, thus the new b
is pushed to stack 2. Similarly, the following c, ¢, and b
are pushed to the stack 1, 2 and 3, respectively. This data
structure guarantees efficient calculation of recursion lev-
els and is of great importance in the cardinality estimation
algorithm introduced in Section 4]

The functions GET-VERTEX and GET-EDGE (lines [6]
and [9) search the kernel and return the vertex or edge in-
dicated by the parameters. If the vertex or edge is not in the
graph then it is created.

3.3 Synopsis update

When the underlying XML document is updated, i.e.,
some elements are added or deleted, the kernel can incre-
mentally be updated accordingly. The basic idea is to for
each of the subtree that is added or deleted, compute the
kernel structure for the subtree, then it can be added or sub-
tracted from the original kernel using the efficient graph
merging or subtracting algorithm [3].

When delete a subtree, we can construct a new Kernel
for the subtree. Furthermore, we still need to know which
vertex in the original kernel corresponds to the parent of the
root of the new kernel. Suppose the the new kernel and the
original kernel are &’ and k, respectively, the root of k&’ is r’
and its parent in k is p, then subtraction of k¥’ from k takes
two steps: 1) get the label of the edge (p, '), subtract 1 from
the child-count of the integer pair at the recursion level of
r’. If the child-count is 0, then set the parent-count to 0 as
well, and adjust the size of the vector if necessary. 2) for
each edge ¢’ in K/, locate the same edge ¢ in k, subtract the
parent-count and child-count in e’ from e at each recursion
level. The vector size should also be adjusted accordingly,
and if the size of a vector is 0, the edge should be deleted.
When adding a subtree to the XML tree, the way to incre-

mentally update the kernel is similar. The only difference is
to change the minus operation to plus, and adding edges if
necessary.

The hyper-edge table can also be incrementally updated
when a subtree is added/deleted to/from the XML tree. We
only need to (re-)compute the errors related to the paths that
are updated by the new kernel. The old entries in the ta-
ble are deleted and the new entries with the new errors are
added.

4 Cardinality Estimation based on XSEED
Kernel

Before introducing the estimation algorithm, we define
the following notions that are crucial to understand how car-
dinalities are estimated.

Definition 5 (Forward and Backward Selectivity)
For any rooted path p,y1 = (vi,va,...,Vp,Vpy1) ID
the XSEED kernel G(V;, Es), denote e(;;11) as edge
(vi, viy1), the sub-path (vi,va,...,v;) as p;, and the re-
cursion level of p; as r;, then the forward selectivity and
backward selectivity of the path p,, 11 is defined as:

|/v1/va/ -+ [va/ Vi
Sn+1
|/v1/va/ -+ [Va[vasi]|
|/vi/va/ - [val

fsel(anrl)

bsel(pn+1)

where S, 41 is the sum of child-counts at the recursion level
rn+1 over all in-edges of vertex v,, 1. Namely,

Snt1 = Z €(in+1) [Tnt1][C-CNT],  Ve(ni1) € Es.

m}

Intuitively, the forward selectivity is the proportion of
V1 that are contributed by the path (v, vs,...,v,). The
backward selectivity captures the proportion of v, under
the path (vy, va, ..., v,_1) that have a child v,, 1. Both no-
tions are defined using the cardinalities of path expressions,
which we shall introduce how to estimate them next.

In Definition [3 if we assume the probability of v,, hav-
ing a child v, is independent of v,,’s ancestors, we can
approximate the bsel as:

e 1] [P_CNT
bsel(pnt1) = S, H)[TSH][ ],

where 5,, is defined similarly as S, 41 in Deﬁnition@ This
approximated bsel is the proportion of v,, under any path
that have a child v,, 1 ;. Combining the definition and the ap-
proximation, the cardinality of the branching path p,, [v;,41]



can be estimated using the cardinality of the simple path p,,
as follows:

‘pn[Vn-HH = |pn| X bsel(pn+l)
€(n.n+1)[n+1][P-CNT]
A |pnl X (nni1) 5 .
More generally, given
a path expression p = /vy /va/ + /Vu[Vnt1] - [Votn), let

q = /v1/va/ -+ /vy, and assuming the bsel of q/v, 4 is in-
dependent of the bsel of q/vy; for any 4,5 € [1,m], then
the cardinality of p is estimated as:

lq| x bsel(q/vat1) X -
X bsel(q/Vnin)
= lq| x absel(p),

lg/[Vas1] - [Vosn]| =

where absel(p) denotes the aggregated bsels (products) of
the rooted paths ended with a predicate query tree node.
Since the bsel of any simple path can be approximated us-
ing the XSEED kernel, the problem is reduced to how to
estimate the cardinality of a simple path query.

