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Abstract

Let G = (V,E,w) be a simple digraph, in which all edge weights are non-negative real numbers.
Let G′ be obtained from G by the application of a set of edge weight updates to G. Let s ∈ V ,
and let Ts and T ′

s be a Shortest Path Tree (SPT ) rooted at s in G and G′, respectively. The
Dynamic Shortest Path (DSP) problem is to compute T ′

s from Ts. For the DSP problem, we
correct and extend a few existing SPT algorithms to handle multiple edge weight updates. We
prove that these extended algorithms are correct. The complexity of these algorithms is also
analyzed. To evaluate the proposed algorithms, we compare them with the well-known static
Dijkstra algorithm. Extensive experiments are conducted with both real-life and artificial data
sets. The real-life data are road system graphs obtained from the Connecticut road system and
are relatively sparse. The artificial data are randomly generated graphs and are relatively dense.
The experimental results suggest the most appropriate algorithms to be used under different
circumstances.

Keywords:Dynamic Shortest Path, Shortest Paths, Shortest Path Trees, Dynamic Graphs, Incremental
Algorithms, Fully- and Semi-Dynamic Algorithms.

1 Introduction

Consider an application in which there are a number of distribution centers that are scattered around

a metropolitan area, and it is useful to know the least-cost traffic routes from each location to all major

intersections. Taking intersections as vertices, blocks between two intersections as edges, and traffic latencies

as edge weights, the city traffic map is a digraph with non-negative edge weights. The least-cost route

query between two intersections is to find a shortest path between two vertices in the corresponding graph.

Since the traffic condition changes rapidly, least-cost routes may not be correct a few minutes after they are

computed. One could apply Dijkstra’s algorithm [15] repeatedly to compute the shortest paths. However, this

well-studied static algorithm may become ineffective when only a small number of the city roads experience
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latency changes. Therefore, researchers have been studying incremental algorithms to minimize shortest

paths re-computation time.

Computing shortest paths efficiently in a dynamic graph environment also finds its application in a spatial

database system. In such a system, it is essential to provide the functionality of finding an optimal route

in a network. A graph in a route query system in general is of an arbitrary size and is too huge to be

main-memory resident. In the past decade, a popular approach to solve the scalability problem is based on

graph partitioning [10, 4, 21, 23, 33]. The whole graph is first partitioned into smaller sized fragments, each

of which can fit into the main-memory. Because the size of a graph could be arbitrarily large, to speed up

the search process and to minimize the I/O activity, a common technique is to materialize, in each fragment,

the (local) shortest-distance information between the so-called border vertices (those shared by more than

one fragment). In a real-time traffic information system, an edge weight in a fragment could be updated

dynamically, the shortest-distance information between border vertices has to be re-computed fast for it to

be useful in a route query evaluation. This can be accomplished by materializing, for each border vertex,

a Shortest Path Tree (SPT) to all other border nodes in a fragment; and re-computing each SPT whenever

some edge weights in the fragment have been changed.

We call the problem of re-computing SPTs in a dynamic environment the DSP problem. Let G = (V,E,w)

be a simple digraph, in which all edge weights are non-negative real numbers. Let G′ = (V,E,w′) be obtained

from G by the application of a set of edge weight updates (increases and/or decreases) to G. Let s ∈ V ; let

Ts and T ′
s be SPTs rooted at s in G and G′, respectively. The DSP problem is to compute T ′

s from Ts.

For the DSP problem, the input edge weight changes could come in three forms: increases only, decreases

only, and a mixture of both. We denote an algorithm as semi-dynamic if the input is either a set of edge

weight increases or a set of edge weight decreases, but not both. An algorithm is said to be fully-dynamic

if the input can be a set of mixed edge weight changes. We shall investigate the performance of both semi-

and fully-dynamic algorithms in this work.

An intelligent approach to solve the DSP problem is proposed in [28]. We denote their semi-dynamic

algorithms as BallString since they are based on a ball-and-string model. Unfortunately, the semi-dynamic

algorithm for edge weight increases case is incorrect. We amend BallString by proposing MBallStringInc

that updates SPTs correctly in the case of multiple edge weight increases. We propose a dynamic version of

Dijkstra, which we call DynDijkstra. DynDijkstra are two semi-dynamic algorithms that can handle multiple

edge weight increases and decreases, respectively. A fully-dynamic algorithm called DynamicSWSF-FP is

proposed in [31]. However, a problem with DynamicSWSF-FP is that some of its computation is inefficient.

We modify DynamicSWSF-FP by applying some optimizations on re-computing the so-called rhs values

and adding SPT tree structure maintenance. We call the resulting more efficient algorithm MFP.

For each of the following proposed algorithms: DynDijkstra, MBallStringInc, and MFP, we prove its

correctness and analyze its complexity. In addition, we derive general frameworks for describing DynDijkstra
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and MBallString.1 Furthermore, we conduct extensive experiments, with both real-life as well as artificial

data sets, on all proposed algorithms and compare them with the static algorithm Dijkstra. As a result, we

identify the preferred algorithm to compute an SPT in a dynamic environment under different input mixes.

In Section 2, we define some basic notation. In Section 3, we survey related work and highlight our

contributions. In Sections 4 and 5, we describe the proposed semi- and fully-dynamic algorithms. We give

the correctness proofs of some of these algorithms in the Appendix. In Section 6, we analyze the complexity

of the proposed algorithms. In Section 7, we present experimental results and analysis. Finally, we give our

conclusion in Section 8.

2 Preliminary

2.1 Definition and Notation

Before proceeding to the description of algorithms, let us examine the definitions of frequently used terms.

Terms not defined here are common concepts in graph theory (such as vertices, edges, paths, and trees),

which can be found in any graph theory resource [8].

Let G = (V,E,w) be a simple digraph with non-negative edge weights, where V is the set of vertices,

E = {e|e = (u, v), u, v ∈ V }, and w : E → �≥0, i.e., w is a function from the set of edges to non-negative

real numbers. Sometimes we use V (G) and E(G) to denote the set of vertices and edges in G, respectively.

Let e = (u, v) ∈ E; then u is the tail of e denoted as t(e), and v is the head of e denoted as h(e).

Let u ∈ V ; the set of outgoing edges of u is defined as Outu = {e|e ∈ E and t(e) = u}, and the set of

incoming edges of u is defined as Inu = {e|e ∈ E and h(e) = u}. Correspondingly, the children of u are

defined as c(u) = {v|v = h(e) and e ∈ Outu}, and the parents of u are defined as p(u) = {v|v = t(e) and

e ∈ Inu}.
For U ⊆ V , AllOutU = {e|e ∈ E and t(e) ∈ U}, and OutU = {e|e ∈ E and t(e) ∈ U and h(e) /∈ U}; and

AllInU = {e|e ∈ E and h(e) ∈ U}, and InU = {e|e ∈ E and h(e) ∈ U and t(e) /∈ U}. We can easily observe

that OutU ⊆ AllOutU and InU ⊆ AllInU .

Let Puv be a path from u to v in G; then v is reachable from u. All vertices reachable from u including

itself in G are u’s descendants, denoted as des(G, u) or des(u) if G is understood from the context.

A path Puv is said to be a shortest path, denoted as SPuv, if it is not longer than any other possible path

P ∗
uv. Given any v ∈ V , v could have more than one shortest path from a vertex u in G, and all v’s shortest

paths are of the same shortest distance. The shortest distance from u to v in G is denoted as duv when

G is understood from the context. Given a digraph G = (V,E,w), an SPT rooted at a vertex or source s,

denoted as Ts, is a tree with root s and ∀v ∈ des(s), v �= s, Ts contains an SPsv. Due to the structure of

trees, ∀v ∈ des(s), v �= s, Ts contains only one shortest path SPsv. Let e ∈ E; e is a tree edge wrt Ts if

1From now on, MBallString refers to MBallStringInc and the original BallStringDec. BallStringDec is the BallString
algorithm in [28] when the input is a set of edge weight decreases.
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e ∈ E(Ts); otherwise it is a non-tree edge. Given v ∈ V (Ts), the subtree rooted at v in Ts is denoted as

SubTsv.

Given G and s ∈ V , let Ts be an SPT. For any vertex v ∈ V (Ts), the shortest path parent of v in Ts,

denoted as sppTs
(v), is the parent of v in Ts; the shortest path children of v in Ts, denoted as spcTs

(v),

contain all the children of v in Ts. Let v ∈ V (Ts) and v �= s. If s is understood in the context, then SPsv,

dsv, sppTs
(v), spcTs

(v), and SubTsv are simply denoted as SPv, dv, spp(v), spc(v), and SubTv.

Given the simple digraphs G = (V,E,w) and G′ = (V,E,w′), such that w′ �= w, G′ is denoted as the

updated digraph. In this paper, G → G′ is achieved by an application of a set ε of edge weight updates:

ε = {〈ei, τi〉|ei ∈ E and −w(ei) ≤ τi < ∞}, ∀〈ei, τi〉 ∈ ε, and w′(ei) = w(ei) + τi.

Given G, G′, s, v ∈ V , let SPv and SP′
v be the sets of shortest paths from s to v in G and G′, respectively.

We define v as unaffected if SPv = SP′
v; otherwise it is affected. More specifically, let SP ′

v and d′v denote

any shortest path and the shortest distance from s to v in G′, respectively; we say SP ′
v equals SPv if

V (SP ′
v) = V (SPv) and ∀u ∈ V (SP ′

v), d′u = du.

2.2 Problem Definition

In order to solve the DSP problem, a brute-force solution is to run Dijkstra’s algorithm for a source s over G′.

It is straight-forward but may not be effective all the times, since no previously-computed result is re-used.

When T ′
s is not much different from Ts, in terms of structural changes, it is more beneficial to construct T ′

s

from Ts than from scratch. In this paper, we study algorithms that can solve the DSP problem efficiently. In

particular, we are interested in fast algorithms that solve the problem incrementally by re-using information

in the outdated SPT.

2.3 Algorithmic Notation and Basic SPT Properties

In addition to the definitions we have introduced in this section so far, there are some notation used in the

description of the coming algorithms.

Given G and s ∈ V , let Ts be an SPT rooted at s in G. Any vertex v ∈ V (Ts) has four associated

properties: dv, spp(v), spc(v), and status(v). The first three properties indicate v’s shortest distance from

s and v’s shortest path parent and children in Ts. The last one, status(v), usually has two states: open or

closed. Some algorithms use status(v) to indicate whether v needs to be processed (open) and whether v is

consolidated2 (closed).

In the DSP problem, let T ′
s be an SPT rooted at s in G′. Our SPT algorithms, except Dijkstra, compute

T ′
s from Ts, and thus all these are incremental algorithms. More specifically, they take Ts as an input, update

the properties of some affected vertices in Ts, and then, at the end, return the updated Ts, which is T ′
s.

In the description of all the incremental algorithms discussed in this work, we use a hat(̂ ) over an object

2The term “consolidated” will be defined later.
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to indicate the current state of that object. For example, T̂ denotes any intermediate tree, in which some

vertices’ properties are being updated during the execution of an algorithm; d̂v and ŝppv denote the shortest

distance and shortest path parent of v from the source in T̂ . In addition, we use a prime(′) with an object

to indicate its final status in the modified graph G′. For example, d′sv is the new shortest distance from s to

v in G′, and w(e)′ is the new weight of e in G′. We prove the following properties.

Lemma 2.1 When edge weights are only increased, for any vertex v, either d′v > dv or, d′v = dv and

SPv ⊇ SP′
v.

Proof Since all edge weight changes are increases, d′v ≥ dv must hold. Let P ′
v be any shortest path from s

to v in G′; in other words, P ′
v ∈ SP′

v and the length of P ′
v equals d′v. If d′v = dv, P ′

v must contain no modified

edges and P ′
v must also be in SPv. Therefore, if d′v = dv, SPv ⊇ SP′

v. On the other hand, if d′v �=dv, then

d′v > dv. Thus, Lemma 2.1 holds.

Lemma 2.2 When edge weights are only decreased, for any vertex v, either d′v < dv or, d′v = dv and

SPv ⊆ SP′
v.

Proof This can be proven with a similar argument as in Lemma 2.1.

All incremental algorithms in this paper only process affected vertices: some process all of them, whereas

others process only some of them. Any processed vertex v is consolidated if the distance assigned by the

algorithm equals the final optimal value d′v and the path constructed by the algorithm is an SP ′
v.

At any instant of algorithm executions, an affected but non-consolidated vertex is denoted as a boundary

vertex if it has either at least one unaffected parent or an affected but consolidated parent; otherwise, it is

an inner vertex. A boundary edge is an incoming edge of a boundary vertex that has either an unaffected

tail or an affected and consolidated tail. The candidate parent of a boundary vertex v is the tail u∗ of a v’s

boundary edge, such that du∗ + w(u∗, v) is minimum among all tails of v’s boundary edges.3 The candidate

distance of a boundary vertex v is provided by du∗v + w(u∗, v), given that u∗ is the candidate parent of v.

The candidate path SP ∗
v for boundary vertex v is the shortest path SPu∗ concatenated by (u∗, v).

2.4 Data Structures

There are a few important data structures that are shared by all algorithms: Graph G; SPT Ts, rooted at

vertex s; and minimum-priority queue Q.

Conceptually, G contains a vertex set V and an edge set E. Each vertex v is identified by a key (the ID of

v), and so is each edge e. Each vertex in a graph G has a list of incoming and a list of outgoing edges. Each

edge e in a graph is assigned with a weight w(e). Ts is represented by the vertices’ auxiliary information

3If more than one tail provides the same minimum distance to v, any one of them can be taken as the candidate parent of v.
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set, which is identified by the ID of the vertex; the auxiliary information, aux, for vertex v contains spp(v),

spc(v), dv, and status(v).

An entry in Q is of the format 〈ver, data, key〉, in which ver is a vertex and is unique among all entries,

data contains some useful information of ver but is optional, key is the value on which entries are ranked.

In those algorithms, key could be a pair of values, 〈value1, value2〉. Entries are ranked on value1 first; then

on value2. If more than one entry has same key, then the sequence among them is arbitrary.

