
Optimal Basic Block Instruction Scheduling for
Multiple-Issue Processors using Constraint

Programming∗

Abid M. Malik1, Jim McInnes2, and Peter van Beek1

1 University of Waterloo, Waterloo, Canada
2 IBM Canada Toronto Lab

Abstract

Instruction scheduling is one of the most important steps for improving the per-
formance of object code produced by a compiler. A fundamental problem that arises
in instruction scheduling is to find a minimum length schedule for a basic block—a
straight-line sequence of code with a single entry point and a single exit point—subject
to precedence, latency, and resource constraints. Solving the problem exactly is NP-
complete, and heuristic approaches are currently used in most compilers. In contrast,
we present a scheduler that finds provably optimal schedules for basic blocks using tech-
niques from constraint programming. In developing our optimal scheduler, the keys to
scaling up to large, real problems were improvements to the constraint model and to
the constraint propagation phases. We experimentally evaluated our optimal sched-
uler on the SPEC 2000 integer and floating point benchmarks. On this benchmark
suite, the optimal scheduler was very robust and scaled to the largest basic blocks—all
but a handful of the hundreds of thousands of basic blocks in our benchmark suite
could not be solved optimally within a reasonable time limit, and the scheduler was
able to routinely solve the largest basic blocks, including basic blocks with up to 2600
instructions. This compares favorably to the best previous exact approaches.

1 Introduction

Modern architectures are pipelined and can issue multiple instructions per time cycle. On
such processors, the order in which the instructions are scheduled can significantly impact
performance. A fundamental problem that arises in instruction scheduling is to find a mini-
mum length schedule for a basic block—a straight-line sequence of code with a single entry
point and a single exit point—subject to precedence, latency, and resource constraints. Basic

∗Technical Report CS-2005-19, School of Computer Science, University of Waterloo, 2005.

1

block scheduling is important in its own right and also as a building block for scheduling
larger groups of instructions such as superblocks [6, 29].

Basic block instruction scheduling for realistic multiple-issue processors is NP-complete
[11, 15], and most compilers use a heuristic approach—a fast method that sometimes gives
sub-optimal solutions—rather than an exact approach to basic-block scheduling (e.g., see
[12, 24]). Although heuristic approaches have the advantage that they are fast, a basic
block scheduler which finds provably optimal schedules may be useful where longer compile
times are tolerable, such as when compiling for software libraries, digital signal processing,
or embedded applications [12, 21]. In addition to offering improved schedules when incorpo-
rated into the compiler, an optimal scheduler can also be used to improve existing heuristic
approaches. First, an optimal scheduler can be used as a gold standard against which to
evaluate existing heuristics, and to determine when and why these heuristics fail to find
improvements. Second, an optimal scheduler can be used to generate machine learning data
from which improved heuristics can be automatically learned [28].

Previous work on optimal basic block schedulers has taken several approaches, including:
branch-and-bound enumeration [5, 13, 14, 21, 29], dynamic programming [19], integer linear
programming [1, 4, 18, 20, 31], and constraint programming [10, 30]. With the exception
of [14, 30, 31] (to which we do detailed comparisons later in the paper), these previous
approaches have only been evaluated on a few problems with the sizes of the problems
ranging between 10 and 50 instructions. Further, their experimental results suggest that none
of them would scale up beyond problems of this size. A major challenge when developing
an exact approach to an NP-complete problem is to develop a solver that scales and is
robust in that it rarely fails to find a solution in a timely manner on a wide selection of
real problems. Wilken, Liu, and Heffernan [31] were the first to develop a robust optimal
scheduler that scaled up to large basic blocks. However, only experimental results for a
single-issue processor were presented and thus it is unclear how well their approach works on
multiple-issue processors (the general form of the problem, as addressed in this paper). Van
Beek and Wilken [30] improve on these results for single-issue processors, using a constraint
programming approach. This work on single-issue processors forms the starting point of the
present work. Heffernan and Wilken [14] were the first to present experimental results on
solving large basic blocks targeted towards a multiple-issue processor.

In this paper, we present a constraint programming approach to instruction scheduling for
multiple-issue processors that is robust and optimal. In a constraint programming approach,
one models a problem by stating constraints on acceptable solutions, where a constraint is
simply a relation among several unknowns or variables, each taking a value in a given domain.
The problem is then usually solved by interleaving a backtracking search with a series of
constraint propagation phases. In the constraint propagation phase, the constraints are used
to prune the domains of the variables by ensuring that the values in their domains are locally
consistent with the constraints. In developing our optimal scheduler, the keys to scaling up
to large, real problems were improvements to the constraint model and to the constraint
propagation phases.

We experimentally evaluated our optimal scheduler on the SPEC 2000 integer and floating

2

point benchmarks, using four different architectural models. On this benchmark suite, the
optimal scheduler scaled to the largest basic blocks and was very robust. Depending on the
architectural model, at most 2–25 basic blocks out of the hundreds of thousands of basic
blocks used in our experiments could not be solved within a 10-minute time bound. This
represents approximately a 50-fold improvement over previous work. As well, the scheduler
was able to routinely solve the largest basic blocks that we found in practice, including basic
blocks with up to 2600 instructions.

2 Background

In this section, we first define the instruction scheduling problem studied in this paper
followed by a brief review of the needed background from constraint programming (for more
background on these topics see, for example, [16, 23, 24]).

Throughout the paper, the number of elements in a set U is denoted by |U |, the minimum
and maximum values in a finite set U of integers are denoted by min(U) and max(U),
respectively, and the interval notation [a, b] is used as a shorthand for the set of integers
{a, a + 1, . . . , b}.

We consider multiple-issue pipelined processors. On such processors, there are multiple
functional units, and multiple instructions can be issued (begin execution) each clock cycle.
Associated with each instruction is a delay or latency between when the instruction is issued
and when the result is available for other instructions that use the result. In this paper, we
assume that all functional units are fully pipelined, that instructions and functional units
are typed, and that instructions of a given type only execute on one type of functional
unit. Examples of types of instructions are load/store, integer, floating point, and branch
instructions.

We use the standard labeled directed acyclic graph (DAG) representation of a basic-block
(see [24]). Each node corresponds to an instruction and there is an edge from i to j labeled
with a non-negative integer l(i, j) if j must not be issued until i has executed for l(i, j)
cycles. In particular, if l(i, j) = 0, j can be issued in the same cycle as i; if l(i, j) = 1, j
can be issued in the next cycle after i has been issued; and if l(i, j) > 1, there must be some
intervening cycles between when i is issued and when j is subsequently issued. These cycles
can possibly be filled by other instructions.