For the simple path query /vy /va/ -+ /vy /Vytq in Def-
inition [3] if we again assume the probability of v; having a
child v;; is independent of v;’s ancestors, we can approx-
imate the cardinality of /vy /va/ -+ /vy/Vni1 as:

|/v1/va/ - [Va/Vaqi| & €(mnt1) [Pns1][C-CNT] X fsel(pn).

Intuitively, the
estimated cardinality of /vq/vy/ -+ /Vy/Vnts is the num-
ber of v,,4; that are contributed by v,, times the proportion
of v,, that are contributed by the path /vy /vy/ -+ /va_1.

Based on this approximation, the fsel can be estimated
as:

- e(n,n-‘rl)[rn-i-l][C*CNT] X fSEZ(pn)

fsel(pn+1) ~ S 11 N

Since the fsel is defined recursively, we should calcu-
late fsel(pn+1) from bottom-up. That is, we calculate the
fsel(py) first, and then use it to calculate fsel(ps), and so
on. At the same time, the estimated cardinalities of all sub-
expressions are also calculated. We illustrate this process in
the following example.

Example 3 Suppose we want to estimate the cardinality of
query /a/c/s/s/t on the kernel shown in Figure
The following table shows the vertices in a path while
traversing the kernel, the estimated cardinality, forward se-
lectivity, and backward selectivity.

The first row in the table means the path consisting of
the single root node [a]; the second row means the path of
(a, ¢) in the kernel, and so on. In particular the cardinality
of the last row indicates the estimated cardinality of the path
expression /a/c/s/s/t.

vertex | cardinality | fsel | bsel
B 1 1 1
c| 2 1 1
S| 5 1 1
S| 2 1 | 04
| 1 1 |05

When traversing the first vertex E], we set the cardinal-
ity, fsel, and bsel as their initial values 1. When travers-
ing the second vertex [c], the cardinality is approximated as
|/a/c|] = €@a,)[0][C.CNT] X fsel(a) = 2 x 1 = 2, since
the recursion level of path (a, c) is 0. The fsel(a, c) is es-

timated as gaﬁ = %
(a,0)
counts of all in-edges of c at recursion level specified by
path (a, c). The bsel(a, c) is estimated as W =
% = 1. When traversing a new vertex, the same calculations
will take the results associated with the old vertices and the
edge labels in the XSEED kernel as input, and produce the

cardinality, fsel, and bsel for the new vertex as output. o

= 1, where S, . is the sum of child-

The above description present a way to estimate the car-
dinality of a simple path query. If we want to estimate the
cardinality of a branching query or a complex path query
consisting of //-axes and wildcards (*), we need to develop
a matching algorithm. In fact, the XSEED estimation algo-
rithm defines a traveler (Algorithm2) and a matcher (Algo-
rithm E]) The matcher calls the traveler, through the func-
tion call NEXT-EVENT, to traverse the XSEED kernel in
depth-first order. The rooted path is maintained while trav-
eling. Whenever a vertex is visited, the traveler generates an
open event, which includes the information about the label
of the vertex, the DeweyID of this vertex, the estimated car-
dinality, the forward selectivity, and the backward selectiv-
ity of the current path. When finishing the visit of a vertex
(due to some criterion introduced later), a close event is gen-
erated. At last, an end-of-stream (EOS) event is generated
when the whole graph is traversed. The matcher accepts
these stream of events and maintain a set of internal states
to match the tree pattern specified by the path expression.

Algorithm 2] is a simplified pseudo-code for the trav-
eler algorithm. When traversing the graph, the algorithm
maintains a global variable pathTrace, which is a stack
of “footprint” (line[d). A footprint is a tuple including the
current vertex, the estimated cardinality of the current path,
the forward selectivity of the path, the backward selectivity
of the path, the index of the child to be visited next, and
the hash value for the current path. If the next vertex to
be visit is the root of the synopsis, an open event with ini-
tial values are generated, otherwise the NEXT-EVENT func-
tion calls the TRAVERSE-NEXT-CHILD function to move
to the next vertex in depth-first order. The latter function
calls the END-TRAVELING function to check whether the



Algorithm 2 Synopsis Traveler

NEXT-EVENT()

1 if pathTrace is empty

2 if no last event [> current vertex is the root

3 h « hash value of curV;

4 fp — {curV,1,1.0,1.0,0, h);

5 pathTrace.push(fp);

6 evt <+ OPEN-EVENT(v, card, fsel, bsel);
7 else evt «— EOS-EVENT();

8 else evt < TRAVERSE-NEXT-CHILD();

TRAVERSE-NEXT-CHILD()
1 (u, card, fsel, bsel, chdent, hsh) «— pathTrace.top();

2 kids < children of curV;

3 while kids.size() > chdent

4 do v « kids[chdcnt];

5 if “END-TRAVELING (v, chdcnt)

6 curV «— v;

