
 1

XTAO: Enabling a Declarative Approach to the
Specification of Multi-Agent Systems

Toacy C. Oliveira

PUC-RS Faculty of

Informatics,
Av. Ipiranga, 6681 – 90619-
900, Porto Alegre, RS, Brazil

toacy@inf.pucrs.br

Paulo Alencar,
Don Cowan

University of Waterloo,
School of Computer Science
 200 University Avenue West,

Waterloo, ON N2L 3G1
Waterloo, Ontario, Canada

{palencar, dcowan}@
csg.uwaterloo.ca

Carlos Lucena

PUC-Rio, Computer Science
Department,

Rua Marques de São Vicente,
225 - 22453-900, Rio de

Janeiro, RJ, Brazil
lucena@inf.puc-rio.br

ABSTRACT
Research on software agents has produced a diversity of
conceptual models for high-level abstract descriptions of multi-
agent systems (MASs). However, it is still difficult and costly
for designers that need a unique set of agent modeling features
to either develop a new agent modeling language from scratch or
undertake the task of modifying an existing language. In
addition to the modeling itself, in both cases a significant effort
need to be expended in building or adapting tools to support the
language. An extensible agent modeling language is crucial to
experimenting with and building tools for novel modeling
constructs that arise from evolving research. Existing
approaches typically support a basic set of modeling constructs
very well, but adapt to others poorly. A declarative language
such as XML and its supporting tools provides an ideal platform
upon which to develop and extensible modeling language for
multi-agent systems. In this paper we describe xTAO, an
extensible agent modeling language, and also demonstrate its
value in the context of a real-world application.

Keywords
Multi Agent System, Declarative Programming,
XML

1. INTRODUCTION
Multi-agent systems (MASs) are seen as a type of systems
composed of multiple autonomous components that share their
capabilities to solve a problem dealing with decentralized data
with no global system control [1,2]. In MASs agents interact
with each other to reach their individual and shared goals. To
model these systems, designers must have expressive modeling
languages and tools to manipulate models expressed in those
languages.
Many agent-based modeling approaches have been developed in
academia and industry [3,4,5]. However, the relationship
between agents and objects is not clear in these existing
approaches. These representations often favor and capture one
of the abstractions, but lack representation and semantic features
to describe appropriately both agent and object abstractions [6].
To solve this problem, we have developed a conceptual
framework called TAO in which agents and objects coexist and

both agent and object-oriented abstractions and their relationship
can be modeled [7].
However, although most agent modeling approaches share a set
of fundamental modeling constructs and concepts, including
agents, roles, goals, beliefs, and plans [8], a continuing
proliferation of new agent modeling approaches and features is
expected for several reasons. On one hand, there is continuous
identification and experimentation with new agent abstractions
and their combinations. In different domains there may be
different concerns and depending on the purpose of the agent
model, certain constructs may or may not be appropriate or
useful. On another hand, there is still no consensus on the
features that should be present in an agent modeling
representation or on what these features should model.
Therefore, an extensible agent modeling language is crucial to
experimenting with and building tools for novel modeling
constructs that arise from evolving research.
In this paper we describe xTAO, an extensible declarative
approach to the specification of MAS, its supporting tools, and
also demonstrate its value in the context of a real-world
application. In contrast with previous approaches, our approach
takes advantage both of the XML’s large base of tool support
and of its extensibility. Our approach allows more freedom to
explore new possibilities and modeling techniques, while
maximizing reuse of tools and modeling constructs.
This paper is structured as follows. In Section 2 we give an
overview of our approach. In Section 3 we present the
illustrative example and its TAO representation. Section 4
describes XML specification using a problem of consistency and
interoperability among distributed databases and Web user
interfaces. Section 5 illustrates the experimentation we made
and finally Section 6 presents our conclusions and future work.

