
 1

RDL: A Language for Framework

Instantiation Representation

Toacy C. Oliveira, Paulo S. C. Alencar, Carlos J.P. de Lucena, Donald D. Cowan.♦

Abstract — Reusing software artifacts for system development is showing increasing

promise as an approach to reducing the time and effort involved in building new systems,

and to improving the software development process and the quality of its outcome.

However, software reuse has an associated steep learning curve, since practitioners must

become familiar with a third party rationale for representing and implementing reusable

assets. For this reason, enabling a systematic approach to the reuse process by making

software reuse tasks explicit, allowing software frameworks to be instantiated using pre-

defined primitive and complex reuse operations, and supporting the reuse process in a

(semi-)automated way become crucial goals. In this paper, we introduce a systematic

reuse approach and Reuse Description Language (RDL), a language designed to specify

object-oriented framework instantiation processes, and an RDL execution environment,

which is the tool support for definition and execution of reuse processes and framework

♦ Toacy C. Oliveira is with Faculty of Informatics at the Pontifical University Catholic of Rio Grande do

Sul, Brazil . His e-mail address is toacy@inf.pucrs.br. Paulo S. C. Alencar and Donald D. Cowan are with

the School of Computer Science at the University of Waterloo, Ontario, Canada. Their e-mail addresses are

{palencar, dcowan} @csg.uwaterloo.ca respectively. Carlos J. P. de Lucena is with the Computer Science

Department at the Pontifical University of Rio de Janeiro Brazil. His e-mail is lucena@inf.puc-rio.br.

 2

instantiations that lead to domain-specific applications. We illustrate our approach using

JUnit, a framework for testing.

1 Introduction

Reusing software artifacts for system development has increasingly become a promising

approach with the potential of reducing the time and effort involved in building new

systems, and improving the software development process and the quality of its outcome.

However, software reuse has an associated steep learning curve since practitioners must

become familiar with a third party rationale for representing and implementing reusable

assets [1]. As a result, the effort to reuse can be compared to the effort of developing a

new artifact where a systematic approach is not adopted [2]. For this reason, the reuse

process can be facilitated by representing reuse activities by means of process

specifications that make explicit the software reuse tasks and thus liberating re-users from

mining rationale directly from the reusable software asset design or code. Moreover, the

process specifications can be mechanically processed enabling the construction of reuse

wizards to automate or semi-automate the reuse process.

To mitigate the issues just raised, we have developed RDL, which stands for Reuse

Description Language, a language that can be used procedurally for the process

specification of object-oriented framework instantiation. When using RDL, framework

developers can specify the sequence in which reuse actions must be executed as well as

the constraints involved in the instantiation of reusable assets, such as frameworks.

Moreover, RDL allows the specification of asynchronous reuse activities of the type

widely used in Global Software Development [3]. As a result, the framework re-user is

 3

guided through a set of reuse actions and can focus on the relevant parts of the framework

that should be adapted during the instantiation process.

In this paper, we thoroughly present the RDL language, depicting the elements RDL can

manipulate, the syntax and semantics for the most important commands and the impact

on design during the script execution. We also present RDL execution model, its

associated software architecture and illustrate the approach applicability using the JUnit

framework. In addition we briefly present the xFIT (XML-based Framework Instantiation

Tool) approach, which is the reuse approach where the RDL execution environment is

embedded in. It’s worthwhile mentioning that RDL is part of a more comprehensive

reuse approach used for Product Engineering [4] (see, for example, [5] [6] [7] [8]).

This paper is organized as follows. In Section 2 we describe related work on software

reuse and explain how existing methods relate to the RDL approach. In Section 3 we

provide background and motivation for this work. Section 4 introduces xFIT, a software

reuse approach in which RDL in embedded. In Section 5 we briefly describe UML-FI, a

representation for object-oriented frameworks and its flexible points, also called hotspots

or points of variability. Section 6 describes RDL, the process language used to represent

framework changes and instantiation processes, and provides its rationale and process-

oriented commands. In Section 7 we describe the underlying execution infrastructure for

RDL, and in Section 8 we illustrate the applicability of RDL using JUnit, an object-

oriented framework for testing. Finally, in Section 9 we present our conclusions and

discuss some future directions.

 4

2 Related Work

In this section, we describe existing work on software reuse related to framework

instantiation, product lines and model-driven architectures.

In [9] the authors have proposed a structured specification to support framework

instantiation. They have introduced a template called Cookbook applied to a reuse

document expressed in natural language, which can be difficult to follow because of the

lack of a formal underlying approach. Moreover, Cookbooks can not be processed

automatically, possibly leading to inconsistencies in their definition. As an extension to

Cookbooks, Hooks [10] also provided a template for framework instantiation assistance

and, as a result, share similar problems.

In the area of framework instantiation guidance, Active Cookbooks[11] advocate the use

of Software Agents to execute instantiation plans. The main issue with the HiFi[11]

approach is that it introduces non-standard notations such as TOON [11] into the

application development process that can cause an extra burden to framework

development. In OBS [12] the authors used a generative approach to framework

instantiation that shares some of the features of our previous work [13]. However, the

OBS approach is based on ready-to-use blackbox frameworks, which restricts

instantiation processes to component configuration, and does not focus on customization.

 5

Product Line Architectures also lead to approaches to support generating applications

from pre-defined software components that can be configured based on a decision

model[45]. In Gomaa [14] the author has presented a technique to develop Software

Product Lines using UML diagrams and Feature Models. However, the lack of tool

support causes difficulties for systematic adoption. Another initiative using the Features

model is the Generative Programming (GP) approach described in [15], where the author

proposes the development of Domain Specific Languages (DSLs that can be visual or

textual) as a means to generate programs from high-level specifications and

transformations. Although we share some underlying principles with the GP approach,

we believe that well-known and standard notations and paradigms such as UML and

object-oriented programming need to be used in the definition of process-related

specifications and transformations. For this reason we use an extension of UML to

represent frameworks and define RDL as a language to transform the extended UML

models. In the same research direction, the WebML approach [16] guides developers

through a set of pre-defined windows that can be seen as DSLs to collect application-

specific information to create Web Applications. In the WebML approach the

configuration knowledge is hard-coded into the tool, which complicates its extension to

incorporate the evolution of specific domain requirements.

OMG’s Model Driven Architecture [17] (MDA) is also an attempt to systematize reuse

using UML, OCL [18] and software transformations [17]. The MDA approach can use

modeling languages such as UML to represent software in a platform-independent

manner. As a result, specific platform code can be automatically generated using a set of

 6

pre-defined transformations. However, MDA is still in the Request for Proposal (RFP)

[19] phase wherein researchers are collaborating to develop a set of specifications,

including notations for the transformation process.

3 Background and Motivation

We have developed object-oriented frameworks for several domains. Some of these

frameworks were produced as result of academic research activities [20] [21] [22] [23],

while others were developed in the context of partnerships between industry and

academia [24][25][26][27]. Typically their development relied on gathering knowledge

about a domain (Domain Analysis) and applying object-oriented programming expertise

to implement flexible software [28]. However, the reuse processes were cumbersome

since they were usually handled by programmers who had little experience in the design

rationale for the frameworks. For instance, in the DSSFrame framework [26], where the

extension points were constrained in a proper instantiation sequence, the framework

designers had to spend a substantial amount of time to explain the design and supervise

the team of “instantiators1”.

In addition, as was the case with DSSFrame, reuse can be handled in an environment that

is distributed, with developers in more than one site; or asynchronous where developers

are not in constant collaboration because of different schedules. As a result, the sequence

1 Those in charge of instantiation activities, who are also called re-users in this work.

 7

in which instantiation activities are executed is a major issue and must be supported by

tools [29][3].