7 (v, card, fsel, bsel, hsh) «— pathTrace.top();
8 evt < OPEN-EVENT(v, card, fsel, bsel);

9 return evt;
10 increment chdcnt in path Trace.top() by 1;

11 evt < CLOSE-EVENT(u);
12 return evt;

END-TRAVELING(v : SynopsisVertex, chdCnt : int)

old_rl «+ the recursion level of current path without v;
rl « the recursion level of current path and v;
(stop, card, fsel, bsel,n_h) «— EST(v, rl, old_rl);
if stop
return t rue;
fp < (v, card, fsel, bsel,0,n_h);
pathTrace.push(fp);
return false;
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Est(v : SynopsisVertex, ri : int, old_rl : int)
1 (u, card, fsel, bsel, chdent, hsh) «— pathTrace.top();
2 e« GET-EDGE(u,v);
3 if rl < e.label.size()
4 n_card «— e[rl][C_.CNT] * fsel;
5 sum_cCount < TOTAL-CHILDREN(u, old_rl);
6 n_bsel «— e[rl][P_CNT]/ sum_cCount;
7 else n_card «— 0;
8 sum_cCount <+ TOTAL-CHILDREN(v, rl);
9 n_fsel — n_card | sum_cCount,;
10 ifn_card < CARD_THRESHOLD

11 stop «— true;
12 else stop « false;
13 return (stop, n_card, n_fsel, n_bsel, n_hsh);

traverse reaches an end (this is necessary for a synopsis
containing cycles). Whether to stop the traversal is depen-
dent on the estimated cardinality calculated in the EST func-
tion. In the EST function, the cardinality, forward selec-

tivity, and backward selectivity are calculated as described
earlier. If the estimated cardinality is less than some thresh-
old (CARD_THRESHOLD), the END-TRAVELING func-
tion returns true, otherwise false. The OPEN-EVENT
function accepts the vertex, the estimated cardinality, the
forward selectivity, and the backward selectivity as input,
and generate an event including the input parameters and
the DeweyID as output. The DeweyID in the event is main-
tained by the OPEN-EVENT and CLOSE-EVENT functions
and is not shown in Algorithm 2]

If we treat the sequence of open and close events as open
and close tags of XML elements attributed with cardinality
and selectivities, the traveler generates the following XML
document from the X SEED kernel in Figure 2(b)}

<a dID="1." card="1" fsel="1" bsel="1">
<t dID="1.1." card="1" fsel="0.2" bsel="1"/>
<u dID="1.2." card="1" fsel="1" bsel="1"/>
<c dID="1.3." card="2" fsel="1" bsel="1">
<t dID="1.3.1." card="2" fsel="0.4" bsel="1"/>
<p dID="1.3.2." card="3" fsel="0.25" bsel="1"/>
<s dID="1.3.3." card="5" fsel="1" bsel="1">
<t dID="1.3.3.1." card="2" fsel="0.4" bsel="0.4"/>
<p dID="1.3.3.2." card="9" fsel="0.75" bsel="1"/>
<s dID="1.3.3.3." card="2" fsel="1" bsel="0.4">
<t dID="1.3.3.3.1." card="1" fsel="1" bsel="0.5"/>
<p dID="1.3.3.3.2." card="2" fsel="1" bsel="0.5"/>
<s dID="1.3.3.3.3." card="2" fsel="1" bsel="0.5">
<p dID="1.3.3.3.3.1." card="3" fsel="1" bsel="1"/>
</s> </s> </s> </c> </a>

The tree corresponding to this XML document is dynam-
ically generated and does not need to be stored. Since it
captures all the simple paths that can be generated from the
kernel, we call it expanded path tree (EPT). In a highly re-
cursive document (e.g., Treebank), the EPT could be even
larger than the original XML document. This is because a
single path with high recursion level will validate other non-
existing paths during the traversal. In this case, we need to
set a higher CARD_THRESHOLD to limit the traversal.
As demonstrated by our experiments, this heuristics greatly
reduces the size of the EPT without causing much error.

Algorithm (3| shows the pseudo-code for matching a
query tree rooted at qroot with the EPT generated from the
kernel K. The algorithm maintains a stack of frontier set,
which is a set of query tree nodes (QTN) for the current path
in the traversal. The QTNs in the frontier set are the candi-
dates that can be matched with the incoming event. Initially
the stack contains a frontier set consisting of the qroot it-
self. Whenever a QTN in the frontier set is matched with
an open event, the children of the QTN are inserted into a
new frontier set (line @ Meanwhile, the matched event
is buffered into the output queue of the QTN as a candi-
date match (line[T2)). In addition to the children of the QTN
that match with the event, the new frontier set should also
include all QTN’s whose axis is “//” (line [T4). After that,
the new frontier set is ready to be pushed onto the stack for
matching with the incoming open events if any.



