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Abstract

In this paper, we study the complexity of rectangular cartograms, i.e., maps where
every region is a rectangle, and which should be deformed such that given area re-
quirements are satisfied. We study the closely related problem of cartograms with
orthogonal octagons, and show that this problem is NP-hard. From our proof, it also
follows that rectangular cartograms are NP-hard if we allow for the existence of a “sea”,
i.e., a region of arbitrarily high complexity on the outside of the drawing.

1 Introduction

A cartogram is a type of map used to visualize data. In a map regions are displayed in their
true shapes and with their exact relations with the adjacent regions. However, such a map
can only be used to demonstrate the actual area values of the regions. Sometimes, we need
to display other data on a map, such as population, pollution, electoral votes, production
rates, etc. One efficient way to do so is to modify the map such that the area of each shape
corresponds to the data to be displayed. A map with given relationships between regions
for which each region has pre-specified area is called a cartogram; see Section 2 for precise
definitions. Cartograms are sometimes also called diagrammatic maps or value-by-area maps.
See [1] for a web site with much information about cartograms.

There are two major cartogram types: contiguous area cartograms [2, 3, 6, 7, 12], where
the regions are deformed but stay connected, and non-contiguous area cartograms [8], where
regions preserve their shapes but may lose adjacency relationships. Rectangular cartograms,
where every region is a rectangle is a specific type of contigous area cartograms which tries
to preserve both the adjacency relations and the shape, but this does not exist for all area
values. Kreveld and Speckmann [13] introduced the first automated algorithms for such
cartograms. Heilmann et al. proposed RecMap [5] to approximate familiar land covering
map region shapes by rectangles and to find a partition of the available screen space where
the areas of these rectangular regions are proportional to given statistical values. Rahman
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Figure 1: A cartogram of the 2000 US election. From Guardian Newspapers. (Image clipped
for better fit.)

et al. studied slicing and good slicing graphs and their orthogonal drawings [9]. They define
an octagonal drawing as an orthogonal drawing of a plane graph such that each inner face
is drawn as a rectilinear polygon of at most eight corners and the contour of the outer face
is drawn as a rectangle. They show that any good slicing graph has an octagonal drawing
with prescribed face areas.

It was left as an open problem whether testing the feasibility of a rectangular cartogram
is NP-hard. In this paper, we make significant progress towards answering this question.
We first study what we call cartograms of orthogonal octagons. These are cartograms where
every region is an orthogonal polygon with at most 8 sides. We show that testing whether
a cartogram of orthogonal octagons exist is NP-hard. In fact, in our reduction we use only
two types of regions: rectangles and Z-shaped octagons.

We then use a very similar reduction to prove NP-hardness of a problem that is almost
the same as rectangular cartograms: Here, all faces are rectangles, except for one face which
is adjacent to the outside. Such a face exists in many real-life maps, corresponding to the
“sea” around islands and peninsulas; see the examples in [13]. As in the paper by Kreveld
and Speckmann, we also assume that the cartogram must be placed on a canvas, i.e., within
a rectangle of fixed size.

Our paper is structured as follows: In Section 2 we define the cartogram problem formally,
using the language of planar graphs. In Section 3, we give the NP-hardness reduction, both
for octagonal cartograms and rectangular cartograms with a sea. We conclude in Section 4
with open problems.



2 Definitions

In this section, we give a formal definition of our problem. Cartograms have in the past
mostly been defined by giving a drawing of a graph and requesting to change the area of
regions. Since for our types of cartograms, there exist drawings that look radically different,
but have the same geometry for each region, we prefer not to use this approach, and instead
define cartograms in the language of plane graphs with specified geometry.

We recall first some graph theory definitions. A graph G = (V| E) is called planar if
it can be drawn in the plane without crossing. Such a crossing defines a cyclic order of
incident edges around each vertex; the collection of these cyclic orders is called the planar
embedding. A planar drawing of a planar graph defines connected regions of the plane called
faces; the unbounded region is called the outer-face. A planar embedding of a graph defines
uniquely the faces, except for the choice of the outer-face. A planar graph where both a
planar embedding and an outer-face have been specified is called a plane graph.

Given a plane graph, we define the dual graph by defining a vertex for every face. For
every edge in the primal graph incident to faces f; and f5, we define a dual edge in the dual
graph incident to the vertices of the faces f; and f.

