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Abstract — Reusing software artifacts for system development is showing increasing 

promise as an approach to reducing the time and effort involved in building new systems, 

and to improving the software development process and the quality of its outcome. 

However, software reuse has an associated steep learning curve, since practitioners must 

become familiar with a third party rationale for representing and implementing reusable 

assets. For this reason, enabling a systematic approach to the reuse process by making 

software reuse tasks explicit, allowing software frameworks to be instantiated using pre-

defined primitive and complex reuse operations, and supporting the reuse process in a 

(semi-)automated way become crucial goals. In this paper, we introduce a systematic 

reuse approach and Reuse Description Language (RDL), a language designed to specify 

object-oriented framework instantiation processes, and an RDL execution environment, 

which is the tool support for definition and execution of reuse processes and framework 
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instantiations that lead to domain-specific applications. We illustrate our approach using 

JUnit, a framework for testing. 

1 Introduction 

Reusing software artifacts for system development has increasingly become a promising 

approach with the potential of reducing the time and effort involved in building new 

systems, and improving the software development process and the quality of its outcome. 

However, software reuse has an associated steep learning curve since practitioners must 

become familiar with a third party rationale for representing and implementing reusable 

assets [1]. As a result, the effort to reuse can be compared to the effort of developing a 

new artifact where a systematic approach is not adopted [2]. For this reason, the reuse 

process can be facilitated by representing reuse activities by means of process 

specifications that make explicit the software reuse tasks and thus liberating re-users from 

mining rationale directly from the reusable software asset design or code. Moreover, the 

process specifications can be mechanically processed enabling the construction of reuse 

wizards to automate or semi-automate the reuse process. 

 

To mitigate the issues just raised, we have developed RDL, which stands for Reuse 

Description Language, a language that can be used procedurally for the process 

specification of object-oriented framework instantiation.  When using RDL, framework 

developers can specify the sequence in which reuse actions must be executed as well as 

the constraints involved in the instantiation of reusable assets, such as frameworks. 

Moreover, RDL allows the specification of asynchronous reuse activities of the type 

widely used in Global Software Development [3]. As a result, the framework re-user is 
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guided through a set of reuse actions and can focus on the relevant parts of the framework 

that should be adapted during the instantiation process. 

 

In this paper, we thoroughly present the RDL language, depicting the elements RDL can 

manipulate, the syntax and semantics for the most important commands and the impact 

on design during the script execution.  We also present RDL execution model, its 

associated software architecture and illustrate the approach applicability using the JUnit 

framework. In addition we briefly present the xFIT (XML-based Framework Instantiation 

Tool) approach, which is the reuse approach where the RDL execution environment is 

embedded in. It’s worthwhile mentioning that RDL is part of a more comprehensive 

reuse approach used for Product Engineering [4] (see, for example, [5] [6] [7] [8]). 

 

This paper is organized as follows. In Section 2 we describe related work on software 

reuse and explain how existing methods relate to the RDL approach. In Section 3 we 

provide background and motivation for this work. Section 4 introduces xFIT, a software 

reuse approach in which RDL in embedded. In Section 5 we briefly describe UML-FI, a 

representation for object-oriented frameworks and its flexible points, also called hotspots 

or points of variability. Section 6 describes RDL, the process language used to represent 

framework changes and instantiation processes, and provides its rationale and process-

oriented commands. In Section 7 we describe the underlying execution infrastructure for 

RDL, and in Section 8 we illustrate the applicability of RDL using JUnit, an object-

oriented framework for testing. Finally, in Section 9 we present our conclusions and 

discuss some future directions. 
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2 Related Work 

In this section, we describe existing work on software reuse related to framework 

instantiation, product lines and model-driven architectures.  

 

In [9] the authors have proposed a structured specification to support framework 

instantiation. They have introduced a template called Cookbook applied to a reuse 

document expressed in natural language, which can be difficult to follow because of the 

lack of a formal underlying approach. Moreover, Cookbooks can not be processed 

automatically, possibly leading to inconsistencies in their definition. As an extension to 

Cookbooks, Hooks [10] also provided a template for framework instantiation assistance 

and, as a result, share similar problems.  

 

In the area of framework instantiation guidance, Active Cookbooks[11] advocate the use 

of Software Agents to execute instantiation plans. The main issue with the HiFi[11]  

approach is that it introduces non-standard notations such as TOON [11] into the 

application development process that can cause an extra burden to framework 

development. In OBS [12] the authors used a generative approach to framework 

instantiation that shares some of the features of our previous work [13]. However, the 

OBS approach is based on ready-to-use blackbox frameworks, which restricts 

instantiation processes to component configuration, and does not focus on customization. 
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Product Line Architectures also lead to approaches to support generating applications 

from pre-defined software components that can be configured based on a decision 

model[45]. In Gomaa [14] the author has presented a technique to develop Software 

Product Lines using UML diagrams and Feature Models. However, the lack of tool 

support causes difficulties for systematic adoption. Another initiative using the Features 

model is the Generative Programming (GP) approach described in [15], where the author 

proposes the development of Domain Specific Languages (DSLs that can be visual or 

textual) as a means to generate programs from high-level specifications and 

transformations. Although we share some underlying principles with the GP approach, 

we believe that well-known and standard notations and paradigms such as UML and 

object-oriented programming need to be used in the definition of process-related 

specifications and transformations. For this reason we use an extension of UML to 

represent frameworks and define RDL as a language to transform the extended UML 

models. In the same research direction, the WebML approach [16] guides developers 

through a set of pre-defined windows that can be seen as DSLs to collect application-

specific information to create Web Applications. In the WebML approach the 

configuration knowledge is hard-coded into the tool, which complicates its extension to 

incorporate the evolution of specific domain requirements. 

 

OMG’s Model Driven Architecture [17] (MDA) is also an attempt to systematize reuse 

using UML, OCL [18] and software transformations [17]. The MDA approach can use 

modeling languages such as UML to represent software in a platform-independent 

manner. As a result, specific platform code can be automatically generated using a set of 
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pre-defined transformations. However, MDA is still in the Request for Proposal (RFP) 

[19] phase wherein researchers are collaborating to develop a set of specifications, 

including notations for the transformation process.  

 

3 Background and Motivation 

We have developed object-oriented frameworks for several domains. Some of these 

frameworks were produced as result of academic research activities [20] [21] [22] [23], 

while others were developed in the context of partnerships between industry and 

academia [24][25][26][27]. Typically their development relied on gathering knowledge 

about a domain (Domain Analysis) and applying object-oriented programming expertise 

to implement flexible software [28]. However, the reuse processes were cumbersome 

since they were usually handled by programmers who had little experience in the design 

rationale for the frameworks. For instance, in the DSSFrame framework [26], where the 

extension points were constrained in a proper instantiation sequence, the framework 

designers had to spend a substantial amount of time to explain the design and supervise 

the team of “instantiators1”. 