Q supports four associated instructions. The instruction ENQUEUE(Q, 〈ver, data, key〉) adds one

entry of vertex ver to Q. If ver is already in Q, the entry will replace the old ones only if the new key is

smaller. In other words, at any instant, only one entry is maintained for each ver in Q. The instruction

EXTRACTMIN(Q) selects and removes an entry 〈ver, data, key〉 with the minimum key. The vertex ver

is said to be extracted in this operation. ADJUST (Q, 〈ver, data, key〉) enqueues this entry if no entry of

ver exists in Q, or sets data and key of ver’s entry in Q as specified. The last instruction REMOV E(Q, ver)

removes the entry of ver from Q.

3 Related Work

There are many research efforts reported in the literature of maintaining shortest paths on dynamic graphs.

We are interested in algorithms for graphs of non-negative edge weights. For all pairs shortest paths problem,

we refer to the algorithms and experimental results such as those in [14, 13, 11]. Due to the requirement of

returning exact shortest paths, previously suggested randomized or approximate algorithms [24, 36, 13] are

not directly applicable to our problem. Among all the deterministic incremental algorithms, some require

special properties on the graph which are less general than what is assumed in our work. For example, some

maintain shortest paths in planar graphs [25, 16]; some require unweighted graphs, such that all edges have

a weight of 1 [7, 18]; and some allow only integer edge weights that are less than a certain constant C [24, 6].

Over the past few decades, plenty of deterministic algorithms, which require no specific properties on

graphs, have been proposed for this problem [34, 19, 32, 31, 28, 35, 29, 9]. Moreover, plentiful empirical

studies have been conducted [12, 20, 17, 5, 22, 9]. Work has also been done on speeding up the search process

by reducing the size of heap required in some SPT algorithms [9]. In the rest of this section, we review some

proposals that fit into categories of our interests and highlight our contribution at the end.

3.1 FMN

Frigioni, Marchetti-Spaccamela and Nanni in [18] propose a complexity model to evaluate the theoretical

performance of an SPT algorithm, which specifies using a function of the number of “locally-affected”

vertices. This model captures the intrinsic cost required by any incremental algorithm after each input

update.4 Following that, in [19], the same authors propose a semi-dynamic algorithm FMN for maintaining

4In this work, we employ their model in our complexity analysis.
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an SPT in a dynamic graph. FMN uses the notion of the level of an edge and the notion of the ownership of

a vertex. Ownership information is used to bound the number of edges scanned each time a vertex changes

its distance from s. Every edge (x, y) has an owner that must be either x or y. FMN follows the similar

flow of Dijkstra, except that it tries to visit a smaller number of edges. The authors claim that FMN has

the best theoretical complexity, but it maintains complex data structures, e.g., levels of edges.

3.2 RR

Ramalingam and Reps in [30, 32] propose a semi-dynamic algorithm RR, which maintains all shortest paths

from the source in a dynamic graph. However, RR handles single edge weight update only. After the shortest

distances of all vertices have been computed, ∀(x, y) ∈ E, the “side-track value” rxy, which is defined as

dx + w(x, y)− dy, is computed. A side-track value of zero indicates that the edge is on at least one shortest

path SPy in G. A Shortest Path Graph (SPG) is constructed that contains all edges with zero side-track

value. The advantage of maintaining an SPG is that, in the case of edge weight increases, SPG enables one to

process only vertices that have to be processed because their shortest distances are increased. However, the

trade-off lies in the maintenance of an SPG. The side-track value of any edge (x, y) needs to be re-computed

once w(x, y), dx or dy is updated. Nevertheless, Demetrescu et al. in [12] and Frigioni et al. in [20] illustrate

by experimental results that RR performs better than FMN in most cases.

3.3 BallString

There are also incremental shortest paths algorithms that handle multiple edge weight changes.

Narváez, Siu and Tzeng in [27] propose a general framework for several well-known SPT algorithms when

the update is a single edge weight update. The idea is to re-compute only the affected part of an SPT. An

intelligent approach to re-compute shortest paths in the case of multiple edge weight updates is proposed

by the same authors in [28]. We denote their algorithm as BallString since it is based on a ball-and-string

model. This model illustrates how affected balls re-arrange themselves in a natural way into their optimal

positions when the length of a string is increased or decreased. By simulating the dynamics of the balls in

this model, BallString processes affected vertices in the most economical way: it always chooses the vertex

of least distance increase (in the case of edge weight increases) or most distance decrease (in the case of edge

weight decreases) to consolidate. In addition, it always tends to consolidate as many vertices as possible in

an iteration.5

This approach greatly reduces the number of iterations required for the same set of affected vertices and

totally eliminates unnecessary structural changes. However, this idea induces “duplicate distance updates”

in the case of edge weight decreases. At the same time, unfortunately, BallString is wrong for a certain case

of multiple edge weight increases. The following is a simple example to show its incorrectness.
5In [28], the authors denote the set of vertices consolidated in an iteration as a branch.
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Figure 1: Counter-example of BallString. (a) G and Ts; (b) G′ and the incorrect T ′
s returned by BallString ;

(c) G′ and T ′
s

Example 3.1 In this example, V = {s, x, y}, E = {(s, x), (x, y)} (thus SPy = s → x → y); both w(s, x)

and w(x, y) are increased by 1. According to BallString, in the initialization step, both x and y are marked

as “floating”, and only x is enqueued. The entry for x in the priority queue is 〈x, s, 〈1, 2〉〉, indicating that

x’s shortest distance will be increased by 1 and its new distance will be 2, after s becomes x’s shortest

path parent. The queue entry format, in this case, is 〈vertex, candidate parent, 〈δ, candidate distance〉〉.6

However, the distance change of y caused by the increase of w(x, y) is not enqueued, because x is y’s only

parent, and x is also “floating” at this point of time. Then BallString goes into iterations. In the first

iteration, the entry of x is extracted from Q, SubTx (containing vertices x and y) is consolidated, such that

x’s and y’s distances are increased by 1, and both are marked back to “anchored” (meaning that both have

obtained their final optimal distances). Since no more entry exists in the priority queue, the algorithm ends.

The result is given in Figure 1 (b), in which d′y is wrong. The correct T ′
s is given in Figure 1 (c). The error

is due to some edge weight increase is being ignored.

3.4 DynamicSWSF-FP

FMN, RR, BallString are all semi-dynamic shortest paths algorithms. Ramalingam and Reps in [31] propose

a fully-dynamic algorithm, DynamicSWSF-FP. The main idea is as follows. At any instant, a “right hand

side value” (rhs), denoted as rhs(v), is maintained for every vertex v in G. The value records the shortest

distance v could get, based on all parents p of v at that time. Given the shortest distance information dv for

each vertex v in G, we have dv = rhs(v) before any input edge weight updates. After the input edge weight

updates are applied to G, DynamicSWSF-FP gradually updates the affected vertices’ shortest distances,

and, at the end, all vertices’ shortest distances are equal to their rhs(v) again.

A disadvantage of DynamicSWSF-FP is that it computes the rhs value too often, which leads to a
6When a vertex is enqueued, its parent must be “anchored”.

8



high number of edge visits. In the same paper [31], the authors suggest some improvement on computing

rhs values incrementally. Notice that in DynamicSWSF-FP, the rhs values are computed from scratch per

request. The authors maintain a heap for each affected vertex. The improved algorithm is proven to be

correct, but too many heaps are not practical.

3.5 Contributions

Our contribution in this work is that we propose a few incremental SPT algorithms based on previous work.

We amend BallString by proposing MBallStringInc that updates SPTs correctly in the case of multiple edge

weight increases. We propose a dynamic version of Dijkstra, which we call DynDijkstra. DynDijkstra can be

considered as a generalization of the dynamic version of Dijkstra proposed in [27] by allowing multiple edge

updates. DynDijkstra are two semi-dynamic algorithms that can handle multiple edge weight increases and

decreases. For DynamicSWSF-FP, we suggest MFP by applying some optimizations on re-computing rhs

values and to compute an SPT. In addition, we derive general frameworks for describing DynDijkstra and

MBallString.

For each of the following proposed algorithms: DynDijkstra, MBallStringInc, and MFP, we prove its

correctness and analyze its complexity. Furthermore, we conduct extensive experiments on all proposed

algorithms. The set of experimental results is our another contribution. We test our algorithms on two

types of graphs. One is graphs that are extracted from the real-life Connecticut road system [1]. These

graphs are relatively sparse. The other one is randomly generated graphs, which are relatively dense. We

evaluate a few factors that might affect the performances of proposed algorithms. We vary the graph size,

the percentage of changed edges, and the percentage of weight changed. We first show that the weight

changes have little effect on the performance of the incremental algorithms investigated. We also show that,

in general, MBallStringInc and DynDijkDec have the best performance for the increases and decreases cases,

respectively. We then combine these two algorithms together to form a new incremental algorithm MBSDD.

We show experimentally that MBSDD and DynDijkstra have the best overall performance for the road and

random mixed cases, respectively.

4 Semi-Dynamic Algorithms

In this section, we introduce a few semi-dynamic SPT algorithms for DSP problem. In Sections 4.1 and

4.2, algorithms DynDijkstra and MBallString are presented.7 The correctness proofs of these algorithms are

given in the Appendix.

There are some properties of input changes, which are shared by all SPT algorithms for dynamic graphs.

We can break down the input changes to four cases: tree edge increase; tree edge decrease; non-tree edge

increase; and non-tree edge decrease. Among these, non-tree edge increase has no effect on an SPT. In the
7The original BallStringDec algorithm will not be repeated in this paper.
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following discussion, we are interested in the remaining three cases in computing an SPT after edge weight

changes.

According to Lemmas 2.1 and 2.2, there may exist some affected vertices v such that d′v = dv and some

shortest path SPv remains the same in G′. Since an SPT only records one shortest path for each vertex,

if Ts happens to contain that unchanged SPv, then from Ts’s point of view, v is more like unaffected than

affected. Thus, we define an affected vertex v as locally-not-affected in Ts if SPv in Ts remains the same in

G′; otherwise, it is locally-affected. Let Affected be the set of affected vertices based on G and G′, and let

AffectedTs
be the set of locally-affected vertices based on one Ts and G′. It is straight-forward by definition

that AffectedTs
⊆ Affected.

As we will soon see, all algorithms in this section only process locally-affected vertices, for ease of

description and discussion, we denote unaffected vertices and locally-not-affected vertices together as not-

locally-affected ; and the definitions of boundary vertices, inner vertices, candidate parents, and candidate

distances apply only to locally-affected vertices. For instance, a locally-affected but non-consolidated vertex

is a boundary vertex if it has at least one not-locally-affected or locally-affected but consolidated parent,

otherwise is an inner vertex. Note that not-locally-affected vertices in Ts all keep their optimal shortest

paths and distances as in Ts. For any modified edge e, we denote h(e) as affected-head if it is locally-

affected, and as affected-mini-root if it is locally-affected but it has no locally-affected ancestor (except for

itself) in Ts.

Both DynDijkstra and MBallString contain two individual algorithms corresponding to weight increases

and decreases, respectively: DynDijkInc and DynDijkDec; MBallStringInc and BallStringDec. Two algo-

rithms for increases fit into a general SPT computation framework, and so do the two for decreases.

All these algorithms consist of an initialization, follows by n iterations of a number of steps, where n ≥ 0.

We say an algorithm executes or runs n iterations. Similarly, the ith iteration of an algorithm refers to the

ith iteration of these steps.

4.1 Algorithms DynDijkstra and MBallString: Edge Weight Increases

Given a graph G, a source vertex s, an SPT Ts, and a set of edges ε+, such that ∀e ∈ ε+, w(e) is going to

be increased, we are going to compute a new SPT T ′
s on G′.

We propose two algorithms that compute a new valid T ′
s by only processing locally-affected vertices in

Ts. With Ts and ε+, we are able to locate all locally-affected vertices first, then compute new shortest paths

and distances for them. Now we prove the following.

Lemma 4.1 In the case of edge weight increases, for each v ∈ V (Ts), v is locally-affected in Ts if and only

if it is a descendant of an affected-mini-root in Ts.

Proof “If” If v is a descendant of an affected-mini-root, then at least one edge on SPv is a modified tree

edge. The vertex v is affected and SPv will not remain the same in G′, therefore it is locally-affected.
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“Only if” If v is not a descendant of an affected-mini-root, then no edges on SPv are modified tree edges.

Since all input changes are edge weight increases, v cannot get a shorter distance in G′. Thus SPv must also

be a shortest path in G′. In other words, if v is affected, then it is locally-not-affected.

Let us define following phases of operations as framework F1, that computes T ′
s in case of edge weight

increases:

Framework F1:

Phase 1: We locate locally-affected vertices:

1.1 Given Ts and ε+, construct T̂s from Ts by removing modified tree edges;
1.2 We locate locally-affected vertices v in T̂s;

Phase 2: We compute candidate distances of boundary vertices;

Phase 3: We compute new shortest paths for locally-affected vertices:

As long as there are boundary vertices left, process them according to a certain sequence
by repeating the following:
3.1 We consolidate locally-affected vertices and maintain tree edges;
3.2 We compute candidate distances for new boundary vertices.

DynDijkInc and MBallStringInc are two instances of framework F1; they locate the same set of locally-

affected vertices using the same method. The difference between them is in Phase 3.1. DynDijkInc conducts

“vertex consolidation by distance” − it consolidates locally-affected vertices one by one according to a non-

decreasing order of new distances; whereas MBallStringInc conducts “branch consolidation by δ (distance

change)” − it consolidates locally-affected vertices set by set according to a non-decreasing order of distance

changes.

In Phase 1.2, we locate all locally-affected vertices by calling procedure findLocallyAffectedVertices. In

Phase 2, boundary vertices are initially identified from the set of locally-affected vertices8. In Phase 3, the

new SPT is computed by consolidating locally-affected vertices.

4.1.1 DynDijkInc

DynDijkInc first locates all locally-affected vertices, then it conducts vertex consolidation by distance.

DynDijkInc(G, s, T̂s, ε+)

Input: G is a simple directed graph, s is the source vertex, T̂s is an SPT rooted at s in G, and ε+ is a set of edges
whose weights are increased, such that ∀ei ∈ ε+, w(ei) is increased by τi > 0.

Output: The SPT T̂s is a new SPT rooted at s in the updated graph G′.

8In our implementation, the set of boundary edges (and thus boundary vertices) are initially found as follows: if the number
of locally-affected vertices is less the number of unaffected ones, then search incoming edges of locally-affected vertices for
boundary edges, otherwise search outgoing edges of unaffected vertices.
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Notation: For any vertex v, the notations of spp(v), spc(v), and dv are wrt T̂s. All the other notations are wrt G.