Under these circumstances, we began to develop approaches to assist instantiation

processes [30]. However, the need for tools was very clear and, therefore, we

concentrated on the specification and development of techniques for this purpose. The

baseline specification we assumed for these tools had three key constraints:

⇒ Use standards found in the Software Engineering discipline such as UML, XMI [31]

and typical object-oriented programming activities, to reduce the approach’s learning

curve.

⇒ Represent the process in a way that can be automated by an execution environment.

⇒ Assist the re-user as much as possible.

As a result, we developed xFIT, the XML-based Framework Instantiation Tool, which

embodies our reuse approach in a tool. xFIT guides re-users through the framework

instantiation process by exposing the frameworks’ high-level characteristics through a

Feature Model [32]. Such features are then traced to design elements specified in UML-

FI, a UML profile responsible for exposing framework extension points at the design

level. In order to automate the process, RDL expresses how each extension point should

be extended to create the final application. In this approach XML is a key technology,

since most of documents are expressed in XML.

4 Introducing the xFIT Approach

The xFIT approach is intended to facilitate the framework instantiation processes by

means of a tool that executes instantiation scripts written in RDL. Ideally xFIT takes as

 8

input three types of documents as shown in Figure 1: a Features Model, an Annotated

Framework Design, and a RDL Instantiation Script.

Figure 1 – An overview of our approach from [5].

The Features Model is used as the original formulation [32] and is intended to provide a

high-level visualization for the framework’s characteristics. The annotated framework

design is the representation of an object-oriented framework using UML. Actually, in

order to represent all flexible characteristics embedded in the framework design, we have

developed and adopted UML-FI (UML for Framework Instantiation), which is an

extended version of UML designed to emphasize the flexible elements in a OO design.

UML-FI will be briefly introduced in Section 5.

The last document is the Instantiation Script, which specifies the instantiation process so

that a framework re-user can be guided in accommodating the application specific needs

 9

into the framework’s extension points. In order to achieve a succinct process description

we have developed RDL (Reuse Description Language), a language that allows the

specification of order and state dependencies among object-oriented programming

activities that are often used when instantiating an incomplete design.

To integrate the three technologies, Features, a Framework’s Annotated Design and the

Instantiation Script, we created a mapping technique using UML trace mechanisms that

relates the flexibility represented by optional and alternative features found in the

Features Model, to extension points (hotspots) in the framework design [7]. By doing so,

the xFIT execution environment can partially generate the RDL script that is used to

tailor the framework design. We achieved this goal by creating RDL instantiation

templates that are associated with each UML-FI stereotype (see Section 5) and executed

when a corresponding feature was chosen.

We also have the ability to run RDL scripts that are manually created by the Framework

Designer and are not related to a Features Model. We believe that for frameworks with

several extension points, where each feature is not easily related to a single design

element such as a class, the mapping approach may not be feasible.

Our approach consists of two different phases: the Framework Engineering Phase and the

Framework Instantiation Phase. During the Framework Engineering Phase, the

framework designer (or engineer) needs to develop the framework and provide the

mechanisms to facilitate its reuse (Figure 2). In other words the framework design must

 10

be annotated using UML-FI stereotypes and tagged values and a Features Model must be

created to represent the framework’s characteristics at a high-level of abstraction. This

Features Model will also expose aspects of the framework’s flexibility and, finally, relate

features and UML-FI design elements. It is possible to skip the last phase and to create

the RDL scripts manually.

Figure 2 – Framework engineering process.

The Framework Instantiation Time is when a framework’s extension points are

completed with application-specific increments [28]. In this context, the framework

instantiation process, which shows how to produce the software product (the application),

begins with the stakeholder2 selecting the features to be included in the specific software

2 Stakeholder in our scenario is someone interested in the framework reuse.

 11

product. The selected characteristics (shown in dark gray in the Features Model of Figure

1), together with the annotated class model, will be provided as input into the xFIT tool

that will generate an instantiation script containing the necessary steps to instantiate an

application with the desired characteristics.

The proposed instantiation process finishes when the instantiation script is executed using

an RDL execution environment such as xFIT (Figure 3c). The RDL execution

environment will then modify the original design of a framework by inserting/removing

some design elements to adapt the hotspots to meet the requirements of a specific

application. It is worth mentioning that this last step is not entirely automatic in that the

application developers need to provide additional information such as class names,

attribute names and types, and method names.

Figure 3 illustrates the RDL execution scenario. Figure 3a represents a fragment of a

framework design in UML containing a class Figure, which is an extension point, and the

associated RDL script. The Instantiation occurs when the application increments

represented by the classes Circle and Square (Figure 3b) are combined with the

framework design.

 12

Figure 3 RDL Execution approach

Although the best way to follow an RDL script is using an execution environment such as

xFIT, we believe that RDL commands can be processed by humans. We base this

assumption on the fact that RDL syntax and semantics are based on ordinary

programming activities thus facilitating understanding.

We close this overview with an important additional remark: the documents used in our

approach are XML-based. We have adopted the XML technology, since it has broad

support from standards bodies such as W3C and it is commonly accepted or adopted by

the academic community and industry. Moreover, based on our past experience [33][13],

XML models are suitable for program manipulation and can be translated to formal

models that can be validated.

 13

5 UML-FI

In this section we present the main UML-FI (UML for Framework Instantiation) notation

constructs, an extension we have developed to specify object-oriented frameworks and

the instantiation of their extension points. UML-FI is a UML profile containing

stereotypes and tagged-values (i.e., UML extension mechanisms) to indicate, at the

design level, the object-oriented activities that should be performed when instantiating a

framework.

Notation Base Class Description
<<CLASS_EXTENSION>> class Indicates that the current class requires subclassing.
<<PATTERN_CLASS_
EXTENSION>>

class Indicates that the current class requires subclassing, which is
achieved through the application of a pattern.

<<SELECT_CLASS_ EXTENSION>> class Indicates that the current class requires subclassing, which is
achieved by selecting one of its known subclasses.

<<METHOD_EXTENSION>> method Indicates that the current method requires redefinition in a
subclass.

<<PATTERN_METHOD_ EXTENSION>> method Indicates that the current method requires redefinition in a
subclass, which is achieved with the application of a pattern.

<<VALUE_ASSIGNMENT_ EXTENSION>> attribute Indicates that the current attribute requires a value.
<<VALUE_SELECTION_ EXTENSION>> attribute Indicates that the current attribute requires a value, which can

selected from a list of given values.

Table 1 – UML-FI Stereotypes.

Tag Name Stereotype Description
Presence Class, Attribute, Method Qualifies the design element as mandatory in the final design. The default

is “presence = mandatory”.
{mandatory, optional}

Table 2 – UML-FI Tagged values.

It is possible to indicate in UML-FI most basic object-oriented programming activities

such as class extension, method redefinition and value assignment (useful for Blackbox

framework instantiation [1]). These activities are defined by means of annotations

(stereotypes and tagged values shown in Tables 1 and 2) in class diagrams (Figure 4).

 14

Figure 4 – Class extension stereotype.

.

In addition, extension points can also be mandatory or optional. Therefore, the re-user

can decide if the associated design element will (or will not) be present in the final

application. UML-FI indicates optional and mandatory aspects as a tagged-value named

presence that can assume the values OPTIONAL or MANDATORY (Figure 5).

Figure 5 – Optional representation.

6 RDL

Instantiation processes tailor a framework’s design and code based on carefully

developed elements called Extension Points3 (EP). In order to adapt a framework’s EP, a

re-user must execute a set of Instantiation Tasks (IT) that are closely related to ordinary

activities performed when programming. For instance, a whitebox framework’s ITs can

be related to specializing classes and/or redefining methods; on the other hand, a

blackbox framework’s ITs are focused on parameterization. Thus a language built to

3 In this work the terms Extension Points and Hotspots are equivalent.

 15

specify a process to control the execution of ITs must use the same rationale adopted

when programming the framework.