2. APPROACH OVERVIEW
xTAO models are used to specify MASs in a declarative way,
allowing the representation of agent’s characteristics such as
beliefs, goals and plans. In xTAO, agents inhabit environments,
can be grouped in organizations and can generate and perceive
events.
To express the model declaratively, we have adopted the XML
technology, since it has a broad support from standard bodies
such as W3C and it is commonly accepted or adopted by the
academic community [9, 10] and industry. Moreover, based on
our past experience [11, 12], XML models are suitable for
program manipulation.

 2

xTAO is based on TAO, which is a conceptual framework
designed to the MASs domain [7]. Since our representation
deals with domain models, not meta-models, we need to
instantiate TAO so that our abstractions can be represented in
XML. In addition, we need to refine the original framework to
accommodate specific needs of our representation. As illustrated
in Figure 1, the development of our declarative approach
consisted of three phases: the TAO Refinement, the xTAO
specification and the Model Instantiation.

Figure 1: Development phases of our declarative approach

Phase 1 (Figure 1) deals with the refinement of the TAO
Conceptual Framework so that more detailed information could
be used when defining a TAO entity. For instance, we defined a
structure called Params that must be used within a goal to
represent the additional knowledge an agent must possess to
attain such goal. In the same way, we defined a structure called
Description that defines the data in a specific language such as a
belief specification language [13].
The focus of Phase 2 is the specification of xTAO using a
Document type Definition (DTD) [14], which is the XML meta-
language. We have defined a refined-TAO vocabulary as a
declarative programming language that provides the syntactic
rules required to represent agents in the context of MAS. As a
consequence, an instance of the Domain Model Layer is
specified as a XML file that follows the DTD specification. The
creation of such XML file is addressed in Phase 3 as the Model
Instantiation and in our work it was used to validate and tune the
TAO Refinement. The model was instantiated in the case of a
multi-agent application dealing with consistency and monitoring
problems that is described in [6] (see Section 3.2).

3. AN ILLUSTRATIVE PROBLEM

3.1. Overview
In this section we provide an overview of a Web application to
monitoring data consistency and business processing based on
declarative software agents [6] that we will use as our case
study. In this approach declarative agent specifications that
facilitate the use, programming and management of such agent-
based systems allow for different distributed database and Web
user interface structures to be interoperable. This declarative
approach also relates business events to technical events while
conveying to the users business meaningful events, that is agents
that can deal with various levels of abstraction of a business
object, and that can orchestrate and monitor data change and
business processing.
Such Web application can be seen as a collection of high-level
objects, low-level objects and events. By high-level objects we
mean the objects that are semantically related to the
representation of domain specific abstractions. On the other
hand, low-level objects deal with the technicalities that define
the execution of the application in the underlying computational
environment. In this context, events emerge as the binding
elements that provide the required stimulus to start a

computational action. To achieve data consistency and
monitoring in such scenario the semantic gap between the two
levels of abstraction must be narrowed by entities that can
perceive changes in the environment at both levels and can
orchestrate the involved processes.
Agents are a natural abstraction to tackle this problem since this
environment is highly dynamic and since agents can perceive
events and execute actions that may depend on their internal
states, rules or knowledge. Agents may also orchestrate actions
related to a specific purpose by delegating some of their tasks to
specialized agents that can help them.