Step 1: Apply the set of edge weight changes to G, remove modified tree edges from T̂s and locate all locally-
affected vertices.

1: ε ← Ø
2: for each ei ∈ ε+ do
3: w(ei)

′ ← w(ei) + τi

/* If ei is an edge in T̂s, then remove it from T̂s and add it to ε.*/
4: t ← t(ei), h ← h(ei)
5: if t = spp(h) then

6: ̂spc(t) ← ̂spc(t) − {h}, ̂spp(h) ← Ø
7: ε ← ε ∪ {ei}
8: end if
9: end for

/* Find the set of locally-affected vertices based on T̂s.*/

10: N̄ ← findLocallyAffectedV ertices(T̂s, ε)

Step 2: Enqueue boundary vertices with candidate distances. A vertex a is a boundary vertex iff d̂a �= ∞.
11: for each vertex a ∈ N̄ do
12: d̂a ← min({db + w(b, a)′|(b, a) ∈ Ina and b /∈ N̄} ∪ {∞})
13: if d̂a �= ∞ then
14: ENQUEUE(Q, 〈a, b, d̂a〉)
15: end if
16: end for

Step 3: Consolidate and relax locally-affected vertices one by one.
17: while Q �= Ø do
18: 〈y, x, d〉 ← EXTRACTMIN(Q)

/* Re-assign the shortest path parent of y to x.9*/

19: ̂spc(x) ← ̂spc(x) ∪ {y}
20: p ← ̂spp(y), ̂spc(p) ← ̂spc(p) − {y}
21: ̂spp(y) ← x

/* Relax outgoing edges of the consolidated vertex y.*/
22: for each e ∈ Outy do
23: q ← h(e)

24: if d̂y + w(e)′ < d̂q then

25: d̂q ← d̂y + w(e)′

26: ENQUEUE(Q, 〈q, y, d̂q〉)
27: end if
28: end for
29: end while
30: return T̂s

In Step 1, DynDijkInc update edges’ weights, remove modified tree edges from T̂s, locates all locally-

affected vertices by calling findLocallyAffectedVertices. In Step 2, all locally-affected vertices a are examined:

if a is a boundary vertex, da is updated to its candidate distance, and a is enqueued into Q in the format

of 〈a, candidate parent, candidate distance〉; if a is an inner vertex, da is set to ∞. From this point on,

whenever a shorter candidate distance is located for any vertex y, d̂y and candidate parent are updated.

In Step 3, DynDijkInc goes into iterations. Each iteration consolidates one locally-affected vertex y of the

minimum candidate distance, updates y’s incoming tree edge, and also relaxes y. In the relaxation part,

after y is consolidated, for each child q, DynDijkInc updates q’s distance and candidate parent information
9Line 20 is skipped if spp(y) does not exist. This applies to all other algorithms.
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if a shorter distance is computed. The iterations end when Q becomes empty, which indicates no boundary

vertices left. Now we look at an increase example.

Example 4.1 As shown in Figure 2 (a), the weights of edges (c, g) and (g, j) are increased. In Step 1,

DynDijkInc removes modified tree edges and locates all locally-affected vertices, i.e., {g, k, o, p, j, i, n}. In

Step 2, DynDijkInc computes candidate distances for boundary vertices, i.e., {g, i, j, k, p}, and enqueues one

entry for each. After that, DynDijkInc consolidates locally-affected vertices by distance, and it also updates

the incoming tree edge to each consolidated vertex. Since it is just like Dijkstra, we leave out the detail of

intermediate steps. As shown in Figure 2 (b), all affected vertices are processed.
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Figure 2: DynDijkInc on an example. (a) An SPT Ts rooted at s in a graph G. A vertex is denoted by a
single circle, and it is denoted by a letter, an edge is denoted by an arrow from the tail to the head, and the
weight is numbered beside. In an SPT, a tree edge is highlighted by thick arrow, vertex’s shortest distance
is inside the vertex. In this example, w(c, g) is increased by 2 and w(g, j) is increased by 3, T̂s which is
obtained from Ts by removing edges (c, g) and (g, j), is a forest of three trees: one rooted at s, one rooted
at g and the other rooted at j. The latter two subtrees are circled by dashed line; (b) G′ and T ′

s. Legends:
dashed arrow represents removed tree edge in G; locally-affected vertices are lightly shaded and extracted
vertices are doubly circled.

From Figure 2 (a) and (b), we see that vertices {o, p} are extracted despite that they have the same

shortest distance and shortest parent in T ′
s and Ts; and vertex i is linked to vertex f , even though i could

have stayed with its old shortest parent j for the identical new shortest distance 24. In following subsection,

we will see how MBallStringInc gets around the above undesirable result.
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4.1.2 MBallStringInc

Paolo Narváez et al. propose an intelligent semi-dynamic algorithm BallString in [27, 26, 28]. Unfortunately,

as illustrated in Section 3.3, their algorithm BallStringInc for multiple edge weight increases is not correct.

Here, we propose an algorithm MBallStringInc, which is a slight modification of theirs, that correctly and

efficiently computes a new SPT for multiple edge weight increases, by adapting the same branch closing idea.

MBallStringInc is another instance of framework F1. Unlike DynDijkInc, in Phase 3.1 of F1, MBall-

StringInc conducts branch consolidation by δ: it consolidates locally-affected vertices according to the non-

decreasing sequence of distance changes δ’s. For each locally-affected vertex v, the distance change of v,

denoted as δv, is defined as d′v − dv. At the same time, MBallStringInc is more aggressive in that it con-

solidates a whole branch (a subtree) instead of one vertex. In addition, MBallStringInc does not set any

tentative distances to locally-affected vertices (as DynDijkInc does) until they are consolidated; because

the old distances of locally-affected vertices are required for the computation of δ values. This is also why

MBallStringInc needs the status of open to trace the remaining locally-affected vertices.

MBallStringInc(G, s, T̂s, ε+)

Input: G is a simple directed graph, s is the source vertex, T̂s is an SPT rooted at s in G, and ε+ is a set of edges
whose weights are increased. All vertices in T̂s are initially closed.

Output: The SPT T̂s is a new SPT rooted at s in the updated graph G′.
Notation: For any vertex v, the notations of spp(v), spc(v), dv and status(v) are wrt T̂s. All the other notations

are wrt G.
Step 1: Apply the set of edge weight changes to G; if a modified edge is a tree edge, remove the edge from T̂s;
and locate all locally-affected vertices.

1: ε ← Ø
2: for each ei ∈ ε+ do
3: w(ei)

′ ← w(ei) + τi

4: t ← t(ei), h ← h(ei)

/* If ei is an edge in T̂s, then remove it from T̂s and add it to ε.*/
5: if t = spp(h) then

6: ̂spc(t) ← ̂spc(t) − {h}, ̂spp(h) ← Ø
7: ε ← ε ∪ {ei}
8: end if
9: end for

/* Find the set of locally-affected vertices based on T̂s.*/

10: N̄ ← findLocallyAffectedV ertices(T̂s, ε)
Step 2: Find candidate distances/parents for boundary vertices.

11: for each vertex a ∈ N̄ do
12: status(a) ← open
13: newdist ← min({db + w(b, a)′|(b, a) ∈ Ina and b /∈ N̄} ∪ {∞})
14: if newdist �= ∞ then
15: δ ← newdist − da

16: ENQUEUE(Q, 〈a, b, 〈δ, newdist〉〉)
17: end if
18: end for

Step 3: Consolidate and relax locally-affected vertices set by set.
19: while Q �= Ø do
20: 〈y, x, 〈δ, d〉〉 ← EXTRACTMIN(Q)
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/* Re-assign the shortest path parent of y to x.*/

21: ̂spc(x) ← ̂spc(x) ∪ {y}
22: p ← ̂spp(y), ̂spc(p) ← ̂spc(p) − {y}
23: ̂spp(y) ← x

/* Consolidate all descendants of y.*/

24: N ← des(T̂s , y)
25: for each v ∈ N do
26: d̂v ← dv + δ
27: ̂status(v) ← closed
28: if v ∈ Q then
29: REMOV E(v, Q)
30: end if
31: end for

/* Relax outgoing edges of just consolidated vertices.*/
32: for each e ∈ OutN do
33: if ̂status(h(e)) = open then

34: newdist ← d̂t(e) + w(e)′

35: δ ← newdist − d̂h(e)

36: ENQUEUE(Q, 〈h(e), t(e), 〈δ, newdist〉〉)
37: end if
38: end for
39: end while
40: return T̂s

Step 1 and Step 2 of MBallStringInc are almost the same as those of DynDijkInc, except that in Step

2, MBallStringInc sets all locally-affected vertices to open, and for each boundary vertex, it enqueues

〈boundary vertex, candidate parent, 〈δ, candidate distance〉〉.
In Step 3, MBallStringInc extracts the boundary vertex y of the least shortest distance increase δ in line

20, updates y’s new shortest path parent; it also selects all vertices in des(T̂s, y) into N to consolidate in the

next step.

Then, MBallStringInc consolidates vertices v ∈ N : it updates the shortest distance of vertex v by adding

δ in line 26, and changes v to closed in line 27. In lines 28 - 30, if v is still in Q, then v is removed from Q,

because v’s optimal distance has been found, therefore no need to process it again.

Finally, MBallStringInc relaxes consolidated vertices. All remaining open vertices adjacent to any vertex

in N now become boundary vertices, and the information (candidate parent, candidate distance, and δ) of

each boundary vertex is enqueued into Q. MBallStringInc repeats consolidation and relaxation until no

locally-affected vertices left.

Branch consolidation by δ enables that, locally-affected vertices of less distance increase are processed

earlier. For each locally-affected vertex v, δv is defined as d′v − dv. In each branch (a subtree), the vertex

without an incoming tree edge is denoted as mini-root in [28]. Basically, the algorithm computes T ′
s by

re-arranging the position of each branch, and applying the δ of the mini-root to all vertices in that branch.

MBallStringInc yields the SPT that is least different from Ts in terms of tree structure. It is an efficient

algorithm because it avoids unnecessary computation inside a branch.
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Example 4.2 As shown in Figure 3 (a), after modified tree edges (c, g) and (g, j) are removed from

Ts, vertices {g, k, p, o, j, i, n} are located as locally-affected in Step 1. Then entries of all boundary vertices

{g, i, j, k, p} are enqueued in Step 2: 〈g, c, 〈2, 11〉〉, 〈i, f, 〈3, 24〉〉, 〈j, f, 〈3, 20〉〉, 〈k, h, 〈0, 13〉〉, and 〈p,m, 〈5, 31〉〉.
In Step 3, in the first iteration, k, whose entry has the minimum δ, is extracted, vertices in des(T̂s, k), i.e.,

{k, o, p} are selected into N in line 24, and the whole branch is cut from g and linked to h. Vertices in N are

consolidated and entry of p is removed from Q. Since the open vertex j does not get a smaller δ from the

just consolidated vertex k, there is no change in Q. In the following iteration, entry of g is extracted, and

only {g} is returned by des(T̂s, g) because modified tree edge (g, j) was removed in Step 1, and tree edge

(g, k) was removed after k is extracted. At this time, two entries exist in Q: 〈i, f, 〈3, 24〉〉 and 〈j, f, 〈3, 20〉〉.
Hence in the next iteration, the entry of j is extracted, and all current descendants of j are consolidated,

including i (the entry of i is removed from Q). The resulting T ′
s is given in Figure 3(b).
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Figure 3: MBallStringInc on an example. (a) Graph G and the forest T̂s after modified tree edges (c, g) and
(g, j) are removed, and dashed circle denotes a set of locally-affected vertices; (b) the final SPT T ′

Compared with DynDijkInc, MBallStringInc has three advantages. Firstly, MBallStringInc runs fewer

iterations than DynDijkInc does on the same set of locally-affected vertices. The reason is that MBallString-

Inc (the same as in BallStringInc) removes an entry directly from Q if the corresponding vertex v is already

consolidated. By contrasting Figure 2 (b) and Figure 3 (b), we see DijktraInc has 7 iterations corresponding

to all 7 affected vertices, whereas MBallStringInc only has 3. Secondly, MBallStringInc consumes much

smaller number of tree edge updates because it changes only the incoming tree edges of mini-roots. In this

example, DynDijkInc updates 7 tree edges, while MBallStringInc updates only 3. Thirdly, MBallStringInc
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changes a locally-affected vertex’s shortest path parent only when compulsory, as exemplified by vertices p,

o, and i, in Figures 2 and 3.

4.2 Algorithms DynDijkstra and MBallString: Edge Weight Decreases

Given a graph G, a source vertex s, an SPT Ts, and a set of edges ε−, such that ∀e ∈ ε−, w(e) is going to

be decreased, we are going to compute a new SPT T ′
s.

Lemma 4.2 In the case of edge weight decreases, for any locally-affected vertex v in Ts, d′v < dv.

Proof According to the definition of a locally-affected vertex, SPv does not remain the same in G′. Since v

must be an affected vertex, according to Lemma 2.2, it is not possible to have d′v = dv. Thus d′v < dv must

stand.

Unlike in the increases case, we cannot predict the set of locally-affected vertices without computing the

new distances for them, because for each modified edge e, all vertices reachable from h(e) in G might be

locally-affected.

To compute T ′
s in this case, we start from all affected-heads, then we traverse all reachable vertices until

no shorter distances are located. In other words, we locate locally-affected vertices and consolidate them in

an interleaved manner, as stated in [30].

Let us define following phases of operations as framework F2 which computes T ′
s in case of edge weight

decreases:

Framework F2:

Phase 1: We compute new candidate distances for all affected-heads;

Phase 2: We compute new shortest paths for all locally-affected vertices:

As long as there are locally-affected vertices left, we process them according to
a certain sequence by repeating the following:

2.1 We consolidate locally-affected vertices and maintain tree edges;
2.2 We compute candidate distances for remaining locally-affected vertices.

4.2.1 DynDijkDec

Algorithm DynDijkDec does precisely what framework F2 describes, and as in DynDijkInc, DynDijkDec

conducts, in Phase 2, vertex consolidation by distance.

In Step 1, DynDijkDec checks each modified edge e, if h = h(e) is an affected-head, then a shorter

distance, d̂t(e) + w(e)′, is given to h, and h is enqueued. In Step 2, DynDijkDec greedily examines all

descendants v of h in G′ for locally-affected vertices. If v is locally-affected, then all its children will be

examined as well. Otherwise, v will not induce its children to be examined. By iterating this process,
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DynDijkDec eventually locates all locally-affected vertices. DynDijkDec updates the distance of each locally-

affected vertex v whenever a shorter distance is located, and it updates v’s incoming tree edge when v is

extracted.