An orthogonal cartogram dual is a plane graph with one special vertex C' (the canvas)
where every incidence between a vertex and an edge is labeled with one of {N,S;E;W} such
that the following holds:

e If edge (v,w) is labeled N at v, then it is labeled S at w.
o If edge (v, w) is labeled E at v, then it is labeled W at w.

o [f we consider the labels of edges at a vertex v in cyclical order according to the planar
embedding, then S never follows or precedes N, and W never follows or precedes E.

Thus, in effect, the labels around a vertex v describe the angles of an orthogonal polygon,
see Figure 2, and the edges in the graph describe which polygons must be adjacent. In
particular, from the graph labels we can read how many corners each polygon must have;
this corresponds to the number of times the label changes while walking around the cyclic
order at each vertex. We say that a vertex in the cartogram dual has k corners if the
corresponding polygon has k corners.

It may not be straightforward to see that such a plane graph indeed gives rise to a valid
drawing, but this can be shown using the technique of converting an orthogonal representa-
tion into an orthogonal drawing proposed by Tamassia [11].

All that is needed to specify a cartogram hence is to demand an area of each face. Thus
an orthogonal cartogram is an orthogonal cartogram dual GG, together with a positive integer
area(v) for every vertex v # C of G. An orthogonal cartogram can be realized if there exists
a drawing of the dual graph of G such that

o If (v,w) is labeled N at v, then the dual edge of (v, w) is drawn horizontally with the
face of v below the edge.



Figure 2: Reading the polygonal shape from the vertex labels. (We do not know the length
of the edges of the polygon.)

e If (v,w) is labeled W at v, then the dual edge of (v,w) is drawn vertically with the
face of v to the left of the edge.

o If v # (' is a vertex of GG, then the face corresponding to v in the dual graph is an
interior face in the drawing and has area equal to area(v).

We will sometimes additionally demand that the whole drawing fits inside a canvas. Thus
we may specify a w x h rectangle R and demand that the drawing fit inside it. In particular,
w - h must be at least the area of all other faces together, but it may be more, allowing for
some “dead space” (also known as the sea) on the outer-face. Note that the aspect ratio of
the rectangle for the canvas does not matter; if the drawing fits into any rectangle of area
w - h, then after suitable scaling it fits into all rectangles of area w - h.

We are thus interested in the complexity of the following problems:

e OCTAGONAL ORTHOGONAL CARTOGRAM: Given an orthogonal cartogram where ev-
ery vertex has at most 8 corners, can it be realized within a given canvas?

e RECTANGULAR CARTOGRAM: Given an orthogonal cartogram where every vertex has
four corners, can it be realized within a given canvas?

e RECTANGULAR CARTOGRAM WITH SEA: Given an orthogonal cartogram where every
vertex except C' has four corners, can it be realized within a given canvas?

We show that the first and third problem are NP-hard; the complexity status of the
second problem remains open, but it seems likely that it is NP-hard as well because of the
similarity to the other two problems.

We also note that for the first two problems, the requirement of fitting inside a canvas
can be dropped, since this restriction can be simulated by adding more faces. On the other
hand, the canvas restriction is crucial for the NP-hardness of the third problem.



3 NP-hardness

We show now that testing whether an octagonal cartogram can be realized is NP-hard. The
proof is by reduction from PARTITION defined as follows. Assume that we are given a set A
of positive integers a; ... a, with 37 | a; = 25 for some integer S. We want to find a subset
I of A which satisfies 3>, .y a; = S. It is known that this is NP-hard [4].

3.1 Construction

Given an instance of PARTITION ay, . . ., a,, we create the cartogram as follows. We have 2n-+
5 faces Ay, Py,..., A,, P, and M, By, ..., By, which are all rectangles except P, 1 =1,...,n
is a Z-shaped octagon; see Figure 3(a). Figure 3(b) shows two other ways of representing
this shape with the same angles; the choice between these two representations will be at the
heart of our NP-hardness reduction.

]

I
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Figure 3: (a) The shape for P;. (b) Two other drawings with the same angles.

The adjacency relations between these faces are given in Figure 4, both as a drawing and
by giving the cartogram dual. For easier visualization of the latter, we directed the edges
and shown the label only for the tail of each edge; we also split the canvas C into multiple
vertices. Furthermore, we show A; and P; only for the special cases i = 1,n and for one
generic 7; the generic i needs to be repeated n — 3 times.