Figure 2: Overview of the data consistency and monitoring
approach

In Figure 2, we present a Web application involving: distributed
databases (and servers), Web user interfaces (and Web servers),
events, business objects, and agents that can perceive events at
various abstractions levels and can orchestrate the management
process (e.g., refinement, consistency and monitoring).
The distributed databases (DB1, …,DBn) change constantly and
should be kept consistent at all times. In most cases changes or
additions to data require handling by people or processes within
a larger system. Besides having an effect on other data, these
changes may also affect business processes related to this data
and be subject to business rules that govern the specific data
sets.
Web user interfaces (WUIo) may be defined by forms and other
types of user presentation. These distributed user interfaces also
need to be kept consistent. Sometimes changes or additions to
these forms need to be handled within the context of a larger
system. The changes in these Web interfaces may also affect the
business processes related to the data forms and be subject to
business rules that govern the presented data.
We define both low-level events and high-level events. In
general, we want to define events that allow data content and
business processes to be managed in a flexible way through
agents that augment, refine, interconnect, ensure consistency,
and monitor data and business processes. They can be related to
the status of data and processes. Events can also be related to
time and location. We also relate high-level to low-level events
in order to know, for example, what low-level events somehow
led to the occurrence of a high-level event, or what low-level
events led to high-level failures in business processing (see
Section 3.2).
A business object (BO1, …,BOm) is a representation of an active
entity in the business domain, including at least its business
name and definition, attributes, behavior, relationships and

 3

constraints. A business object may represent, for example, a
person, a place or concepts such as a domain entity or a user
interface. The representation may be in a natural language, a
modeling language, or a programming language.

3.2. The TAO representation
Our agent-based application deals with consistency and
monitoring of Web user interfaces and Databases in a distributed
scenario. By consistency and monitoring we mean the ability to
ensure that elements in the same or in different levels of
abstractions conform to a given structure. For example, we can
check the integrity of the system’s elements after a database
maintenance procedure (update and/or addition) and guarantee
the Web catalogs use accurate tables and fields names. In the
same way we can provide a functionality that automatically fills
a Web form based on the occurrence of a given event. To
achieve such goals the TAO application instance must represent
concepts such as databases, Web forms, services and events, and
also represent ways to connect them.
During the development of this application instance we were
able to identify some TAO entities that could be arranged in the
configuration presented in Figure 3.

Figure 3: TAO entities related to the illustrative problem

The identified entities are:

Agent: Agent is an autonomous, adaptative and interactive
element that has a mental state (i.e., beliefs and goals).

1. DBAgent - Database agents are used to connect to one or

more databases (interoperability) and perform consistency
operations on them. These agents perform tasks such as
comparing and copying database content, indexing and
harvesting Web content.

2. WUIAgent - These agents are used to connect one or more
Web user interfaces (interoperability) and perform
consistency operations among them. They can be used, for
example, to check the consistency of two Web catalogs.
These agents can perform operations such as comparing
and copying the content of Web forms.

3. OrchAgent – These agents, which perceive low-level and
high-level events, need to interact with other agents, and
with low-level and high-level descriptions (e.g., the
business-oriented declarations and the Web form and
database declarations) in order to execute their actions.
Agents that orchestrate the data and process change
management needed to recognize events, decide what to do
when these events happen, when, how and where to

accomplish their tasks, and to whom they can delegate
some of their tasks in order to accomplish their goals.

Object: An object is a passive or reactive element that has state
and behavior and can be related to other elements.

1. StaffDBWarp - The StaffDBWrap is an object that

encapsulates the access to the underlying Database system.
It contains concepts such as connection, tables and fields.

2. WEBWrap – The WEBWrap is an object that encapsulates
the access the Web environment. It contains concepts such
as URL, forms and get (from HTTP).

Event: Events are related to relevant changes in an entity state
that can be perceived by other entities.

1. DailyCheck – This event triggers a daily checking

procedure in order to guarantee consistency.

Organization: An organization is an element that groups
agents, which play roles and have common goals. An
organization hides intra-characteristics, properties and
behaviors represented by agents inside it.

1. ConsistencyMonitors – This organization is in charge of

complex consistency checks performed by group of agents,
which require a form of centralized control. This
abstraction was used to accommodate the control
relationship needed by our application.

Environment: An environment is an element that is the habitat
for agents, objects and organizations. An environment can be
heterogeneous, dynamic, open, distributed and unpredictable
[15].

1. CSGEnv – The CSGEnv is the environment in which all

the elements of the system reside.