DynDijkDec(G, s, T̂s, ε−)

Input: G is a simple directed graph, s is the source vertex, T̂s is an SPT rooted at s in G, and ε− is a set of edges
whose weights are decreased, such that ∀ei ∈ ε−, w(ei) is decreased by −w(ei) ≤ τi < 0.

Output: The SPT T̂s is a new SPT rooted at s in the updated graph G′.
Notation: For any vertex v, the notations of spp(v), spc(v) and dv are wrt T̂s. All others are wrt G.

Step 1: Apply the set of edge weight changes to G and enqueue affected-heads.
1: for each ei ∈ ε− do
2: w(ei)

′ ← w(ei) + τi

3: t ← t(ei), h ← h(ei)
/* If the head of a modified edge is affected, update its distance and enqueue in Q.*/

4: if d̂t + w(ei)
′ < d̂h then

5: d̂h ← d̂t + w(ei)
′

6: ENQUEUE(Q, 〈h, t, d̂h〉)
7: end if
8: end for

Step 2: Consolidate and relax locally-affected vertices.
9: while Q �= Ø do

10: 〈y, x, d〉 ← EXTRACTMIN(Q)
/* Re-assign the shortest path parent of y to x.*/

11: ̂spc(x) ← ̂spc(x) ∪ {y}
12: p ← ̂spp(y), ̂spc(p) ← ̂spc(p) − {y}
13: ̂spp(y) ← x

/* Relax outgoing edges of consolidated vertex y.*/
14: for each e ∈ Outy do
15: q ← h(e)

16: if d̂y + w(e)′ < d̂q then

17: d̂q ← d̂y + w(e)′

18: ENQUEUE(Q, 〈q, y, d̂q〉)
19: end if
20: end for
21: end while
22: return T̂s

Example 4.3 In Figure 4 (a), the weight of edges (c, g) and (g, j) will be decreased. In Step 1 of

DynDijkDec, the weight of each modified edge is decreased, and entries of g and j are enqueued, because

both g and j get shorter distances. In Step 2, the entry of g is extracted first, then g is relaxed so that

entries of k and j are enqueued. Then entries of k, j, n, i, o, and p are extracted sequentially. The new

shortest path parent for each extracted vertex is set to the candidate parent. For instance, j becomes o’s new

shortest path parent. As shown in Figure 4 (b), vertices g, k, j, n, i, o, and p turn out to be locally-affected,

and all of them are processed by DynDijkDec.

18



s

b

c

d

e

f

j

7

h

21
i

g

13

k

16

l

28

m

n

o

p

4

6

2

7

3

18

6

7-3 4

8-1

7

4

4

16

6
12

2

2
12

4

2

8

3

3

2

3

13

26

24

20

17

9

0

2

4

10
8

10

(a)

11

4

3

8

s

b

c

d

e

f

j

7

h

17
i

g

10

k

16

l

28

m

n

o

p

4

6

2

7

3

18

6

4 4

7

7

4

4

16

6
12

2

2
12

4

2

8

3

3

2

3

13

23

20

16

13

6

0

2

4

10
8

10

(b)

11

4

3

8

Figure 4: DynDijkDec on an example. (a) G and Ts, in which (c, g)’s weight will be decreased by 3 and
(g, j)’s weight will be decreased by 1; (b) G′ and T ′

s.

4.2.2 BallStringDec

BallStringDec is presented in [28], therefore we do not repeat it here. It is totally in accordance with

framework F2. More specifically, for each boundary vertex, the potential distance and corresponding δ are

computed; in each iteration, the boundary vertex v with the minimum δ is extracted, and the distances of

vertices in ̂SubTv are decreased by δ. Here, we run BallStringDec with our decrement example. After that,

we provide some further discussion of this algorithm.

Example 4.4 In Phase 1 of framework F2, two entries are enqueued: 〈g, c, 〈−3, 6〉〉 and 〈j, g, 〈−1, 16〉〉.
Then in Phase 2, the entry of g is extracted first. Vertex g keeps its old shortest path parent; all its

descendants in Ts, i.e., N={g, k, j, n, i, o, p}, are processed − their distances are decreased by 3. When

BallStringDec relaxes vertices in N , it enqueues a new entry for j, i.e., 〈j, g, 〈−1, 13〉〉. In the next iteration,

the entry of j is extracted. Vertex j’s shortest path parent remains to be g; all descendants of j in T̂s, i.e.,

{j, i, n}, are processed - their distances are decreased by 1. The relaxation on j enqueues entry for o, i.e.,

〈o, j, 〈−1, 20〉〉. In the last iteration, the entry of o is processed. Vertex o’s shortest path parent switches to

j and o’s shortest distance is now 20. The new SPT T ′
s is in Figure 5 (b). Contrasted with Figure 4 (b),

DynDijkDec extracts all 7 affected vertices, whereas here BallStringDec only extracts 3 vertices, i.e., g, j,

and o.

The above example again illustrates the advantage of branch consolidation by δ: a fewer number of

iterations and also a lesser number of tree edge updates. However, it also exemplifies duplicate distance
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Figure 5: BallStringDec on an example. (a) G and Ts, in which (c, g)’s weight will be decreased by 3 and
(g, j)’s weight will be decreased by 1; (b) G′ and T ′

s.

updates, i.e., the distances of some vertices z are updated more than once, and vertex z is said to be

duplicate-updated. In the above example, vertices j, n, i, and o are duplicate-updated. Moreover, a locally-

affected vertex such as j could be enqueued more than once.

5 A Fully-Dynamic Algorithm

In the previous section, we introduce a few semi-dynamic SPT algorithms for the DSP problem. In this

section, we present a fully-dynamic algorithm that can handle “multiple heterogeneous modifications”[31].

At any instant of the execution of DynamicSWSF-FP, we denote the right hand side value of v (rhs(v))

as minx∈p(v){d̂x + w(x, v)′}. We say parent x of v satisfies v, if rhs(v) = d̂x + w(x, v)′. For any vertex

x ∈ p(v), x is a satisfying-parent of v, if x satisfies v, and in that case, v is a satisfying-child of x. Any

affected vertex is processed differently according to whether rhs(v) is greater than (under-consistent), equal

to (consistent), or less than d̂v (over-consistent).

Let us analyze how this algorithm performs when changes are either increases or decreases, but not both.

When all the input updates are edge weight increases, no vertices can have shorter distances. Hence, any

affected vertex v is initially under-consistent, and d̂v will first be assigned the value of ∞, and then back to

its correct value. Therefore, the affected vertices are enqueued and extracted twice. Similarly, when all the

input updates are edge weight decreases, no vertices can have longer distances. Because of this, any enqueued

vertex u can only be over-consistent, and d̂u is directly set to its rhs value and will not be processed again.
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Consequently, the affected vertices are processed only once. From this analysis, we conclude that the case

of the edge weight increases is always the worst scenario of DynamicSWSF-FP.

5.1 MFP

DynamicSWSF-FP conducts frequent edge visits and computations to maintain rhs values. Here, we apply

some simpler optimizations, and their correctness can be verified easily from the transformation. Our

optimizations are based on avoiding the unnecessary rhs value re-computation, and also simplifying the

computation when it is possible. The first optimization is that, when an over-consistent vertex v is extracted

(d̂v is decreased to rhs(v)), for each child q, DynamicSWSF-FP re-evaluates rhs(q) according to the definition
̂rhs(q) = minz∈p(q){d̂z + w(z, q)′}, whereas MFP incrementally re-computes ̂rhs(q) as min{ ̂rhs(q), d̂v +

w(v, q)′}. The second optimization is that, when an under-consistent vertex u is extracted (d̂u is set to

∞), DynamicSWSF-FP re-evaluates the rhs values of all u’s children, whereas MFP re-evaluates the rhs

values of all u’s satisfying-children only. The reason is as follows. According to the definition, ̂rhs(q) =

minu∈p(q){d̂u + w(u, q)′}. We need to re-evaluate rhs(q), if and only if q is a satisfying-child of u (before d̂u

is set to ∞).

Furthermore, the original DynamicSWSF-FP computes the shortest distance values only without main-

taining an SPT. To properly evaluate this with other incremental algorithms, MFP is designed to accept an

outdated SPT with a set of edge weight changes, and to return a new SPT. Note that, for the tree structure,

it is sufficient to maintain spp(v) only for each vertex v in SPT. 10 We define a function sap(v) that returns

v’s tentative satisfying parent when sap(v) is called. In MFP, spp(v) is updated by sap(v) whenever rhs(v)

is re-computed. The following is an outline of MFP.

MFP(G, s, T̂s, ε)

Input: G is a simple directed graph, s is the source vertex in G, Ts is an SPT rooted at s in G, and ε is a set of
edges such that ∀ei ∈ ε, w(ei) will be increased by τi, where τi < 0 or τi > 0.

Output: The changed graph G′ and the updated SPT T̂s.
Notation: For any vertex v, the notations of dv, rhs(v), and key(v) are wrt T̂s. All the other notations are wrt G.

Step 1: updates G and enqueues inconsistent heads of modified edges, as in previous algorithms.
Step 2: process inconsistent vertices

1: while Q �= Ø do
2: 〈y, key〉 ← EXTRACTMIN(Q)

3: if d̂y > ̂rhs(y) then

4: d̂y ← ̂rhs(y) /*y is over-consistent*/
/*check children to propagate the updates*/

5: for each e ∈ Outy do
6: q ← h(e)

7: ̂rhs(q) ← min{ ̂rhs(q), d̂y + w(e)′} /*==the first optimization==*/

8: ̂spp(q) ← sap(q)

9: if ̂rhs(q) �= d̂q then

10In DynDijkstra and MBallStringInc, for v, we need to maintain spc(v) as well, because we need shortest path descendants
information.
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10: ̂key(q) ← min{d̂q, ̂rhs(q)}
11: ADJUST (Q, 〈q, ̂key(q)〉) /*enqueue q if it becomes inconsistent*/
12: else
13: REMOV E(Q, q) /*removes q if it becomes consistent*/
14: end if
15: end for
16: else
17: d ← d̂y

18: d̂y ← ∞ /*y is under-consistent*/

19: if ̂rhs(y) �= ∞ then

20: ̂key(y) ← ̂rhs(y)

21: ENQUEUE(Q, 〈y, ̂key(y)〉) /*enqueue q if it becomes inconsistent*/
22: else
23: /*This is the similar to lines 5-15 in above. The second optimization is also applied here by checking

satisfying-children of y for more inconsistent vertices. */
24: end if
25: end if
26: end while
27: return T̂s

Example 5.1 In Figure 6, we apply the following edge weight updates: w(c, g) is decreased by 1, w(g, j)

is increased by 3, and w(f, i) is decreased by 8.
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Figure 6: MFP on our mixed example. (a) G and Ts, in which w(c, g) will be decreased by 1, w(f, i) will
be decreased by 8, and w(g, j) will be increased by 3. (b) The final G′ and T ′

s, in which all the vertices are
consistent and of the correct shortest distances. Legend: the vertices that are processed twice are circled by
a heavy dark line.

In this example, two edges’ weights will be decreased, and one edge’s weight will be increased. MFP

first examines that all modified heads, g, j, and i, become inconsistent. Their associated variables in the
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format of 〈v, d̂v, ̂rhs(v)〉 are 〈g, 9, 8〉, 〈j, 17, 20〉, and 〈i, 21, 16〉. Vertices g and i are over-consistent, and j

is under-consistent. Therefore, MFP enqueues entries {〈g, 8〉, 〈j, 17〉, 〈i, 16〉} in Step 1. Then, in Step 2,

MFP runs iteratively. It first extracts 〈g, 8〉. Since g is over-consistent, d′g is set to 8, and g is consolidated.

By checking all the children of g, k is found to be inconsistent, and thus, the entry 〈k, 12〉 is enqueued.

In addition, ̂rhs(j) is changed to 19, although ̂key(j) is still 17. MFP conducts similar processes to the

subsequent over-consistent vertices k and i. When the under-consistent vertex j is extracted, d̂j = 17 and
̂rhs(j) = 19, MFP sets d̂j to ∞, which changes j to over-consistent. Since j had no satisfying-children, no

vertices require their rhs values to be re-evaluated. 11 Later, j is extracted again and consolidated with the

distance of 19. Figure 6 depicts G′ and T ′
s in which only vertex j is processed by MFP twice.

As illustrated in Figure 6 (b), we observe that the affected vertices, whose new distances are increased,

could be processed twice.

6 Complexity Analysis

Here we analyze, for the increase and decrease cases, the complexity of algorithms DynDijkstra, MBallString,

and MFP. The complexity model used is the one proposed in [18]. For this purpose, we define a set of metrics

that represent the important operations in these algorithms.

Given a graph G, an SPT Ts rooted at vertex s ∈ V (G), and a set ε of edges, in which either all edges

get their weights increased or all edges get their weights decreased, we let A be the set of affected vertices,

and δA = |A|. More specifically, for algorithms DynDijkstra and MBallString, A denotes the set of locally-

affected vertices in Ts; and for the MFP, A denotes the set of dist-affected vertices in G. An affected vertex

v is said to be dist-affected if d′v �= dv; otherwise, v is dist-not-affected.

We let δout
A = |OutA| be the number of outgoing edges from vertices in A, and δin

A = |InA| be the number

of incoming edges to vertices in A.12 We let δm be the number of modified edges, and δin
m be the number

of incoming edges to all heads of modified edges. Finally, we let δx be the number of branches or subtrees

processed by MBallString. We consider δx to be much less than δA although they could possibly be the

same.
11Vertex f is i’s satisfying-parent; i is n’s satisfying-parent; k is o’s satisfying-parent.
12In complexity analysis, we do not differentiate between InN andAllInN , because based on the data structure presented in

this paper, they have the same complexity. Similarly for OutN and AllOutN .
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Unit Operation description

edge visit access any edge in G

distance update update shortest distance of vertex

link visit access shortest path parent/child relation

link update update shortest path parent/child relation

status update update vertex’s status (open/closed)

enqueue enqueue a new entry

decrease-key decrease an existing entry’s key

increase-key increase an existing entry’s key

extract-min extract an existing entry

removal remove an existing entry

Table 1: Unit operations

Specially, for the MFP, we let C be the set of not-dist-affected children of dist-affected vertices in G and

δin
C

13= |InC | be the number of incoming edges to vertices C in G.