The critical-path distance from a node i to a node j in a DAG, denoted cp(i, j), is the
maximum sum of the latencies along any path from i to j, if there exists a path from i to
j; −∞ otherwise. A node i is a predecessor of a node j if there is a directed path from i
to j; if the path consists of a single edge, i is also called an immediate predecessor of j. A
node j is a successor of a node i if there is a directed path from i to j; if the path consists
of a single edge, j is also called an immediate successor of i. A sink node is a node with no
successors. For convenience, we assume that a fictitious sink node, hereafter called the sink
node, is added to each DAG and that an edge is added from each node i in the DAG to the
sink node, where the label on the edge is the latency of instruction i.

Given a labeled dependency DAG for a basic block, a schedule for a multiple-issue pro-

3

33

1 3

D C

A B

E

(a)

A r1 ← a
B r2 ← b

nop
nop

D r1 ← r1 + r2
C r3 ← c

nop
nop

E r1 ← r1 + r3

(b)

A r1 ← a
B r2 ← b
C r3 ← c

nop
D r1 ← r1 + r2
E r1 ← r1 + r3

(c)

Figure 1: (a) Dependency DAG associated with the instructions to evaluate (a + b) + c on a
processor where loads from memory have a latency of 3 cycles and integer operations have a
latency of 1 cycle; (b) non-optimal schedule for a single-issue processor; (c) optimal schedule.

cessor specifies an issue or start time for each instruction or node such that the latency
constraints are satisfied and the resource constraints are satisfied. The latter are satisfied if,
at every time cycle, the number of functional units that can execute a set of instruction types
is greater than or equal to the number of instructions of those types issued at that cycle.
The length of a schedule is the number of the cycle in which the sink node is issued. The
basic block instruction scheduling problem is to construct a schedule with minimum length.

Basic block instruction scheduling under the assumption that all functional units are fully
pipelined is the special case of resource-constrained project scheduling [9, 25] where all of the
activities have unit execution times and we seek a schedule which minimizes the makespan.

Example 1 Figure 1 shows a simple dependency DAG and two possible schedules for the
DAG, assuming a single-issue processor that can execute all types of instructions. The
schedule (b) requires four nop instructions (null operations) because the values loaded are
used by the following instructions. The better schedule (c), the optimal or minimum length
schedule, requires only one nop and completes in three fewer cycles.

Constraint programming is a methodology for solving combinatorial problems. A problem
is modeled by specifying constraints on an acceptable solution, where a constraint is simply
a relation among several unknowns or variables, each taking a value in a given domain.

Definition 1 (Constraint Model) A constraint model consists of a set of n variables,
{x1, . . . , xn}; a finite domain dom(xi) of possible values for each variable xi, 1 ≤ i ≤ n; and
a collection of r constraints, {C1, . . . , Cr}. Each constraint Ci, 1 ≤ i ≤ r, is a constraint
over some set of variables, denoted by vars(Ci), that specifies the allowed combinations of
values for the variables in vars(Ci). A solution to a constraint model is an assignment of a
value to each variable that satisfies all of the constraints.

4

Constraint models are often solved using a backtracking algorithm. At every stage of the
backtracking search, there is some current partial solution that the algorithm attempts to
extend to a full solution by assigning a value to an uninstantiated variable. One of the keys
behind the success of constraint programming is the idea of constraint propagation. During
the backtracking search when a variable is assigned a value, the constraints are used to reduce
the domains of the uninstantiated variables by ensuring that the values in their domains are
“consistent” with the constraints. The form of consistency we use in our approach to the
instruction scheduling problem is bounds consistency.

Definition 2 (Bounds Consistency Constraint Propagation) Given a constraint C,
a value d ∈ dom(x) for a variable x ∈ vars(C) is said to have a support in C if there exist
values for each of the other variables in vars(C) − {x} such that C is satisfied, where for
each variable y its value is taken from [min(dom(y)), max(dom(y))]. A constraint C is bounds
consistent if for each x ∈ vars(C), the value min(dom(x)) has a support in C and the value
max(dom(x)) has a support in C.

A constraint model can be made bounds consistent by repeatedly removing unsupported
values from the domains of its variables.

Example 2 Consider the constraint model of the small instruction scheduling problem in
Example 1 with variables A, . . . , E, each with domain {1, . . . , 6}, and the constraints,

C1: D ≥ A + 3, C3: E ≥ C + 3, C5: all-different(A, B, C, D, E),
C2: D ≥ B + 3, C4: E ≥ D + 1,

where constraint C5 enforces that its arguments are pair-wise different. The constraints
are not bounds consistent. For example, the minimum value 1 in the domain of D does
not have a support in constraint C1 as there is no corresponding value for A that satisfies
the constraint. Enforcing bounds consistency using constraints C1 through C4 reduces the
domains of the variables as follows: dom(A) = {1, 2}, dom(B) = {1, 2}, dom(C) = {1, 2, 3},
dom(D) = {4, 5}, and dom(E) = {5, 6}. Subsequently enforcing bounds consistency using
constraint C5 further reduces the domain of C to be dom(C) = {3}. Now constraint C3 is
no longer bounds consistent. Re-establishing bounds consistency causes dom(E) = {6}.

3 Our Solution

In this section, we present our constraint model of the basic block instruction scheduling
problem. In the constraint programming methodology a problem is modeled in terms of
variables, values, and constraints. The choice of variables defines the search space and the
choice of constraints defines how the search space can be reduced so that it can be effectively
searched using backtracking search.

We model each instruction by a variable with names 1, . . . , n (we use i to refer inter-
changeably to variable i, instruction i, and node i in the DAG). The domain of each variable
dom(i) is a subset of {1, . . . , m} which are the available time cycles. Assigning a value

5

Table 1: Notation used in specifying the constraints.

lower(i) lower bound of domain of variable i

upper(i) upper bound of domain of variable i

type(i) type of node/instruction i

kt number of functional units of type t

l(i, j) latency on edge between nodes i and j

cp(i, j) critical-path distance between nodes i and j

d(i, j) lower bound on distance between nodes i and j

onpath(i, j, t) set of all nodes of type t that are on some path from node i to node
j. Note that i ∈ onpath(i, j, t) if type(i) = t and j ∈ onpath(i, j, t)
if type(j) = t. These are all of the instructions of type t that must
be issued with or after node i is issued and must all be issued with or
before node j is issued.

pred(i) set of all immediate predecessors of node i

succ(i) set of all immediate successors of node i

pred(i, t) set of all immediate predecessors of node i that are of type t

succ(i, t) set of all immediate successors of node i that are of type t

I([a, b], t) set of all variables of type t whose domains intersect the interval [a, b].
These are all of the instructions of type t that may need these time
cycles to execute on functional units of type t.

d ∈ dom(i) to a variable i has the intended meaning that instruction i will be issued at time
cycle d. The domain dom(i) = {a, . . . , b} of a variable i is represented by the endpoints of
the interval [a, b]. We use the notation lower(i) and upper(i) to refer to these endpoints.