Algorithm 3 Synopsis Matcher

CARD-EST(K : Kernel, groot : QueryTreeNode)
1 frtSet — {qroot};

2 friStk .push(frtSet);
3 est <« 0;
4  evt «— NEXT-EVENT();
5 while evt is not an end-of-stream (EOS) event
6  do if evt is an open event
7 frtSet «— frtStk .top();
8 new_fset — (;
9 for each query tree node ¢ € frtSet
10 do if q.label = evt.label
11 insert ¢’s children into new_fset;
12 insert evt into ¢’s output queue;
13 if q.axis = /1"
14 insert g into new_fset;
15 frtStk.push(new_fset);
16 else if evt is a close event
17 groot.rmUnmatched();
18 if groot.isTotalMatch()
19 est «— est +OUTPUT(evt.dID, groot);
20 else if evt is matched to groot
21 groot.rmDescOfSelf (evt.dID);
22 frtStk.pop();
23 evt «+— NEXT-EVENT();

24  return est;

OuTtpuT(dID : DeweylD, groot : QueryTreeNode)

Q — rstQTN .outQ;
est «— 0;
absel — AGGREGATED-BSEL(groot);
for each evt € Q

do est < est + evt.card * absel,
Q.clear();
rstQTN . rmDescOfSelfSubTree(dID);
return est;
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Whenever a close event is seen, the matcher first cleans
up the unmatched events in the output queue associated
with each QTN (line[17). The call groot.rmUnmatched))
checks the output queue of each QTN under groot. If some
buffered event does not have all its children QTN matched,
these events are removed from the output queue. After the
cleanup, if the top of the output queue of groot indicates a
total match, the estimated cardinality is calculated (line @])
Otherwise, if groot is not a total match, the partial results
should be removed from the groot. Finally, the stack for the
frontier set is popped up indicating that the current frontier
set is finished matching.

In the OUTPUT function, we need to sum the cardi-
nalities of all the events cached in the resulting QTN. If
there are predicates, the function AGGREGATED-BSEL cal-
culates the product of backward selectivities of all predicate

Figure 4: Example synopsis structure

QTNs. After the the summation, the output queue of the re-
sulting QTN should be cleaned up and the output queues of
all its descendant QTNs are also cleaned up.

S Optimization for Accuracy—XSEED Shell

In this section, we introduce the data structures that keep
auxiliary information to improve the accuracy of cardinality
estimation. The construction of this data structure and the
modification of the estimation algorithm to exploit this extra
information are also introduced.

5.1 Overview

The accuracy of cardinality estimation depends upon
how well the independence assumption (built into the
XSEED kernel) holds on a particular XML document. Here,
the independence assumption (explained in detail later)
refers to that whether u has a child v is independent of
whether u has a particular parent/ancestor or other children.
To capture the cases that are far from the independence as-
sumption, we need to collect and keep additional informa-
tion.

There are two cases where the estimation algorithm re-
lies on the independence assumption. The first case happens
when there are multiple in-edges and out-edges to a vertex
v. The probability of v having a child, say w, is independent
of which node is the parent of v. This case is best illustrated
by the following example.

Example 4 Given the XSEED kernel depicted in Figure [4
we want to estimate the cardinality of b/d/e. Since the
vertex @ in the graph has two in-edges incident to @ and
[c]. we have to assume that the total number of [e['s (20)

from @’s are independent from whether @’s parents are
@’s or ’s. Under this assumption, the cardinality of
b/d/e is the cardinality of d/e times the proportion of @
elements that are contributed by @ elements, namely the



forward selectivity of e in the path b/d/e:
|a/e| x fsel(b/d/e)

lb/d]
lb/d|+ |c/d|

b/d/e| =
= |d/e| x

In the above formula, the cardinality of a long simple path
is broken down into the cardinalities of short paths—binary
edges. In fact, a simple path of arbitrary length can be
rewritten to a formula that consists of only binary edges
based on the independence assumption. Since the cardi-
nalities of the binary edges are the child-counts of the edge
labels, the cardinality of path /b/d/e is:

5
b/d/e| =20 x ~ 7.14.
| | 5+9
The fact that the estimate of |b/d/e| being a real num-
ber rather than an integer indicates the estimate is not 100%
accurate. The only reason is the independence assumption
mentioned above. o

The second case that relies on the independence assump-
tion is the case of branching path queries. If a vertex w in
the kernel has two children v and w, the independence as-
sumption assumes that the number of u’s that have a child
v is independent of whether or not v has a child w. This
assumption ignores the possible correlations between two
siblings.