In order to systematize instantiation processes RDL allows the definition of an

instantiation script document, containing the ITs required to derive the application from

the framework’s design and code. Moreover, ITs must be executed in a proper sequence,

which can also be specified within a RDL script.

The structure of an RDL instantiation script is the same as found in most imperative

programming languages, namely program constructs and procedures. However, in order

to follow the usual framework instantiation terminology, we use the term Cookbook [9]

to represent a program and Recipe [9] to represent a procedure. Every Cookbook must

have a Recipe called main that identifies the instantiation process execution entry point as

shown in Code 1.

COOBOOK Example
 RECIPE main
 // do something
 END_RECIPE;
END_COOKBOOK

Code 1 – A Cookbook example.

Note that the instantiation process is totally dependent on the final application domain

that constrains the extension points to a proper set of values. For instance, in an

eCommerce framework, the elements can be books, CDs or cars and are not known

during the framework engineering but only during instantiation. As a result, the RDL

instantiation script does not have all the information needed to transform the framework

design automatically into the application design. Instead, it must interrogate the re-user

 16

for the missing information. That is why we refer to our instantiation approach as being

systematic, not automatic.

6.1 Manipulated Elements

The instantiation process must produce an application from an incomplete model, since

extension points represent flexible characteristics in the model that can not be specified

during framework design. For instance, a designer developing a framework for the

eCommerce domain must not fix the element under trade, thus providing more reuse

opportunities.4 Therefore, during instantiation of the eCommerce framework, new design

elements to specify the product under trade must be added to bring the model to a

complete and coherent state.

In our case, a model is a slight adaptation of UML Class Diagrams (see UML-FI in

Section 5) and what RDL does is provide syntax and semantics to a process that

manipulates meta-elements such as the ones present in the UML meta-model Abstract

Syntax [34]. We did not use high level elements found in the meta-model hierarchy such

as ModelElement, Feature or Classifier, instead we used specialized elements such as

Class, Method, Attribute and Relationship, in order to reduce the number of elements

RDL needs to manipulate and improve clarity. Moreover, using those specialized

elements led to a straightforward connection with ordinary object-oriented programming

principles.

4 According to Parnas [35], the amount of reuse opportunities increases when you do not

restrict the representation of an application family to a specific domain.

 17

It is important to mention that the meta-class ReusableElement was introduced in the

UML meta-model as a super class for Class, Method and Attribute, and is manipulated by

RDL scripts. In fact, some operation and attributes are common to all design elements,

and using inheritance to capture the common features is an obvious choice.

Although UML focuses on design, code is also an important element in the reuse process.

For that reason we decided to incorporate the representation of Programming Language

idioms using the UML element named ProcedureExpression [34]. When an RDL script

uses a ProcedureExpression, it becomes tied to that language and can not be used in

instantiation processes with different languages. However, a framework is usually the

incomplete version of a running application, being actually represented in a programming

language that has already been chosen.

Another UML element that is manipulated with RDL is a Note. Notes allow framework

designers to add extra documentation and instantiation hints. For example, assigning

values to the parameters found in Blackbox Frameworks can be done anywhere in the

code so there is no way to determine where such assignment will take place during the

instantiation process. Sticking a note to a parameter with some documentation stating that

the assignment must occur and listing the elements involved provides a hint about the

parameter instantiation to the framework re-user.

 18

6.2 RDL Commands

Commands in RDL must ultimately cover object-oriented programming activities and

ordinary programming statements such as loop, assignment and conditional. Although

our underlying principle to create RDL was the same adopted by Meyer [36], who states

that a language must be concise with few and seamless commands, our goal was also to

raise RDL reuse expressiveness. To achieve this goal, we have incorporated a set of

language elements specifically related to instantiation tasks and have organized RDL

statements into five groups according to their purpose within the instantiation process:

Basic Programming Tasks, Instantiation Specific Tasks, Pattern Specific Tasks, Sequence

Specific Tasks and Miscellaneous Tasks (See Section 6.3).

The following sections 6.3 to 6.8 present RDL from its execution perspective, showing

how design and code are changed after the execution of a command. Each Instantiation

Task is presented in a table using the structure Command, Syntax, Description, Code and

Design, where:

⇒ Command – Specifies the Command name to be used in a informal manner.

⇒ Syntax – Specifies the command sentence structure to be used within the RDL

script. In some cases the notation used is similar to C functions as in as

return_type CommandName (parameter_list), where return_type specifies the

type of the returned element; CommandName is the name of the command; and

parameter_list is a placeholder to receive arguments.

⇒ Description – Provides a textual description to the task intention.

⇒ Comments – Provides extra information when needed (this part is optional).

⇒ Code – Shows an example of use of the command within a RDL script.

⇒ Design – Illustrates how design is modified after the RDL script execution.

 19

In order to provide a more general and complete representation, a BNF-like specification

is shown in Appendix I.

6.3 Basic Programming Tasks

Basic Programming Tasks (BPTs) represent ordinary design and code manipulation

activities and are presented in Tables 3 to 7.

Command: Class Creation

Syntax: class new_class (cName)

Description: Indicates the action of creating a class named cName in the design. Returns the created

class for further manipulation.

Code:

COOBOOK Example
 RECIPE main
 // adding a new class
 NEW_CLASS (Class2);
 //…
 END_RECIPE;
END_COOKBOOK

Design:

Table 3 – Class Creation Command

Command: Method Creation

Syntax: method new_method (c, metName)

Description: Indicates the action of creating a method named metName in class c. Returns the created

method.

Code:

COOBOOK Example
 RECIPE main
 // adding a new method
 NEW_METHOD (Class1,operation1);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 4 – Method Creation Command

 20

Command: Attribute Creation

Syntax: attribute new_attribute (c, attName)

Description: Indicates the action of creating an attribute named attName in class c. Returns the created

attribute.

Code:

COOBOOK Example
 RECIPE main
 // adding a new attribute
 NEW_ATTRIBUTE (Class1,attribute1);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 5 – Attribute Creation Command

Command: Inheritance Definition

Syntax: void new_inheritance (superC, subC)

Description: Indicates the action of establishing an inheritance relationship between classes superC and

subC.

Code:

COOBOOK Example
 RECIPE main
 // defining an inheritance
 NEW_INHERITANCE(Class1,Class2);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 6 – Inheritance Definition Command

Command: Code Assignment

Syntax: void add_code (class, method, code_string)

Description: Indicates the action of assigning a code to the given method.

Comments: In order to provide visual feedback a Note is also attached to the class parameter.

 21

Code:

COOBOOK Example
 RECIPE main
 // assigning code
 ADD_CODE(Class1,operation1,”{ // this
is the code to be added }”);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 7 – Code Assignment Command

6.4 Instantiation Specific Tasks

Instantiation Specific Tasks (ISTs) raise the abstraction level found in RDL scripts since

they provide a vocabulary used when dealing with object oriented framework reuse. ISTs

typically combine some basic tasks found in the Basic Programming Task group and they

are specified in Tables 8 to 13.

Command: Element Choice

Syntax: boolean element_choice (el)

Description: Indicates the action of choosing if the element el will be present in the final application

design. Returns true if the element was chosen; false otherwise.

Comments: This action depends on information only available at instantiation time, and thus it must

prompt the re-user for feedback. Note that the framework implementation must be carefully developed to

support the absence of the element to avoid compile time errors such as “element not found.”

Code:

COOBOOK Example
 RECIPE main
 // choosing an element
 ELEMENT_CHOICE (C1.aComponent);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 8 – Element Choice Command

 22

Command: Class Extension

Syntax: class class_extension(C, cName)

Description: Indicates the action of extending class C with a new class named cName. Returns the

created class.