We now specify the six types of constraints in the model: latency, resource, distance,
predecessor and successor, safe pruning, and dominance constraints. Some of the notation
we use is summarized in Table 1. As is clear, for a minimal correct model of the instruction
scheduling problem all that is needed are the latency and resource constraints. However, the
distance, predecessor and successor, safe pruning constraints, and dominance were found to
be essential in improving the efficiency of the search for a schedule.

3.1 Latency constraints

Given a labeled dependency DAG G = (N, E), for each pair of variables i and j such that
(i, j) ∈ E, a latency constraint of the form j ≥ i + l(i, j) is considered for addition to the
constraint model. A latency constraint is added if it is not redundant. A latency constraint
between i and j is redundant if there exists a k < j such that, l(i, j) ≤ l(i, k) + cp(k, j). In

6

other words, the constraint is redundant if there is a path from i to j that goes through k that
is equal to or longer than the direct path l(i, j). (If the constraint is redundant, adding it will
have no effect as the remaining latency constraints will derive a stronger result.) Since we
are enforcing bounds consistency, the actual form of the constraints added to the constraint
model are,

lower(j) ≥ lower(i) + l(i, j)

and its symmetric version,
upper(i) ≤ upper(j) − l(i, j).

The latency constraints are easy to propagate when establishing lower and upper bounds for
the variables, and easy to propagate incrementally during the backtracking search.

3.2 Resource constraints

For each type t of instruction/functional unit a resource constraint is needed to ensure that
the number of instructions of type t issued at each time cycle does not exceed the number
of functional units of type t. Such resource constraints are a special case of a well-studied
constraint called the global cardinality constraint [27]. A global cardinality constraint over a
set of variables and values states that the number of variables instantiating to a value must
be between a given upper and lower bound, where the bounds can be different for each value.
Here, for each type t a global cardinality constraint over all variables of type t is added to
the constraint model, where all of the lower bounds are set equal to zero and all of the upper
bounds are set equal to the number of functional units of type t. Note that when all of the
upper bounds are set equal to one—in our case, when there is a single functional unit for
some type t—the global cardinality constraint is equivalent to the well-known all-different
constraint, which enforces that its arguments are pair-wise different.

Fast algorithms for enforcing bounds consistency on a global cardinality constraint have
been proposed. In our implementation, we used the efficient algorithm presented in [22, 26].
The algorithm runs in time O(t + n), where t is the time to sort the bounds of the domains
of the variables and n is the number of variables. We note that for scheduling basic blocks, it
has been shown that bounds consistency is dramatically better than other, more expensive,
forms of consistency [22, 26].

3.3 Distance constraints

For each pair of nodes i and j, a distance constraint of the form j ≥ i + d(i, j) is considered
for addition to the constraint model. A distance constraint is added if it is an improvement
over the critical-path distance; i.e., d(i, j) > cp(i, j). (If the distance is not greater than the
critical-path distance, adding the constraint will have no effect as the latency constraints
will derive a stronger result.) The distance constraints are lower bounds on the number of
cycles that must elapse between when i is scheduled and j is scheduled. Although syntac-
tically identical to latency constraints and hence propagated in the same manner, they are
conceptually distinct and are key factors in effectively reducing the size of the search space.

7

Table 2: Additional notation used in specifying the distance constraints.

r1(i, j, t) The minimum number of cycles that must elapse before the first in-
struction in onpath(i, j, t) can be issued; i.e., min{cp(i, k) | k ∈
onpath(i, j, t)}, the minimum critical-path distance from node i to any
node in onpath(i, j, t).

r2(i, j, t) The minimum number of cycles to issue all of the instructions in
onpath(i, j, t); i.e., �|onpath(i, j, t)|/kt�, the size of the set of instruc-
tions divided by the number of functional units that can execute in-
structions of type t, rounded up to the next highest integer value.

r3(i, j, t) The minimum number of cycles that must elapse between when the
last instruction in onpath(i, j, t) is issued and node j can be issued; i.e.,
min{cp(k, j) | k ∈ onpath(i, j, t)}, the minimum critical-path distance
from any node in onpath(i, j, t) to node j.

In what follows, we are interested in subgraphs called regions [31], which are induced
from a given dependency DAG. Basic blocks typically contain many such regions embedded
within them, with larger blocks containing many thousands.

Definition 3 (Region [31]) A pair of nodes i, j in a DAG define a region if there is more
than one path between i and j and there does not exist a node k distinct from i and j such
that every path between i and j goes through k.

Given a region defined by nodes i and j, we wish to add a distance constraint j ≥ i+d(i, j),
for some integer value d(i, j). Following [31], if the region is small enough, we solve the
region exactly (in isolation) and determine the optimal value for d(i, j). To solve a region in
isolation, we use the same constraint solver as for an entire basic block, but the constraint
model is restricted to just the latency and resource constraints, plus any distance constraints
that have been found so far. The regions in the DAG are examined in an “inside-out” manner
so that distance constraints for inner regions can be used when solving larger outer regions.

For larger regions, we estimate the value, ensuring that our estimate is always less than or
equal to the optimal value. We found that a threshold of 25 nodes worked well in practice;
for regions larger than this the distance was estimated. Consider the notation shown in
Table 2. For larger regions, initially we estimate d(i, j) using,

d(i, j) = max
t

{r1(i, j, t) + r2(i, j, t) + r3(i, j, t) − 1},

where we are finding the maximum over all instruction types t. Note that the nodes that are
on a path from node i to node j can be determined quickly given the critical-path distances
between all pairs of nodes, since a node k is on a path from i to j iff cp(i, k) ≥ 0 and
cp(k, j) ≥ 0. The estimate of the distance can sometimes be improved by “removing” a

8

small number of nodes (between one and three nodes) from onpath(i, j, t). This was done
whenever removing these nodes led to an increase in the value of d(i, j); i.e., the decrease
in r2(i, j, t) was more than offset by the increase in r1(i, j, t) + r3(i, j, t). The estimate is a
generalization and improvement over the distance constraints presented in [30], to handle
multiple-issue, multiple types of instructions, and zero latency edges.

Example 3 Consider the dependency DAG shown in Figure 2 where the clear nodes are
of one instruction type and the shaded (yellow) nodes are of a different instruction type.
Assume there is a single functional unit for each type of instruction. For the region defined
by A and F, the initial estimate of the distance is d(A, F) = 4. Similarly, for the region defined
by A and G, the initial estimate of the distance is d(A, G) = 5. The estimate of the distance
d(A, G) can be improved to d(A, G) = 6 by “removing” node G from onpath(A, G, shaded).
The distance constraints F ≥ A + 4 and G ≥ A + 6 would be added to the constraint model,
as both d(A, F) and d(A, G) are improvements over the critical-path distances between those
nodes.

