
Assisting Framework Instantiation:
Enhancements to Process-Language-based Approaches

Technical Report CS-2005-25 (August 2005)

School of Computer Science, University of Waterloo

Marcilio Mendonca
 University of Waterloo, Canada

marcilio@csg.uwaterloo.ca

Paulo Alencar
University of Waterloo, Canada

palencar@csg.uwaterloo.ca

Toacy Oliveira
PUC-RS, Brazil

toacy@inf.puc-rs.br

Donald Cowan
University of Waterloo, Canada

dcowan@csg.uwaterloo.ca

Abstract

Application frameworks have been successfully
used as valuable tools to improve software quality
while reducing development efforts. Nevertheless,
frameworks still face important challenges in or-
der to be widely adopted. In particular, framework
instantiation is still a painful task requiring appli-
cation developers to understand the intricate de-
tails surrounding the framework design. Some
approaches to alleviate this problem have already
been proposed in the literature but they are usually
either just a textual cross-referenced document of
the instantiation activities or too tied to technology
or specific application domains. In this paper, we
present the results of our latest investigations to
improving our approach to framework instantia-
tion. In particular, we discuss a process language
we have developed to guide framework instantia-
tion explicitly, and the most recent updates we
have made to improve the language expressive-
ness. Furthermore, we present a case study used to
evaluate our approach and to identify current and
future extensions.

Keywords: frameworks, instantiation, software
process, software design, transformation.

Copyright © 2005 Marcilio Mendonca et. al. Permission
to copy is hereby granted provided the original copy-
right notice is reproduced in copies made.

1 Introduction

Framework concepts have been successfully em-
ployed as important tools to achieve software re-
use [6]. At the same time they reduce
developments efforts and increase the overall
quality of produced software systems. ET++ [24],
MacApp [25] Hotdraw [30], MFC [26], just to
name a few, are important examples of early
frameworks that helped demonstrate the feasibility
of a framework-centered development approach.
They were able to capture common features suc-
cessfully and represent the variability of a family
of applications within a specific domain. There are
now a large number of frameworks that have been
developed for a variety of different purposes in-
cluding CORBA [23] (middleware for distributed
systems), JADE [20] (agent systems), Struts [12]
(web applications), JBoss-AS [27] (enterprise ap-
plications), and JUnit [22] (application testing).

However, as frameworks become popular their
weaknesses as well as their strengths are becoming
apparent. In particular, framework instantiation is
still a painful task because application developers
must understand the intricate details surrounding
the framework design. Thus, instantiation of a
specific application can often be a slow and costly
process. For some frameworks such as the MFC it
may take up to 12 months for an application de-
veloper to be highly productive [6]. Thus, the in-
stantiation process is a time-consuming activity
which is counter to one of the most valuable prop-

1

mailto:marcilio@csg.uwaterloo.ca
mailto:palencar@csg.uwaterloo.ca
mailto:toacy@inf.puc-rs.br
mailto:dcowan@csg.uwaterloo.ca

erties of reuse, i.e., significant shortening in
development time.

Some approaches to alleviate the framework
instantiation problems we mentioned have been
proposed in the literature [5],[7],[8],[9],[29].
However, they are normally either just a textual
cross-referenced documentation of the instantia-
tion activities or too closely to technology or spe-
cific application domains.

In this paper we initially give an overview of
our approach to framework instantiation. We pre-
sent RDL (Reuse Definition Language) a process
language we have created to represent framework
instantiation activities explicitly. RDL along with
xFIT, our supporting instantiation tool, operates
on UML [17] models through transformations in
order to produce valid application instances. Fol-
lowing this description, we present the latest en-
hancements we have made to our RDL in order to
improve its expressiveness. Finally, we discuss a
case study we conducted to assess how our
framework improved framework instantiation.

The sections of this paper are organized as fol-
lows. Section 2 presents our approach to frame-
work instantiation and its latest enhancements.
Section 3 depicts the case study we carried out in
order to assess our approach properly. In section 4
we discuss how our approach improved frame-
work instantiation in the light of our case study
evidences. Section 5 includes some related work,
and finally Section 6 presents our conclusions and
future work.