We consider unit operations as listed in Table 1.14 Edge weight updates are ignored in complexity

analysis; and all operations related to one vertex’s shortest path parent modification are counted as one

link update.15 Note that Table 1 gives the maximum set of major operations that could be involved in any

algorithm discussed in this paper; not every algorithm requires all these operations.

Queue operations are important for each algorithm. To evaluate algorithms fairly, all of them use the

same queue implementation. In this paper, a queue is realized with an ArrayHeap (in [3]) since this is the

only implementation that supports all five queue operations required by the algorithms studied in this work.

6.1 Edge Weight Increases

In this subsection, we analyze the complexities of DynDijkInc, MBallStringInc, and MFP. We summarize

the complexities in Table 2 and prove the complexity of each algorithm individually.

Unit Operation DynDijkInc MBallStringInc MFP

edge visit δm + δin
A + δout

A δm + δin
A + δout

A δm + δin
m + 2 × (δout

A + δin
A + δin

C )

distance update ≤ δA + δout
A δA 2 × δA

link visit ≤ δA ≤ 2 × δA 0

link update ≤ δm + δA ≤ δm + δx ≤ δm + 2 × δout
A

status update 0 2 × δA 0

enqueue δA ≤ δA 2 × δA

decrease-key ≤ δout
A ≤ δout

A ≤ δout
A

increase-key 0 0 0

extract-min δA δx 2 × δA

removal 0 ≤ δA − δx 0

Table 2: Unit operations of DynDijkInc, MBallStringInc, and MFP
13This notation is used in the analysis of edge weight increases case.
14REMOVE and EXTRACTMIN operations in the pseudo-code are the same as removal and extract-min in Table 1. However,

ENQUEUE is enqueue + decrease-key while ADJUST is enqueue + decrease-key+ increase-key.
15For example, lines 19 − 21 in DynDijkInc are counted as one link update; so are lines 21 − 23 in MBallStringInc.
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Lemma 6.1 After a set of edge weight increases, the worst-case number of unit operations of DynDijkInc

is as listed in Table 2.

Proof In Step 1, δm modified edges are visited. All modified edges could be tree edges in Ts and be removed,

so, there are at most δm link updates. Method findLocallyAffectedVertices has to traverse T̂s from modified

heads. Therefore, according to the tree structure, at most δA links are visited.

In Step 2, all incoming edges to locally-affected vertices are examined, so, there are δin
A edge visits. All

locally-affected vertices get the distances updated in line 12, thus, there are δA distance updates.

In Step 3, according to Lemma A.5, only locally-affected vertices are processed by DynDijkInc. According

to lines 18−21, DynDijkInc extracts exactly one locally-affected vertex in each iteration; it also updates one

shortest parent link in each iteration according to the extracted vertex. Therefore, there are δA enqueues,

extractions, and link updates. In addition, all outgoing edges for each locally-affected vertex are visited, and

each edge visit might induce a distance update and a decrease-key. Therefore, there are exactly δout
A edge

visits and at most that number of distance updates and decrease-keys.

Next, we analyze the complexity of MBallStringInc, in which locally-affected vertices are processed branch

by branch. For any locally-affected vertex v, its distance is updated only when the final optimal distance is

located.

Lemma 6.2 After a set of edge weight increases, the worst-case number of unit operations of MBallStringInc

is as listed in Table 2.

Proof Step 1 of MBallStringInc contains exactly the same unit operations as Step 1 of DynDijkInc; therefore,

we skip the analysis.

In Step 2, δin
A edges are visited. No distance update happens, but all locally-affected vertices get their

status updated to open. Therefore, there are δA status updates. Since a locally-affected vertex can be

enqueued at most once, then there are no more than δA enqueues.

In Step 3, MBallStringInc extracts only mini-roots. Correspondingly, it updates only the shortest path

parents of these mini-roots; thus, there are δx extractions and link updates. All locally-affected vertices

are selected by des(T̂s, y) in line 24 once and then get the distance and status updated also exactly once.

Therefore, there are at most δA link visits, and exactly δA distance and status updates. In addition, MBall-

StringInc examines the outgoing edges of all locally-affected vertices, and each edge visit might induce a

decrease-key; thus, there are exactly δout
A edge visits and at most δout

A decrease-keys.

Finally, since all entries in Q that are not extracted are removed and there are at most δA entries in Q,

MBallStringInc conducts no more than δA − δx extractions.

Lemma 6.3 After a set of edge weight increases, the worst-case number of unit operations of MFP is

summarized in Table 2.
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Proof In this algorithm, a vertex v is enqueued iff v is dist-affected. This follows from the requirement that

the rhs(v) is not equal from dv before a vertex v is enqueued.16

In Step 1, all the modified edges are visited; thus, δm edges are visited and the same number of link

updates. In addition, all the incoming edges to each modified head h are visited to re-evaluate rhs(h).

Therefore, there are δin
m more edge visits.

In Step 2, each dist-affected vertex y is first extracted to be under-consistent and processed: its distance

is first updated to ∞; then all the outgoing edges e of y are visited. However, there will be no increase-

/decrease-key or remove operation. Therefore, there are δA extractions and distance updates, δout
A edge

visits, and at most δout
A link updates. Furthermore, in order to obtain ̂rhs(h(e)), all the incoming edges of

h(e) are visited. If h(e) is affected, then there are δin
A edge visits overall. If h(e) is unaffected, then there

are, in total, δin
C edge visits.

According to the algorithm, each vertex in A is then extracted to be over-consistent and is finalized.

Therefore, there are δA extractions and distance updates, δout
A edge visits, and, at most, that number of link

updates and decrease-keys. Furthermore, in order to obtain ̂rhs(h(e)), all the incoming edges of h(e) are

visited. If h(e) is affected, then there are δin
A edge visits overall. If h(e) is unaffected, then there are δin

C edge

visits overall.

Due to 2 × δA extractions, MFP must conduct at least that number of enqueues.

6.2 Edge Weight Decreases

In this subsection, we analyze the complexity of DynDijkDec and MFP. We summarize the complexities in

Table 3 and prove the complexity of each algorithm individually. In addition, we give informal discussion of

BallStringDec’s complexity in our metrics.

Unit Operation DynDijkDec BallStringDec MFP

edge visit δm + δout
A 
 δout

A δm + δin
m + δout

A

distance update ≤ δm + δout
A 
 δA δA

link visit 0 
 δA 0

link update δA 
 δx ≤ δm + δout
A

status update 0 0 0

enqueue δA 
 δx δA

decrease-key ≤ δout
A 
 δx ≤ δout

A

increase-key 0 0 0

extract-min δA 
 δx δA

removal 0 
 δx 0

Table 3: Unit operations of DynDijkDec, BallStringDec, and MFP

Lemma 6.4 After a set of edge weight decreases, the worst-case number of unit operations of DynDijkDec

is as listed in Table 3.
16This holds for both the increase and decrease cases.
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Proof In Step 1, modified edges are visited, and each edge visit might induce a distance update. Therefore,

there are exactly δm edge visits and at most δm distance updates.

In Step 2, according to Lemma A.6, only locally-affected vertices are processed by DynDijkDec. Accord-

ing to line 10, DynDijkDec extracts exactly one locally-affected vertex in each iteration, and updates one

shortest parent link in each iteration according to the extracted vertex. Thus, there are exactly δA enqueues,

extractions, and link updates. In addition, the outgoing edges of all locally-affected vertices are visited, and

each edge visit might induce a link update and decrease-key. Therefore, there are exactly δout
A edge visits

and at most δA link updates and decrease-keys.

The official proof of BallStringDec’s complexity can be found in [28], and here we analyze BallStringDec’s

complexity according to our metrics. As we have discussed in the algorithm description, very likely, Ball-

StringDec conducts duplicate distance updates. Unlike MBallStringInc, which processes each branch exactly

once, BallStringDec might process some branches multiple times. Whenever a branch is processed, edge

visits, distance updates, enqueues, and removals are induced. Therefore, there is no way to predict the

numbers of all these unit operations. In Table 3, we use 
 f(n) to indicate that the number of operations is

dependent on f(n) but it cannot be established precisely due to the unpredictable effect of duplicate distance

updates.

Lemma 6.5 After a set of edge weight decreases, the worst-case number of unit operations of MFP is

summarized in Table 3.

Proof The proof of Lemma 6.5 is the same as that of Lemma 6.3, except for Step 2.

In Step 2, all vertices in A are found to be over-consistent and are processed (and finalized). According

to the algorithm, each vertex y in A is extracted only once, and the distance of each vertex is updated. All

the outgoing edges of y are examined, and each edge that is visited could induce a decrease-key. Thus, there

are δA extractions and distance updates, δout
A edge visits, and at most δout

A number of decrease-keys.

7 Experiments

The main purposes of this section are to detail how the algorithms presented in this work perform, and

to identify the best solution for different scenarios. In Section 7.1, we introduce our experimental frame-

work, present the problem instance generators, describe the performance indicators, and give some relevant

implementation details. In Section 7.2, we present the experimental results.

7.1 Experimental Setup

7.1.1 System Environment and Data Sets

Our experiments are performed on a personal computer with a Pentium IV 2.56 GHz processor and 1 GB of

main memory, running Microsoft Windows XP Professional Version 2002. We use Java 1.4.2 to implement
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all programs. To make a homogeneous execution environment for every test case, we set the Java Virtual

Machine (JVM) to 1 GB.

We use two types of graph data: a real-life data set and an artificial data set. The former one is from

the Connecticut road system extracted from the U.S. Census Bureau Tiger/Line files [1], denoted as road

system graphs in short. Road system graphs have 5 different sizes: 1K, 2K, 4K, 8K, and 15K. The size is

determined by the number of vertices inside the graph. For each size, 2 graphs are extracted from Connecticut

road system. Each graph F is originally undirected, so we construct a directed graph G by replacing an

undirected edge in F with two directed edges as follows: ∀v ∈ V (F ), v is added to G; ∀(u, v) ∈ E(F ), (u, v)

is added to G, and a new edge (v, u) with a random weight is also added to G, such that (u, v) is u’s outgoing

and v’s incoming edge, and (v, u) is v’s outgoing and u’s incoming edge. The weight of an edge (u, v) is the

length of the edge in F while the weight of the newly added edge (v, u) is chosen arbitrarily from the weights

in the original graph. The weights, for instance, could denote the time needed to travel over a street block

in a road system graph.

Due to the nature of the road system and the way we construct a directed graph, the directed graphs G’s

are relatively sparse such that |E(G)| ≤ 3 × |V (G)|. Moreover, they are all strongly-connected, such that

there exists a path between any pair of vertices in G. The statistics are given in Table 4.

Graph size No. of vertices No. of edges

1K 1194 2970
1K 1181 2798
2K 2280 5364
2K 2034 4784
4K 4320 9826
4K 4165 9674
8K 8350 20474
8K 8146 20396
15K 15001 38346
15K 15002 36814

Table 4: Road System Graphs Statistics.

Graph Size No. of Vertices No. of Edges

100 100 4950
200 200 17300
400 400 61400
800 800 220400

Table 5: Artificial Random Graphs Statistics

The other type of graphs is artificially generated. With the random graph generator from [2], we generate

directed graphs, given the number of vertices, the number of edges, and a certain range of edge weights.

The generator assigns edges to vertices such that the outgoing degrees of vertices follow quasi-power law

distribution. The weight of an edge is randomly selected from the input range of 1 to 1,000,000. According
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to this random generator, |E(G)|max = |V (G)|×(|V (G)|−1)
2 . Therefore, we are able to generate random graphs

much denser than road system graphs. The data on random graphs generated are shown in Table 5.

7.1.2 Problem Instances

In each testing graph G, we randomly select a vertex s as the source, and a set ε of edges whose weights are

to be increased or decreased. We denote ε as non-mixed if it contains either increased edges or decreased

edges, but not both; we denote ε as mixed if it contains both. Given an outdated SPT rooted at s in G,

we run SPT algorithms to update ε accordingly and compute a new SPT. Note that the outdated SPT is

already residing in the main memory before an algorithm starts executing.

In a non-mixed case, we vary the percentage of changed edges and the percentage of weight changed; in

a mixed case, we vary the percentage of changed edges and the percentage of increased edges. More details

follow in Section 7.1.4.

7.1.3 Performance Indicator

In this work, we are interested in the total number of operations performed and the CPU running time for

each solution. The types of operations interested are listed in Table 1.

In the mixed cases, the semi-dynamic algorithms need to divide ε into ε+ and ε− so that ε+ contains all

edges in ε whose weights are increased, and ε− contains the rest. The CPU time for dividing ε into ε+ and

ε− is also counted as part of the cost. In addition, when we run semi-dynamic algorithms for mixed cases,

we first run the decreases routine for ε−, and then the increases routine for ε+. This order, however, could

be arbitrary.

7.1.4 Factors Evaluated

Since different algorithms may have different properties, in order to draw a meaningful conclusion, we examine

which algorithm works the best in different scenarios. We extract some factors from the general situations.

Table 6 lists these factors and their sample values used in the experiments.

Factor Samples for Road System Graphs Samples for Random Graphs

graphsize (increase and decrease cases) 1K, 2K, 4K, 8K, 15K 100, 200, 400, 800
(mixed case) 2K, 8K, 15K 200, 400, 800

pce (increase and decrease cases) % 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 0.1, 0.5, 2, 10
(mixed cases) % 0.5, 2, 5 0.5, 1, 2, 5

pcw (increase cases) % 100, 200, 1000, 2000, 5000, 10000 100, 200, 1000, 2000, 5000, 10000
(decrease cases) % 5, 10, 20, 40, 60, 90 5, 10, 20, 40, 60, 90

pie(mixed cases only) % 10, 30, 50, 70, 90 10, 30, 50, 70, 90

Table 6: Samples of evaluated factors in the DSP problem

Graph Size (graphsize) It is the number of vertices in it. The samples are listed in Table 6.
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Percentage of Changed Edges (pce) It is the percentage of changed edges. The samples are listed in
Table 6. The changed edges are randomly selected from the graph. For example, in a 4K sized road
system graph which has approximately 8K edges, when pce is 1%, 80 edges get their weights updated.