Example 5 Consider the XSEED kernel in Figure 4] and
the path expression b/d[£f]/e. Based on the indepen-
dence assumption, the cardinality of the path expression
b/d[£f] /e is the cardinality of b/d/e times the propor-
tion of @ elements that have a | £| child, namely the back-
ward selectivity of £ in the pathb/d/ f:

b/d[f]l/e|] = |b/d/e|x bsel(b/d/£)
jdle]
= |b/d/e| X 77—
| | lb/d| + |c/d|
5
= 20x — ~ 2.04.
117519
Again, this estimate is not 100% accurate. o

A simple solution to this problem is to keep in what we
call the hyper-edge table (HET), the actual cardinalities of
the simple paths (e.g., b/d/e) or the “correlated backward
selectivity” of the branching paths (e.g., the backward se-
lectivity of £ correlated with its sibling e under the path
b/d in Example [5)) when they induce large errors, so that
we do not need to estimate it. For the case of branching
paths, the reasons that we keep the correlated backward se-
lectivity instead of cardinality is that, firstly, the cardinality
can be accurately calculated by the correlated backward se-
lectivity, and, secondly, the correlated backward selectivity
can be used in branching paths with multiple predicates.

5.2 Construction

The HET can be pre-computed or added by the opti-
mizer through query feedback. While constructing the HET
through query feedback is relatively straightforward, there
are two issues related to the pre-computation: (1) although
we can estimate the cardinality using the XSEED kernel (the
estimation algorithm is introduced in Section E]), we need an
efficient way to evaluate the actual cardinalities to calculate
the errors; and (2) the number of simple paths is usually rea-
sonably small, but the number of branching paths is expo-
nential in the number of simple paths. Therefore, we need a
heuristics to select a subset of branching paths to evaluate.

To solve the first issue, we generate the path tree [1]
while parsing the XML document (see Figure[I)). The path
tree captures the set of all possible simple paths in the XML
tree. While constructing the path tree, we associate each
node with the cardinality and backward selectivity of the
rooted simple path determined by this node. Therefore, the
actual cardinality of a simple path can be computed effi-
ciently by traversing the path tree. To evaluate the actual
cardinality of a branching path, we use the Next-of-Kin
(NoK) operator [16], which performs tree pattern match-
ing while scanning the data storage (see Figure[T) once, and
return the actual cardinality of a branching path.

To solve the second issue, we limit the branching paths
to have only one predicate. This will reduce the number
of branching paths from exponential to the size of the path
tree to >, (%), where n is the number of nodes in the
path tree, and f; is the fan-out of node v; in the path tree. In
the worst case, this is still quadratic in the size of the path
tree. To further reduce the number of branching paths to
be examined, we can use various heuristics. For example,
we can setup a threshold for the backward selectivity of the
path tree node to be examined. That is, when traversing the
path tree, if the backward selectivity of the node is less than
the threshold, we evaluate the actual backward selectivity
of the branching paths that have this node as a predicate;
otherwise they are omitted.

Based on the description above, the construction of the
hyper-edge table is straightforward: for every node in the
path tree, the estimated cardinality and actual cardinality
are calculated. The path is put into a priority queue keyed
by the estimation error. Also if the backward selectivity of
the path is less than the threshold, the branching paths with
this node as predicate are calculated, and the paths are put
into the priority queue. To limit the memory consumption
of the hyper-edge table, we use a hashed integer instead of
the string of path expression. When the hash function is
reasonably good, the number of of collisions is negligible.
The hashed integer serves as a key to the “value”, actual
cardinality and the correlated backward selectivity, of the
table. Table [T]is an example HET for the XSEED kernel



in Figure [d In this table, for the purpose of presentation,
the actual simple or branching paths (i.e., hyper-edges) are
given instead of their hashed values (column 1).

hyper-edges | cardinality | correlated bsel
/a/b/d/e 14 0.1
/a/c/d/e 6 0.14
/a/b/d/f 21 0.25
/a/c/d/f 29 0.52
dlel/f 4 0.35

Table 1: Hyper-Edge Table

We use a simple way to manage the hyper-edge table: we
keep all the hyper-edges sorted in descending order of their
errors on secondary storage and only keep the top k entries
which have the largest errors in main memory. These top
k entries should be large enough to fill the memory budget.
In practice, the hyper-edge table is not likely to take a lot
of disk space, since there are less than 500,000 hyper-edges
in the most complex data set (Treebank) that we tested, and
less than 1,000 entries for all the other tested data sets. Con-
sequently, the hyper-edge table can be maintained dynami-
cally to reflect changing memory budget: when the memory
budget decreases, the only thing we need to do is to dis-
card some number of entries with the smallest errors from
main memory; when the memory budget increases, we just
need to bring more entries with the largest errors to the main
memory.