Role: Defined in the context of an organization, a role is an
element that guides and restricts the behavior of an agent or an
object in the organization. The social behavior of an agent is
represented by its role in an organization.

1. DBClerk – The DBClerk role is an agent role that provides

access to the DB object to the organization.
2. WEBClerk - The WEBClerk role is an agent role that

provides access to the WEB object to the organization.
3. Monitor – The Monitor object orchestrates the DBCleck

and the WEBClerk in order to attain a more complex
consistency goal.

4. xTAO SPECIFICATIONS

4.1. The Entities
According to TAO specification, a model consists of entities,
each one defined by a set of properties. Entities represent first-
order abstractions and have their semantics defined by the
model. Properties related to the entities’ state and behavior and
are also defined in TAO. However the structure of each
property, i.e., the bits and pieces that compose the information

 4

conveyed by a property are not defined in detail and must be
refined.
In this section we present the xTAO declarations, the adopted
XML structures that were used to represent our agent-based
application and examples. We also provide the rationale for
refining TAO in order to accommodate our needs.

4.1.2. Agents
An agent is a TAO entity with properties defined in terms of
beliefs, goals, plans, actions, events, roles and relationships [7].
Beliefs represent the agent knowledge about the world and in
xTAO beliefs are denoted by the description tuple <name,
language, data> where: the name field specifies the name of the
belief that is internally used by the agent; the language field
specifies the syntax and semantic that governs the information
conveyed by data; and data is the information itself. The idea to
adopt the description tuple is to provide an open representation
of a belief, avoiding the definition of a belief language once this
is not a goal of this work. Moreover this representation
facilitates the use of any specification that follows a known
grammar. As it will be seen in other cases, we have used this
technique to represent most of the properties of TAO elements.
In Listing 1 we present the xTAO declaration for a belief that
was used as part of a database agent specification. DBAgent
goals are related to database operation. Thus, their beliefs must
be aware of characteristics that facilitate reasoning in terms of
database accessibility and manipulation. We’ve represented such
belief using an object called StaffDBWrap that is responsible for
database low-level manipulations.

<Belief>

<Description>
<Name>DBAcess</Name>
<LanguageName>TAOLanguage</LanguageName>
<Data> StaffDBWrap</Data >

</Description>
</Belief>

Listing 1 – xTAO Belief declaration.

The other aspect that is important when defining an agent is its
goal. A goal represents the intentions an agent possess in terms
of desired state and in xTAO it is denoted by < name,
desiredstate, params >. Once again the name field assigns an
internal designation to the goal. The desiredstate is the most
important aspect of a goal specification and represents the
possible modifications of the agent state that are required in
order to attain the goal. By agent state we mean all the
knowledge that can be expressed using any aspect the agent is
aware of, i.e., its beliefs, goals, plans, perceived and generated
events and properties. Params describe the additional
information needed to attain the goal.
Listing 2 presents the DBAgent table_comparision goal. The
table comparison goal is defined to compare two tables and
verify their similarity. After such goal is attained the agent
knowledge (state) about the two tables (srcTable and destTable)
involved must state if they were equal (EQ), not equal (NEQ), or
if the comparison was unsuccessful due, for example, to a
connection failure (NO). In order to represent the possible
future states we have adopted the same description tuple used
before but through a language form that allows us to use the
xTAO elements that can influence the agent state. Thus, possible
states can be represented as expressions such as element1 AND

element2 where an element can be a goal, a belief, or an event.
In Listing 2 it’s possible to notice that the desired state srcTable
EQ destTable, is represented in terms of the goal’s parameters
srcTable and destTable, the source and the destination tables
subject to the comparison task.
We call this language the TAOLanguage and so far we have
used elements such as beliefs, events and goal params1.
<Goal>

<Name>table_comparison</Name>
<DesiredState>

<Description>
<Name>compareOK</Name>
<LanguageName> TAOLanguage
</LanguageName>
<Data> srcTable EQ destTable |
 srcTable NEQ destTable | NO
</Data>

</Description>
</DesiredState>
<Params>

<Description>
<Name>srcTable</Name>
<LanguageName/>
<Data/>

</Description>
<Description>

<Name>destTable</Name>
<LanguageName/>
<Data/>

</Description>
</Params>

</Goal>

Listing 2 - xTAO Goal declaration.