Now we explain the area requirements, depending on four parameters m, k, C' and p. We
will use k = n, m = 2nS+4, C' = 2n? and p = n+8, but actually a wide range of parameters
is possible and can be calculated from the proofs of the lemmas. The area requirements and
purposes of faces are as follows:

e Each rectangle A; corresponds to one number a; of the PARTITION instance. We set
area(A;) = C - a;.

e Fach Z-shaped octagon P; acts as a “buffer” between rectangles A; and A;,1 (or M);
we set area(P;) = p.

e M is a huge rectangle with area requirement m? that serves to split the rest of the
canvas into essentially two parts.

e [, ..., Fyserve to build a frame that forces M to be an m xm-square in any realization.
We set area(F))=area(F3) = k, area(Br) = m and area(Fy) = m + 1.
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Figure 4: The drawing and the cartogram dual of the cartogram generated from the given
PARTITION instance.

Some easy calculations show that with our choice of parameters we have 2C'S + np =
(m + k)* — m?; this shows that the area of all regions together is (m + k + 1)? and by using
an (m+k+1) x (m+ k + 1) as canvas, there is no empty space left for a sea.

To give an idea of the proportions of these rectangles, we show in Figure 5 the cartogram
for the instance {1,2,4,4,5} of PARTITION to scale, thus k = n = 5 m = 2nS + 4 =
2.-5-16+4 = 164, C = 2n? = 50 and p = n + 8 = 13. Note that rectangle M is
overwhelmingly large. The rest of the canvas therefore naturally splits into the area “left”
and “below” M (and the tiny corner that is both); this will be crucial for our reduction.

3.2 Proof

We claim that our constructed cartogram is realizable iff the instance of PARTITION has a
solution.

3.2.1 From cartogram to PARTITION

Assume first that we have a realization of the cartogram. We need some intermediary
lemmas.

Lemma 3.1 The widths and heights of M, Fy, Fy, F3 and Fy are as labeled in Figure 4.

Proof Note that the left edges of F3 and F} are collinear in any realization and touch the
top and bottom of the canvas. Since F3 and Fj; have a total area of m + k£ + 1 and the
canvas has height m + k + 1, the widths of F3 and Fj has to be 1. Due to the individual
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Figure 5: A drawing to scale for the instance {1,2,4,4,5}.

area requirements, this fixes the height of Fj to k and the height of F, to m + 1. Similarly
Fy and Fy will have a fixed height of 1 and F} will have a width of k& while F5, will have a
width of m. This fixes the size of M to m x m in any realization. e

For the rest of the proof, we need two lines L and B. L marks the line through the left
side of the rectangle M and B is the line through the bottom side of M. See also Figure 6.
For each A;, we now have two possible layouts: A; may be placed to the left of line L or
below line B. See Figure 6. One can show (though this is not crucial to our proof and hence
will be omitted) that a rectangle A; cannot be both below B and to the left of L, simply
because there is not enough space for it. This choice between to the left of L or below B
will be our main “decision gadget” in the reduction from PARTITION.
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Figure 6: Two possible layouts for A;. Drawing is not to scale.

Lemma 3.2 The total area to the left of line L is less than C(S + 1).



Proof This holds by our choice of parameters. Note that it suffices to show C(S + 1) >
k(m + k), since by Lemma 3.1, k(m + k) is the area to the left of line L. For the proposed
values of the parameters, and since we may assume that n > 4,

k(m+k) =n(2nS +4 +n) = 2n%S + n* + 4n < 2n°S + 2n* = C(S + 1).
as desired. o
An identical proof shows:
Lemma 3.3 The total area below line B is less than C(S +1).

Lemma 3.4 If I denotes the indices of rectangles A; placed entirely to the left of L, then
Zie[ a; = S

Proof By Lemma 3.2, we have Y ,c;area(A4;) = Yic;Ca; < C(S + 1), 50 Yiera; < S+ 1,
and hence Y ;c; a; < S since all numbers are integers. All rectangles with indices not in I are
not entirely to the left of L and hence must be entirely below B. So 3,4, area(4;) < C(S+1)
by Lemma 3.3, which similarly implies 7,47 a; < 5. Since 3 ;e a; + Xigr a; = 25, we must
have equality for both sets. e

With this, a realization of the cartogram clearly gives a solution to the PARTITION
instance.

3.2.2 From PARTITION to cartogram

Now we work on the other direction. Assume that the PARTITION instance has a solution
I,ie., Y ,cra; = 5. Principally, the idea to construct the cartogram is easy: Let the width
and height of M, Fy,..., Fy be as indicated in Figure 4, and position each A;, P; pair in one
of the two fashions shown in Figure 6, depending on whether ¢ € I or not.