 

In addition, as was the case with DSSFrame, reuse can be handled in an environment that 

is distributed, with developers in more than one site; or asynchronous where developers 

are not in constant collaboration because of different schedules. As a result, the sequence 

                                                
1 Those in charge of instantiation activities, who are also called re-users in this work. 
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in which instantiation activities are executed is a major issue and must be supported by 

tools [29][3]. 

 

Under these circumstances, we began to develop approaches to assist instantiation 

processes [30]. However, the need for tools was very clear and, therefore, we 

concentrated on the specification and development of techniques for this purpose. The 

baseline specification we assumed for these tools had three key constraints:  

⇒ Use standards found in the Software Engineering discipline such as UML, XMI [31] 

and typical object-oriented programming activities, to reduce the approach’s learning 

curve. 

⇒ Represent the process in a way that can be automated by an execution environment. 

⇒ Assist the re-user as much as possible. 

 

As a result, we developed xFIT, the XML-based Framework Instantiation Tool, which 

embodies our reuse approach in a tool. xFIT guides re-users through the framework 

instantiation process by exposing the frameworks’ high-level characteristics through a 

Feature Model [32]. Such features are then traced to design elements specified in UML-

FI, a UML profile responsible for exposing framework extension points at the design 

level. In order to automate the process, RDL expresses how each extension point should 

be extended to create the final application. In this approach XML is a key technology, 

since most of documents are expressed in XML. 

4 Introducing the xFIT Approach 

The xFIT approach is intended to facilitate the framework instantiation processes by 

means of a tool that executes instantiation scripts written in RDL. Ideally xFIT takes as 
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input three types of documents as shown in Figure 1: a Features Model, an Annotated 

Framework Design, and a RDL Instantiation Script. 

 

 
 

Figure 1 – An overview of our approach from [5]. 

 

The Features Model is used as the original formulation [32] and is intended to provide a 

high-level visualization for the framework’s characteristics. The annotated framework 

design is the representation of an object-oriented framework using UML. Actually, in 

order to represent all flexible characteristics embedded in the framework design, we have 

developed and adopted UML-FI (UML for Framework Instantiation), which is an 

extended version of UML designed to emphasize the flexible elements in a OO design. 

UML-FI will be briefly introduced in Section 5. 

 

The last document is the Instantiation Script, which specifies the instantiation process so 

that a framework re-user can be guided in accommodating the application specific needs 
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into the framework’s extension points. In order to achieve a succinct process description 

we have developed RDL (Reuse Description Language), a language that allows the 

specification of order and state dependencies among object-oriented programming 

activities that are often used when instantiating an incomplete design.  

 

To integrate the three technologies, Features, a Framework’s Annotated Design and the 

Instantiation Script, we created a mapping technique using UML trace mechanisms that 

relates the flexibility represented by optional and alternative features found in the 

Features Model, to extension points (hotspots) in the framework design [7]. By doing so, 

the xFIT execution environment can partially generate the RDL script that is used to 

tailor the framework design. We achieved this goal by creating RDL instantiation 

templates that are associated with each UML-FI stereotype (see Section 5) and executed 

when a corresponding feature was chosen.   

 

We also have the ability to run RDL scripts that are manually created by the Framework 

Designer and are not related to a Features Model. We believe that for frameworks with 

several extension points, where each feature is not easily related to a single design 

element such as a class, the mapping approach may not be feasible. 

 

Our approach consists of two different phases: the Framework Engineering Phase and the 

Framework Instantiation Phase. During the Framework Engineering Phase, the 

framework designer (or engineer) needs to develop the framework and provide the 

mechanisms to facilitate its reuse (Figure 2). In other words the framework design must 
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be annotated using UML-FI stereotypes and tagged values and a Features Model must be 

created to represent the framework’s characteristics at a high-level of abstraction. This 

Features Model will also expose aspects of the framework’s flexibility and, finally, relate 

features and UML-FI design elements. It is possible to skip the last phase and to create 

the RDL scripts manually. 

  

 

Figure 2 – Framework engineering process. 

 

The Framework Instantiation Time is when a framework’s extension points are 

completed with application-specific increments [28]. In this context, the framework 

instantiation process, which shows how to produce the software product (the application), 

begins with the stakeholder2 selecting the features to be included in the specific software 

                                                
2 Stakeholder in our scenario is someone interested in the framework reuse. 
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product. The selected characteristics (shown in dark gray in the Features Model of Figure 

1), together with the annotated class model, will be provided as input into the xFIT tool 

that will generate an instantiation script containing the necessary steps to instantiate an 

application with the desired characteristics.  

 

The proposed instantiation process finishes when the instantiation script is executed using 

an RDL execution environment such as xFIT (Figure 3c). The RDL execution 

environment will then modify the original design of a framework by inserting/removing 

some design elements to adapt the hotspots to meet the requirements of a specific 

application. It is worth mentioning that this last step is not entirely automatic in that the 

application developers need to provide additional information such as class names, 

attribute names and types, and method names.  

 

Figure 3 illustrates the RDL execution scenario. Figure 3a represents a fragment of a 

framework design in UML containing a class Figure, which is an extension point, and the 

associated RDL script.  The Instantiation occurs when the application increments 

represented by the classes Circle and Square (Figure 3b) are combined with the 

framework design. 
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Figure 3 RDL Execution approach 

 
Although the best way to follow an RDL script is using an execution environment such as 

xFIT, we believe that RDL commands can be processed by humans. We base this 

assumption on the fact that RDL syntax and semantics are based on ordinary 

programming activities thus facilitating understanding. 

 

We close this overview with an important additional remark: the documents used in our 

approach are XML-based. We have adopted the XML technology, since it has broad 

support from standards bodies such as W3C and it is commonly accepted or adopted by 

the academic community and industry. Moreover, based on our past experience [33][13], 

XML models are suitable for program manipulation and can be translated to formal 

models that can be validated.  
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5 UML-FI 

In this section we present the main UML-FI (UML for Framework Instantiation) notation 

constructs, an extension we have developed to specify object-oriented frameworks and 

the instantiation of their extension points. UML-FI is a UML profile containing 

stereotypes and tagged-values (i.e., UML extension mechanisms) to indicate, at the 

design level, the object-oriented activities that should be performed when instantiating a 

framework. 

 
Notation Base Class Description 
<<CLASS_EXTENSION>> class Indicates that the current class requires subclassing. 
<<PATTERN_CLASS_ 
EXTENSION>> 

class Indicates that the current class requires subclassing, which is 
achieved through the application of a pattern. 

<<SELECT_CLASS_ EXTENSION>> class Indicates that the current class requires subclassing, which is 
achieved by selecting one of its known subclasses. 

<<METHOD_EXTENSION>> method Indicates that the current method requires redefinition in a 
subclass. 

<<PATTERN_METHOD_ EXTENSION>> method Indicates that the current method requires redefinition in a 
subclass, which is achieved with the application of a pattern. 