Percentage of Changed Weight (pcw) It is the percentage of the changed edge’s weight that will be
added to or deducted from the its original weight. There are two groups of samples: the edge weight
increases and the edge weight decreases. For the mixed case, percentage of increased edges (pie) is
used instead. Table 6 provides the samples.

For example, if a person is driving at 100 kilometers per hour (100km/h) on a highway, it takes him
30 seconds (30s) to travel from one intersection to the next one. If, due to a traffic congestion, he/she
slows down to 10km/h, he/she needs 300s to drive the same distance. In the graph presentation, the
corresponding edge’s weight is increased by nine times from 30s to 300s. For the opposite situation,
the edge’s weight is decreased by 90% from 300s to 30s.

Percentage of Increased Edges (pie) In the mixed cases, after randomly selecting a group of modified
edges, we vary the ratio between the number of the increased edges and the number of the decreased
edges in this group. The samples are given in Table 6. For instance, the value 10 stands for that 10%
of modified edges have their weights increased while 90% have their weights decreased.17

For all cases, given a group of sample values, a run consists of 150 (2 × 3 × 25) SPT computations. For

example, for the road system graphs, let graphsize = 4K, pce = 0.1, and pcw = 100 be a group of sample

values. In a run, 2 graphs (both are 4K in size) are selected. For each graph, we randomly select 3 groups

of edges, each of which contains 4 edges (pce = 0.1) whose weights are increased by 100%, and we randomly

select 25 vertices as sources whose SPTs are computed. Thus, in a run, we have 150 SPT computations. For

each algorithm and for each group of sample values, the average number of unit operations and the average

execution time of a run are used as the average data, and they are the y-values in our plots.

7.1.5 Implementation Details

In this subsection, we take a closer look at the data structures used in the implementation. There are a few

important data structures that are shared by the algorithms: Graph G; SPT Ts, rooted at vertex s; and

priority queue Q.

Conceptually, G contains a vertex set V and an edge set E. Each vertex v is identified by a key (the ID

of v), and so is each edge e. Ts is denoted by the vertices’ auxiliary information set. In this set, a vertex is

identified by its ID. Each vertex has an auxiliary information, aux, which contains spp(v), spc(v), dv, and

status(v). We use Java 1.4.2’s HashMap to implement the containers of V , E, and Ts. During the execution

period in which we observe the performance, our algorithms update the auxiliary information of the vertices

in Ts. As pointed out before, a priority queue is implemented with the ArrayHeap in JDSL [3].

Besides implementing our algorithms in this work, we also implement Dijkstra as a reference. To obtain a

fair comparison, we modify Dijkstra to take a group of modified edges as its input, as all the other incremental

algorithms do, to modify these edges’ weights, and to compute a new SPT for the updated graph.
17The weight changes, in this case, are randomly set.
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7.2 Experimental Results

In Section 7.2.1, we show how pcw affects the algorithms investigated. Then in the rest of Section 7.2, we

focus on the other factors and see how they influence the performance of an algorithm.

7.2.1 Factor pcw

Figure 7 shows, for the increases case, the effect of pcw on various algorithms with road system graphs.18

Results on other road system graphs and random graphs are similar, and therefore are not included here.19

The plot on the left shows the execution time while the one on the right records the total number of

operations performed by an algorithm. From the figure, it is observed that, for all algorithms, both the unit

operations and the CPU time remain relatively constant, regardless of the changed weights. The reason

for this phenomenon is due to the nature of the incremental algorithms. In the increases cases, given a
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Figure 7: Comparison in Edge Weight Increases on pcw with Road System Graphs

graph, an SPT, and a set of changed edges, the set of locally-affected vertices in algorithm DynDijkInc

and MBallStringInc remains unchanged, regardless of the weight changes. At the beginning of execution,

these algorithms both invoke a function called findLocallyAffectedVertices. The set of vertices returned by

this function solely depends on the set of changed edges, but not on the increases in their weights. For
18The substring BS in a legend denotes BallString.
19From now on, due to space limitation, only a subset of exemplifying plots are presented.
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DynDijkInc, the number of iterations is the number of locally-affected vertices. For MBallStringInc, even

though the number of iterations is the number of branches processed, which is much smaller, the amount of

work required is proportional to the number of locally-affected vertices. For algorithm MFP, similar to the

two other algorithms, the number of dist-affected vertices, which need to be processed, remains relatively

constant. Therefore, the CPU time and the units of operations remain flat. The performance differences

among these algorithms will be explained in subsequent discussion. In summary, for the increases case, pcw

has little influence on these incremental algorithms.
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Figure 8: Comparison in Edge Weight Decreases on pcw with Road System Graphs

On the other hand, pcw has a more noticeable influence in the decreases case. Figures 8 and 9 show

how the weight decreases affect the performance of these algorithms. Contrary to the increases case, the

set of locally-affected vertices cannot be determined initially. As a result, the more the edges’ weights are

decreased, the more likely a vertex is locally-affected. The larger the number of locally-affected vertices, the

more processing is required. In addition, this effect is amplified in the random case due to a larger number

of edge visits.

It is worth noting that algorithm Dijkstra performs significantly better, relatively to the incremental

algorithms, in road system graphs than in random graphs. This is due to the nature of the data sets and

the sample points chosen, as well as the characteristics of these algorithms. Because the density of tree
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edges is much lower in random graphs than in road system graphs, the same pce results in a smaller affected

subgraph when it is a random graph than it is a road system graph. For instance, consider the edge weight

increases case and a pce value, 2%. In random graphs case, 11% vertices in 100-node graphs and 25% vertices

in 800-node graphs are locally-affected. In contrast, in road system graphs case, 55% vertices in 1K-node

graphs and 75% vertices in 15K-node graphs are locally-affected. Since an incremental algorithm processes

locally-affected vertices only, it performs better in road system graphs than in random graphs, in general.

Another reason for Dijkstra’s better performance in road system graph is its complexity. Recall that the

complexity of Dijkstra is O(n× log n + m), where n and m are the number of vertices and edges in a graph

G, respectively. In a random graph, m is dominant.
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Figure 9: Compariosn in Edge Weight Decreases on pcw with Random Graphs

For the rest of the experimental results, we shall focus on other factors and their influences on the

performance of various algorithms. We shall present and analyze the results in three parts: the edge weight

increases, the edge weight decreases, and the mixed edge weight changes. Let us call a pce x the pce-threshold

of an incremental algorithm I, if for any value y ≥x, I no longer, in term of time, outperforms Dijkstra.
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Figure 10: Comparison in Edge Weight Increases on pce with Road System Graphs

7.2.2 Edge Weight Increases

For road system graphs, as shown in Figure 10, graphsize’s increase lowers the incremental algorithms’

pce-thresholds. In fact, this holds for all test data sets. In the increases case, all incremental algorithms

outperform Dijkstra when pce is small, say when it is less than 1%. As pce increases from zero to some pce-

threshold, the performance gap between a incremental algorithm and Dijkstra narrows. Thus, the advantage

of an incremental algorithm over Dijkstra reduces as pce increases; after some pce-threshold is reached, no

more advantage exists.

In general, MBallStringInc outperforms all other incremental algorithms, in terms of the total number

of operations and the CPU execution time, regardless of graphsize and pce. Although MBallStringInc

processes the same set of affected vertices as DynDijkInc does, MBallStringInc’s better performance is due

to the branch consolidation by δ. Branch consolidation results in fewer queue operations when compared

to DynDijkInc. Since MFP processes each dist-affected vertex twice, it requires a larger number of edges

visits and more queue-related operations. Consequently, it performs the worst among all three incremental

algorithms. In sum, if pce is less than a certain pce-threshold, which depends on graphsize, MBallStringInc

should be applied; otherwise, Dijkstra should be applied. According to our tests, the range of the pce-

threshold for MBallStringInc is between 2% to 4%.
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Figure 11: Comparison in Edge Weight Increases on pce with Random Graphs

For random graphs, as shown in Figure 11, the relative performance is similar to that in road system

graphs, except that DynDijkInc performs a bit better in term of CPU time. We observe that DynDijkInc and

MBallStringInc have almost the same number of unit operations. In fact, they both have similar numbers over

all major categories of operations. However, MBallStringInc is a more complex algorithm than DynDijkInc.

When an SPT is small, the benefit of branch consolidation of MBallStringInc could be out-weighted by its

overhead. As a result, DynDijkInc has a better time performance than MBallStringInc. It is worth noting

that the pce-thresholds for all incremental algorithms in random graphs are significantly higher than those

in road system graphs, due to the reason given at the end of Section 7.2.1.

7.2.3 Edge Weight Decreases

Figures 12 and 13 show the experimental results, in the decreases case, for road system graphs and for

random graphs, respectively.

We observe that, for road system graphs, as in the increases case, all incremental algorithms outperform

Dijkstra when pce is small, but under-perform Dijkstra once the pce passes some pce-threshold. DynDi-

jkDec outperforms all other incremental algorithms, regardless of graphsizes and pce. The pce-threshold of

DynDijkDec is noticeably higher than that of DynDijkInc. This is due mainly to the far fewer number of

operations involving distance update, link visit, and link update in DynDijkDec. BallStringDec performs sig-
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nificantly worse than other incremental algorithms due to the duplicate distance updates. The performance

deteriorates rapidly as pce increases, because more and more subtrees in an SPT are repeatedly processed

by BallStringDec. On the contrary, MFP performs better, compare to the increases case, due to that each

affected vertex is enqueued only once in the decreases case, which results in far fewer edge visits and queue-

related operations. In sum, for road system graphs, if pce is less than a certain threshold, DynDijkDec

should be applied; otherwise, Dijkstra should be employed. The range of the pce-thresholds is above 10%,

depending on the size of a graph.

0 2 4 6 8 10
0

200

400

600

800
graphsize = 15000

pce

U
ni

ts
 o

f O
ps

/S
P

T
 (

00
0s

)

0 2 4 6 8 10
0

5

10

15

20
graphsize = 1000

C
P

U
 T

im
e/

S
P

T
 (

m
s) Dijkstra

DynDijkDec
BSDec
MFP

0 2 4 6 8 10
0

10

20

30
graphsize = 1000

U
ni

ts
 o

f O
ps

/S
P

T
 (

00
0s

)

0 2 4 6 8 10
0

100

200

300

400
graphsize = 8000

C
P

U
 T

im
e/

S
P

T
 (

m
s)

0 2 4 6 8 10
0

100

200

300
graphsize = 8000

U
ni

ts
 o

f O
ps

/S
P

T
 (

00
0s

)

0 2 4 6 8 10
0

500

1000
graphsize = 15000

pce

C
P

U
 T

im
e/

S
P

T
 (

m
s)

Figure 12: Comparison in Edge Weight Decreases on pce with Road System Graphs

For random graphs, as shown in Figure 13, DynDijkDec still has the best overall performance among all

incremental algorithms while MFP performs the worst. Although each vertex is enqueued and extracted

once, the number of adjust key operations by MFP is much larger than that of the two other incremental

algorithms, resulting in MFP ’s deteriorating performance. In general, an SPT in a random graph is much

smaller than that in a road system graph. The chance of duplicate distance update is smaller in a small SPT

than in a large SPT. This explains why BallStringDec does not perform as bad as in the road system case.
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Figure 13: Comparison in Edge Weight Decreases on pce with Random Graphs

7.2.4 Mixed Edge Weight Changes

All semi-dynamic algorithms such as MBallString and DynDijkstra can be used to process a mixed edge

weight changes. The mixed edge weight changes are first divided into two sets: increase and decrease. They

are then processed by the corresponding semi-dynamic routines. In the previous subsections, we have shown

experimentally that the overall best performed semi-dynamic algorithms for increases and decreases cases are

MBallStringInc and DynDijkDec, respectively. We construct an algorithm for the mixed case, which we call

MBSDD, by combining these two semi-dynamic algorithms together. Algorithm MBSDD is also included in

our evaluation.

Here, we provide the experimental results in the case of the mixed edge weight changes. Similar to what

is reported in the previous two sections, graphsize and pce affect the performance of all the algorithms in the

same manner, and, as can be expected, combining the edge weight increases and the edge weight decreases

does not reverse the trend. Consequently, in this part, we choose less samples, and focus on testing pie. The

graphsize chosen are 2K, 8K, and 15K while the pce examined are 0.5%, 2%, and 5%. Our tested samples

cover almost the full range of all the possible values for pie, i.e., from 10% to 90%.
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Figure 14: Time Comparison in Mixed Edge Weight Changes on pie with Road System Graphs (left) and
Random Graphs (right)

Figure 14 shows how the mixes of edge weight increases/decreases affect the performance of the algorithms

in term of CPU running time. The plots for the unit operations are very similar to the corresponding time

plots and therefore are not included here.

Let us first look at the result on the road system graphs. The figure shows that pie does not influence the

incremental algorithms uniformly. DynDijkstra and MBSDD have more or less the same trend. For the same

set of modified edges, as pie increases from 10% to 90%, two algorithms’ performance is initially bad, and then

gets improved after a certain threshold. This trend can be explained by considering the behavior of MBSDD.

When the pie is very large (90%) or very small (10%), the best semi-dynamic algorithm, MBallStringInc

or DynDijkDec respectively, is invoked to handle the dominating set of edge weight changes. Thus, the

performance of MBSDD at the two extremes of pie will be very close to (but still slightly better than) two

best semi-dynamic algorithms respectively. For the rest of the pie sample values, MBSDD performs certainly

better than all other incremental algorithms. For the reasons stated in the increase and decrease cases, as

pie increases, MBallString performs better while MFP performs worse.

The result on random graphs is slightly different from road system graphs. We first observe that the lines

look relatively flat, but this mainly due to the poor performance of Dijkstra. We also observe that MFP

performs not as good, relative to road system graphs, mainly because of its larger number of queue-related
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operations.

The test result on pce for road system graphs is summarized in Figure 15. As can be observed, and except

for 2K graph and small pce’s, MBSDD performs no worse than all other incremental algorithms. In fact,

MBSDD performs just slightly better than DynDijkstra. Depending on graphsize and pie, MBSDD should

be applied, if pce is below a certain pce-threshold; otherwise, Dijkstra should be applied. The threshold

range in this case is about between 1.5% and 3.5%.
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Figure 15: Comparison in Mixed Edge Weight Changes on pce with Road System Graphs

For random graphs, the result is summarized in Figures 16. There is not much surprise in this figure.