The details of this are more complicated, because we need to choose the dimensions of
A; and P; carefully such that all regions fit exactly into the region left by M, Fy, ..., Fy. We
will only show that such coordinates must exist, by giving two layouts that don’t quite work,
and arguing that there exists a realization somewhere between them.

Let an L-shape be a 6-sided orthogonal polygon of which the third vertex on the boundary
in clockwise order starting from the top leftmost vertex is the only reflex vertex of the
shape boundary. Note that the region left inside the canvas after removing the rectangles
M, I\, Fs, F3 and F} is an L-shape.

For the claims to come, we will need to analyze structures of various L-shapes, and hence
introduce some notations. The width and height of an L-shape X are the width and height
of its bounding box. Let L(X) and B(X) be the vertical and horizontal lines through the
unique reflex vertex of X. We call the rectangle to the left of L(X) the left region, and its
width the left width. We call the region below B the bottom region, and its height the bottom
height.



Let Ly be the L-shape left of the canvas after placing M, Fy, ..., Fy. It has width and
height m+ k and left width and bottom height k. Two other L-shapes are the areas occupied
by the two layouts that we are going to define.

We also need some notations for the realizations of P;. Consider Figure 6 again. In either
method of realizing P;, it is the union of three rectangles that overlap at the corners. One
of these spans the height of the available area and is to the left of L; we call this the left
rectangle. Another one spans the width of the available area and is below B; we call this the
bottom rectangle. The third one is only adjacent to A; and the outside, and usually quite
small; we call this the end rectangle.

Now we are ready to define the layouts precisely; see Figure 7 for an illustration.

. W . . W .
‘ o ‘ 7S
i € I, first layout i € I, second layout
P
' ‘ ' P;
(area(A;) +2)/H (area(A;) +2)/H

Figure 7: The two layouts for an A;, P; pair if i € I. The layouts for ¢ ¢ I can be obtained
by flipping A; and P; along the diagonal.

e Set H=m+ k and W = m + k; these keep track of the bounding box of the L-shape
into which we place all the remaining faces.

e Fori=1,...,n:

— Let A; be placed at the bottom left corner of the remaining free region.

— If i € I, make A; (almost) as tall as possible. More precisely, set the width of A;
to be (area(A;) + 2)/H, and set the height such that the area is correct. Notice
that the end rectangle of P; then will have area at least 2.

— Ifi ¢ I, make A; (almost) as wide as possible. More precisely, set the height of A;
to be (area(A;) + 2)/W, and set the width such that the area is correct. Notice
that the end rectangle of P; then will have area at least 2.



— Choose as shape for P; the one that corresponds to whether ¢ € I as in Figure 6.
— The dimensions for the rectangles of P; depend on which layout we are creating:

x In the first layout, define dimensions of P; such that the left rectangle has
area at least n 4+ 4 and the bottom rectangle has area at least 2. Recall that
the total area of P; is n + 8, and that the three rectangles of P; overlap, so
these constraints can be satisfied simultaneously.

x In the second layout, define dimensions of P; such that the bottom rectangle
has area at least n + 4 and the left rectangle has area at least 2.

— The union of A; and P; is an L-shape. Decrease W by the left width of that
L-shape, and H by the bottom height of that L-shape.

Let L; be the union of Ay, P,...,A,, P, in the first layout, and L, be the union of
Ay, Py, ..., A,, P, in the second layout. Note that both L; and L, are L-shapes with width
and height m + k, and their area is the same. Also, both L; and Ly contain all A;’s with
1 € I in their left region, and all A;’s with ¢ ¢ I in their bottom region. L; contains almost
all area of the P;’s in its left region, while L, contains almost all area of the P;’s in the
bottom region.

Unfortunately neither L; nor L, is a realization of the cartogram, since they don’t fit
into Lg. Our goal is to show that some layout “between” L; and Lo does fit. To do so, we
need to show that L, is too wide and Lo too slim.

Lemma 3.5 The left width of Ly is not smaller than the left width of Ly, and the left width
of Lo is not bigger than the left width of L.

Proof Note that Ly, L; and L5 all have the same height and width. Therefore the left width
determines the area of the left region. For L, this left region has area

k(m+k)=n(2nS +44+n) =2n*S +n’>+4n=C- S +n’ + 4n.

L, was defined such that its left region contains all A; with ¢ € I. (It also contains some
of the areas of the other A;’s in the corner, but this is irrelevant here.) Furthermore, it
contains the left rectangle for all P;’s by definition; each of these has area at least n + 4 by
construction. Therefore, the left region of L; has area at least

> area(A;) + Y (n+4)=C-S+n*+4n,

el =1

which is at least as much as the area of the left region of Lj. So the left width of L; cannot
be smaller than the left width of L.