<<VALUE_ASSIGNMENT_ EXTENSION>> attribute Indicates that the current attribute requires a value. 
<<VALUE_SELECTION_ EXTENSION>> attribute Indicates that the current attribute requires a value, which can 

selected from a list of given values. 
 

Table 1 – UML-FI Stereotypes. 

 
 
 
Tag Name Stereotype Description 
Presence Class, Attribute, Method Qualifies the design element as mandatory in the final design. The  default 

is “presence = mandatory”. 
{mandatory, optional} 

Table 2 – UML-FI Tagged values. 

 
It is possible to indicate in UML-FI most basic object-oriented programming activities 

such as class extension, method redefinition and value assignment (useful for Blackbox 

framework instantiation [1]). These activities are defined by means of annotations 

(stereotypes and tagged values shown in Tables 1 and 2) in class diagrams (Figure 4). 

 



 14 

 
Figure 4 – Class extension stereotype. 

.   
 
In addition, extension points can also be mandatory or optional. Therefore, the re-user 

can decide if the associated design element will (or will not) be present in the final 

application. UML-FI indicates optional and mandatory aspects as a tagged-value named 

presence that can assume the values OPTIONAL or MANDATORY (Figure 5).  

 

 
Figure 5 – Optional representation. 

 
 

6 RDL 

Instantiation processes tailor a framework’s design and code based on carefully 

developed elements called Extension Points3 (EP). In order to adapt a framework’s EP, a 

re-user must execute a set of Instantiation Tasks (IT) that are closely related to ordinary 

activities performed when programming.  For instance, a whitebox framework’s ITs can 

be related to specializing classes and/or redefining methods; on the other hand, a 

blackbox framework’s ITs are focused on parameterization.  Thus a language built to 

                                                
3 In this work the terms Extension Points and Hotspots are equivalent. 



 15 

specify a process to control the execution of ITs must use the same rationale adopted 

when programming the framework.  

 

In order to systematize instantiation processes RDL allows the definition of an 

instantiation script document, containing the ITs required to derive the application from 

the framework’s design and code. Moreover, ITs must be executed in a proper sequence, 

which can also be specified within a RDL script. 

 

The structure of an RDL instantiation script is the same as found in most imperative 

programming languages, namely program constructs and procedures. However, in order 

to follow the usual framework instantiation terminology, we use the term Cookbook [9] 

to represent a program and Recipe [9] to represent a procedure. Every Cookbook must 

have a Recipe called main that identifies the instantiation process execution entry point as 

shown in Code 1. 

 
COOBOOK Example 
  RECIPE main 
    // do something 
  END_RECIPE; 
END_COOKBOOK 

Code 1 – A Cookbook example. 

 
Note that the instantiation process is totally dependent on the final application domain 

that constrains the extension points to a proper set of values.  For instance, in an 

eCommerce framework, the elements can be books, CDs or cars and are not known 

during the framework engineering but only during instantiation. As a result, the RDL 

instantiation script does not have all the information needed to transform the framework 

design automatically into the application design. Instead, it must interrogate the re-user 
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for the missing information. That is why we refer to our instantiation approach as being 

systematic, not automatic. 

6.1 Manipulated Elements 

The instantiation process must produce an application from an incomplete model, since 

extension points represent flexible characteristics in the model that can not be specified 

during framework design. For instance, a designer developing a framework for the 

eCommerce domain must not fix the element under trade, thus providing more reuse 

opportunities.4 Therefore, during instantiation of the eCommerce framework, new design 

elements to specify the product under trade must be added to bring the model to a 

complete and coherent state.  

 

In our case, a model is a slight adaptation of UML Class Diagrams (see UML-FI in 

Section 5) and what RDL does is provide syntax and semantics to a process that 

manipulates meta-elements such as the ones present in the UML meta-model Abstract 

Syntax [34]. We did not use high level elements found in the meta-model hierarchy such 

as ModelElement, Feature or Classifier, instead we used specialized elements such as 

Class, Method, Attribute and Relationship, in order to reduce the number of elements 

RDL needs to manipulate and improve clarity. Moreover, using those specialized 

elements led to a straightforward connection with ordinary object-oriented programming 

principles.  

                                                
4 According to Parnas [35], the amount of reuse opportunities increases when you do not 

restrict the representation of an application family to a specific domain. 
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It is important to mention that the meta-class ReusableElement was introduced in the 

UML meta-model as a super class for Class, Method and Attribute, and is manipulated by 

RDL scripts. In fact, some operation and attributes are common to all design elements, 

and using inheritance to capture the common features is an obvious choice.  

 

Although UML focuses on design, code is also an important element in the reuse process. 

For that reason we decided to incorporate the representation of Programming Language 

idioms using the UML element named ProcedureExpression [34]. When an RDL script 

uses a ProcedureExpression, it becomes tied to that language and can not be used in 

instantiation processes with different languages. However, a framework is usually the 

incomplete version of a running application, being actually represented in a programming 

language that has already been chosen. 

 

Another UML element that is manipulated with RDL is a Note. Notes allow framework 

designers to add extra documentation and instantiation hints. For example, assigning 

values to the parameters found in Blackbox Frameworks can be done anywhere in the 

code so there is no way to determine where such assignment will take place during the 

instantiation process. Sticking a note to a parameter with some documentation stating that 

the assignment must occur and listing the elements involved provides a hint about the 

parameter instantiation to the framework re-user.  
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6.2 RDL Commands 

Commands in RDL must ultimately cover object-oriented programming activities and 

ordinary programming statements such as loop, assignment and conditional. Although 

our underlying principle to create RDL was the same adopted by Meyer [36], who states 

that a language must be concise with few and seamless commands, our goal was also to 

raise RDL reuse expressiveness. To achieve this goal, we have incorporated a set of 

language elements specifically related to instantiation tasks and have organized RDL 

statements into five groups according to their purpose within the instantiation process:  

Basic Programming Tasks, Instantiation Specific Tasks, Pattern Specific Tasks, Sequence 

Specific Tasks and Miscellaneous Tasks (See Section 6.3). 

 

The following sections 6.3 to 6.8 present RDL from its execution perspective, showing 

how design and code are changed after the execution of a command.  Each Instantiation 

Task is presented in a table using the structure Command, Syntax, Description, Code and 

Design, where: 

⇒ Command – Specifies the Command name to be used in a informal manner. 

⇒ Syntax – Specifies the command sentence structure to be used within the RDL 

script. In some cases the notation used is similar to C functions as in as 

return_type CommandName (parameter_list), where return_type specifies the 

type of the returned element; CommandName is the name of the command; and 

parameter_list is a placeholder to receive arguments. 

⇒ Description – Provides a textual description to the task intention. 

⇒ Comments – Provides extra information when needed (this part is optional).  

⇒ Code – Shows an example of use of the command within a RDL script. 

⇒ Design – Illustrates how design is modified after the RDL script execution. 
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In order to provide a more general and complete representation, a BNF-like specification 

is shown in Appendix I. 