However, unlike the mixed case of road system graphs, DynDijkstra edges out MBSDD in almost every case.

The reason is that MBallStringInc does not perform as well as DynDijkInc in the random increases case.

Consequently, the combined algorithm MBSDD is not as good as DynDijkstra.
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Figure 16: Comparison in Mixed Edge Weight Changes on pce with Random Graphs.

8 Conclusion

For the DSP problem, we reviewed the previous investigations and discovered that many of them either

process a single edge weight update or fail to correctly process the multiple edge weight updates. Therefore,

we proposed a few semi-dynamic algorithms by correcting, extending, and optimizing some of the previously

studied algorithms. More specifically, DynDijkstra and MBallString are two semi-dynamic SPT algorithms,

whereas MFP is a fully-dynamic SPT algorithm. In addition, we derived two frameworks for describing the

modified semi-dynamic algorithms: one for increases case and the other for decreases case. We analyzed

the complexity and proved the correctness of these algorithms. We conducted experiments to evaluate their

performance, both in terms of CPU execution time and total number of operations. We also compared

them with the well-known static algorithm Dijkstra. The purpose of this study is to understand how these

algorithms behave and to determine the best algorithms for different graph sizes and for various mixes of

modified edges. We used both real-life and artificial data sets in our experiments. The real-life data sets are

road systems in Connecticut and are sparse in nature. The artificial data set are randomly generated graph

and are relatively dense. We tried to eliminate the experimental anomalies by conducting a large number of

tests. We also identified and evaluated factors that could affect the algorithms’ performances.

The factors we investigated in this work are graph size, pce, and pcw. We first showed that, for the
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increases case, pcw has very little effect on the performance of all incremental algorithms studied. However,

there are some effects on their performance when the changed-weights are decreases. As expected, incremen-

tal algorithms should be used in place of the static Dijkstra algorithm when the pce is smaller than certain

threshold. These thresholds vary on the input mixes and on the graph size. We concluded the following

for all incremental algorithms examined in this work. In the increases case, for road system graphs and

for random graphs, MBallStringInc and DynDijkInc have the best overall performance, respectively. In the

decreases case, DynDijkDec performs the best. For the mixed case, MBSDD is the best choice for road

system graphs while DynDijkstra outperforms others for random graphs.
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Appendix

A Correctness Proofs of DynDijkstra and MBallStringInc

We now prove the correctness of DynDijkstra and MBallStringInc. A simple observation of the two algorithms

for the increases case.

Proposition A.1 Let N̄ be the set of vertices returned in line 10 of either DynDikjstraInc or MBallString-

Inc. If N̄ is non-empty, then there is some vertex a∈N̄ that satisfies the condition (b, a) ∈ Ina and b /∈ N̄ .

That is, for both algorithms, there is some boundary vertex enqueued in Q before Step 3 begins execution.

Proof By Lemma 4.1, N̄ is V (Ts) − des(T̂s, s), where T̂s is the forest obtained from Ts by removing the

modified tree edges. Search the tree Ts, starting with the root s, until a vertex b in des(T̂s, s), but a is not

in des(T̂s, s) and (b, a) is an edge in G. Such an edge (b, a) guarantees to exist since N̄ is non-empty, all

vertices in N̄ are reachable from s in Ts, and s �∈N̄ .

A.1 DynDijkstra

In this part, we prove the correctness of DynDijkInc and DynDijkDec. Since major part in DynDijkInc (Step

3) is the same as that in DynDijkDec (Step 2), we are going to prove the correctness of these two algorithms

together, and we use DynDijkstra when no need to differentiate them.

We prove that DynDijkstra computes a correct new SPT T ′
s eventually. First we argue that DynDijkstra

correctly updates only the shortest distances/paths of locally-affected vertices in Ts. Thereafter, we prove

that T ′
s is a valid new SPT. We break the proof into two cases: one without iteration and the other with

iterations during the execution of the algorithm.

Lemma A.2 If DynDijkstra executes 0 iteration, then ∀v ∈ V (T ′
s), d̂v is optimal.

Proof If DynDijkInc executes 0 iteration, no entry is enqueued in Step 2. If N̄ is empty at the end of Step 1,

then none of modified edges is a tree edge in Ts, thus all vertices are unaffected. Therefore, all vertices keep

their optimal distances. If N̄ is non-empty, by Proposition A.1, the queue is non-empty and the algorithm

will execute at least once.

If DynDijkDec executes 0 iteration, no entries are enqueued in Step 1. It means that there are no affected-

heads. Since no vertex gets a shorter distance after the updates, all vertices must be unaffected and keep

their optimal distances.

Suppose DynDijkstra executes k iterations, where k ≥ 1, and let y1, y2, . . ., yk be the sequence of vertices

extracted from the priority queue Q and are processed in line 18 in DynDijkInc or in line 10 in DynDijkDec.
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Let d̂yi
be the distance assigned by DynDijkstra when yi is extracted, where 1 ≤ i ≤ k. We prove by

induction that d̂yi
is optimal. First, we shall prove a few preliminary Lemmas and Theorems.

Lemma A.3 The sequence of d̂yi
, where 1 ≤ i ≤ k, is in a non-decreasing order.

Proof Suppose in any two consecutive iterations, i and i + 1, where i > 0, yi and yi+1 are the extracted

vertices, respectively. To prove Lemma A.3, we want to show that d̂yi
≤ d̂yi+1 .

In the ith iteration, vertex yi is extracted in line 18 in DynDijkInc or in line 10 in DynDijkDec, which

means d̂yi
is less than or equal to any entry currently enqueued. Then, in line 26 of DynDijkInc or line 18

of DynDijkDec, a new entry q with distance d̂q is enqueued. According to the previous line in DynDijkstra

and the non-negative edge weight, d̂q ≥ d̂yi
. Therefore, all entries existing in the priority queue after q is

enqueued have a distance of no less than d̂yi
and so is the entry with the minimum distance, that is going to

be extracted in i + 1th iteration. In other words, d̂yi
≤ d̂yi+1 . Thus, the sequence of extracted entries from

the queue is in a non-decreasing order.

Lemma A.4 In the sequence of y1, y2, . . ., yk, ∀i �= j, where k ≥ i, j ≥ 1, yi �= yj.

Proof It suffices to prove that, any extracted vertex v in some iteration will not be enqueued again in later

iterations. Let d̂v be the distance of v when it is extracted in some iteration. In any later iteration, inequality

d̂y + w(e)′ < d̂q in line 24 of DynDijkInc and in line 16 of DynDijkDec will not hold, where d̂q is d̂v in our

context. The reason is w(e)′ ≥ 0, and, according to Lemma A.3, d̂y ≥ d̂v. Therefore, v will not be enqueued

anymore. Thus Lemma A.4 holds.

Now we prove that DynDijkstra processes a vertex v in some iteration if and only if v is locally-affected.

Lemma A.5 Given a graph G, an SPT Ts, and input edge increases ε+, DynDijkInc processes v if and only

if v is locally-affected.

Proof By Lemma 4.1, it suffices to show that the set of processed vertices is exactly the set of vertices N̄

in line 10.

“If” If v ∈N̄ , then either v is a boundary vertex in Step 2 and is enqueued, or its distance is set to ∞. In

the former case, v is clearly processed by the algorithm. In the latter case, consider the shortest path SPv in

Ts. Using an argument similar to Proposition A.1, there exists a boundary vertex w such that all ancestor

vertices of v, except w, in the sub-path SPwv have their distances set to ∞ in Step 2. Since w is enqueued

before Step 3 starts executing, together with lines 22-28, all vertices in the sub-path SPwv will eventually

be enqueued in line 26 due to the condition in line 24. Thus v will eventually be processed.

“Only if” If v is a not-locally-affected vertex, then v is either not reachable from s in G or v∈des(T̂s, s),

where T̂s is the forest obtained from Ts in Step 1 after the set of modified tree edges are removed. If v is

not reachable from s, then v will not be processed. If v ∈des(T̂s, s), then SPv = SP ′
v since no affected-head
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is in the path SPv and weight changes are only increases. In this case, vertex v is not in N̄ , thus it is not

enqueued in Step 2. Because of the condition in line 24, it is not enqueued in Step 3 either. Therefore v is

not processed by the algorithm.

Lemma A.6 Given a graph G, an SPT Ts, and input edge changes ε−, DynDijkDec processes v if and only

if v is locally-affected.

Proof By Lemma 4.2, the set of locally-affected vertices is exactly the set of vertices the distance of which

are changed with the update.

“If” If d′v < dv, then there is an affected-mini-root in the path SP ′
v. Step 1 guarantees all affected-

mini-roots are enqueued. Lines 14 to 20 guarantee v will eventually be enqueued and processed since v is

reachable from an enqueued affected-mini-root.

“Only if” By line 4 and line 16, all enqueued and processed vertices have their distances decreased. Thus

all processed vertices are locally-affected.

Theorem A.7 DynDijkstra terminates after finite k iterations.

Proof According to Lemmas A.5 and A.6, only locally-affected vertices will be processed by DynDijkstra.

There are at most |V (Ts)| − 1 locally-affected vertices caused by the input modified edges. In other words,

the worst case is that all vertices in Ts, except the source, are locally-affected. According to lines 18 in

DynDijkInc and 10 in DynDijkDec, in each iteration exactly one vertex is processed. Based on Lemma

A.4, all processed vertices are distinct. Thus, DynDijkstra will terminate after a finite k iterations, where

k ≤ |V (Ts)| − 1 .

At any instant of DynDijkstra’s execution, we say vertex v’s distance is finalized (or simply v is finalized)

if it is not-locally-affected, or if it is locally-affected and has already been consolidated by DynDijkstra. In

general, let v ∈ V and q ∈ p(v); dq + w(q, v) is denoted as the distance of v induced by q. Now we prove

that the finalized distances of all locally-affected vertices are optimal.

Theorem A.8 In DynDijkstra, at the end of each iteration, all consolidated vertices are assigned with

optimal distances.

Proof We prove the theorem by induction on the number i of iterations. We want to prove that, if at the

beginning of ith iteration, where i ≥ 1, the inductive hypothesis holds, then it is also true at the end of ith

iteration.

At the beginning of the first iteration, no vertices are consolidated in both DynDijkInc and DynDijkDec.

Thus, the inductive hypothesis holds trivially before the first iteration begins.

We now prove that, if at the beginning of any ith iteration, where i ≥ 1, the inductive hypothesis holds,

then at the end of ith iteration, all vertices consolidated are also given the optimal distances. We want to
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prove that if yi is extracted in ith iteration (in line 18 in DynDijkInc or line 10 in DynDijkDec), then it gets

its optimal distance at the end of ith iteration.

Suppose in G′, a path P ′
syi

has a shorter distance than d̂yi
, which is computed by DynDijkstra. Let z

be the first vertex along P ′
syi

such that z is locally-affected but not consolidated before the current iteration

begins, and let x be z’s shortest path parent on P ′
syi

. Vertex z guarantees to exist since yi is locally-affected

but not consolidated before the current iteration begins. We want to show that, before the iteration begins,

z is an enqueued vertex with a candidate distance induced by x.

There are two possible cases for x: Case (1): x is not-locally-affected. In the increase case, z is an

enqueued boundary vertex in Step 2 of DynDijkInc. In the decrease case, the edge (x, z) must be a modified

edge and z is an affected head. Thus z is enqueued with a candidate distance induced by x. Case (2): x is

locally-affected. By assumption on z, x is extracted and consolidated in some previous iteration. Therefore

x is assigned with its optimal distance before the current iteration begins. Before the relaxation of x, z is

either not in the queue, or if it is in the queue, then the induced distance cannot be smaller than the one

induced by x. In either case, after the relaxation of x, z is enqueued with a candidate distance induced by

x.

Now we are ready to show that d̂yi
is the optimal distance for yi. According to our assumption that P ′

syi

has a shorter distance, d̂z < d̂yi
stands. However, d̂yi

is minimum among all enqueued boundary vertices,

d̂z ≥ d̂yi
must stand. A contradiction. Therefore, d̂yi

is the optimal distance for yi.

Thus we can conclude Theorem A.8 is correct.

Lemma A.9 DynDijkstra maintains tree edges correctly.

Proof According to Lemmas A.5 and A.6, DynDijkstra only processes locally-affected vertices. Since Dyn-

Dijkstra only updates the shortest path parent of processed vertex, the tree edges headed at not-locally-

affected vertices remain unchanged. Thus it suffices to prove that, each locally-affected vertex v gets its

correct shortest path parent when it is consolidated.

According to lines 14 and 26 in DynDijkInc, lines 6 and 18 in DynDijkDec, the parent p that induces

v’s current tentative distance is always enqueued with v. At line 18 in DynDijkInc and 10 in DynDijkDec,

v is extracted with parent p. The next three lines make sure v’s shortest path parent is correctly set to p.

According to Lemma A.3 and Theorem A.8, p is always consolidated before v, and when v is consolidated,

both p and v are with optimal distances. Therefore, the correctness of Lemma A.9 follows.

Corollary A.10 Let Ts be a valid SPT rooted at vertex s in graph G. The graph G is modified into G′ by

a set of edge weight increases or decreases. Algorithm DynDijkstra computes a new valid SPT T ′
s rooted at

s in graph G′.

Proof According to Lemmas A.2, A.5 and A.6, not-locally-affected vertices keep their optimal distances.

For locally-affected vertices, the correctness follows from Lemmas A.5, A.6, Theorems A.7 and A.8. For tree
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edges, the correctness follows from Lemma A.9. Therefore, we conclude the correctness of Corollary A.10.

A.2 MBallStringInc

The main part of MBallStringInc contains iterations. Each iteration consolidates a set of locally-affected

vertices. We use inductive reasoning to prove that, at the end of k iterations (k ≥ 0), all vertices, whose

statuses are set to closed, get their final optimal shortest distances. Again, we break the proof into two cases:

one with and the other without iterations.

Lemma A.11 If MBallStringInc runs no iteration, ∀v ∈ V (T ′
s), d̂v is optimal.

Proof If MBallStringInc runs no iteration, no entry is enqueued in Step 2. If N̄ is empty at the end of

Step 1, then no modified edges were tree edges in Ts. Thus, all vertices are unaffected, keeping their optimal

distances. If N̄ is non-empty, by Proposition A.1, the queue is non-empty and the algorithm executes at

least once. Therefore, if MBallStringInc runs no iteration, all vertices must be unaffected and keep their

optimal distances.