With this language it’s also possible to specify more complex
situations as the one found in our OrchAgent. OrchAgent
controls a DBAgent and a WUIAgent in order to validate (check
consistency) data and webforms. Thus, its desired stated is
totally dependent on these two agent’s goals. Listing 3 describes
the consistency check goal’s desired state in terms of the
occurrence of the DailyCheck event plus the realization of
DBAgent’s table comparison and WUIAgent’s data consistency.

<Data>

DailyCheck AND
DBAgent.table_comparison AND
WUIAgent.data_consistency | NO

</Data>

Listing 3 - xTAO complex goal declaration.

The next step in the agent specification is the definition of its
plans. Plans can be seen as the strategies used to attain a goal
and in our approach they define the sequence of actions an agent
executes. In Listing 4 we present an open-query-close plan that
was adopted to achieve the table compare goal using the
description tuple previously mentioned. So far, the match
between goal and plan is established by comparing their two
names (i.e., goal name and plan name), but we intend this
process will be refined in later versions.

1 Actually any abstraction of xTAO can be used to designate a

future state but in this paper we have only used these three
elements.

 5

<Plan>
<Description>
<Name>table_comparison</Name>
<LanguageName>TAOLanguage <LanguageName>
<Data>open 1;open 2;query;close 1; close 2
</Data>

</Description>
</Plan>

Listing 4 - xTAO plan declaration.

Actions are related to agent’s basic computations and are also
represented by a description tuple and a parameter description.
For example, the open action used by the DBAgent requires a
table name to be passed and it is presented in Listing 5.
An important aspect of our approach is that it allows the use of
any language to represent some properties. Thus the
specification of an action can be done using, for example, C++
or Java. However, once we advocate a declarative approach, we
prefer to use an action as a reference to an existing function
provided by the environment or other entities.
<Action>
 <Description>
 <Name>open</Name>
 <LanguageName> External </LanguageName>
 <Data/>
 </Description>
 <Params>
 <Description>
 <Name>srcTable</Name>
 <LanguageName> External </LanguageName>
 <Data/>
 </Description>
 </Params>
</Action>

Listing 5 - xTAO action declaration.

Events indicate relevant changes of an entity state and can be
seen as a gluing mechanism in terms of functionality. For
example, our orchestration agent perceives the occurrence of the
DailyCheck event that is triggered by the environment entity in
start its checking procedure (See Listing 6).
<Events>
 <PerceivedEvent eventName="DailyCheck" />
</Events>

Listing 6 – xTAO perceived event declaration.

Relationships define the agent’s knowledge of other entities and
they will be addressed in Section 4.2.

4.1.3. Objects
In xTAO objects represent reactive entities and can be traced to
the OO abstractions that are used to encapsulate operations (e.g.,
behavior TAG in Listing 7) and data (e.g., state TAG in Listing
7). However, once we have a declarative approach we do not
attempt to fully specify the object’s behavior, but we instead
name the operations that can be used by other entities. Listing 7
presents the StaffDBWrap object specification in xTAO.
<ObjectClass className="StaffDBWrap">
 <State>
 <Information>
 <Description>
 <Name>connection</Name>
 <LanguageName/>
 <Data/>
 </Description>

 </Information>
 </State>
 <Behaviour>
 <Operations>
 <Description>
 <Name>Open</Name>
 <LanguageName/>
 <Data/>
 </Description>
 </Operations>
 </Behaviour>
 <Relationships/>
 <Events/>
</ObjectClass>

Listing 7 - xTAO object declaration.