6.3 Basic Programming Tasks 

Basic Programming Tasks (BPTs) represent ordinary design and code manipulation 

activities and are presented in Tables 3 to 7.  

Command: Class Creation 

Syntax: class new_class ( cName ) 

Description: Indicates the action of creating a class named cName in the design. Returns the created 

class for further manipulation. 
 

Code: 

 
COOBOOK Example 
  RECIPE main 
     //  adding a new class 
     NEW_CLASS (Class2); 
     //… 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 3 – Class Creation Command 

 

Command: Method Creation 

Syntax: method new_method (c, metName) 

Description: Indicates the action of creating a method named metName in class c. Returns the created 

method. 

Code: 

 
COOBOOK Example 
  RECIPE main 
     //  adding a new method 
     NEW_METHOD (Class1,operation1); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 4 – Method Creation Command 
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Command: Attribute Creation 

Syntax: attribute new_attribute (c, attName) 

Description: Indicates the action of creating an attribute named attName in class c. Returns the created 

attribute. 

Code: 

 
COOBOOK Example 
  RECIPE main 
     //  adding a new attribute 
     NEW_ATTRIBUTE (Class1,attribute1); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 5 – Attribute Creation Command 

 
Command: Inheritance Definition 

Syntax: void new_inheritance (superC, subC) 

Description: Indicates the action of establishing an inheritance relationship between classes superC and 

subC. 

Code: 

 
COOBOOK Example 
  RECIPE main 
     //  defining an inheritance 
     NEW_INHERITANCE(Class1,Class2); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 6 – Inheritance Definition Command 

  
Command: Code Assignment 

Syntax: void add_code (class, method, code_string) 

Description: Indicates the action of assigning a code to the given method.  

Comments: In order to provide visual feedback a Note is also attached to the class parameter. 
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Code: 

 
COOBOOK Example 
  RECIPE main 
     //  assigning code 
     ADD_CODE(Class1,operation1,”{ // this 
is the code to be added }”); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 7 – Code Assignment Command 

 

6.4 Instantiation Specific Tasks 

Instantiation Specific Tasks (ISTs) raise the abstraction level found in RDL scripts since 

they provide a vocabulary used when dealing with object oriented framework reuse.  ISTs 

typically combine some basic tasks found in the Basic Programming Task group and they 

are specified in Tables 8 to 13. 

Command: Element Choice 

Syntax: boolean element_choice (el) 

Description: Indicates the action of choosing if the element el will be present in the final application 

design. Returns true if the element was chosen; false otherwise. 

Comments: This action depends on information only available at instantiation time, and thus it must 

prompt the re-user for feedback. Note that the framework implementation must be carefully developed to 

support the absence of the element to avoid compile time errors such as “element not found.”   

 
Code: 

COOBOOK Example 
  RECIPE main 
     //  choosing an element 
     ELEMENT_CHOICE (C1.aComponent); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 8 – Element Choice Command 
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Command: Class Extension 

Syntax: class class_extension(C, cName) 

Description: Indicates the action of extending class C with a new class named cName. Returns the 

created class. 

Comments: This action raises the expressiveness of RDL scripts since it executes both commands, Class 

Creation and Inheritance Definition, to achieve its goal.  

 
Code: 

COOBOOK Example 
  RECIPE main 
     //  extending a class1 
     CLASS_EXTENSION (Class1,NewClass); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 9 – Class Extension Command 

 
Command: Select Class Extension  

Syntax: class select_class_extension( C ) 

Description: Indicates the action of extending class C by selecting one of its concrete subclasses. 

Returns the selected class. 

Comments: This action lists all concrete subclasses of class C so that the re-user can choose one. It is 

suited for situations where some possible adaptations to the given extension point represented by the 

class C are already provided by the framework design. 

It worth mentioning that the unselected classes will be removed from the application design if and only 

if there is no further  reference to it. 

 
Code: 

COOBOOK Example 
  RECIPE main 
     //  extending a class1 through 
selection 
     SELECT_CLASS_EXTENSION (class1); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 
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Table 10 – Select Class Extension Command 

 
Command: Method Extension 

Syntax: void method_extension (superC, metName, subC) 

Description:  Indicates the action of redefining method metName in subclass subC, where metName is a 

method declared in superC and superC   is super class of subC. 

Comments: This action raises the expressiveness of RDL scripts since it executes the command Method 

Creation and checks the inheritance relationship between the two classes. 

Code: 

COOBOOK Example 
  RECIPE main 
     //  redefining a method    
METHOD_EXTENSION (Class1, metM, Class2); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 11 – Method Extension Command 

 
Command: Value Assignment 

Syntax: void value_assigment (C, attName , V) 

Description: Indicates the action of assigning the value V to attribute attName of class C.  

Comments: Since this action deals with code not design, the result of its execution is a note attached to 

class C. The syntax used in the note is the same as in C, i.e., attName = V. 
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Code: 

COOBOOK Example 
  RECIPE main 
     //  assigning a value    
VALUE_ASSIGNMENT(Class1, attA, 1); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

 

Table 12 – Value Assignment Command 

 
Command: Value Selection 

Syntax: value value_assigment (C, attName , L) 

Description: Indicates the action of assigning a value from the list L to attribute attName of class C. 

Comments: Since this action deals with code not design, the result of its execution is a note attached to 

class C. The syntax used in the note is the same as in C, i.e., attName = V. 

 

Code: 

COOBOOK Example 
  RECIPE main 
     //  choosing a value 
VALUE_ASSIGNMENT(Class1, attA, (1,2,3)); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 13 – Value Selection Command 

6.5 Pattern Specific Tasks 

Pattern Specific Tasks support the assembly of several RDL commands into a special 

recipe, the Pattern Script, which is developed to render a sequence of instantiation actions 

that are relevant for the Framework’s domain. For example, when instantiating the 

HotDraw [9] framework there must be a task related to the specification of drawing 

elements. As a result, for every drawing element that the HotDraw instance makes 

available in its palette, it is mandatory to provide its name, its icon and its associated 
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drawing tool. To accomplish this goal several interconnected parts of HotDraw’s design 

must be changed, and, for this reason, grouping such activities in a Pattern Script is 

recommended. 

Another goal of Pattern Scripts is to promote reuse of RDL activities in recurrent 

instantiation processes by means of a name, in the same way as Design Patterns (that was 

the reason for introducing a Pattern name in the script). We illustrate the Pattern Specific 

Tasks in Tables 14 and 15 using some well-known Design Patterns.  

Command: Pattern Class Extension 

Syntax: void pattern_class_extension (C, patName, L) 

Description: Indicates the action of extending class C through pattern patName using the parameters 

present in the list L. 

Comments: Pattern Class extension creates at least one subclass of class C in the final design and maybe 

adds other design elements specified in the pattern script. The way the list of parameters is used is totally 

dependent on the way the pattern script is implemented. 

The example bellow shows how the Design Pattern AbstractFactory can be specified and applied to 

extend a class. 