0

2

0

1 1

0

A

F

E

B

G

D

2 2

C

2

Figure 2: Example of adding distance constraints between nodes that define regions. The
constraints F ≥ A + 4 and G ≥ A + 6 would be added to the constraint model.

3.4 Predecessor and successor constraints

For each node i which has more than one immediate predecessor, a single predecessor con-
straint of the following form is added,

lower(i) ≥ min{lower(k) | k ∈ P}

9

+ �|P |/kt� − 1

+ min{l(k, i) | k ∈ P}

for every type t and every subset P of pred(i, t) where |P | > kt,

where the operator �x� returns the smallest integral value not less than x. It can be seen
that a predecessor constraint can be propagated in O(|pred(i)|2) time by first sorting the
predecessors of i by increasing lower bounds and then stepping through the lower bounds,
each time finding the minimum latency among the remaining predecessors. A symmetric
version, called successor constraints, for the immediate successors of a node is given by,

upper(i) ≤ max{upper(k) | k ∈ P}
− �|P |/kt� + 1

− min{l(i, k) | k ∈ P},

for every type t and every subset P of succ(i, t) where |P | > kt.

The predecessor and successor constraints are propagated in a preprocessing stage and also
during search. They can be viewed as an adaptation of edge-finding rules (see [2]) and
are an easy generalization of the similarly named constraints presented in [30] to handle
multiple-issue and multiple types of instructions.

Example 4 Consider the partial DAG shown in Figure 3, where the domains of the vari-
ables are as shown. Assume there is a single functional unit for each type of instruction.
Propagating the predecessor constraint associated with node E improves the lower bound of
the variable. The earliest that the set P = {C, D} of immediate predecessors of node E can
be scheduled is cycle 8, and, therefore, cycle 9 is the earliest that the last of its predecessors
could be scheduled. Therefore, the earliest that E can be scheduled is cycle 11.

[4, 9] [8, 10] [8, 10]

[10, 12] ⇒ [11, 12]

1 2 2

E

D B C A

[4, 9]

1

Figure 3: Example of improving the lower bound of a variable using a predecessor constraint.

10

3.5 Safe pruning constraint

Given a constraint model, we say that it is safe to prune a value from the domain of a
variable whenever it is the case that, if there was a solution to the constraint model before
pruning the value, there is still a solution to the model after pruning. For each instruction
type t, a safe pruning constraint over all variables of type t is added to the constraint model.
The safe pruning constraint is based on the following theorem.

Theorem 1 Suppose that all of the latency and resource constraints have been propagated.
If there exists an interval [a, b] such that,

(i) for all i ∈ I([a, b], t), lower(i) = a,

(ii) for all i ∈ I([a, b], t), for all k ∈ pred(i), upper(k) + l(k, i) ≤ lower(i),

(iii) | I([a, b], t) | ≤ (b − a + 1) × kt,

then it is safe to prune the upper bounds of the variables i ∈ I([a, b], t) as follows,

upper(i) = min(upper(i), b).

Proof. Suppose there was a solution to the constraint model before pruning. Call this the
original solution. There are two cases.

1. Suppose that in the original solution each variable in I([a, b], t) is assigned a value from
its domain that is less than or equal to b. Clearly this is still a solution after pruning.

2. Suppose that in the original solution there exist variables in I([a, b], t) that have been
assigned values from their domains that are greater than b. We will show that each of
these variables can be given a consistent value from [a, b].

a. Latency constraints: We will show that any value in [a, b] satisfies the latency
constraints. Let i be any variable that has been reassigned a value. Let k be
an immediate predecessor of i and consider the latency constraint k + l(k, i) ≤ i.
Lowering the value of i cannot violate the constraint since upper(k) + l(k, i) ≤
lower(i) (by condition (ii)) and we assumed that the latency constraints have been
propagated. Thus, any value in the domain of i will satisfy this constraint. Let k
be an immediate successor of i and consider the latency constraint i + l(i, k) ≤ k.
Lowering the value of i cannot violate this constraint.

b. Resource constraints: We will show that it is possible to reassign values to these
variables from [a, b] and satisfy the relevant resource constraint. Condition (i)
implies that before pruning there is no variable i of type t such that lower(i) < a
and a ≤ upper(i); i.e., before pruning there is no variable whose domain intersects
both [c, a − 1] and [a, d] where c < a ≤ d ≤ b. We also know that after pruning
there is no variable whose domain intersects both [c, b] and [b+1, d] where a ≤ c ≤
b < d. This means that we can look at the resource constraint over the variables in

11

I([a, b]) in isolation; whatever values are assigned to the variables in this set cannot
impact the values that variables outside of this set can be assigned. Condition
(iii) ensures there are enough values so that all of the variables in I([a, b], t) can
be assigned a value such that the resource constraint is satisfied.

�

Corollary 1 Suppose that all of the latency and resource constraints have been propagated.
If there exists an interval [a, b] such that,

(i) for all i ∈ I([a, b], t), upper(i) = b,

(ii) for all i ∈ I([a, b], t), for all k ∈ succ(i), upper(i) + l(i, k) ≤ lower(k),

(iii) | I([a, b], t) | ≤ (b − a + 1) × kt,

then it is safe to prune the lower bounds of the variables i ∈ I([a, b], t) as follows,

lower(i) = max(lower(i), a).

Example 5 Consider the partial DAG shown in Figure 4, where the domains of the variables
are as shown. Assume there is a single functional unit for each type of instruction. The safe
pruning constraint can be applied iteratively as follows. First, the interval [2,2], where
I([2, 2], clear) = {B}, satisfies the theorem. Hence, node B can have its domain pruned to
[2,2]. Second, the interval [3,3], where I([3, 4], clear) = {C}, now satisfies the theorem. Hence,
node C can have its domain pruned to [3,3]. Third, the interval [3,4], where I([3, 4], shaded)
= {D, E}, also now satisfies the theorem. Hence, nodes D and E can have their domains
pruned to [3,4].

[3, 11]

 ⇓
 [3, 3]

[3, 11]

 ⇓
 [3, 4]

[3, 11]

 ⇓
 [3, 4]

E C D

1
1 1

[2, 10] ⇒ [2, 2] B

[1, 1] A

1

Figure 4: Example of improving the bounds of variables using a safe pruning constraint.

12

3.6 Dominance constraints

Heffernan and Wilken [14] present a set of graph transformations for dependency DAGs for
basic blocks and show that optimally scheduling the transformed DAGs using branch-and-
bound enumeration is faster and more robust. The DAG transformations reduce the search
space while preserving optimality. We found that these transformations also worked well
in our constraint programming approach. In our context, the transformations add simple
constraints to the model of the form i ≥ j, which we call dominance constraints.

In what follows, we are interested in pairs of disjoint, isomorphic subgraphs A and B
induced from a given dependency DAG. Subgraphs A and B are isomorphic if there is a
mapping from the node set of A to the node set of B such that A and B are identical
(identical instruction types, edges, and latencies on the edges).