Comments: This action raises the expressiveness of RDL scripts since it executes both commands, Class

Creation and Inheritance Definition, to achieve its goal.

Code:

COOBOOK Example
 RECIPE main
 // extending a class1
 CLASS_EXTENSION (Class1,NewClass);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 9 – Class Extension Command

Command: Select Class Extension

Syntax: class select_class_extension(C)

Description: Indicates the action of extending class C by selecting one of its concrete subclasses.

Returns the selected class.

Comments: This action lists all concrete subclasses of class C so that the re-user can choose one. It is

suited for situations where some possible adaptations to the given extension point represented by the

class C are already provided by the framework design.

It worth mentioning that the unselected classes will be removed from the application design if and only

if there is no further reference to it.

Code:

COOBOOK Example
 RECIPE main
 // extending a class1 through
selection
 SELECT_CLASS_EXTENSION (class1);
 //
 END_RECIPE;
END_COOKBOOK

Design:

 23

Table 10 – Select Class Extension Command

Command: Method Extension

Syntax: void method_extension (superC, metName, subC)

Description: Indicates the action of redefining method metName in subclass subC, where metName is a

method declared in superC and superC is super class of subC.

Comments: This action raises the expressiveness of RDL scripts since it executes the command Method

Creation and checks the inheritance relationship between the two classes.

Code:

COOBOOK Example
 RECIPE main
 // redefining a method
METHOD_EXTENSION (Class1, metM, Class2);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 11 – Method Extension Command

Command: Value Assignment

Syntax: void value_assigment (C, attName , V)

Description: Indicates the action of assigning the value V to attribute attName of class C.

Comments: Since this action deals with code not design, the result of its execution is a note attached to

class C. The syntax used in the note is the same as in C, i.e., attName = V.

 24

Code:

COOBOOK Example
 RECIPE main
 // assigning a value
VALUE_ASSIGNMENT(Class1, attA, 1);
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 12 – Value Assignment Command

Command: Value Selection

Syntax: value value_assigment (C, attName , L)

Description: Indicates the action of assigning a value from the list L to attribute attName of class C.

Comments: Since this action deals with code not design, the result of its execution is a note attached to

class C. The syntax used in the note is the same as in C, i.e., attName = V.

Code:

COOBOOK Example
 RECIPE main
 // choosing a value
VALUE_ASSIGNMENT(Class1, attA, (1,2,3));
 //
 END_RECIPE;
END_COOKBOOK

Design:

Table 13 – Value Selection Command

6.5 Pattern Specific Tasks

Pattern Specific Tasks support the assembly of several RDL commands into a special

recipe, the Pattern Script, which is developed to render a sequence of instantiation actions

that are relevant for the Framework’s domain. For example, when instantiating the

HotDraw [9] framework there must be a task related to the specification of drawing

elements. As a result, for every drawing element that the HotDraw instance makes

available in its palette, it is mandatory to provide its name, its icon and its associated

 25

drawing tool. To accomplish this goal several interconnected parts of HotDraw’s design

must be changed, and, for this reason, grouping such activities in a Pattern Script is

recommended.

Another goal of Pattern Scripts is to promote reuse of RDL activities in recurrent

instantiation processes by means of a name, in the same way as Design Patterns (that was

the reason for introducing a Pattern name in the script). We illustrate the Pattern Specific

Tasks in Tables 14 and 15 using some well-known Design Patterns.

Command: Pattern Class Extension

Syntax: void pattern_class_extension (C, patName, L)

Description: Indicates the action of extending class C through pattern patName using the parameters

present in the list L.

Comments: Pattern Class extension creates at least one subclass of class C in the final design and maybe

adds other design elements specified in the pattern script. The way the list of parameters is used is totally

dependent on the way the pattern script is implemented.

The example bellow shows how the Design Pattern AbstractFactory can be specified and applied to

extend a class.

Code:

COOBOOK Example
 RECIPE main
 // pattern class extension
PATTERN_CLASS_EXTENSION(AbsFactory,
AbstractFactoryPat,(AbsFactory
,AbsProduct));
 //
 END_RECIPE;
END_COOKBOOK

Pattern Script:

PATTERN AbstractFactoryPat (CLASS
AbsFactory , CLASS AbsProduct)
 // This is the pattern script
 c1 = CLASS_EXTENSION (AbsFactory,?);

METHOD_EXTENSION(AbsFactory,createProduct,
c1);

 LOOP
 CLASS_EXTENSION (AbsProduct,?);
 END_LOOP;

END_PATTERN

Table 14 – Pattern Class Extension Command

 26

Command: Pattern Method Extension

Syntax: void pattern_method_extension (superC, metName, subC, patName, list)

Description: Indicates the action of redefining method metName in subclass subC through pattern

patName using the parameters present in the list L.

Comments: Pattern Method extension redefines the method metName in subclass subC and maybe adds

other design elements specified in the pattern script. The way the list of parameters is used is totally

dependent on the way the pattern script is implemented.

Code:

COOBOOK Example
 RECIPE main
 // pattern method extension
PATTERN_METHOD_EXTENSION(Subject,
request,
RealSubject,StrategyPat(Subject,request,re
alSubject));
 //
 END_RECIPE;
END_COOKBOOK

Pattern Script:

PATTERN StrategyPat (CLASS Subject, METHOD
request, STRING realSubject)
 // This is the pattern script
 c1 = CLASS_EXTENSION (Subject,?);
 m1 =
METHOD_EXTENSION(Subject,request,c1);
 NEW_ATTRIBUTE (c1,realSubject);
 ADD_CODE(c1,m1,”//add code …”);

END_PATTERN

Design:

Table 15 – Pattern Method Extension Command

6.6 Sequence Specific Tasks

Sequence Specific Tasks (SSTs) describe the way RDL commands are combined in the

execution flow (Tables 16 to 22). As in most imperative languages, commands need to

be organized in a special order so that a particular computation occurs. For instance,

when adding two numbers, someone needs to know their values prior to calling the sum

operation. Instantiation processes are no different since instantiation tasks must tailor

designs in an order that is stipulated by the framework developer.

Besides sequencing, which is related to order dependency, RDL also allows the

specification of state dependency indicating if a design element is required in the final

 27

application. The main difference between the two dependencies is that state dependencies

do not enforce a specific execution order between two or more commands, but only state

that the commands must be executed, which is quite a common situation when

instantiating frameworks used in product lines based on blackbox components.

It’s worth mentioning that SSTs are represented using the infix notation for syntactic

compliance to languages as C++ and Java.

Command: and (#)

Syntax: cmd1 # cmd2

Description: Indicates that both commands cmd1 and cmd2 must be executed in that order.

Comments: The and sequence is naturally expressed in RDL when placing commands line after line, but

in some cases there is a need to specify it within the current line.

Code:

COOBOOK Example
 RECIPE main
 // and
 CLASS_EXTENSION (Class1,ClassA) #
CLASS_EXTENSION (Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design:

Table 16 – and Command

Command: or (o)

Syntax: cmd1 o cmd2

Description: Indicates that only one command should be executed.

Comments: The or sequence interrogates the framework re-user which option he/she is willing to

execute.

 28

Code:

COOBOOK Example
 RECIPE main
 // or
 CLASS_EXTENSION (Class1,ClassA) o
CLASS_EXTENSION (Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design:

Table 17 – or Command

Command: Parallel Execution

Syntax: cmd1 || cmd2

Description: Indicates that cmd1 and cmd2 can be executed concurrently.

Comments: The || sequence is suited to specify framework instantiation processes that can be handled

by separate teams. It is similar to fork representation used in UML Activity Diagrams

Code:

COOBOOK Example
 RECIPE main
 // parallel
 CLASS_EXTENSION (Class1,ClassA) ||
CLASS_EXTENSION (Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design using an UML fork symbol to represent

concurrency.