4.1.4. Events
An event represents a relevant modification of an entity state
that can be sensed by other entities. They can be used to initiate
the execution of actions, as in objects, or be part of a desired
state specification, as in agents. In xTAO events are represented
as a simple name that holds the semantics of the event and the
definitions of the parameters that actually represent the state that
triggers the event. In Listing 8 we present an event that is
triggered when the clock object reaches “3:00 am”.
<EventClass className="DailyCheck">
 <Params>
 <Description>
 <Name>time</Name>
 <LanguageName> TAOLanguage </LanguageName>
 <Data>TimeWrap.time EQ "3:00 am" </Data>
 </Description>
 </Params>
</EventClass>

Listing 8 - xTAO generated event declaration.

4.1.5. Organizations
Organizations represent entities that are aligned with structures
such as a hierarchy. As specified by TAO, xTAO organizations
are represented in terms of rules, laws and relationships, and
were not fully specified so far. In our example we used one
organization to conform to some relationship polices dictated by
the basic TAO model (see Section 3.2).

4.1.6. Environment
Environment is the entity that houses all other entities and is
represented by its resources, services, behavior relationships and
events. Resources can be seen as any real world entity that is
used by the system and need to be somehow represented in it. In
our case we used this abstraction to represent the Web and the
underlying DBMS with the WEBWrap object and the
StaffDBWrap object, respectively. Services hold the
representation of public facilities [7] and were not used in our
case. Behavior, relationships and events have the same meaning
as in the agent and object abstractions. In Listing 9 we present
the xTAO representation of the CSGEnv environment in our
illustrative application.
<EnvironmentClass className="CSGEnv">
 <Resources>
 <Resource>
 <Object name="StaffDB"
 objectClassName ="StaffDBWrap"/>

 6

 </Resource>
 <Resource>
 <Object name="FormsRepository"
 objectClassName ="WEBWrap"/>
 </Resource>
 </Resources>
 <Services/>
 <Behaviour/>
 <Relationships/>
 <Events>
 <GeneratedEvent eventName ="DailyCheck"/>
 </Events>
</EnvironmentClass>

Listing 9 - xTAO environment declaration.

4.1.7. Roles
Roles can be viewed as open spots defined within the context of
organizations that are characterized by state, behavior and other
properties. Agents and objects can fill these open spaces using
the play relationship (See Section 4.2). xTAO defines roles in
the same way of TAO and, once again, were used to conform to
the basic TAO relationships restrictions.

4.2. The Relationships
A TAO model consists of entities that relate to each other by
means of relationships. Although we have represented in xTAO
all the eight types of relationships defined in TAO, we will focus
our illustration on the ones that were used in our example:
Control and Play.
The Control relation designates that a role A (the controlled) is
controlled by a role B (the controller) and that B must satisfy
A’s demands. For example, in our application, we have specified
an agent role called Monitor that uses the DBClerk and
WEBClerk agent roles as assistants to achieve the consistency
goal. As can be seen in Listing 10, in xTAO we represent this
relation as a control tag that designates the name of the
relationship (MonitorDB) and name of the controlled role
(DBClerk).
<Relationship>
 <Control>
 <ControlRoleAgentRoleAgent relName ="MonitorDB"
 agentRoleName="DBClerk"/>
 </Control>
</Relationship>
<Relationship>
 <Control>
 <ControlRoleAgentRoleAgent
 relName ="MonitorWEB"
 agentRoleName="WEBClerk"/>
 </Control>
</Relationship>

Listing 10 - xTAO control relatioship declaration.

In the same way we define that the DBAgent plays the role of a
DBClerk when associated to the ConsistencyMonitors
organization.
<Play>
 <PlayAgentRoleAgent relName= "AgtoClerk"
 agentName ="DBAgent" agentRoleName ="DBClerk"/>
</Play>

Listing 11 - xTAO play relationship declaration.