Using terminology similar to that for the safe pruning constraint, we say that it is safe to
add a constraint to a constraint model whenever it is the case that, if there was a solution to
the constraint model before adding the constraint, there is still a solution after adding the
constraint. Adding dominance constraints, when it is safe to do so, is based on the following
theorem.

Theorem 2 (Heffernan and Wilken [14]) Let A and B be isomorphic subgraphs with
node sets V (A) = {a1, . . . , ar} and V (B) = {b1, . . . , br}. If,

(i) ai is neither a predecessor or a successor of bi, 1 ≤ i ≤ r,

(ii) for all k ∈ pred(ai) such that k 	∈ V (A), l(k, ai) ≤ cp(k, bi), 1 ≤ i ≤ r,

(iii) for all k ∈ succ(bi) such that k 	∈ V (B), l(bi, k) ≤ cp(ai, k), 1 ≤ i ≤ r,

(iv) for any edge (bi, aj), l(bi, aj) ≤ cp(ai, bj),

then adding the constraints ai ≤ bi, 1 ≤ i ≤ r is safe.

Example 6 Consider the DAG shown in Figure 5a. Dominance constraints can be added
iteratively as follows. First, the subgraphs with nodes V (A) = {B, D} and V (B) = {C,
E} are isomorphic and satisfy the conditions of the theorem. Hence, the constraints B ≤ C
and D ≤ E can be added to the model. Adding these constraints updates the critical path
distances. In particular, cp(D, E) was −∞ and is now 0. Second, the subgraphs with nodes
V (A) = {F} and V (B) = {E} are isomorphic and now satisfy the conditions of the theorem.
Hence, the constraint F ≤ E can be added to the model.

Heffernan and Wilken [14] find isomorphic subgraphs that satisfy the theorem using
backtracking search with a time cutoff. The search starts with isomorphic subgraphs that
consist of single nodes (i.e., they have the same instruction type) that satisfy condition
(i) of the theorem and either condition (ii) or condition (iii). These nodes are called seed
nodes. The backtracking search expands these subgraphs to adjacent nodes, maintaining
isomorphism, until either (a) all of the conditions of the theorem are satisfied (in which case,

13

2

1

0

1

2

1 1
A

G

B

D

C

E

F

1

1

1 1
A

H

B G C …

(a) (b)

Figure 5: Examples of adding dominance constraints: (a) (adapted from [14]) the constraints
B ≤ C, D ≤ E, and F ≤ E would be added to the constraint model; (b) the constraints B
≤ C, C ≤ D, . . . , F ≤ G would be added to the constraint model.

dominance constraints can be added), or (b) the subgraphs cannot be expanded any further
or the time cutoff is reached (in which case, this pair of seed nodes leads to failure and we
try another pair of seed nodes).

In our work, we find isomorphic subgraphs by focusing on regions (see Definition 3).
Given a region defined by nodes i and j, we conceptually remove the source node i and the
sink node j of the region and perform a depth-first search to find the separate components
or subgraphs of the region. We then check whether pairs of components are isomorphic and
satisfy the conditions of the theorem (or can be made to do so by dropping a few nodes). We
focus on separate components of regions as during the backtracking search for a solution,
often both orderings of these components must be tried to verify that there is no solution.
Thus, the dominance constraints, by establishing an ordering on the variables between these
components, can greatly reduce the search space.

Testing isomorphism is NP-complete in general. Here, a fast heuristic test is used to
determine whether two components are isomorphic. The nodes in each component are in-
dependently sorted based on features of the nodes, and the order of the nodes constitutes a
potential isomorphism mapping, which is then verified. Observe that whenever the heuristic
(sort) test returns true, the pair of subgraphs is isomorphic, and that sometimes the heuris-
tic returns false even though there exists a true mapping. However, experimental evidence
suggests that the heuristic works well. Consider the following sets S1 and S2, where S1 ⊆ S2.

14

Construct the first set S1 as follows. For all pairs of components, add only those pairs to S1

that pass the heuristic test. This gives some of the pairs of components that are isomorphic
(although it may miss some); i.e., S1 is a subset of the set of all isomorphic pairs of compo-
nents. Construct the second set S2 as follows. For all pairs of components, add only those
pairs to S2 that have the same numbers of instructions of each instruction type. This gives
the pairs of components that are potentially isomorphic (although some may not be); i.e., S2

is a superset of the set of all isomorphic pairs of components. We found that the difference
S2 − S1 was most often empty and always small, thus providing evidence that the heuristic
test catches almost all isomorphic pairs of components.

A special case of the theorem was found to occur often in practice. Consider the DAG
shown in Figure 5b where the region defined by A and H contains many nodes all of the
same type and all at the same latencies. All of these nodes are symmetric and the dominance
constraints that would be added are equivalent to so-called symmetry-breaking constraints
[7]. We recognize this special case as follows. For each instruction type t, we sort the
variables by their lower bounds, and then step through all instructions with the same lower
bound and check if the pairs of nodes satisfy the theorem. If so, dominance constraints are
added.

Overall, we found that our techniques often discovered many pairs of components within
a basic block that satisfied the theorem, sometimes with several hundred nodes each. We
also found that the dominance constraints that were added greatly improved the efficiency
of the search for a schedule, thus providing additional evidence for the effectiveness of the
graph transformations proposed by Heffernan and Wilken [14].

3.7 Solving an instance

Solving an instance of an instruction scheduling problem is divided into several phases.
In phase one, we construct the constraint model and use the constraints to establish the

lower bounds of the variables and a lower bound on the length m of an optimal schedule.
Given m, the upper bounds of the variables are similarly established and the constraint model
is passed to the backtracking algorithm. The backtracking search interleaves constraint
propagation with branching on variables. During constraint propagation, bounds consistency
is enforced on the constraints until no further changes result. A dynamic variable ordering
is used that selects as the next variable to instantiate the variable with the least number
of values remaining in its domain, breaking ties by choosing the variable that participates
in the most constraints. Given a selected variable x, the backtracking search first branches
on x assigned to lower(x), then on x assigned to lower(x) + 1, and so on, until either a
solution is found or the domain of x is exhausted. If no solution is found, a length m
schedule does not exist and the value of m is incremented, the upper bounds of the variables
are re-established using the new value of m, and the new constraint model is passed to the
backtracking algorithm. This is repeated, each time incrementing m until a solution is found,
an upper bound on the length of a schedule is reached, or a time limit is exceeded. An upper
bound on the length of a schedule is established by running a list-scheduling algorithm using
a critical-path heuristic (see Section 4). If a solution is found or the upper bound on the

15

length of a schedule is reached, a provably optimal solution has been found. If, instead, the
time limit is exceeded, we proceed to phase two of the solution process.