Table 18 – Parallel Execution Command

 29

Command: State Dependency

Syntax: cmd1 requires cmd2

Description: Indicates that cmd1 needs (depends on) the outcome from cmd2 to produce a coherent

design for the framework instance without constraining the time when cmd2 must be executed

Comments: A framework can represent a variable characteristic using several extension points that are

scattered through its design elements. In order to achieve a consistent representation of such variability,

the instantiation of those extension points must be related somehow by dependency rules that bind a

specific command to another.

Code:

COOBOOK Example
 RECIPE main
 // requires
 CLASS_EXTENSION (Class1,ClassA)
requires CLASS_EXTENSION (Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design:

Table 19 – State Dependency Command

Command: Order Dependency

Syntax: cmd1 requires before | requires after cmd2

Description: Indicates that a time dependency between cmd1 and cmd2. Requires before indicates that

cmd1 must be executed previous to cmd2. Requires after indicates cmd1 must be executed subsequent to

cmd2.

Comments: Order dependency commands have the same rationale of state dependency commands along

with a time constraint described in the commands execution flow.

 30

Code:

COOBOOK Example
 RECIPE main
 // requires
 CLASS_EXTENSION (Class1,ClassA)
requires before CLASS_EXTENSION
(Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design:

Table 20 – Order Dependency Command

Command: Synchronicity

Syntax: cmd1 requires sync cmd2

Description: Indicates that the execution of cmd1 should be synchronous to cmd2, i.e., the instantiation

process cannot continue till both commands are completed.

Comments: The requires sync command is suited for the synchronization of parallel instantiation

processes that can be handled by separate teams. It is similar to join representation used in UML Activity

Diagrams

 31

Code:

COOBOOK Example
 RECIPE main
 // sync
 CLASS_EXTENSION (Class1,ClassA)
requires sync CLASS_EXTENSION
(Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design using an UML join symbol to represent

concurrency.

Table 21 – Synchronicity Command

Command: Mutual Exclusion

Syntax: cmd1 requires exclusive cmd2

Description: Indicates that the execution of cmd1 and cmd2 are mutually exclusive, i.e. if cmd1 is

present in the final design, cmd2 must not.

Comments: Extension points can represent alternatives in a domain that can not share the same solution

space (framework instance) due to functional incompatibility.

 32

Code:

COOBOOK Example
 RECIPE main
 // requires exclusive
 CLASS_EXTENSION (Class1,ClassA)
requires exclusive CLASS_EXTENSION
(Class2,ClassB);
 END_RECIPE;
END_COOKBOOK

Design:

Table 22 - Mutual Exclusion Command

6.7 Miscellaneous Tasks

Miscellaneous Tasks (MT) are those tasks that do not fit well in the groups previously

mentioned. They are typically related to RDL completeness as an imperative language

(Tables 23 to 25).

Command: Repetition

Syntax: loop cmds end_loop

Description: Indicates that cmds are repeated a number of times.

Comments: The number of iterations is defined by the re-user when interacting with the RDL execution

environment.

 33

Code:

COOBOOK Example
 RECIPE main
 // loop
 LOOP
 CLASS_EXTENSION (Class1, ?);
 END_LOOP;
 END_RECIPE;
END_COOKBOOK

Design:

Table 23 – Repetition Command

Command: Assignment

Syntax: var = cmd1

Description: Indicates that the result of execution of cmd1 is stored in var.

Comments: Some commands return the value of a particular execution. Storing such value for further

use in the instantiation script helps in linking commands in an organized way.

Code:

COOBOOK Example
 RECIPE main
 // assignment
 c1 = CLASS_EXTENSION (Class1,?);
 NEW_METHOD(c1,M1);

 END_RECIPE;
END_COOKBOOK

Design:

Table 24 – Assignment Command

 34

Command: Re-user Interaction

Syntax: ?

Description: Indicates that the RDL execution environment must interact with the re-user to obtain

domain specific information.

Comments: Extension points are placeholders deliberately left “open” by the designer at framework’s

engineering time for adaptation during its instantiation time. For that reason some information needs to

be given by the re-user in order to accommodate the application specific needs.

Code:

COOBOOK Example
 RECIPE main
 // reuser interaction
 CLASS_EXTENSION (Class1,?);
 END_RECIPE;
END_COOKBOOK

Design:

Table 25 – Re-user Interaction Command

6.8 Recipes, Parameters & Types

RDL also allows the specification of procedures called Recipes. A recipe is used to

modularize RDL scripts, thus improving readability. As shown in Table 26, a Recipe has

a name, a list of parameters and a set of commands (i.e., recipe_body).

Command: Recipe

Syntax: RECIPE name (parameter_list) recipe_body END_RECIPE;

Description: Specifies a recipe im RDL.

Comments: Allows modularization of RDL scripts.

 35

Code:

COOBOOK Example
 RECIPE doSomething (CLASS a)
 CLASS_EXTENSION (Class1,a);
 END_RECIPE;
END_COOKBOOK

Design: if a equals NewClass

Table 26 – Recipe Example.

In order to invoke a recipe an RDL programmer should only state its name and required

parameters (see Table 27).

Command: Recipe to Create two new classes

Syntax: RECIPE Create2classes();

Code:

COOBOOK ACookbook
 // recipe to create 2 new classes
 // named A and B
 RECIPE Create2NewClasses()
 NEW_CLASS (A);
 NEW_CLASS (B)
 END_RECIPE;

 RECIPE main
 Create2NewClasses();
 END_RECIPE;
END_COOKBOOK

Design after executing ACookbook

Table 27 Recipe Invocation.

In the current version of RDL we did not adopt strong typing since the result variables

declared as part of an assignment command and parameters used in Recipes do not need

to be typed. Not typing variables and parameters simplified the implementation of the

RDL execution environment.

On top of the Recipes foundation we have created the concept of Pattern scripts. Patterns

are used as placeholders for framework instantiation activities that solve recurring

instantiation problems. For example, when instantiating HotDraw [9], for every drawing

 36

element that a HotDraw instance makes available on its palette, it is mandatory to provide

its name, its icon and its associated drawing tool. Thus, representing such activities using

the RDL rationale leads to creating a Pattern script (Table 28) that gathers the commands

required to adapt the HotDraw model. It’s worth mentioning that Patterns are supposed to

represent problem-solution structures to facilitate the match between application needs

and the framework’s concepts. For instance, in the case of Hotdraw, which is a

framework for drawing, the most common problem is “How do I create new Figures?”

and so a pattern can help solve this problem.

Command: Pattern to Create New Figures

Syntax: PATTERN InstantiateFigure (DrawingEditor de)

Code:

PATTERN InstantiateFigure (DrawingEditor
de)
 // create the new figure
 fig = CLASS_EXTENSION(Figure,?);
 METHOD_EXTENSION(Figure, getName, de);
 METHOD_EXTENSION(Figure, getIcon, de);
 …
END_PATTERN

COOKBOOK HotCookbook
RECIPE main
 de = CLASS_EXTENSION(DrawingEditor,?);
 PATTERN_CLASS_EXTENSION(de,
 InstantiateFigure,(de));
END_RECIPE;
END_COOKBOOK

Design after executing HotCookbook

Table 28 – Pattern Example.

7 RDL Execution Model

The RDL approach is intended to assist the framework instantiation process by providing

a script and underlying software system to run and control the instantiation activities. For

this reason, RDL needs an underlying execution environment capable of transforming

commands into a set of low level instructions that change the state of inputs, which in our

case are UML models.

 37

In order to organize the RDL execution environment we have developed a Java-based

prototype specified in the architecture shown in Figure 6: a Compiler, a Virtual Machine,

the XMIProxy, a UserInterface and RuntimeLibrary.