5.3 Cardinality estimation

If the hyper-edge table (HET) is available, we need to
modify the traveler and matcher algorithms to exploit the
extra information. In the traveler algorithm, we need to
modify the lines[2]to[7]in function EST as the following:

if HET is available
n_hsh «— incHash(hsh,v);
if n_hsh is in HET
(n-card, n_bsel) — HET .lookup(n_hsh);

if rl < e.label.size()
n_card «— e[rl][C.CNT] x fsel;
sum_cCount «— TOTAL-CHILDREN (u, old_rl);
n_bsel «— e[rl][P_CNT]/ sum_cCount;

1
2
3
4
5
6 e «— GET-EDGE(u, v);
7
8
9
0
1 else n_card «— 0;

If the HET is available, This snippet of code guaran-
tees that the actual cardinalities of simple paths are retrieved
from the HET. The incH ash function incrementally com-
pute the hash value of a path: given an old hash value for
the path up until the new vertex and the new vertex to be
added in the path, the function return the hash value for the
path including the new vertex.

The matcher also needs to be modified to retrieve the cor-
related backward selectivity from the HET. The following
snippet of code should be inserted after line [I]in function
CARD-EST:

1 if HET is available and q is a predicate QTN
2 p <« q’s parent QTN;

3 r «— p’s non-predicate child QTN;

4 hsh — incHash(“p[q]/r”);

5 if hsh is in HET

6 (card, bsel) «— HET .lookup(hsh);
7 evt . bsel < bsel;

In this code, the correlated backward selectivity of ¢ and
its non-predicate sibling QTN is checked. The parameter
to the incHash function is the string representation of the
branching path p|q] /7.

6 Experimental results

In this section, we first evaluate the performance of the
synopsis structure in terms of the following:

e compression ratio of the synopsis on different type of
data sets, and

e accuracy of cardinality estimation for different types of
queries: simple paths, branching paths, and complex
paths.

To evaluate the combined effects of the above two
properties, we compare accuracy in different space
budgets against a state-of-the-art synopsis structure
TreeSketch [[10]. TreeSketch is considered the best synop-
sis in terms of accuracy for branching path queries, and it
subsumes XSketch for structural-only summarization.

Another aspect of the experiments is to investigate the
efficiency of the cost estimation function using the synopsis.
We report the running time of the estimation algorithm for
different types of queries. The ratios of the prediction times
and the actual query processing times are also reported.

These experiments are performed on a dedicated ma-
chine with 2GHz Pentium 4 CPU and 1GB memory. The
synopsis construction and cardinality estimation are imple-
mented in C++. The code of the TreeSketch system is ob-
tained from the original authors. The experiments for the
efficiency of estimation algorithms are run five times and
the averages are reported.

6.1 Data sets and workload

We tested synthetic and real data sets with different
characteristics: simple without recursion (DBLH Swis-

#Available for download athttp://dblp.uni-trier.de/xml


http://dblp.uni-trier.de/xml

data sets total size | # of nodes | avg/max depth | avg/max fan-out | avg/max rec. level | # distinct paths | kernel size
DBLP 169 MB 4022548 3/6 10.1 /396243 1/2 127 2.8 KB
XMark10 11 MB 167865 5.56/12 3.66 /2550 1.04/2 502 2.7KB
XMark100 116 MB 1666315 5.56/12 3.67 /25500 1.04/2 514 2.7KB
Treebank.05 3.4 MB 121332 8.44/30 2.33/2791 23/9 34133 | 242 KB
Treebank 86 MB 2437666 8.42/36 2.33/56384 23711 338748 | 72.7KB
SwissProt 114 MB 2977031 35775 6.75 / 50000 1/1 117 0.7 KB
TPC-H 34 MB 1106689 3.87/4 14.8 / 15000 1/1 27 | 0.73KB
NASA 25 MB 476646 598/8 2.78 /2435 1/2 95 | 2.22KB
XBench TC/MD | 121 MB 1115661 63/8 3.73 /2600 1.81/3 33 0.8 KB

Table 2: Characteristics of experimental data sets

sProﬂ and TPC-H?), complex with small degree of recur-
sion (XMark [11]], NASA>, and XBench Tand (c,s) are
TC/MD [14]), and complex with high degree of recursion
(Treebank?). In this paper, we choose DBLP, XMark10 and
XMark100 (XMark with 10MB and 100MB of sizes, re-
spectively), and Treebank.05 (randomly chosen 5% of Tree-
bank) and full Treebank to be representative data sets for the
three categories. The basic statistics about the data sets are
listed in Table 2]

We divided the workload into three categories: sim-
ple path (SP) queries that are linear paths containing /-
axes only, branching path (BP) queries that include pred-
icates but also only have /-axes, and complex path (CP)
queries that contain predicates and //-axes. For each
data set, we generate all possible SP queries, and 1,000
random BP and CP queries. The randomly generated
queries are non-trivial. A sample CP query looks like
//regions/australia/item[shipping]/location.
The full set of test workload for the data sets DBLP,
XMark10, XMark100, Treebank.05 and Treebank can
be found at http://db.uwaterloo.ca/~ddbms/
publications/xml/XSeed.workload.tgzl