In phase two, the level of constraint propagation during backtracking search is increased
to a variation of singleton consistency [8]. In singleton consistency, a variable is temporarily
instantiated to a single value and the constraint model is tested for consistency. If the
consistency test fails, the value can be removed from the domain of the variable. In our work,
we iteratively instantiated and tested the consistency of the lower and upper bounds of the
domains of the variables. The consistency test consisted of enforcing bounds consistency on
the constraints. We found that singleton consistency sometimes dramatically reduced the
domains of the variables during search. As well, when testing the consistency of the bounds,
we record the number of changes that are made during the bounds consistency propagation.
This information is used in phase two to select the next variable to branch on. The goal is to
branch on a variable that causes the most reductions in the domains of the other variables.
As for phase one, if a solution is found or the upper bound on the length of a schedule is
reached, a provably optimal solution has been found.

In phase three, the level of constraint propagation during backtracking search is increased
once again to perform singleton consistency to a depth of two. Each variable is temporarily
instantiated to a single value and we test whether the constraint model is singleton consistent.
This level of propagation is expensive and is viable only for smaller but difficult basic blocks.

In our experiments, we found that the following scheme worked best for stepping through
the phases. First, if the basic block contains 300 or fewer instructions, phase one is allocated
5 seconds, phase two is allocated 15 seconds, and the remaining time is allocated to phase
three. Second, if the basic blocks contains more than 300 instructions, phase one is allocated
5 seconds and the remaining time is allocated to phase two.

4 Experimental Evaluation

In this section, we describe the experimental evaluation of our optimal basic block scheduler.
The constraint programming model was implemented and evaluated on all of the basic

blocks from the SPEC 2000 integer and floating point benchmarks [http://www.spec.org].
The benchmarks were compiled using IBM’s Tobey compiler [3] targeted towards the IBM r©
PowerPC r© processor [17], and the basic blocks were captured as they were passed to Tobey’s
instruction scheduler. The basic blocks contain four types of instructions: branch, load/store,
integer, and floating point. The range of the latencies is: all 1 for branch instructions, 1–12
for load/store instructions (the largest value is for a store-multiple instruction, which stores
to memory the values in a sequence of registers), 1–37 for integer instructions (the largest
value is for division), and 1–38 for floating point instructions (the largest value is for square
root). The Tobey compiler performs instruction scheduling before global register allocation
and once again afterwards, and our test suite contains both versions of the basic blocks. The
compilations were done using Tobey’s highest level of optimization, which includes aggressive
optimization techniques such as software pipelining and loop unrolling.

The following table shows the four architectural models we used in our evaluation. We

16

assumed that all functional units were fully pipelined and that the issue width of the processor
was equal to the number of functional units.

1-issue processor executes all types of instructions.

2-issue processor with one floating point functional unit and one functional unit
that can execute integer, load/store, and branch instructions.

4-issue processor with one functional unit for each type of instruction.

6-issue processor with the following functional units: two integer, one floating
point, two load/store, and one branch.

The optimal constraint programming scheduler was compared experimentally with list
scheduling, the most popular heuristic method for scheduling basic blocks in compilers
[12, 24]. List scheduling is a greedy algorithm which uses a heuristic for which instruc-
tion to schedule next. Following Muchnick [24], our list scheduling heuristic used critical-
path distance (max delay) as the primary feature, earliest start time as a tie-breaker if the
critical-path distances were equal, and order within the instruction stream as a tie-breaker
if both the critical-path and earliest start times were equal. We refer to this heuristic as the
critical-path heuristic. Although it is a popular heuristic, the primary reason for adopting
this heuristic is that critical-path heuristics were also used in previous work [14, 30, 31], thus
allowing a fairly direct comparison of previous experimental results with our experimental
results.

Tables 3 & 4 show the number of basic blocks in the SPEC 2000 benchmark suite where
the optimal scheduler found a shorter schedule than the heuristic scheduler and also the
number of basic blocks where the optimal scheduler failed to complete within the given time
limit of 10 minutes1. The results are broken down into whether the instruction scheduling
is being done before or after global register allocation. It can be seen that the optimal
scheduler is robust in that it almost always completed within the given time limit. Although
not shown in the tables, this remains true even if the time limit is decreased from 10 minutes
to 100 seconds. (At most 5 additional failures resulted for each issue width when scheduling
before register allocation and at most 10 when scheduling after.) It is interesting to note
that the basic blocks that arise from before register allocation are harder for the optimal
scheduler (as measured by the number of times the scheduler failed to complete within a
given time bound) than those that arise from after register allocation.

Wilken, Liu, and Heffernan [31] and van Beek and Wilken [30] present experimental
results for a 1-issue processor. Note that, although both of these solvers could solve all of
the basic blocks in the SPEC95 floating point benchmarks in seconds, when the solver in [30]
was applied to the current test suite of basic blocks, hundreds of problems could not be solved.
We speculate that the current test suite contains more difficult problems for the following
four reasons. First, the current test suite contains longer and more varied latencies (in [31],
the latencies were uniformly 1 for integer instructions, 2 for floating point instructions, and
3 for memory instructions). Second, the current test suite contains shorter latencies (our

1All of the experiments were run on a 2.40 GHz Intel r© Pentium r© 4 processor with 1 GB of main memory.

17

DAGs contain many latency 0 edges, which are used to capture anti-dependencies and output
dependencies between two instructions). Third, the current test suite contains many larger
basic blocks (previous work used the GCC compiler and the largest DAG was approximately
1000 instructions). Fourth, the current test suite contains blocks from both before and after
register allocation (previous work only used blocks from after register allocation).

Heffernan and Wilken [14] were the first to present experimental results on solving large
basic blocks targeted towards a multiple-issue processor. Their test suite contains the basic
blocks from the SPEC 2000 floating point benchmarks (with the Fortran90 benchmarks
omitted) and are from after register allocation. They report the number of basic blocks
where their optimal scheduler failed to complete within a time limit of 100 seconds. In their
worst case, a 2-issue processor model, their optimal solver failed on over 200 basic blocks. If
we restrict our experimental results to the same benchmarks and the same time limit, our
optimal solver failed on only 4 basic blocks, a 50-fold improvement.

To systematically study the scaling behavior of the optimal scheduler, we report the
results broken down by increasing size ranges of the basic blocks. For reference, the number of
basic blocks in each size range is also given (see Tables 5 & 6). It can be seen that the optimal
scheduler scales well, finding improved solutions for large basic blocks. Not surprisingly, as
the basic block size increases, the heuristic method has more opportunities to make a mistake
and the fraction of basic blocks improved by the optimal scheduler increases. For the largest
basic blocks, up to 40.9% of the schedules are improved by the optimal scheduler (see the 4-
issue architecture after register allocation). It is interesting to note that the heuristic method
does relatively much better on the basic blocks that arise from before register allocation, and
the optimal scheduler does relatively much better on the basic blocks that arise from after
register allocation. The blocks after register allocation are more constrained, which make
them harder for the heuristic method and easier for the optimal method.