2 Our Approach to Frame-
work Instantiation

A typical framework adaptation has two phases: i)
understanding the overall rationale behind the
framework design; ii) extending the framework
flexible points according to specific requirements
in order to produce application specific increments
(ASI) [4].

As we have mentioned, the first phase has been
supported by some framework documentation
approaches. Basically, they describe the purpose
of the framework, its major design elements, their
relationships, how the flexible points can be
adapted to produce applications, and provide some
examples. For example, in the cookbook approach
[8], recipes are used to explain how a certain ex-
tension point can be adapted. Recipes can refer-

ence each other, thus helping application
developers to understand better how the hotspots
(and the design elements they represent) are
interrelated.

Our approach complements framework docu-
mentation techniques, in particular cookbooks. It
closes the gap left by purely text-based approaches
by providing means to represent instantiation ac-
tivities explicitly. Our approach consists of a proc-
ess language, RDL, that allow framework
developers to represent adaptation steps, and a
supporting tool, xFIT, that operates on UML mod-
els by transforming a framework’s class diagrams
into application class diagrams based on applica-
tion developer’s inputs. Figure 1 below depicts our
approach.

Figure 1: Overview of Our Approach

The steps required to instantiate a framework
using our approach consists of:
• The framework developer provides a frame-

work class diagram conforming with the XMI
format (an XML file representing the model);

• The framework developer provides an RDL
script containing the framework instantiations
steps;

• The application developer runs xFIT provid-
ing it with the RDL script and the framework
UML class diagram. Likewise, the application
developer provides feedback according to
specific application requirements.

2

• At the end of the generation process xFIT will
run validation tasks and report the errors en-
countered (if some exist). Otherwise, a UML
class diagram is produced including the
framework and the specific application in-
stance classes.

• The application developer can then use a Case
tool to open the application model and gener-
ate stubs for the classes produced. By filling
out the stubs with appropriate code the proc-
ess is ended.

2.1 The Process Language (RDL)
RDL is a process language that aims at providing
mechanisms for framework developers to repre-
sent instantiation tasks explicitly. RDL is pro-
gramming-language and framework-domain
independent and manipulates design elements ex-
pressed in UML. RDL abstractions have been pro-
posed based on the cookbook approach and exploit
the use of design patterns [1].

In the next sections we describe the main con-
struct of the RDL and the latest enhancements we
have made to increase the language expressiveness.
Since it is not the purpose of this paper to be an
RDL reference manual we suggest reading [2] for
a more detailed description of the language.

RDL Main Structure- RDL higher level con-
structs are represented by cookbooks, recipes and
patterns. AN RDL cookbook contains a set of
RDL recipes. RDL recipes embody instantiation
tasks related to particular variable aspect of a
framework architecture. RDL Patterns describe
recurring instantiation steps encountered during a
framework adaptation (e.g. design patterns).

RDL can be used to produce two types of arte-
facts: RDL scripts and Pattern Libraries. A general
structure of an RDL script is shown in Table 1.

COOKBOOK myCookBook
 RECIPE main
 …
 CALL_RECIPE(R1, (…));
 …
 END_RECIPE
 RECIPE R1(…)
 …
 END_RECIPE
 …
END_COOKBOOK

Table 1: General structure-RDL Script

In an RDL script, at least one recipe must be
named main representing the cookbook start point.
Recipes can call each other, receive parameters
and return values in a way similar to functions in
procedural languages.

RDL Pattern Libraries describe instantiation
patterns, i.e., recurring instantiation tasks. Since
some design patterns exhibit an abstract and a
concrete part (e.g. Template Method, Abstract
Factory, and Strategy) they can be properly used
to expose framework hotspots. Therefore, design
patter instances can be represented as RDL Pat-
terns. Pattern Libraries represent an enhancement
we have made to our approach. The general struc-
ture of an RDL Pattern Library can be found in
Table 2.