Lemma A.12 In an SPT Ts rooted at vertex s in graph G, let u and v be two vertices that are not s,

suppose du ≥ dv, then dvu ≥ du − dv.20

Proof It is trivially proven by triangle inequality.

Lemma A.13 In any iteration of MBallStringInc, if δold is the δ extracted in line 20 and δnew is any δ

enqueued in line 36, then δold ≤ δnew.

Proof Let e be any edge examined in line 32 such that y = t(e), x = h(e) and status(x) = open. According

to MBallStringInc, the distance of y is updated in line 26, and a newdist is computed for x in line 34. To

facilitate the present discussion, we denote the shortest distance of y before line 26 as dold
y and after line 26

as dnew
y ; we also denote the shortest distance of x before line 34 as dold

x .

In Ts of G, we have dy + w(y, x) ≥ dx (1). According to the algorithm, the shortest distance of an open

vertex is updated only in line 26, and its status is set to closed right after that in line 27. Since both y and x

are open before line 26 in this iteration, inequality (1) can also be stated as dold
y + w(y, x) ≥ dold

x (2). After

line 26, the shortest distance of y is set to dnew
y . Therefore, according to line 34, dnew

y + w(y, x)′ = newdist

(3). By combining (2) and (3), we obtain dnew
y − dold

y + w(y, x)′ − w(y, x) ≤ newdist − dold
x (4). According

to line 26, dnew
y − dold

y is actually δold, and, according to line 35, newdist − dold
x is actually δnew. Therefore,

inequality (4) is in fact δold + w(y, x)′ − w(y, x) ≤ δnew (5). At the same time, since all input edge changes

are increases, we have w(y, x)′ − w(y, x) ≥ 0. Thus, (5) turns out to be δold ≤ δnew.

20dvu refers to the shortest distance from v to u in G.
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Lemma A.14 If MBallStringInc runs k iterations, where k ≥ 1, the extracted δ’s follow a non-decreasing

order.

Proof According to line 20 of MBallStringInc, the minimum δ in priority queue is extracted in each iteration.

Therefore, the non-decreasing order follows from repeated applications of Lemma A.13.

Lemma A.15 During the ith iteration, i ≥ 1, in line 24 and at the end of the iteration, the structure T̂s is

a forest.

Proof After Step 2 is executed, T̂s is a forest since it is obtained from Ts by removing some tree edges.

During an iteration of Step 3, the only place that changes the parent-child relationship in a tree in T̂s is in

lines 21 to 23. It assigns a new parent to a subtree of a tree in the forest. Thus the Lemma follows.

Lemma A.16 At the end of the ith iteration, i ≥ 1, and given any open vertex v, des(T̂s, v) is a subset of

the initially open vertices in Step 2. Moreover, all vertices in des(T̂s, v) are open.

Proof We prove this by induction on i. Before the first iteration, the inductive hypothesis holds simply by

the Lemma 4.1. Assume the hypothesis holds before the ith iteration, we want to show that it is true after

the ith iteration, where i ≥ 1.

In the ith iteration, let vertex yi be extracted in line 20. By lines 12 and 33, yi is open. By the inductive

hypothesis, the set Ni=des(T̂s, yi) of vertices returned in line 24 are all open. From line 27, all vertices in Ni

become closed. By lines 21 and 23, the subtree rooted at yi is connected to a closed vertex. At the the end

of ith iteration, if there exists an open vertex u such that des(T̂s, u) contains some closed vertex c, then, by

the inductive hypothesis, the vertex c must be in Ni. A contradiction to Lemma A.15 that T̂s at the end of

ith iteration is a set of disjoint trees. Thus, vertices in des(T̂s, u) are all open at the end of the ith iteration.

Since no vertex is set to open after Step 2, des(T̂s, u) is a subset of the initially open vertices. Therefore, the

inductive hypothesis holds after the ith iteration.

Lemma A.17 MBallStringInc processes v if and only if v is locally-affected.

Proof According to Steps 1 and 2 of MBallStringInc, the set of locally-affected vertices is exactly the set of

vertices with status set to open. During the execution of the algorithm, no vertex has its status set to open.

Thus it is equivalent to proving that the set of processed vertices is exactly the set of open vertices.

“If” We want to show that if a vertex is open, then it will be consolidated and closed eventually. Consider

the set of initially open vertices before Step 3 begins. Let v be an open vertex. Consider the path SPv in Ts.

Since v is open, there is some open vertex u in the path SPv which is a boundary vertex and is enqueued in

the priority queue before Step 3 starts executing. Moreover, all vertices in the sub-path SPuv are open. We

want to show that, after the execution of an iteration, either v is closed or there is some ancestor vertex of v

in SPuv is enqueued. We prove this by induction on the number of iterations. Because of the existence of u,
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the inductive hypothesis holds before the execution of the first iteration. Suppose the inductive hypothesis

holds before the ith iteration, we want to show that it is true after the execution of the ith iteration, ∀ i ≥ 1.

Consider the execution of an iteration, there are two cases to be considered:

Case (1): Some enqueued ancestor vertex w of v in the sub-path SPuv is extracted and processed. By

lines 24-31, a subtree rooted at w is consolidated and all vertices in the subtree are closed. Since v is a

descendant of w, v is processed and closed in the iteration.

Case (2): No vertex in SPuv is processed. In this case, none or some of the vertices in the path SPuv are

enqueued during the iteration. In any case, the inductive hypothesis holds trivially after the iteration.

In sum, if the inductive hypothesis holds before ith iteration, then after the execution of ith iteration,

either v is closed or some ancestor vertex in the sub-path SPuv is enqueued.

Since only open vertices are enqueued and at least one open vertex is closed in an iteration, v will

eventually be consolidated and closed in an iteration.

“Only if” By Lemma A.16, the set of vertices returned in line 24 are all open vertices. Thus only initially

open vertices are processed and closed. Since the set of open vertices is the set of locally-affected vertices,

all processed and closed vertices are locally-affected.

Lemma A.18 If MBallStringInc runs k iterations, where k ≥ 1, let N1, N2, ..., Nk be the sequence of sets

of vertices processed over iterations in line 24, then ∀i �= j, where 1 ≤ i, j ≤ k, Ni ∩ Nj = Ø.

Proof By Lemma A.16, each Ni is a subset of the initial set of open vertices. Since once a vertex is set to

closed, it is not open again. By Lemma A.16, the Lemma follows.

Lemma A.19 MBallStringInc terminates after finite k iterations.

Proof By Lemma A.17, MBallStringInc only processes locally-affected vertices. There are at most |V (Ts)|−
1 locally-affected vertices caused by the input modified edges. In other words, the worst case is all vertices in

Ts except for the source are locally-affected. According to line 24, in each iteration, at least one open vertex

is selected into N and is consolidated, and from Lemma A.18, no locally-affected vertex will be processed

more than once. Therefore at most |V (Ts)| − 1 iterations will be processed.

Now we prove MBallStringInc correctly updates the distances of all locally-affected vertices after k

iterations, where k ≥ 1.

Theorem A.20 If MBallStringInc runs k iterations, where k ≥ 1, at the end of each iteration, all closed

vertices get their optimal distances, and all boundary vertices are enqueued in Q with the candidate distances.

Proof We want to prove that if at the beginning of ith iteration, where 1 ≤ i ≤ k, the inductive hypothesis

holds, that is,
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(1) all consolidated vertices get their final optimal shortest distances; and

(2) all boundary vertices are enqueued with their candidate distances,

then at the end of ith iteration, the inductive hypothesis also holds.

In Step 1, MBallStringInc selects all locally-affected vertices into N̄ . In Step 2, MBallStringInc marks

all locally-affected vertices to open, therefore closed vertices are not-locally-affected vertices, which are with

their optimal distances. Also, in Step 2, MBallStringInc computes a minimum distance newdist for each

affected vertex a based on a’s parents: if a is a boundary vertex, newdist < ∞ must stand, thus a must be

enqueued. Therefore, before the first iteration, all closed vertices are with their optimal distances, and all

boundary vertices are enqueued.

Next, we want to show that the inductive hypothesis holds after the ith iteration, assuming that the

hypothesis holds before the iteration. Firstly, we want to prove the distance optimality of the consolidated

set of vertices in the ith iteration.

At the beginning of ith iteration, all boundary vertices are enqueued with their candidate distances. Then

in line 20, the entry 〈y, x, 〈δ, newdist〉〉 of boundary vertex y with the least δ is extracted. In lines 21-23,

y’s shortest path parent is set to x. In line 24, vertices returned by des(T̂s, y) are selected into N . In lines

26-27, vertices in N get their shortest distances incremented by δ and get their status set to closed. Now we

prove that their distances are optimal.
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Figure 17: The illustration of possible shortest paths. (a) Any possible shortest path SP ′
q in G′ is a shortest

path SP ′
o located so far, concatenated with a boundary edge (o, p) that is again concatenated with a shortest

path SP ′
pq; (b) Suppose y is the vertex with the minimum δ in Q, and its candidate shortest path parent

is x, we are going to argue that the shortest path s ⇀ x ⇀ y is not longer than any other possible path
s ⇀ u ⇀ v ⇀ y.

As shown in Figure 17(a), at any instant of MBallStringInc, for any remaining open vertex q, the optimal

shortest path from s in G′ must contain three consecutive parts: the shortest path from s to some vertex o

closed so far: SP ′
so; a boundary edge (o, p); the shortest path from p to q in G′: SP ′

pq. Among them, both

the first and the third parts may be a single vertex.

In Figure 17(b), y is the vertex to be extracted, which means that, among all open vertices directly

connected to closed vertices, edge (x, y) provides the minimum δ. By the inductive hypothesis, the closed

vertex x has already got its optimal distance, d̂x equals d′x. After y is extracted, its shortest distance is
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updated to d′x + w(x, y). Now we prove by contradiction that this distance is y’s optimal distance.

Let SP stand for the shortest path from s to y that is computed by MBallStringInc. Assume some other

path SP ∗ is shorter than SP . As shown in Figure 17(b), let SP ∗ be composed by a shortest path from s

to another closed vertex u, a boundary edge (u, v), and a shortest path from v to y. As we assume that

SP ∗ is shorter than P , we have d′u + w(u, v) + d′vy < d′x + w(x, y) (1). Since all input edge changes are

increases, the shortest distance between any two vertices in G′ could only be increased, thus d′vy ≥ dvy (2).

By combining (1) and (2), we get d′u + w(u, v) + dvy < d′x + w(x, y) (3). Meanwhile according to Lemma

A.12, dvy ≥ dy − dv (4). By combining (3) and (4), we get d′u + w(u, v) + dy − dv < d′x + w(x, y), which

leads to d′u + w(u, v) − dv < d′x + w(x, y) − dy (5). According to MBallStringInc, an open vertex’s distance

is updated only in line 26, and right after that its status is set back to closed in line 27. Since v and y are

still open, their distances have not been updated yet. Therefore according to the definition of δ, inequality

(5) is actually δv < δy. However we know δv ≥ δy because y is extracted before v. A contradiction. Thus,

no other path from s to y is shorter than P located by algorithm MBallStringInc.

Now we prove that, besides y, other consolidated vertices w also get their optimal shortest distances. See

Figure 18 for the explanation. Basically, we apply the same strategy here.
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Figure 18: The illustration of possible shortest paths for other consolidated vertices. Legend: the triangle
with s on the top stands for the subtree rooted at s that is consolidated so far; the triangle with y on the
top stands for the set of vertices returned by des(T̂s, y).

For any vertex w in N returned by des(T̂s, y) in line 24, MBallStringInc updates its shortest distance to

d̂w + δy, which is d̂w + d′x + w(x, y) − d̂y; and locates the corresponding path SP as the shortest path from

s to w. Suppose there is a path SP ∗ from s to w that is shorter than SP . Based on the same argument

as before, let SP ∗ be composed of the shortest path from s to a closed vertex z, a boundary edge (z,m),

and the shortest path from m to w in G′. As assumed, d′z + w(z,m) + d′mw < d̂w + d′x + w(x, y) − d̂y

(6). Since d′mw ≥ dmw, inequality (6) can be extended to d′z + w(z,m) + dmw < d̂w + d′x + w(x, y) − d̂y

(7). Meanwhile, we have dm + dmw ≥ dw (8), according to Lemma A.12. By combining (7) and (8), we

get d′z + w(z,m) − dm < d′x + w(x, y) − dy (9). Based on the same argument as before, inequality (9) is

actually δm < δy. A contradiction. So there is no other path from s to w that is shorter than SP located

by MBallStringInc. In addition, if w is also in Q, in line 28 of MBallStringInc, w is removed from Q, which

is correct because w’s optimal distance has been found.
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In lines 32-38 of ith iteration, MBallStringInc relaxes consolidated vertices. If any new boundary vertices

are induced, they will be located and their candidate paths will be computed in this step. Also, if better

candidate paths are induced, the information will be updated. Therefore, all boundary vertices will be

enqueued with a candidate distance at the end of ith iteration. We conclude that the inductive hypothesis

holds after the ith iteration. Therefore, Theorem A.20 stands.

Lemma A.21 MBallStringInc maintains tree edges correctly.

Proof According to Lemma A.17, MBallStringInc only processes locally-affected vertices. Since MBall-

StringInc only updates the shortest path parent of a processed vertex, the tree edges headed at not-locally-

affected vertices remain unchanged. For locally-affected vertices, MBallStringInc conducts branch consol-

idation. In each branch, all vertices’ distances are updated by the same amount, therefore, tree edges in

each branch remain unchanged. The root of each branch (except for the branch containing the root s) is

connected to another branch by a tree edge in T ′
s. Accordingly to lines 16 and 36, when a root v is enqueued,

its candidate parent p is also enqueued. At line 20, v is extracted with parent p. The next three lines make

sure that v’s shortest path parent is correctly set to p. Therefore, MBallStringInc maintains all tree edges

correctly.

Corollary A.22 Let Ts be a valid SPT rooted at vertex s in graph G. The graph G is modified into G′ by

a set of edge weight increases. Algorithm MBallStringInc computes a new valid SPT T ′
s rooted at s in G′.

Proof According to Lemma A.17, not-locally-affected vertices keep their optimal distances. For locally-

affected vertices, the correctness follows from Lemmas A.19 and A.11, and Theorem A.20. For tree edges,

the correctness follows Lemma A.21. Therefore, we conclude the correctness of Corollary A.22.
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