6.2 Construction time

For each data set, we measure the time for constructing
the kernel and shell separately. The big picture of where
the construction and estimation fit are shown in Figure
In this picture, the path tree and the NoK storage struc-
ture are used to calculate the real cardinalities of the sim-
ple path and branching path queries, and the kernel is used
to calculate the estimated cardinality. As described in Sec-
tion [ branching paths are estimated only for those path
tree nodes whose backward selectivity is less than some
threshold (denoted as BSEL_THRESHOLD). We use 0.1
as the BSEL_THRESHOLD for all the data sets except
Treebank, for which the threshold is set as 0.001.

5 Available for download at http: //www.cs .washington.edu/
research/xmldatasets/www/repository.html

The construction time for XSEED and TreeSketch are
given in Table In this table, “DNF” indicates that the
construction did not finish in the time limit of 24 hours.
The construction time for XSEED consists of the kernel
construction time and the shell construction time (first and
second part, respectively). The total construction time is the
sum of these two numbers. As shown in the table, the kernel
construction time is negligible for all data sets, and the shell
construction time is reasonable. Comparing to TreeSketch,
XSEED construction times are much smaller.

6.3 Accuracy of the synopsis

To evaluate the accuracy of XSEED synopsis, we again
compare with TreeSketch on different types of queries (SP,
BP, and CP). We calculated three error metrics to evalu-
ate the goodness of the estimations: Root-Mean-Squared
Error (RMSE), Normalized RMSE (NRMSE), and Coeffi-
cient of Determination (R-sq). The RMSE is defined to be
VO (ei — a;)2)/n, where e; and a; stands for the esti-
mated and actual result sizes, respectively for the ¢-th query
in the workload. The RMSE measures the average errors
over the 1000 queries. The NRMSE is adopted from [15]]
and is defined to be RMSE/a, where a = (>, a;)/n.
NRMSE is a measure of the average errors per one unit
of accurate result size. The R-sq measures the propor-
tion of variability in the cardinality estimation, is given by

(21, (ei—o)—a)’
S (ei-0)2) (S0 (ai-0)2)
the averages of a; and e;, respectively.

Since TreeSketch could not finish after 24 hours on
XMark100 and Treebank, we only listed, in Table@ the er-
ror metrics on the DBLP, XMark10, and Treebank.05 to
represent the three data categories: simple, complex with
small degree of recursion, and complex with high degree of
recursion. The workload is the combined SP, BP, and CP
queries. We tested both systems using 25KB and 50KB
memory budgets, as well as testing XSEED kernel with-
out shell, thus reducing the memory requirement. For the

R-sq = ( , where a and € are
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cons. time

DBLP

XMark10

XMark100

TreeBank.05

TreeBank

SwissProt

TPC-H

NASA

XBench TC/MD

TrSktch
XSEED

37
0.24/27

176
0.01/0.27

DNF
0.1/2.7

1140
0.008/52

DNF
0.168/261

DNF
0.17/127

0.47
0.286/0

196
0.28/0.071

DNF
0.35/0.37

Table 3: Synopses construction time for different data sets (all times are in minutes)

DBLP and XMark10 data sets, XSEED only uses 20KB
and 25KB memory respectively for the total of kernel and
shell, thus their error metrics on 25KB and 50KB are the
same. Even without the help from shell, the XSEED ker-
nel outperforms TreeSketch on XMark10 and Treebank.05
data sets with S0KB memory budget. The reason is that
the TreeSketch synopsis does not recognize recursions in
the document, thus even though it uses much more mem-
ory, the performance is not as good as the recursion-aware
XSEED synopsis. When the document is not recursive, the
TreeSketch has a better performance than the bare XSEED
kernel. However, spending a small amount of memory on
the XSEED shell greatly improves its performance. The
RMSE for XSEED with 25KB (i.e., generating and using
a modest amount of hyper-edge table) is almost half of the
RMSE for TreeSketch with S0KB memory.

There is only one case—BP queries on DBLP (see
Figure [5)—where TreeSketch outperforms XSEED even
with the help of HET. In this case, XSEED errors
are caused by the correlations between siblings that
are not captured by the HET. For example, the query
/dblp/article[pages] /publisher causes alarge
error on XSEED. The reason is that the backward selec-
tivity (0.8) of pages under /dblp/article is above
the default BSEL_THRESHOLD (0.1), so the hyper-
edge article[pages]/publisher was omitted in
the HET construction step, thus the correlation between
pages and publisher is not captured. It is possible to
use a better heuristics to address this problem, although we
have not investigate it in this paper.