The RDL Compiler validates RDL scripts and prepares a set of information required for

execution. It starts by analyzing the script’s lexical and semantic structure to check if the

language tokens and commands are properly used. Then, this compiler creates a table

with instantiation instructions by compiling high-level instantiation commands, such as a

CLASS_EXTENSION, into a sequence of low-level commands, such as a

NEW_CLASS, NEW_INHERITANCE pair for this case. In addition the compiler

generates additional information such as the variables allocation list and the state and

order dependency list.

Once the input stream is validated and the low-level information is in place, the RDL

Virtual Machine (RVM) can start by executing the set of instructions found in the

Instantiation Instruction table as shown in Figure 6. During execution, the RVM must

tailor the UML model and incorporate the new design elements. This step can be

achieved by manipulating the UML XMI representation as an XML document using

translators written in XSL [40]. However, as we find the manipulation of XMI in its

“natural form” cumbersome and, given that the relationships among design elements are

scattered in the representation and the elements are indirectly accessed via several IDREF

tags, we have developed the XMIProxy component, which is responsible for creating an

in memory version of an UML model represented in XMI.

 38

The XMIProxy component houses the code required for XMI manipulation. It is capable

of reading/writing XMI files and creating an in-memory class space, containing the

classes, methods and attributes for the input model. By adding new elements to the class

space by invoking the XMIClass.createClass() method, it is possible to manipulate the

model using the RDL script commands.

Figure 6 – RDL Execution Environment.

The RDL environment also has a UserInterface library where the dialogs required for re-

user input (e.g., prompting the re-user for a new class name) are defined.

To run this environment a re-user must specify two input files5, one with the RDL script

and the other with the framework design expressed in UML-FI, which is XMI. The XMI

file will then be manipulated and saved as a new file preserving the original. Since the

5 Those are the files used by the RDL execution environment and that is why the Features Model is not

used here.

 39

process is not totally automated, during its execution the re-user also needs to provide

some information to the RDL environment, indicating items such as new names, when to

finish a loop, or which path to follow in a OR command.

8 The JUnit Illustrative Example

This section provides several instantiation scripts to show how RDL can be used to tailor

framework design. We have chosen JUnit Version 3.8 [37] for this illustration, as it has

substantial documentation and tool support. Although JUnit is a small framework with a

few design elements (approximately 9 classes and 50 methods), it is widely used by the

software developer community and thus it is used to demonstrate the rationale behind

various instantiation process scripts.

8.1 JUnit Specification

JUnit is an object-oriented whitebox framework [1] built to provide developers with a

standard and easily used interface for defining (coding) and running test cases. JUnit’s

functionality is expressed in a relatively simple design as presented in Figure 7.

 40

Figure 7 Junit design.

Taking into account JUnit’s reuse specification (instantiation process), its design can be

reduced to two classes: TestCase and TestResult (Figure 8).

⇒ TestCase - Provides placeholders (methods to be extended) for test coding and

running. Its reuse is mandatory and must be done through inheritance and method

redefinition.

⇒ TestResult - Collects test results and presents them in a textual fashion. Its reuse is

optional and must be done through inheritance and method redefinition.

 41

Figure 8 – UML-FI Diagram specifying JUnit’s Extension Points.

Although JUnit’s reuse deals with few classes, the re-user may have to manage different

reuse strategies and different reuse restrictions. According to its documentation, JUnit

can be applied in a simple test or in a fixture for multiple tests; it can change the

appearance of the Result or be applied in complex development environments. Each of

these reuse strategies has its pitfalls and should be specified carefully to provide an

accurate JUnit instance.

In the next sections we provide a thorough representation of each JUnit reuse strategy

accompanied by the corresponding UML-FI representation and RDL script.

8.2 TestCase – One Single Test

8.2.1 Instantiation Specification

The specification was extracted from the junit.org cookbook [37]:

 42

⇒ Create an instance of TestCase () – In RDL means subclass TestCase()

⇒ Override the method runTest() and fill it with test code

8.2.2 UML-FI Representation

8.2.3 RDL Script

COOBOOK JunitSimple
 RECIPE main
 testClass = CLASS_EXTENSION(TestCase,?);
 METHOD_EXTENSION(TestCase,runTest, testClass);
 END_RECIPE;
END_COOKBOOK

Code 2 RDL Script to instantiate JUnit

8.3 Fixture – Multiple Tests

8.3.1 Instantiation Specification

The specification was extracted from the junit.org cookbook [37]:

⇒ Create a subclass of TestCase

⇒ Override setUp() to initialize the variables

⇒ Override tearDown() to release any permanent resources you allocated in setUp

⇒ Add an instance variable for each part of the fixture

⇒ For each test implement a method which interacts with the fixture

 43

8.3.2 UML-FI Representation

8.3.3 RDL Script

COOBOOK JunitFixture
 RECIPE main
 testClass = CLASS_EXTENSION(TestCase,?);
 METHOD_EXTENSION(TestCase,setUp,testClass);
 METHOD_EXTENSION(TestCase,teardown,testClass);
 LOOP
 NEW_ATTRIBUTE(testClass,?);
 END_LOOP
 LOOP
 NEW_METHOD(testClass,?);
 END_LOOP
 END_RECIPE
END_COOKBOOK

Code 3 RDL Script for Fixture Example

8.4 TestResult - Changing Results

8.4.1 Instantiation Specification

The specification was extracted from the junit.org cookbook [37]:

⇒ Create your Testcase class as above

⇒ Create a subclass of TestResult

⇒ Add a new method to meet your requirements

⇒ Override createResult

⇒ Instantiate the new TestResult subclass with the overridden createResult

 44

8.4.2 UML-FI Representation

8.4.3 RDL Script

//without pattern
COOBOOK JunitChangingResult
 RECIPE TestCreation RETURNS CLASS
 testClass = CLASS_EXTENSION(TestCase,?);
 METHOD_EXTENSION(TestCase,runTest, testClass);
 RETURN testClass;
 END_RECIPE

 RECIPE main
 // call test creation recipe
 testClass = TestCreation();
 resultClass = CLASS_EXTENSION(TestResult,?);
 METHOD_EXTENSION(TestResult, addFailure , resultClass);
 METHOD_EXTENSION(TestResult, addError, resultClass);
 METHOD_EXTENSION(TestResult, startTest, resultClass);
 METHOD_EXTENSION(TestResult, endTest, resultClass);

 METHOD_EXTENSION(TestClass,createResult, testClass);
 // this recipe does not provide the TestResult subclass
 // creation code
 END_RECIPE;
END_COOKBOOK

Code 4 RDL Script for the Changing Result example

We can modify the JunitChangingResult cookbook to illustrate the use of a pattern

instantiation that will reduce the effort needed to obtain the final application. According

 45

to JUnit’s documentation, the sub-classes from TestClass and TestResult must be

connected at the code level during the execution of the method createResult, It is not

possible to make this connection at Framework Engineering Time because the

subclasses’ names are not known. This problem was solved by adopting the Design

Pattern Factory [41] that was created to defer instantiation to subclasses.

//--
//with pattern
COOBOOK JunitChangingResult
 RECIPE main
 // call test creation recipe – not declared here to save space
 testClass = TestCreation();

 resultClass = CLASS_EXTENSION(TestResult,?);
 METHOD_EXTENSION(TestResult, addFailure , resultClass);
 METHOD_EXTENSION(TestResult, addError, resultClass);
 METHOD_EXTENSION(TestResult, startTest, resultClass);
 METHOD_EXTENSION(TestResult, endTest, resultClass);

 PATTERN_METHOD_EXTENSION(TestCase, createResult, testClass, Factory, (TestCase
testClass, TestResult, resultClass createResult));
 END_RECIPE;
END_COOKBOOK

PATTERN Factory (CLASS creator, CLASS concreteCreator, CLASS product, CLASS
concreteProduct, METHOD factoryMethod)

 m1 = METHOD_EXTENSION(creator, factoryMethod, concreteCreator)
 ADD_CODE(concreteCreator,m1,”return new ” + concreteProduct + ”;”)

END_PATERN

Code 5 RDL Script for the Changing Result Example using the Factory Pattern.