For the other claim, we can show similarly that the bottom height of Ly is not smaller
than the bottom height of Ly. Since Ly and Ly have the same area, same height and same
width, this implies that the left width of L, cannot be bigger than the left width of Ly. e
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Lemma 3.6 There exists a realization of the cartogram such that all rectangles of all P;’s
have area at least 2.

Proof L, was defined by having at least area n + 4 in the left rectangle of each P;, and
at least 2 units area in the bottom rectangle, whereas for Ly the area distribution was vice
versa. We can now define intermediary layouts between L; and Lo, where we gradually shift
area from the left rectangle of each P; to the bottom rectangle. This can be done in such a
way that the function of layouts is continuous. In the beginning we thus have L;, where the
left width is at least k (by Lemma 3.5), and at the end we have L, where the left width is
at most k. By the mean value theorem, therefore at some point we have a layout L* with
left width &, and its height and width (as for all layouts we create) is m + k. Since also all
layouts have total area (m + k)?> —m? (which is the total area of all A;’s and P;’s together),
therefore L* has exactly the shape of Ly. Combining it with the layout for M, Fy, ..., F}
gives therefore the desired realization. Finally note that all rectangles of all P;’s in both L,
and Ly have area at least 2, so this also holds for all intermediary drawings, and hence for
our cartogram as well. o

Thus given a solution to PARTITION, we can obtain a cartogram, which proves our main
result:

Theorem 3.7 Testing whether an orthogonal octagonal cartogram is realizable 1s NP-hard.

3.3 Rectangular cartograms with sea

We now show that essentially the same construction also leads to an NP-hardness result
for rectangular cartograms if a sea is allowed. In our construction we eliminate octagon P;
and replace it with a rectangle R; that connects to A; at the bottom and to By at the top.
Rectangle R; has area requirement 1. The canvas is unchanged, i.e., a square of side length
m~+ k+ 1; note that this leaves some empty space for the sea since R; requires less area than
P;. The resulting sea will take on the role of a “buffer” between rectangles. See Figure 8.

With exactly the same proof as before one shows that if this cartogram can be realized,
then the PARTITION instance has a solution; note that nowhere in this part of the proof did
we make use of the octagons P;.

On the other hand, if PARTITION has a solution, then we create a cartogram as before.
Now we can place R; inside the end rectangle of P; (if i € I) or inside the left rectangle of
P, (if i & I); we know that these rectangles have area at least 2 and hence there is sufficient
space for R;. We thus obtain the following theorem.

Theorem 3.8 Testing whether a rectangular cartogram with a sea is realizable is NP-hard
(with the canvas restriction).

Note that the use of a canvas is mandatory in this case, because the adjacency relations
do not guarantee the exact shape of the cartogram and without canvas there is a trivial
solution as in Figure 9.

11
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Figure 8: NP-hardness with only rectangular regions and a sea. Cartogram dual on the
right; we have omitted (numerous) arcs from A; and R; to the sea.

4 Conclusion and open problems

In this paper, we studied the complexity of realizing a rectangular cartogram that is bounded
by a canvas. The main question (is this NP-hard?) remains open, but we showed that two
closely related results are indeed NP-hard. In particular, the small (and realistic) step of
adding a sea bounded by a canvas to a rectangular cartogram makes the problem NP-hard.

The most pressing open problem is to resolve the complexity of rectangular cartograms.
Can we do away with the sea?

Another very interesting problem is whether this problem is actually NP-complete (i.e.,
whether it is in NP). To show this, one would have to show that any realization can be speci-
fied with coordinates that are polynomial in the input. Since the input has area requirements,
but the realization would (presumably) be specified with z-coordinates and y-coordinates,
this is far from trivial (the coordinates might well be radicals.)

Finally, we are interested in exploring cartograms with orthogonal octagons (or k-gons
for some small number of k) further. Note that k-gons are more flexible than rectangles,
and thus more cartograms will be realizable. In particular, Speckmann et al. showed that
for any vertex-weighted plane triangulated graph, GG, there exists a cartogram with at most
60 corners per face that has GG as dual graph and the areas according to the vertex weights
of G [10]

Also, a number of existing heuristics seem to rely on using k-gons for small k. What are
good heuristics for cartograms with orthogonal octagons?

12
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