Tables 7 & 8 summarize the percentage improvements in schedule length of the optimal
schedule over the schedule found by a list scheduling algorithm using the critical-path heuris-
tic. Somewhat surprising is that on all size ranges the optimal scheduler can find substantial
improvements, as measured by the maximum improvement. In other words, critical-path
list scheduling, a commonly used heuristic method, sometimes finds schedules that are very
sub-optimal.

18

Table 3: Basic block instruction scheduling before register allocation. Number of basic blocks
in the SPEC 2000 benchmark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule, and (b) the optimal scheduler failed to complete
within the given time limit of 10 minutes, for various issue widths.

1-issue 2-issue 4-issue 6-issue

#blocks (a) (b) (a) (b) (a) (b) (a) (b)
ammp 3,128 37 45 34 32
applu 653 22 25 27 13
apsi 2,210 25 77 84 27
art 355 2 3 5 0
bzip2 972 6 6 5 1
crafty 4,969 57 57 41 17
eon 4,509 25 27 1 43 1 21
equake 486 2 4 6 3
facerec 1,221 15 52 58 19
fma3d 10,034 163 170 13 241 8 122 10
galgel 5,369 88 125 2 110 3 32 1
gap 19,729 130 130 104 19
gcc 42,686 182 181 151 48
gzip 1,610 26 26 34 1
lucas 915 40 51 50 33
mcf 364 10 10 8 0
mesa 14,903 130 182 2 236 2 98
mgrid 207 2 9 6 3
parser 3,561 23 23 9 1
perlbmk 16,450 89 89 79 10
sixtrack 10,950 260 418 2 370 2 74
swim 345 2 7 6 1
twolf 7,468 71 72 56 16
vortex 11,945 67 67 96 14
vpr 3,369 28 28 2 23 7
wupwise 591 14 21 14 0
Total 168,999 1,516 0 1,905 22 1,896 16 612 11

19

Table 4: Basic block instruction scheduling after register allocation. Number of basic blocks
in the SPEC 2000 benchmark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule, and (b) the optimal scheduler failed to complete
within the given time limit of 10 minutes, for various issue widths.

1-issue 2-issue 4-issue 6-issue

#blocks (a) (b) (a) (b) (a) (b) (a) (b)
ammp 3,459 84 115 88 76
applu 734 46 76 65 47
apsi 2,650 77 141 137 102
art 486 1 2 8 0
bzip2 1,060 9 9 25 9
crafty 5,135 78 1 78 1 134 1 40
eon 4,972 106 133 168 112
equake 503 6 8 10 6
facerec 1,436 26 72 89 54
fma3d 11,280 429 1 485 1 579 1 275 1
galgel 6,120 178 269 255 165
gap 20,625 213 213 193 86
gcc 45,565 266 265 415 166
gzip 1,723 14 14 35 4
lucas 1,014 47 52 55 35
mcf 407 11 11 12 1
mesa 16,478 233 262 1 321 1 150
mgrid 221 10 22 21 15
parser 3,935 27 27 41 15
perlbmk 17,542 187 188 194 66
sixtrack 12,568 543 850 893 564 2
swim 388 8 19 15 6
twolf 7,695 92 95 94 23
vortex 12,808 92 90 173 102
vpr 3,654 40 40 61 16
wupwise 654 44 57 54 12
Total 183,112 2,867 2 3,593 3 4,135 3 2,147 3

20

Table 5: Basic block instruction scheduling before register allocation. Number of basic blocks
in the SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule
(imp.), and the percentage of basic blocks with improved schedules (%), for ranges of basic
block sizes and various issue widths.

1-issue 2-issue 4-issue 6-issue

range #blocks imp. % imp. % imp. % imp. %
3–5 90,169 202 0.2 210 0.2 109 0.1 0 0.0
6–10 45,366 376 0.8 440 1.0 313 0.7 17 0.0
11–20 20,477 331 1.6 384 1.9 477 2.3 156 0.8
21–30 5,381 200 3.7 233 4.3 271 5.0 107 2.0
31–50 3,930 176 4.5 261 6.6 315 8.0 134 3.4
51–100 2,390 164 6.9 251 10.5 273 11.4 103 4.3
101–250 1,131 60 5.3 109 9.6 112 9.9 69 6.1
251–2600 155 7 4.5 17 11.0 26 16.8 26 16.8

Total 168,999 1,516 0.9 1,905 1.1 1,896 1.1 612 0.4

Table 6: Basic block instruction scheduling after register allocation. Number of basic blocks
in the SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule
(imp.), and the percentage of basic blocks with improved schedules (%), for ranges of basic
block sizes and various issue widths.

1-issue 2-issue 4-issue 6-issue

range #blocks imp. % imp. % imp. % imp. %
3–5 88,887 136 0.2 140 0.2 73 0.1 0 0.0
6–10 48,700 428 0.9 467 1.0 423 0.9 52 0.1
11–20 26,025 787 3.0 842 3.2 1,146 4.4 378 1.5
21–30 8,530 419 4.9 548 6.4 691 8.1 477 5.6
31–50 5,830 452 7.8 592 10.2 698 12.0 481 8.3
51–100 3,279 372 11.3 539 16.4 642 19.6 435 13.3
101–250 1,658 210 12.7 387 23.3 379 22.9 263 15.9
251–2600 203 63 31.0 78 38.4 83 40.9 61 30.0

Total 183,112 2,867 1.6 3,593 2.0 4,135 2.3 2,147 1.2

21

Table 7: Basic block instruction scheduling before register allocation. Average and maximum
percentage improvements in schedule length of optimal schedule over schedule found by
critical-path heuristic, for ranges of block sizes and various issue widths. The average is over
only the basic blocks in the SPEC 2000 benchmark suite where the optimal scheduler found
an improved schedule.

1-issue 2-issue 4-issue 6-issue

range ave. max. ave. max. ave. max. ave. max.
3–5 14.3 16.7 14.5 25.0 13.9 20.0 0.0
6–10 8.3 16.7 8.8 23.1 10.3 25.0 15.0 25.0
11–20 5.6 17.6 6.2 17.6 7.6 22.2 8.4 14.3
21–30 3.8 11.5 4.4 15.8 5.9 22.2 5.5 10.0
31–50 2.6 13.5 3.3 20.0 4.2 21.4 3.7 17.6
51–100 2.0 8.2 2.7 16.7 2.8 28.0 3.8 22.2
101–250 1.6 8.8 3.6 21.4 3.9 21.6 3.2 24.4
251–2600 0.3 0.7 3.4 14.9 2.9 14.0 1.2 2.9
Overall 6.3 17.6 6.4 25.0 6.6 28.0 5.4 25.0

Table 8: Basic block instruction scheduling after register allocation. Average and maximum
percentage improvements in schedule length of optimal schedule over schedule found by
critical-path heuristic, for ranges of block sizes and various issue widths. The average is over
only the basic blocks in the SPEC 2000 benchmark suite where the optimal scheduler found
an improved schedule.