5. DEVELOPMENT SUPPORT AND
EXPERIMENTATION

Our multi-agent system approach was designed to be easy to
use, program and maintain, and yet still offer a rich framework
for creating and running multi-agent system. In the following we
describe some features of our implementation and some
additional applications we have developed to test our
approaches.
In the context of our chosen application, we have defined XSL
transformations to create C/C++ programs from XML agent
declarations. As well, server side scripts have been set up to
compile the C/C++ code into an executable image that can be
downloaded back to the client system or saved on the server.
The executable program (in Visual C) can be executed by other
agents, or run from a command-line, from the web server, as
part of a database trigger or in response to some other
asynchronous event, such as a timed event.
The Computer Systems Group (CSG) at the University of
Waterloo recently worked with several community groups in the
Regional Municipality of Waterloo in Ontario, Canada to
facilitate the presentation of local information throughout the
community and beyond. In the project a web site was created to
present a directory of employment support services in the
region. The Waterloo-Wellington Training and Adjustment
Board (WWTAB) had contracted with another local agency to
contact local employment support agencies and to construct a
database with an extensive description of each employment
support agency.
WWTAB made the database of employment support agencies
available to CSG as part of a community information project and
agreed to maintain it. CSG provided the web site technology,
database access services and site hosting facilities. Several
focus groups were held around the community to evaluate the
ease with which information could be accessed through the site.
Because direct connectivity from the web server to the remote
database has turned out to be too unreliable and slow to provide
reasonable responses to web queries, a simple method for
synchronizing the database content from WWTAB to the web
server was needed. Both content comparison and copying
agents were created in the initial implementation. On average,
approximately one record per week is updated in the WWTAB
database of about 400 records. The agent that was created was
intended to synchronize the databases nightly.
Furthermore, WWTAB is one of 23 training and adjustment
boards (TABs) in the Province of Ontario that are funded by the
Government of Ontario to collect such information. Partway
through the project, the province mandated that all of the local
TABs must enter their data into a newly established central Web
site for employment support. The contractor that had created the
central database and web site did not permit any direct
connections to their database – all local TABs must enter their
data into web forms and each employment support agency
record would require between 4 and 10 separate form pages to
be entered. In response to this requirement, we have extended
the XML/agent technology to include web form submission.
This approach will also be used for ongoing maintenance as
database records continue to change.
We are currently experimenting with other features of our agent
modeling and implementation approach, such as more advanced
consistency checking among distributed heterogeneous
databases and Web user interfaces.

 7

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described xTAO, an extensible agent
modeling language, and its supporting tools, and also
demonstrate its value in the context of a real-world application.
We have also presented a specific application instance of our
approach to illustrate some of its representative features, and
also described an implementation and applications that have
been developed as part of our feasibility studies.
As future work, we want to investigate the following issues. We
want to improve our agent-based representations by
incorporating definitions related to a more general specification
for goals, a language that in this paper we called TAOLanguage.
A challenge will be finding a suitable representation that enables
the definition of the interdependency among agent goals, events,
roles and beliefs.
Our envisaged xTAO development and support environment has
four levels: description (agent and object abstractions),
validation, transformation, and run-time platform. In this paper
we have focused on providing a declarative approach to specify
MAS. At the validation level, we will provide XSL translation to
formal descriptions based on Prolog and process-calculus in
order to validate agent interactions and behavior. At the
transformation level, we will provide tools to transform our
agent templates into programs in languages such as C++ or Java.
At the run-time level, we have the execution environment.
We also want to use formal methods to define a formal
specification notation and formal validation techniques that were
sketched in this paper to establish certain attributes of the
software agents and their interactions.
In order to make our approach more extensible, we are also
working on translating our declarations to XML schemas [14].
XML schemas have a type system for XML that supports simple
and compound types, plus a method for typed inheritance. This
kind of type inheritance is absolutely crucial to creating
extensible XML syntaxes. It allows users to define XML types
that are composed of attributes and elements, and later define
specific extensions to those types that can be used to add or
remove attributes and elements from those base types, a
technique similar to subtyping in object-oriented programming
languages. The type extensions can be defined in a separate
schema from the base type, a feature that allows developers to
extend other developers’ schemas without directly interacting
with them.
In summary, xTAO allow experimentation with new modeling
constructs and their manipulation without the need to rebuild
and entire modeling language from scratch. We believe it can
serve as a basis through additional extension for more
expressive and comprehensive agent modeling representations.