6.4 Efficiency of cardinality estimation algoirthm

To evaluate the efficiency of the cardinality estimation
algorithm, we listed the ratio of the time spent on estimating
the cardinality and the time spent on actually evaluating the
path expression. The path expression evaluator we used is
the NoK operator [[16] that is extended to support //-axes.

The efficiency of the cardinality estimation algorithm de-
pends on how many tree nodes are there the EPT that can
be generated from traversing the XSEED kernel. For DBLP,
XMark10 and XMark100 data sets, the generated EPT is
very small—0.0035%, 0.036%, and 0.05% of the original
XML tree, respectively. As mentioned previously, the EPT
could be large for highly recursive documents such as Tree-
bank.05 and Treebank. To limit the size of EPT, as men-
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200
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Figure 5: Performance comparison for separate query types on
DBLP

tioned earlier, we establish a threshold for the estimated
cardinality for the next vertex to visit. In the above ex-
periments, the EPT are generated using the threshold of 20
(which means that if the estimated cardinality of the next
vertex in depth-first order is less than 20, then it will not
be visited), and the ratio of size of EPT to the size of the
original XML tree is 6.9% and 5.5%.

The average ratios of the estimation time to the ac-
tual running time on DBLP, XMark10, XMark100, Tree-
bank.05, and Treebank are 0.018%, 0.57%, 0.0916%, 2%,
and 1.5%. The ratios for XMark10 and XMark100 are more
than an order of magnitude is because the XSEED kernel for
them are very similar (because they are generated using the
same schema and distribution, but different scale factor),
but the size of the XML documents differs by an order of
magnitude.

7 Related work

There are many approaches dealing with cardinality es-
timation for path queries; see, e.g., [7, 4,1} 816, 13} 12, 10,
12]]. Some of them [7, 1} {13} [12] focus on a subset of path
expressions, e.g., simple paths (linear chain of steps that are
connected by /-axis) or linear recursive paths. Moreover,
none of them directly addresses recursive data sets, and it is



memory budgets DBLP XMark10 Treebank.05
RMSE | NRMSE | R-sq | RMSE | NRMSE | R-sq RMSE | NRMSE | R-sq
XSEED kernel 1960.5 0.154 0.99 39.6 0.151 0.99 22.7 1.69 0.97
25KB mem XSEED 103 0.0081 1 3.737 0.0143 22.7 1.69 0.97
TreeSketch | 221.5 0.0167 1 62.738 0.2373 0.994 | 229.5823 | 8.7714 | 0.6018
SOKB mem XSEED 103 0.0081 1 3.737 0.0143 12.82 0.9561 0.991
TreeSketch | 203.09 | 0.0159 1 58.3946 | 0.2209 | 0.9948 | 227.1157 | 8.6771 | 0.6082
Table 4: Error metrics for XSEED and TreeSketch
performances DBLP | XMarkl0 | XMark100 | Treebank.05 | Treebank
EPT to XML tree ratio 0.0035% | 0.036% 0.05% 6.9% 5.5%
estimation time to actual running time ratio | 0.018% 0.57% 0.0916% 2% 1.5%

Table 5: Estimation time vs. actual execution time

not clear how to extend them to support such type of data. In
these work, only [7] and [[12] support incremental mainte-
nance of the summarization structures to make it adaptable
to data updates.

TreeSketch [10], an extension to XSketch [8]], synopsis
can estimate the cardinality of branching path queries quite
accurately in many cases. However, it does not perform
as well on recursive data sets. Also due to the complex-
ity of the construction process, TreeSketch is hardly prac-
tical for structure-rich data such as Treebank. XSEED has
similarities to TreeSketch, but the major difference is that
XSEED preserves structural information in two layers (ker-
nel and shell) of granularity; while TreeSketch tries to pre-
serve structural information as a complex and unified struc-
ture.

The idea of hyper-edge table has been inspired by previ-
ously proposals [2, [12]. Aboulnaga et al. [2] try to record
the actual statistics of previous workload into a table and
reuse it later. Wang et al. in [12] uses the bloom filter tech-
nique to compactly store the cardinality information about
simple paths. In this paper, we only use a hash value for
that purpose since practice demonstrate that a single good
hash function only produce a few conflicts for thousands of
simple paths.

8 Conclusion and future work

In this paper, we propose a compact synopsis structure
to estimate the cardinalities of path queries. To the best of
our knowledge, our approach is the first to support accurate
estimation for all types of queries and data, incremental up-
date of the synopsis when the underlying XML document is
changed, dynamic reconfiguration of the synopsis structure
according to the memory budget, and the ability to exploit
query feedback. The simplicity and flexibility of XSEED
make it well suited for implementation in a real DBMS op-
timizer.

To further improve the synopsis, we are working on
methods to further compress the XSEED kernel when it is
large (e.g., in Treebank), and investigate different heuristics
for efficiently constructing the synopsis and for capturing
the most erroneous queries.
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