1-issue 2-issue 4-issue 6-issue

range ave. max. ave. max. ave. max. ave. max.
3–5 13.7 16.7 13.9 25.0 12.6 20.0 0.0
6–10 7.9 15.4 8.2 16.7 9.3 25.0 12.0 25.0
11–20 5.0 14.3 5.2 21.4 7.0 27.3 8.0 20.0
21–30 3.3 12.0 4.0 16.0 5.0 17.6 5.7 15.0
31–50 2.5 11.1 3.5 20.0 4.0 24.2 4.2 17.6
51–100 1.8 9.4 2.6 12.5 2.7 14.6 2.7 17.1
101–250 1.2 7.9 1.7 10.8 1.5 13.1 1.7 10.6
251–2600 0.2 0.9 0.7 4.1 0.5 3.4 0.6 4.7
Overall 4.4 16.7 4.6 25.0 5.2 27.3 4.7 25.0

22

5 Conclusion

We presented a constraint programming approach to basic block instruction scheduling for
multiple-issue processors. The problem is considered intractable, yet our approach is optimal
and robust on large, real problems. The key to scaling up to large, real problems was in
the development of an improved constraint model and the application of more powerful
constraint propagation techniques. We performed an extensive experimental evaluation and
demonstrated that our approach compares favorably to the best previous exact approaches.
The scheduler rarely failed to find a solution within relatively short time bounds, and was
able to routinely solve the largest basic blocks that we found in practice, including basic
blocks with up to 2600 instructions.

Acknowledgments

This research was supported by an IBM Center for Advanced Studies (CAS) Fellowship,
an NSERC Postgraduate Scholarship, and an NSERC CRD Grant. We thank Mike Chase,
Claude-Guy Quimper, Tyrel Russell, John Tromp, Kent Wilken, and Huayue Wu for helpful
discussions and contributions to the implementation of the constraint programming model.

Trademarks

IBM and PowerPC are registered trademarks of International Business Machines Corporation
in the United States, other countries, or both.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its sub-
sidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

c©Copyright IBM Corp., Abid M. Malik, and Peter van Beek 2005. All rights reserved.

References

[1] S. Arya. An optimal instruction-scheduling model for a class of vector processors. IEEE
Transactions on Computers, C-34(11):981–995, 1985.

[2] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems. Kluwer, 2001.

[3] R. J. Blainey. Instruction scheduling in the TOBEY compiler. IBM J. Res. Develop.,
38(5):577–593, 1994.

[4] C.-M. Chang, C.-M. Chen, and C.-T. King. Using integer programming for instruction
scheduling and register allocation in multi-issue processors. Computers and Mathematics
with Applications, 34(9):1–14, 1997.

23

[5] H. Chou and C. Chung. An optimal instruction scheduler for superscalar processors.
IEEE Transactions on Parallel and Distributed Systems, 6(3):303–313, 1995.

[6] K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann, 2004.

[7] J. M. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning, pages 148–159, 1996.

[8] R. Debruyne and C. Bessière. Domain filtering consistencies. J. Artificial Intelligence
Research, 14:205–230, 2001.

[9] U. Dorndorf. Project Scheduling with Time Windows. Physica-Verlag, 2002.

[10] M. A. Ertl and A. Krall. Optimal instruction scheduling using constraint logic pro-
gramming. In Proceedings of 3rd International Symposium on Programming Language
Implementation and Logic Programming, pages 75–86, Passau, Germany, 1991.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[12] R. Govindarajan. Instruction scheduling. In Y. N. Srikant and P. Shankar, editors, The
Compiler Design Handbook, pages 631–687. CRC Press, 2003.

[13] S. Haga and R. Barua. EPIC instruction scheduling based on optimal approaches. In
1st Annual Workshop on Explicitly Parallel Instruction Computing Architectures and
Compiler Technology (EPIC), Austin, Texas, 2001.

[14] M. Heffernan and K. Wilken. Data-dependency graph transformations for instruction
scheduling. Journal of Scheduling, 8:427–451, 2005.

[15] J. Hennessy and T. Gross. Postpass code optimization of pipeline constraints. ACM
Transactions on Programming Languages and Systems, 5(3):422–448, 1983.

[16] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, second edition, 1996.

[17] S. Hoxey, F. Karim, B. Hay, and H. Warren. The PowerPC Compiler Writer’s Guide.
Warthman Associates, 1996.

[18] D. Kästner and S. Winkel. ILP-based instruction scheduling for IA-64. In Proceedings
of the SIGPLAN 2001 Workshop on Languages Compilers, and Tools for Embedded
Systems (LCTES), pages 145–154, Snowbird, Utah, 2001.

[19] C. W. Kessler. Scheduling expression DAGs for minimal register need. Computer
Languages, 24(1):33–53, 1998.

24

[20] R. Leupers and P. Marwedel. Time-constrained code compaction for DSPs. IEEE Trans.
VLSI Systems, 5(1):112–122, 1997.

[21] J. Liu and F. Chow. A near-optimal instruction scheduler for a tightly constrained,
variable instruction set embedded processor. In Proceedings of the International Con-
ference on Compilers, Architectures, and Synthesis for Embedded Systems, pages 9–18,
Grenoble, France, 2002.

[22] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, pages 245–250, Acapulco, Mex-
ico, 2003.

[23] K. Marriott and P. J. Stuckey. Programming with Constraints. The MIT Press, 1998.

[24] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[25] K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with Time Windows
and Scarce Resources. Springer, second edition, 2003.

[26] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. B. Sadjad. An efficient
bounds consistency algorithm for the global cardinality constraint. In Proceedings of the
Ninth International Conference on Principles and Practice of Constraint Programming,
pages 600–614, Kinsale, Ireland, 2003.

[27] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence, pages 209–215,
Portland, Oregon, 1996.

[28] T. Russell, A. M. Malik, M. Chase, and P. van Beek. Learning basic block scheduling
heuristics from optimal data. In Proceedings of the 15th CASCON, Toronto, 2005.

[29] G. Shobaki and K. Wilken. Optimal superblock scheduling using enumeration. In Pro-
ceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture
(Micro-37), pages 283–293, Portland, Oregon, 2004.

[30] P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue proces-
sors with arbitrary latencies. In Proceedings of the Seventh International Conference on
Principles and Practice of Constraint Programming, pages 625–639, Paphos, Cyprus,
2001.

[31] K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer pro-
gramming. In Proceedings of the SIGPLAN 2000 Conference on Programming Language
Design and Implementation (PLDI), pages 121–133, Vancouver, 2000.

25