9 Conclusions and Future Work

In this paper we present RDL (Reuse Description Language), which is an approach to

specify framework instantiation processes. RDL is an imperative language that supports

representing framework instantiation activities in a script form named Cookbook that can

be processed by a tool, thus guiding re-users through the instantiation process.

Instantiation activities in RDL are related to design manipulation and sequencing,

 46

tailoring designs at specific extension points by means of typical object-oriented

programming activities.

An important aspect of our approach is the ability to represent concurrent instantiation

activities, which facilitates the specification of distributed instantiation processes that are

widely used in the Global Software Development scenario for reducing development

costs [3].

Compared to approaches such as Cookbooks[9] and Hooks [10], RDL provides an

explicit and a more precise way to represent instantiation activities since it does not use

natural language in its representation but uses a Domain Specific Language carefully

developed for the instantiation domain. As a result, RDL scripts can be processed by

tools, facilitating the development of Instantiation Wizards. Moreover, because of the

nature of RDL and the extensive use of XML technologies, such wizards do not need to

be hard-coded within a specific tool as is common in Product Lines approaches such as

WebML[18] and Pulse[38]. Instead RDL-based wizards can be developed declaratively

as components in Product Line Architecture environments.

There are many differences between RDL and model transformation approaches such as

UMT-QVT[42], Velocity[43], XSLT and MTL[44]. UMT-QVT works with a compact

version of XMI, the XMI-Lite, and creates an environment to encapsulate

transformations that can be specified as Java programs or XSTL scripts. However, UMT-

QVT is not suitable for handling re-user interactions and state/order dependency. XSLT

 47

has a broader use since it can be adopted to manipulate any XML file, although it suffers

from the same issues related to UMT.

Velocity [43] is a Java-based template engine supporting the definition of templates with

the VTL (Velocity Template Language). Using VTL to transform XMI files is

cumbersome since the commands must be embedded into a file usually with several lines

in XML. Moreover, VTL is designed as a one-pass transformer and thus leaves no space

for re-user interaction.

MTL [44] encloses some of our ideas although it was created as a full transformation

language. For that reason MTL is a broader language in terms of concepts and has no

special functionality to framework instantiation.

Regarding RDL usage, we have conducted experiments with frameworks other than JUnit

to validate its applicability and efficacy. In [39] the author reported the use of RDL to

specify the instantiation process for the Web-based search engine Avestruz [24] and for

the VMarket eCommerce [25] frameworks. In [33] the author presented the use of RDL

to instantiate the drawing tool framework. One of the most important results of RDL

usage can be found at [22] where the author indicates that the use of instantiation patterns

brought an increase in understanding the framework’s domain characteristics and also

avoided instantiation inconsistencies since the hotspots are pinpointed by the RDL script.

Note, however, that since the RDL tool is not fully functional, in all these cases the XMI

file generated by the RDL environment needed some minor modification. For instance,

Toacy C Oliveira ! 8/1/06 5:29 PM
Deleted: 44

 48

we did not handle the code assignment command properly as indicated in the UML

metamodel and, therefore, a return parameter must be completed by the re-user.

In future work, we want to incorporate the concept of strong typing into RDL. In this

version of RDL, variables have their types dynamically assigned depending on the use.

For instance, a variable c1 can be used to hold the return of a CLASS_EXTENSION

command, which returns a class, and in the next line of the same script the same c1

variable can be used to hold the return of a METHOD_EXTENSION command, which

returns a method. When instantiation scripts grow larger, it becomes hard to “discover”

the type of a variable by inspecting the whole script and for that reason we plan to modify

RDL to accommodate variable declaration. Some preliminary work in this direction is

presented in [22]. We are also extending our approach to handle cross-cutting concern-

based extensions and define aspect-oriented framework instantiation [46].

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the National Brazilian Research Council (CNPq).

References

1. Fayad, M.F., Schmidt, D.C., Johnson, R.E., Building Application Frameworks: Object-Oriented
Foundations of Framework Design, John Wiley and Sons, 1999.

2. Tomer,A., Goldin,L., Kuflik,T., Kimchi E., Schach S.R., Evaluating Software Reuse Alternatives:
A Model and Its Application to an Industrial Case Study IEEE Transactions on Software
Engineering, September 2004 vol. 30 n.9 p601-612

3. Herbsleb J.D. , Mokckus, A. , Finholt T.A., Grinter R.E. , An Empirical Study of Global Software
Development: Distance and Speed, p81-90, International Conference on Software Engineering,
Toronto, Canada May 2001.

 49

4. Batory, D., Cardone, R., Smaragdakis, Y.,Object-Oriented Frameworks and Product
Lines,Proceedings of the First Software Product Line Conference,p227--247, 2000

5. Oliveira, T.C., Alencar, P., Cowan, D. Filho, I.M., Lucena, C.J.P. Feature Driven Framework
Instantiation In: Ecoop, 2003, Darmstad. Workshop on Modeling Variability for Object-Oriented
Product Lines. , 2003.

6. Oliveira, T.C., Alencar, P., Cowan, D., Filho, I.M., Lucena, C.J.P. , Software Process
Representation and Analysis of Framework Instantiation, IEEE-Transactions in Software
Engineering, March 2004 p145-159

7. Filho , I. F., Oliveira, T. C., Lucena, C. J. P. A Framework Instantiation Approach Based on the
Features Model. Journal Of Systems And Software v. 73, n. 2, p. 333-349, September 2004.

8. Oliveira, T.C., Alencar, P., Cowan, D. Filho, I.M., Lucena, C.J.P Enabling Model Driven Product
Line Architectures European Workshop on MDA Canterbury UK 2004

9. Johnson, R., Documenting Frameworks Using Patterns, Proceedings of OOPSLA’92,
ACM/SIGPLAN, New York, 1992.

10. Froehlich, G., Hoover, H.J., Liu L. and Sorenson, P.G. Hooking into Object-Oriented Application
Frameworks, Proc. 19th Int'l Conf. on Software Engineering, Boston, May 1997, 491-501.

11. Ortigosa, A., Campo, M., Smartbooks: A Step Beyond Active-Cookbooks to Aid in Framework
Instantiation, Technology of Object-Oriented Languages and Systems 25, IEEE Press, June 1999.

12. V. Cechticky, E. Chevalley, A. Pasetti, W. Schaufelberger, A Generative Approach to Framework
Instantiation, Erfurt, Germany, Proceedings of GPCE, pp. 267-286, LNCS 2830 OOPSLA

13. Oliveira, T.C., Alencar, P., Cowan, D. : Towards a declarative approach to framework
instantiation Proceedings of the 1st Workshop on Declarative Meta-Programming (DMP-2002),
September 2002,Edinburgh, Scotland, p 5-9

14. Gomaa, H. ,Designing Software Product Lines with UML, Addison Wesley Object Technology
Series, July 2004

15. Czarnecki, K.. Overview of Generative Software Development. In Proceedings of Unconventional
Programming Paradigms (UPP) 2004, 15-17 September, Mont Saint-Michel, France, Revised
Papers, volume 3566 of Lecture Notes in Computer Science, pages 313–328. Springer-Verlag,
2004.