Code: 

COOBOOK Example 
  RECIPE main 
     //  pattern class extension    
PATTERN_CLASS_EXTENSION( AbsFactory, 
AbstractFactoryPat,(AbsFactory 
,AbsProduct)); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 
Pattern Script: 

PATTERN AbstractFactoryPat (CLASS 
AbsFactory , CLASS AbsProduct) 
  // This is the pattern script 
  c1 = CLASS_EXTENSION (AbsFactory,?); 
    
METHOD_EXTENSION(AbsFactory,createProduct,
c1); 
 
  LOOP 
    CLASS_EXTENSION (AbsProduct,?); 
  END_LOOP; 
    
END_PATTERN 
 

 

Table 14 – Pattern Class Extension Command 
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Command: Pattern Method Extension 

Syntax:  void pattern_method_extension (superC, metName, subC, patName, list) 

Description: Indicates the action of redefining method metName in subclass subC through pattern 

patName using the parameters present in the list L. 

Comments: Pattern Method extension redefines the method metName in subclass subC and maybe adds 

other design elements specified in the pattern script. The way the list of parameters is used is totally 

dependent on the way the pattern script is implemented. 

Code: 

COOBOOK Example 
  RECIPE main 
     //  pattern method extension    
PATTERN_METHOD_EXTENSION( Subject, 
request, 
RealSubject,StrategyPat(Subject,request,re
alSubject)); 
     // 
  END_RECIPE; 
END_COOKBOOK 
 
Pattern Script: 

PATTERN StrategyPat (CLASS Subject, METHOD 
request, STRING realSubject) 
  // This is the pattern script 
  c1 = CLASS_EXTENSION (Subject,?); 
  m1 = 
METHOD_EXTENSION(Subject,request,c1); 
  NEW_ATTRIBUTE (c1,realSubject); 
  ADD_CODE(c1,m1,”//add code …” ); 
 
    
END_PATTERN 
 

Design: 

 

 

 

Table 15 – Pattern Method Extension Command 

6.6 Sequence Specific Tasks 

Sequence Specific Tasks (SSTs) describe the way RDL commands are combined in the 

execution flow (Tables 16 to 22).  As in most imperative languages, commands need to 

be organized in a special order so that a particular computation occurs. For instance, 

when adding two numbers, someone needs to know their values prior to calling the sum 

operation. Instantiation processes are no different since instantiation tasks must tailor 

designs in an order that is stipulated by the framework developer.  

 

Besides sequencing, which is related to order dependency, RDL also allows the 

specification of state dependency indicating if a design element is required in the final 
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application. The main difference between the two dependencies is that state dependencies 

do not enforce a specific execution order between two or more commands, but only state 

that the commands must be executed, which is quite a common situation when 

instantiating frameworks used in product lines based on blackbox components. 

 

It’s worth mentioning that SSTs are represented using the infix notation for syntactic 

compliance to languages as C++ and Java. 

 
Command: and (#) 

Syntax: cmd1 # cmd2 

Description: Indicates that both commands cmd1 and cmd2 must be executed in that order. 

Comments: The and sequence is naturally expressed in RDL when placing commands line after line, but 

in some cases there is a need to specify it within the current line. 

Code: 

 
COOBOOK Example 
  RECIPE main 
     // and  
     CLASS_EXTENSION (Class1,ClassA) # 
CLASS_EXTENSION (Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 16 – and Command 

 
Command: or (o) 

Syntax: cmd1 o cmd2 

Description: Indicates that only one command should be executed. 

Comments: The or sequence interrogates the framework re-user which option he/she is willing to 

execute. 
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Code: 

 
COOBOOK Example 
  RECIPE main 
     // or  
     CLASS_EXTENSION (Class1,ClassA) o 
CLASS_EXTENSION (Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 17 – or Command 

 
Command: Parallel Execution 

Syntax: cmd1 || cmd2 

Description: Indicates that cmd1 and cmd2 can be executed concurrently. 

Comments: The || sequence is suited to specify framework instantiation processes that can be handled 

by separate teams.  It is similar to fork representation used in UML Activity Diagrams 

Code: 

COOBOOK Example 
  RECIPE main 
     // parallel 
     CLASS_EXTENSION (Class1,ClassA) || 
CLASS_EXTENSION (Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design using an UML fork symbol to represent 

concurrency. 

 

Table 18 – Parallel Execution Command 
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Command: State Dependency   

Syntax: cmd1 requires cmd2 

Description: Indicates that cmd1 needs (depends on) the outcome from cmd2 to produce a coherent 

design for the framework instance without constraining the time when cmd2 must be executed 

Comments: A framework can represent a variable characteristic using several extension points that are 

scattered through its design elements. In order to achieve a consistent representation of such variability, 

the instantiation of those extension points must be related somehow by dependency rules that bind a 

specific command to another.  

Code: 

COOBOOK Example 
  RECIPE main 
     // requires 
     CLASS_EXTENSION (Class1,ClassA) 
requires CLASS_EXTENSION (Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 19 – State Dependency Command 

 
Command: Order Dependency 

Syntax: cmd1 requires before | requires after cmd2 

Description: Indicates that a time dependency between cmd1 and cmd2.  Requires before indicates that 

cmd1 must be executed previous to cmd2. Requires after indicates cmd1 must be executed subsequent to 

cmd2. 

Comments: Order dependency commands have the same rationale of state dependency commands along 

with a time constraint described in the commands execution flow. 
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Code: 

COOBOOK Example 
  RECIPE main 
     // requires 
     CLASS_EXTENSION (Class1,ClassA) 
requires before CLASS_EXTENSION 
(Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 20 – Order Dependency Command 

 
Command: Synchronicity 

Syntax: cmd1 requires sync cmd2 

Description: Indicates that the execution of cmd1 should be synchronous to cmd2, i.e., the instantiation 

process cannot continue till both commands are completed. 

Comments: The requires sync command is suited for the synchronization of parallel instantiation 

processes that can be handled by separate teams. It is similar to join representation used in UML Activity 

Diagrams 
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Code: 

COOBOOK Example 
  RECIPE main 
     // sync 
     CLASS_EXTENSION (Class1,ClassA) 
requires sync CLASS_EXTENSION 
(Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design using an UML join symbol to represent 

concurrency. 

 

 

Table 21 – Synchronicity Command  

 
Command: Mutual Exclusion 

Syntax: cmd1 requires exclusive cmd2 

Description: Indicates that the execution of cmd1 and cmd2 are mutually exclusive, i.e. if cmd1 is 

present in the final design, cmd2 must not. 

Comments: Extension points can represent alternatives in a domain that can not share the same solution 

space (framework instance) due to functional incompatibility.  
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Code: 

COOBOOK Example 
  RECIPE main 
     // requires exclusive 
     CLASS_EXTENSION (Class1,ClassA) 
requires exclusive CLASS_EXTENSION 
(Class2,ClassB); 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 22 - Mutual Exclusion Command 

6.7 Miscellaneous Tasks 

Miscellaneous Tasks (MT) are those tasks that do not fit well in the groups previously 

mentioned. They are typically related to RDL completeness as an imperative language 

(Tables 23 to 25). 