BIBLIOGRAPHY
[1] Jennings, N.R., Sycara, K. and Wooldridge, M. A Roadmap

of Agent Research and Development. In: Autonomous
Agents and Multi-Agent Systems Journal, N.R. Jennings, K.
Sycara and M. Georgeff (Eds.), Kluwer Academic
Publishers, Boston, 1998, Volume 1, Issue 1, pages 7-38.

[2] Jennings, N.R. and Wooldridge, M. Intelligent Agents:
Theory and Practice. In: The Knowledge Engineering
Review, 1995, Volume 10, Number 2, pages 115-152.

[3] Wooldridge, M., Jennings, N., Kinny, D., The Gaia
Methodology for Agent-Oriented Analysis and Design,
Autonomous Agents and Multi-Agent Systems Journal, vol
3 number 3 pp. 285-312,. Kluwer Publisher, 2000

[4] AUML specification found at
www.jamesodell.com/ExtendingUML.pdf

[5] F. Bellifemine, A. Poggi & G. Rimassi. "JADE: A FIPA-
Compliant
agent framework", Proc. Practical Applications of
Intelligent Agents and
Multi-Agents, April 1999, pp. 97-108.

[6] Alencar, P., Cowan, D.D., Mulholland, D.,Oliveira, T.
,Towards Monitored Data Consistency and Business
Processing Based on Declarative Software Agents, Lecture
Notes in Computer Science, vol. 2603, 2003.

[7] Silva, V., Garcia, A., Brandao, A., Chavez, C., Lucena, C.,
Alencar, P., Taming Agents and Objects in Software
Engineering, Lecture Notes in Computer Science, vol.
2603, 2003.

[8] Green Paper specification found at
www.objs.com/agent/agents_Green_Paper_v100.doc

[9] G. Cabri, L. Leonardi, F. Zambonelli : XRole: XML Roles
for Agent Interaction Proceedings of the Third International
Symposium "From Agent Theory to Agent
Implementation" at the 16th European Meeting on
Cybernetics and Systems Research, Vienna (A), April
2002.

[10] Dashofy, E.M., Hoek, A, Taylor, R.N., An infrastructure
for the rapid development of XML-based architecture
description languages, Proceedings of the 24th international
conference on Software engineering, 2002, pp. 266-
276,Orlando, Florida,
http://doi.acm.org/10.1145/581339.581374, ACM Press.

[11] Oliveira, T.C., Alencar, P., Cowan, D. : Towards a
declarative approach to framework instantiation
Proceedings of the 1st Workshop on Declarative Meta-
Programming (DMP-2002), September 2002,Edinburgh,
Scotland, pp 5-9.

[12] Oliveira, T ,A Systematic Approach to Object Oriented
Framework Instantiation, PhD Thesis, Computer Science
Department, PUC-Rio, Brazil, 2001.

[13] Shapiro - Steven Shapiro, Yves Lesperance, Hector J.
Levesque The Cognitive Agents Specification Language
and Verification Environment for Multiagent Systems,
AAMAS-02, 2002.

[14] XML technology specification found at www.w3c.com

[15] Omicini, A.: SODA: Societies and Infrastructure in the
Alalysis of Design of Agent-based Systems. In Ciacarini,
P., Wooldridge, M. (eds) Agent-Oriented Software
Engineering, Springer-Verlag 2001, pp. 185-194.