PATTERN_LIBRARY myPatternLibraryName
 PATTERN Pattern1(…)
 …
 END_PATTERN
 PATTERN Pattern2(…)
 …
 END_PATTERN
 …
END_PATTERN_LIBRARY

Table2: General structure-RDL Pattern Library

Pattern libraries are normally stored in files
with the .rdp extension (reuse definition pattern).
UML class models are expected to conform to the
XMI format and are stored in .xmi files. In the
current version of RDL only one RDL script (.rdl)
is allowed to specify the instantiation steps of a
framework. There is still no way to import and
combine RDL scripts. This has been left as a pos-
sible enhancement for future versions of our lan-
guage.

RDL Types- In order to keep the syntax of the
language simple, the previous versions of RDL did
not considered data types explicitly. However, as
we used the language in practical situations the
need for a strong typed-language became apparent.
Thus, the types now encountered in RDL are basi-
cally those found in UML class diagrams plus
some additional ones to represent strings, numbers,
booleans and list of types (Table 3). Each type has
a set of associated operations and attributes that
allow framework developers (RDL script users) to
make proper references to model elements.

RDL Type Description
STRING Represent Strings in RDL

3

NUMBER Represent Numbers in RDL
BOOLEAN Represent Booleans in RDL
PACKAGE Represent UML Packages
CLASS Represent UML Classes
METHOD Represent UML Class Methods
ATTRIBUTE Represent UML Class Attributes
Lists Represent lists (vectors) in RDL
Table 3: RDL Types

RDL commands fall into three categories: Ba-
sic, Instantiation, and Pattern Commands. Follow-
ing we discuss each one of the categories.

RDL Basic Commands- The basic commands
provide low-level facilities to manipulate the
framework design elements. For instance, new
classes, methods or attributes can be created and
added to UML class diagram models. Table 4 be-
low illustrates some of the RDL basic commands.

Description Basic Command
Class creation NEW_CLASS(…)
Method creation NEW_METHOD(…)
Attribute creation NEW_ATTRIBUTE(…)
Inheritance NEW_INHERITANCE(…)
Selection IF (e) … [ELSE ...] END_IF
Repetition LOOP (e) … END_LOOP
Assignment Var = expression

Table 4: Main RDL Basic Commands

Instantiation Commands- RDL Instantiation
Commands increase the level of abstraction by
combining basic commands into single tasks. Ba-
sically, RDL Instantiation Commands represent
object-oriented reuse activities such as extending a
class, overriding a method, and assigning a value
to a class attribute. Table 5 depicts the main In-
stantiation Commands.

Description Instantiation Command
Class Extension CLASS_EXTENSION(…)
Method Extension METHOD_EXTENSION(…)
Value Assignment VALUE_ASSIGNMENT(…)
Value Selection VALUE_SELECTION(…)

Table 5: Main RDL Instantiation Commands

Pattern Commands- The highest level statements
in RDL are represented by Pattern Commands.
Pattern Commands allow framework developers to
reuse a set of recurring instantiation activities pre-
viously specified. In previous versions of RDL,
Patterns Commands were represented by the Pat-
tern Class Extension and Pattern Method Exten-

sion commands. These commands required
specific types to be passed as input parameters in
order to be used properly. We decided to simplify
the language support for patterns by defining a
single command for an RDL Pattern call. No pa-
rameters are required and it is up to the framework
developer to define how patterns will be properly
described. Table 6 describes the RDL command to
call an RDL Pattern.

Description Pattern Command
Pattern call command CALL_PATTERN(..)

Table 6: RDL Pattern Call Command
In the following we illustrate the implementa-

tion of an RDL Pattern Library including an im-
plementation for the Factory Method design
pattern, and an RDL Script benefiting from the
RDL Pattern implementation.