 
Command: Repetition 

Syntax: loop cmds end_loop 

Description: Indicates that cmds are repeated  a number of times. 

Comments: The number of iterations is defined by the re-user when interacting with the RDL execution 

environment. 
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Code: 

COOBOOK Example 
  RECIPE main 
     // loop 
    LOOP 
     CLASS_EXTENSION (Class1, ?); 
    END_LOOP; 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 23 – Repetition Command 

 
Command: Assignment 

Syntax: var = cmd1 

Description: Indicates that the result of execution of cmd1 is stored in var.  

Comments: Some commands return the value of a particular execution. Storing such value for further 

use in the instantiation script helps in linking commands in an organized way. 

Code: 

COOBOOK Example 
  RECIPE main 
     // assignment 
     c1 = CLASS_EXTENSION (Class1,?); 
     NEW_METHOD(c1,M1); 
     
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 24 – Assignment Command 
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Command:  Re-user Interaction 

Syntax: ? 

Description: Indicates that the RDL execution environment must interact with the re-user to obtain 

domain specific information. 

Comments: Extension points are placeholders deliberately left “open” by the designer at framework’s 

engineering time for adaptation during its instantiation time. For that reason some information needs to 

be given by the re-user in order to accommodate the application specific needs. 

Code: 

COOBOOK Example 
  RECIPE main 
     // reuser interaction 
     CLASS_EXTENSION (Class1,?); 
  END_RECIPE; 
END_COOKBOOK 
 

Design: 

 

Table 25 – Re-user Interaction Command 

 

6.8 Recipes, Parameters & Types 

RDL also allows the specification of procedures called Recipes.  A recipe is used to 

modularize RDL scripts, thus improving readability.  As shown in Table 26, a Recipe has 

a name, a list of parameters and a set of commands (i.e., recipe_body). 

 
Command:  Recipe 

Syntax: RECIPE name (parameter_list) recipe_body END_RECIPE; 

Description: Specifies a recipe im RDL. 

Comments: Allows modularization of RDL scripts. 
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Code: 

COOBOOK Example 
  RECIPE doSomething (CLASS a) 
     CLASS_EXTENSION (Class1,a); 
  END_RECIPE; 
END_COOKBOOK 
 

Design:  if  a equals NewClass 

 

Table 26 – Recipe Example. 

 

In order to invoke a recipe an RDL programmer should only state its name and required 

parameters (see Table 27). 

 
Command:  Recipe to Create  two new classes 

Syntax: RECIPE Create2classes(); 

Code: 

COOBOOK ACookbook 
  //  recipe to create 2 new classes 
  // named A and B 
  RECIPE Create2NewClasses() 
     NEW_CLASS (A); 
     NEW_CLASS (B) 
  END_RECIPE; 
 
  RECIPE main 
      Create2NewClasses(); 
  END_RECIPE; 
END_COOKBOOK 
 

Design after executing ACookbook  

 

 

Table 27 Recipe Invocation. 

 

In the current version of RDL we did not adopt strong typing since the result variables 

declared as part of an assignment command and parameters used in Recipes do not need 

to be typed. Not typing variables and parameters simplified the implementation of the 

RDL execution environment. 

 
On top of the Recipes foundation we have created the concept of Pattern scripts. Patterns 

are used as placeholders for framework instantiation activities that solve recurring 

instantiation problems. For example, when instantiating HotDraw [9], for every drawing 
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element that a HotDraw instance makes available on its palette, it is mandatory to provide 

its name, its icon and its associated drawing tool. Thus, representing such activities using 

the RDL rationale leads to creating a Pattern script (Table 28) that gathers the commands 

required to adapt the HotDraw model. It’s worth mentioning that Patterns are supposed to 

represent problem-solution structures to facilitate the match between application needs 

and the framework’s concepts. For instance, in the case of Hotdraw, which is a 

framework for drawing, the most common problem is “How do I create new Figures?” 

and so a pattern can help solve this problem.  

 
Command:  Pattern to Create  New Figures 

Syntax: PATTERN  InstantiateFigure (DrawingEditor de) 

Code: 

PATTERN InstantiateFigure (DrawingEditor 
de) 
  // create the new figure 
  fig = CLASS_EXTENSION(Figure,?); 
  METHOD_EXTENSION(Figure, getName, de); 
  METHOD_EXTENSION(Figure, getIcon, de); 
  … 
END_PATTERN 
 
COOKBOOK HotCookbook 
RECIPE main 
  de = CLASS_EXTENSION(DrawingEditor,?); 
  PATTERN_CLASS_EXTENSION(de,     
       InstantiateFigure,(de)); 
END_RECIPE; 
END_COOKBOOK 

Design after executing HotCookbook 

 

 

Table 28 – Pattern Example. 

 

7 RDL Execution Model 

The RDL approach is intended to assist the framework instantiation process by providing 

a script and underlying software system to run and control the instantiation activities. For 

this reason, RDL needs an underlying execution environment capable of transforming 

commands into a set of low level instructions that change the state of inputs, which in our 

case are UML models.  
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In order to organize the RDL execution environment we have developed a Java-based 

prototype specified in the architecture shown in Figure 6: a Compiler, a Virtual Machine, 

the XMIProxy, a UserInterface and RuntimeLibrary.  

 

The RDL Compiler validates RDL scripts and prepares a set of information required for 

execution. It starts by analyzing the script’s lexical and semantic structure to check if the 

language tokens and commands are properly used. Then, this compiler creates a table 

with instantiation instructions by compiling high-level instantiation commands, such as a 

CLASS_EXTENSION, into a sequence of low-level commands, such as a 

NEW_CLASS, NEW_INHERITANCE pair for this case.  In addition the compiler 

generates additional information such as the variables allocation list and the state and 

order dependency list.  

 

Once the input stream is validated and the low-level information is in place, the RDL 

Virtual Machine (RVM) can start by executing the set of instructions found in the 

Instantiation Instruction table as shown in Figure 6. During execution, the RVM must 

tailor the UML model and incorporate the new design elements. This step can be 

achieved by manipulating the UML XMI representation as an XML document using 

translators written in XSL [40]. However, as we find the manipulation of XMI in its 

“natural form” cumbersome and, given that the relationships among design elements are 

scattered in the representation and the elements are indirectly accessed via several IDREF 

tags, we have developed the XMIProxy component, which is responsible for creating an 

in memory version of an UML model represented in XMI. 
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The XMIProxy component houses the code required for XMI manipulation. It is capable 

of reading/writing XMI files and creating an in-memory class space, containing the 

classes, methods and attributes for the input model. By adding new elements to the class 

space by invoking the XMIClass.createClass() method, it is possible to manipulate the 

model using the RDL script commands. 

 

 

Figure 6 – RDL Execution Environment. 

 

The RDL environment also has a UserInterface library where the dialogs required for re-

user input (e.g., prompting the re-user for a new class name) are defined.  