16. WebMl Documentation at www.webml.org accessed in November 2005
17. MDA Guide at http://www.omg.org/cgi-bin/doc?omg/03-06-01 accessed in November 2005
18. OCL Specification at http://www.omg.org/docs/ptc/03-10-14.pdf accessed in November 2005
19. QVT Request for proposal at ftp://ftp.omg.org/pub/docs/ad/02-04-10.pdf accessed in November

2005
20. Haeberer, A Maibaum T. The Very Idea of Software Development Environments: A Conceptual

Architecture for the ARTS Environment Paradigm. ASE 1998: 260-271
21. Carvalho S.E.R.; Cruz, S.O.; Oliveira, T.C. Second Generation Object-Oriented Development US

- Brazil Joint Workshops on the Formal Foundations of Software Systems Rio de Janeiro, May 5 -
9, 1997 and New Orleans, November 13 - 16, 1997

22. Mendonca, M., Oliveira, T.C., Alencar, P., Cowan, D., Assisting Framework Instantiation:
Enhancements to Process-Language-based Approaches. Technical Report CS-2005-25 at
University of Waterloo, School of Computer Science.

23. A. Garcia, M. Cortés, C. Lucena. “A Web Environment for the Development and Maintenance of
E-Commerce Portals Based on Groupware Approach”. Proc. of the IRMA’2001, Canada, May
2001.

24. Magalhães,J. Lucena,C.J.P. Using an Agent-Based Framework and Separation of Concerns for
the Generation of Document Classification Tools, Lecture Notes in Computer Science, Volume
2926, Feb 2003, Pages 193 - 200

25. Lucena C.J. P. Ripper, P. Fontoura, M. V-Market: A Framework for Agent eCommerce Systems
at www.almaden.ibm.com/cs/ people/fontoura/papers/www2000.pdf accessed in
Novembre 2005

26. Oliveira, T.C. ; Carvalho, S.E.R. ;Lucena C.J. P. DSSFrame - A Decision Suppot System with
Agents. Techinical Report 2000-18 Pontifícia Universidade Católica do Rio de Janeiro – Brazil
2000.

 50

27. Oliveira, T.C., Alencar, P., Cowan, D. Filho, I.M., Lucena, C.J.P. xTAO: enabling a declarative
approach to the specification of multi-agent systems Proceedings of the fourth international
workshop on Software engineering for large-scale multi-agent 2005 p1-7.

28. Mattsson, M. Evolution and Composition of Object-Oriented Frameworks, PhD Thesis,
Department of Software Engineering and Computer Science, University of Karlskrona/Ronneby,
2000.

29. Cheng, L.T. , Souza, C.R.B., Hupfer, S. , Patterson, P. , Ross, S. , Building Collaboration into
IDEs at http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=104
Accessed in November 2005

30. Fontoura,M. ,Pree,W. Rumpe, B. The UML profile for framework architectures, Addison-
Wesley, 2001

31. XMI Documentation at http://www.omg.org/technology/documents/formal/xmi.htm accessed in
November 2005

32. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M., 1998. FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architecture. In: Annals of Software Engineering, vol. 5,
143-168, Kluwer Academic Publishers, Dordrecht, Holland

33. Toacy Cavalcante de OLIVEIRA. Uma abordagem sistemática para a instanciação de frameworks
orientados a objetos. [Title in english: A systemactic approach to object oriented frameworks
intantiation] Ph.D.Thesis. Port. Presentation: 05/10/01 166 p. Advisor: Carlos José Pereira de
Lucena.

34. UML Metal Model Documentation at
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML Accessed in
November 2005

35. Parnas, D.L., On the Design and Development on Program Families, IEEE Transaction on
Software Engineering, vol. SE-2, n. 1, March 1976, 1-9

36. Meyer, B., Eiffel : The Language Prentice Hall; 1st edition ,October 1, 1991
37. JUnit Documentation found at www.junit.org Accessed in November 2005.
38. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, J. DeBaud. “Pulse: a

methodology to develop software product lines”. In: Symposium on Software Reusability, 1999.
pp. 122 – 131

39. FILHO, I,. M.. A documentação e a instanciação de frameworks orientados a objetos. [Title in
English: Documenting and instantiating object oriented frameworks] Ph.D.Thesis. Port.
Presentation: 17/04/02 184 p. Advisor: Carlos José Pereira de Lucena.

40. XSL Specification at http://www.w3.org/Style/XSL/ Accessed in November 2005
41. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Elements of Reusable Object-

Oriented Software, Addison-Wesley Publishing Company, 1995.
42. UMT Documentation at http://umt-qvt.sourceforge.net/docs/UMT_documentation_v08.pdf

Accessed in November 2005
43. Velocity Template engine at http://jakarta.apache.org/velocity/ accessed in September 2005
44. Basic MTL Manual at

http://modelware.inria.fr/static_pages/docs/html.chunked/BasicMTL_UserManual/index.html
Accessed in January 2006

45. Atkinson et. al., Component-Based Product Line Engineering with the UML, Addison-Wesley,
September 2001

46. Penczek, L., Oliveira T.C. , AFR: an Approach to Systematize Aspect-Oriented Framework
Reuse, in Second Asian Workshop on AOSD (AOAsia), co-located with ,ACM International
Conference on Automated Software Engineering (ASE), Tokyo, Japan, September 18-22 ,2006

Appendix I

In order to show its expressiveness, RDL is presented in a BNF-like description.

 51

COOKBOOK ::= Cookbook NAME IP_RECIPE* IP_MAIN end_cookbook;

IP_RECIPE ::= [COMMENT_EXP] recipe IP_NAME; IP_RECIPE_BODY end_recipe;

IP_RECIPE_BODY ::= IP_CMD*

IP_MAIN ::= recipe main IP_RECIPE_BODY end_recipe;

IP_NAME ::= NAME

IP_CMD ::= IP_ASSIGN_CMD ;|IP_EXP_CMD; |IP_LOOP_CMD;

IP_ASSIGN_CMD::= NAME = IP_BASIC

IP_LOOP_CMD ::= loop IP_RECIPE_BODY end_loop

IP_EXP_CMD ::= IP_TASK | IP_TASK # IP_TASK | IP_TASK o IP_TASK |
IP_TASK || IP_TASK

IP_TASK ::= [COMMENT_EXP] IP |[COMMENT_EXP] IP_NAME

IP ::= IP_BASIC REQUIRES_EXP*

IP_BASIC ::= IP_CLASS | IP_METHOD | IP_ATTRIBUTE | IP_ELEMENT

IP_CLASS ::= new_class |
class_extension (CLASS_EXP) |
selection_class_extension (CLASS_EXP) |
pattern_class_extension (CLASS_EXP , NAME,LIST) |
interface_implementation (CLASS_EXP , INTERFACE_EXP)

IP_METHOD ::= new_method (CLASS_EXP) |
method_extension (CLASS_EXP, CLASS_EXP, METHOD_EXP) |
pattern_method_extension (CLASS_EXP, CLASS_EXP,
METHOD_EXP , NAME, LIST)

IP_ATTRIBUTE ::= new_attribute (CLASS_EXP)
value_selection (CLASS_EXP, ATTRIB_EXP, LIST) |
value_assignment (CLASS_EXP, ATTRIB_EXP)

IP_ELEMENT::= element_choice (ELEMENT)

ELEMENT::= CLASS_EXP | METHOD_EXP | ATTRIB_EXP

CLASS_EXP ::= NAME

METHOD_EXP ::= NAME

ATTRIB_EXP ::= NAME

INTERFAC_EXP ::= NAME

LIST::= (LIST_EXP)

LIST_EXP::= STRING_EXP , LIST_EXP | STRING_EXP

NAME::= IDENTIFIER_EXP

REQUIRES_EXP::= requires ORDER_EXP |
requires ELEMENT

ORDER_EXP::= before IP_TASK |after IP_TASK | sync IP_TASK | exclusive IP_TASK

COMMENT_EXP ::= // STRING_EXP | COMMENT_EXP

 52

STRING_EXP ::= String