 

To run this environment a re-user must specify two input files5, one with the RDL script 

and the other with the framework design expressed in UML-FI, which is XMI. The XMI 

file will then be manipulated and saved as a new file preserving the original. Since the 

                                                
5 Those are the files used by the RDL execution environment and that is why the Features Model is not 

used here. 
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process is not totally automated, during its execution the re-user also needs to provide 

some information to the RDL environment, indicating items such as new names, when to 

finish a loop, or which path to follow in a OR command. 

 

8 The JUnit Illustrative Example 

This section provides several instantiation scripts to show how RDL can be used to tailor 

framework design. We have chosen JUnit Version 3.8 [37] for this illustration, as it has 

substantial documentation and tool support. Although JUnit is a small framework with a 

few design elements (approximately 9 classes and 50 methods), it is widely used by the 

software developer community and thus it is used to demonstrate the rationale behind 

various instantiation process scripts.  

 

8.1 JUnit Specification 

JUnit is an object-oriented whitebox framework [1] built to provide developers with a 

standard and easily used interface for defining (coding) and running test cases.  JUnit’s 

functionality is expressed in a relatively simple design as presented in Figure 7.  
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Figure 7 Junit design. 

 
Taking into account JUnit’s reuse specification (instantiation process), its design can be 

reduced to two classes: TestCase and TestResult (Figure 8).   

 

⇒ TestCase - Provides placeholders (methods to be extended) for test coding and 

running. Its reuse is mandatory and must be done through inheritance and method 

redefinition. 

⇒ TestResult - Collects test results and presents them in a textual fashion. Its reuse is 

optional and must be done through inheritance and method redefinition. 
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Figure 8 – UML-FI Diagram specifying JUnit’s Extension Points. 

 

Although JUnit’s reuse deals with few classes, the re-user may have to manage different 

reuse strategies and different reuse restrictions. According to its documentation, JUnit 

can be applied in a simple test or in a fixture for multiple tests; it can change the 

appearance of the Result or be applied in complex development environments. Each of 

these reuse strategies has its pitfalls and should be specified carefully to provide an 

accurate JUnit instance. 

In the next sections we provide a thorough representation of each JUnit reuse strategy 

accompanied by the corresponding UML-FI representation and RDL script. 

 

8.2 TestCase – One Single Test 

8.2.1 Instantiation Specification 

The specification was extracted from the junit.org cookbook [37]: 
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⇒ Create an instance of TestCase () – In RDL means subclass TestCase() 

⇒ Override the method runTest() and fill it with test code 

8.2.2 UML-FI Representation 

 

8.2.3 RDL Script 

 
COOBOOK JunitSimple 
  RECIPE main 
    testClass = CLASS_EXTENSION(TestCase,?); 
    METHOD_EXTENSION(TestCase,runTest, testClass); 
  END_RECIPE; 
END_COOKBOOK 

Code 2 RDL Script to instantiate JUnit  

 

8.3 Fixture – Multiple Tests 

8.3.1 Instantiation Specification 

The specification was extracted from the junit.org cookbook [37]: 

⇒ Create a subclass of TestCase  

⇒ Override setUp() to initialize the variables  

⇒ Override tearDown() to release any permanent resources you allocated in setUp  

⇒ Add an instance variable for each part of the fixture  

⇒ For each test implement a method which interacts with the fixture 
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8.3.2 UML-FI Representation 

 

8.3.3 RDL Script 

 
COOBOOK JunitFixture 
  RECIPE main 
    testClass = CLASS_EXTENSION(TestCase,?); 
    METHOD_EXTENSION(TestCase,setUp,testClass); 
    METHOD_EXTENSION(TestCase,teardown,testClass); 
    LOOP  
      NEW_ATTRIBUTE(testClass,?); 
    END_LOOP 
    LOOP  
      NEW_METHOD(testClass,?); 
    END_LOOP 
  END_RECIPE 
END_COOKBOOK 

 
Code 3 RDL Script for Fixture Example 

8.4 TestResult - Changing Results 

8.4.1 Instantiation Specification 

The specification was extracted from the junit.org cookbook [37]: 

⇒ Create your Testcase class as above 

⇒ Create a subclass of TestResult 

⇒ Add a new method to meet your requirements 

⇒ Override createResult  

⇒ Instantiate the new TestResult subclass with the overridden createResult 
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8.4.2 UML-FI Representation 

 

 
 

8.4.3 RDL Script 

//without pattern 
COOBOOK JunitChangingResult 
  RECIPE TestCreation RETURNS CLASS 
     testClass = CLASS_EXTENSION(TestCase,?); 
     METHOD_EXTENSION(TestCase,runTest, testClass); 
     RETURN testClass; 
  END_RECIPE 
 
  RECIPE main 
    // call test creation recipe  
    testClass = TestCreation(); 
    resultClass = CLASS_EXTENSION(TestResult,?); 
    METHOD_EXTENSION(TestResult, addFailure , resultClass); 
    METHOD_EXTENSION(TestResult, addError, resultClass); 
    METHOD_EXTENSION(TestResult, startTest, resultClass); 
    METHOD_EXTENSION(TestResult, endTest, resultClass); 
 
    METHOD_EXTENSION( TestClass,createResult, testClass); 
    // this recipe does not provide the TestResult subclass  
    // creation code 
  END_RECIPE; 
END_COOKBOOK 
 

Code 4 RDL Script for the Changing Result  example 
 

 
We can modify the JunitChangingResult cookbook to illustrate the use of a pattern 

instantiation that will reduce the effort needed to obtain the final application. According 
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to JUnit’s documentation, the sub-classes from TestClass and TestResult must be 

connected at the code level during the execution of the method createResult, It is not 

possible to make this connection at Framework Engineering Time because the 

subclasses’ names are not known. This problem was solved by adopting the Design 

Pattern Factory [41] that was created to defer instantiation to subclasses.  

  

//---------------------------------------------------------- 
//with pattern 
COOBOOK JunitChangingResult 
  RECIPE main 
    // call test creation recipe – not declared here to save space 
    testClass = TestCreation(); 
 
    resultClass = CLASS_EXTENSION(TestResult,?); 
    METHOD_EXTENSION(TestResult, addFailure , resultClass); 
    METHOD_EXTENSION(TestResult, addError, resultClass); 
    METHOD_EXTENSION(TestResult, startTest, resultClass); 
    METHOD_EXTENSION(TestResult, endTest, resultClass); 
 
    PATTERN_METHOD_EXTENSION(TestCase, createResult, testClass, Factory, (TestCase 
testClass, TestResult, resultClass createResult)); 
  END_RECIPE; 
END_COOKBOOK 

 
 
PATTERN Factory (CLASS creator, CLASS concreteCreator, CLASS product, CLASS 
concreteProduct, METHOD factoryMethod) 
 
  m1 = METHOD_EXTENSION(creator, factoryMethod, concreteCreator) 
  ADD_CODE(concreteCreator,m1,”return new ” + concreteProduct + ”;” ) 
   
END_PATERN 
 

Code 5 RDL Script for the Changing Result Example using the Factory Pattern. 

 
 

9 Conclusions and Future Work 

In this paper we present RDL (Reuse Description Language), which is an approach to 

specify framework instantiation processes. RDL is an imperative language that supports 

representing framework instantiation activities in a script form named Cookbook that can 

be processed by a tool, thus guiding re-users through the instantiation process.  

Instantiation activities in RDL are related to design manipulation and sequencing, 
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tailoring designs at specific extension points by means of typical object-oriented 

programming activities.  

 

An important aspect of our approach is the ability to represent concurrent instantiation 

activities, which facilitates the specification of distributed instantiation processes that are 

widely used in the Global Software Development scenario for reducing development 

costs [3]. 

 

Compared to approaches such as Cookbooks[9] and Hooks [10], RDL provides an 

explicit and a more precise way to represent instantiation activities since it does not use 

natural language in its representation but uses a Domain Specific Language carefully 

developed for the instantiation domain. As a result, RDL scripts can be processed by 

tools, facilitating the development of Instantiation Wizards. Moreover, because of the 

nature of RDL and the extensive use of XML technologies, such wizards do not need to 

be hard-coded within a specific tool as is common in Product Lines approaches such as 

WebML[18] and Pulse[38]. Instead RDL-based wizards can be developed declaratively 

as components in Product Line Architecture environments.  

 

There are many differences between RDL and model transformation approaches such as 

UMT-QVT[42],  Velocity[43], XSLT and MTL[44]. UMT-QVT works with a compact 

version of XMI, the XMI-Lite, and creates an environment  to encapsulate 

transformations that can be specified as Java programs or XSTL scripts. However, UMT-

QVT is not suitable for handling re-user interactions and state/order dependency. XSLT 
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has a broader use since it can be adopted to manipulate any XML file, although it suffers 

from the same issues related to UMT. 

 

Velocity [43] is a Java-based template engine supporting the definition of templates with 

the VTL (Velocity Template Language). Using VTL to transform XMI files is 

cumbersome since the commands must be embedded into a file usually with several lines 

in XML.  Moreover, VTL is designed as a one-pass transformer and thus leaves no space 

for re-user interaction.  

 

MTL [44] encloses some of our ideas although it was created as a full transformation 

language. For that reason MTL is a broader language in terms of concepts and has no 

special functionality to framework instantiation. 

 

Regarding RDL usage, we have conducted experiments with frameworks other than JUnit 

to validate its applicability and efficacy. In [39] the author reported the use of RDL to 

specify the instantiation process for the Web-based search engine Avestruz [24] and for 

the VMarket eCommerce [25] frameworks. In [33] the author presented the use of RDL 

to instantiate the drawing tool framework. One of the most important results of RDL 

usage can be found at [22] where the author indicates that the use of instantiation patterns 

brought an increase in understanding the framework’s domain characteristics and also 

avoided instantiation inconsistencies since the hotspots are pinpointed by the RDL script. 

Note, however, that since the RDL tool is not fully functional, in all these cases the XMI 

file generated by the RDL environment needed some minor modification.  For instance, 
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Deleted: 44
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we did not handle the code assignment command properly as indicated in the UML 

metamodel and, therefore, a return parameter must be completed by the re-user. 

 

In future work, we want to incorporate the concept of strong typing into RDL. In this 

version of RDL, variables have their types dynamically assigned depending on the use. 

For instance, a variable c1 can be used to hold the return of a CLASS_EXTENSION 

command, which returns a class, and in the next line of the same script the same c1 

variable can be used to hold the return of a METHOD_EXTENSION command, which 

returns a method. When instantiation scripts grow larger, it becomes hard to “discover” 

the type of a variable by inspecting the whole script and for that reason we plan to modify 

RDL to accommodate variable declaration.  Some preliminary work in this direction is 

presented in [22]. We are also extending our approach to handle cross-cutting concern-

based extensions and define aspect-oriented framework instantiation [46].  
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Appendix I 

In order to show its expressiveness, RDL is presented in a BNF-like description.   
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COOKBOOK ::= Cookbook NAME IP_RECIPE* IP_MAIN end_cookbook; 

IP_RECIPE ::= [COMMENT_EXP] recipe IP_NAME; IP_RECIPE_BODY end_recipe; 

IP_RECIPE_BODY ::= IP_CMD*  

IP_MAIN ::= recipe main IP_RECIPE_BODY end_recipe; 

IP_NAME ::= NAME 

IP_CMD ::= IP_ASSIGN_CMD ;|IP_EXP_CMD; |IP_LOOP_CMD; 

IP_ASSIGN_CMD::= NAME = IP_BASIC 

IP_LOOP_CMD ::= loop IP_RECIPE_BODY end_loop 

IP_EXP_CMD ::= IP_TASK | IP_TASK # IP_TASK | IP_TASK o IP_TASK |  
IP_TASK || IP_TASK 

IP_TASK ::= [COMMENT_EXP] IP |[COMMENT_EXP] IP_NAME 

IP ::= IP_BASIC REQUIRES_EXP* 

IP_BASIC ::= IP_CLASS | IP_METHOD  |  IP_ATTRIBUTE | IP_ELEMENT 

IP_CLASS ::= new_class | 
class_extension ( CLASS_EXP ) |  
selection_class_extension ( CLASS_EXP ) | 
pattern_class_extension ( CLASS_EXP , NAME,LIST) | 
interface_implementation (CLASS_EXP , INTERFACE_EXP) 

IP_METHOD ::= new_method (CLASS_EXP) | 
method_extension ( CLASS_EXP, CLASS_EXP, METHOD_EXP) | 
pattern_method_extension (CLASS_EXP, CLASS_EXP, 
METHOD_EXP , NAME, LIST) 

IP_ATTRIBUTE ::= new_attribute (CLASS_EXP) 
value_selection (CLASS_EXP,   ATTRIB_EXP, LIST) |   
value_assignment (CLASS_EXP, ATTRIB_EXP) 

IP_ELEMENT::= element_choice (ELEMENT) 

ELEMENT::= CLASS_EXP | METHOD_EXP | ATTRIB_EXP 

CLASS_EXP ::= NAME 

METHOD_EXP ::= NAME 

ATTRIB_EXP ::= NAME 

INTERFAC_EXP ::= NAME 

LIST::= ( LIST_EXP ) 

LIST_EXP::= STRING_EXP , LIST_EXP | STRING_EXP 

NAME::= IDENTIFIER_EXP 

REQUIRES_EXP::= requires ORDER_EXP | 
requires ELEMENT 

ORDER_EXP::= before IP_TASK |after IP_TASK | sync IP_TASK | exclusive IP_TASK 

COMMENT_EXP ::=  // STRING_EXP  | COMMENT_EXP 
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STRING_EXP ::= String 

 
 
 
 