PATTERN_LIBRARY GammaPatterns

 PATTERN FactoryMethod(
 IN absCreatorName : STRING ,
 IN facMethodName : STRING ,
 INOUT concreteCreatorClass : CLASS)

-- Create Concrete Creator
IF (concreteCreatorClass = NIL)
 concreteCreatorClass =
 CLASS_EXTENSION(
 absCreatorName, ?);
END_IF
-- Extends Creator Factory Method
METHOD_EXTENSION(absCreatorName,
facMethodName, concreteCreatorClass);

 END_PATTERN
END_PATTERN_LIBRARY

COOKBOOK myCookBook
 RECIPE main
 conCreator : CLASS;
 CALL_PATTERN(
 FactoryMethod, (
 “AbstractView”,
 ”createAlarm”, conCreator));
END_RECIPE
END_COOKBOOK

2.2 The Framework Instantia-
tion Tool (xFIT)

Our approach is supported by an instantiation tool
known as xFIT (Framework Instantiation Tool).
xFIT provides a runtime environment for RDL

4

scripts. The framework class diagram and an RDL
script are taken as inputs and based on application
developers feedback xFIT generates the applica-
tion instance class diagram. xFIT performs valida-
tion tasks over the design elements produced to
ensure that its structure is regular and well-formed.
As an example, xFIT certifies that all abstract
classes and methods have been resolved in the
final design since all the hotspots must have been
handled.

3 The Case Study
Our case study aimed at assessing our approach to
framework instantiation. In particular, we were
interested in comprehending how an explicit ap-
proach would improve framework instantiation
when contrasted with purely text-based ap-
proaches (e.g. [5],[7],[8],[9]). Yet, it was not our
intention to address any specific text-based ap-
proach but rather to treat them as a category. In
summary, our goal was to answer the following
questions:
• How did our approach improved framework

instantiation when compared with purely text-
based approaches?

• Which issues in framework instantiation were
not addressed by our approach? How can we
support them in the future?

In the next sections we provide a detailed de-

scription of our case study. We begin by present-
ing the framework we have chosen as the target of
our study, then we discuss how previous instantia-
tions were carried out, and finally we give details
on how the case study was conducted.

3.1 The Framework (REMF)
The Real-time Event Monitoring Framework
(REMF) (see Figure 2) has been developed and
maintained by our group to be applied to the moni-
toring of real-time events. Originally, the intention
was to develop an application to monitor real-time
events produced by one of our server applications.
However, we realized that some other applications
and projects within our research program could
also take advantage of our monitoring tool so we
decided to develop it as a framework.

Several factors influenced our choice in favor
of the REMF as our case study:

i) the quality of its architecture strongly sup-
ported by design patterns and the MVC [28]
pattern;

ii) the maturity of its architecture after several
successful adaptations;

iii) our previous experiences adapting its design
to address specific application requirements,
which provides insight in assessing the im-
provements brought by our approach;

iv) and finally, its straightforward architecture
that allow us to concentrate our efforts on dis-
cussing our approach rather than on the spe-
cific design solutions adopted.

The domain covered by the REMF is quite

wide but we identified some sub-domains that can
benefit from its design:

• Business-rules monitoring tools (ex.: tools to

monitor the business-rules of server applica-
tions in general, such as those for credit cards,
health services, debit cards, loyalty cards, etc.;
also, web-servers, service-oriented applica-
tions, etc.)

• Application monitoring tools (ex.: tools to
monitor the performance of server applica-
tions such as the number of resources allo-
cated, time spent in processes, exceptions, etc.)

• System monitoring tools (ex.: tools to monitor
system events such as memory and CPU per-
formance, SNMP events, etc.)

REMF Flexible Points- REMF was written in
Java 1.3 [21] using Eclipse 3.0.1 [16] as the Java
compiler/debugging tool and the Eclipse plug-in
Omondo EclipseUML 2.0 [13] as the UML Case
tool. The framework contained 64 classes distrib-
uted across 7 packages. Eighteen (18) of the
classes were abstract and 46 were concrete reveal-
ing the framework developer’s commitment to
providing a rich set of ready-to-use functions (fro-
zen spots) shared among all application instances.
REMF architecture was supported by 7 design
patterns: Factory Method, Strategy, Observer,
Template Method, Abstract Factory, Pro-
ducer/Consumer, and Iterator. The MVC pattern
constitutes the core of the framework architecture
exposing a variety of flexible points. Seventeen
(17) hotspots were exposed by the REMF architec-
ture. Seven (7) of them were mandatory and 10
were optional. It means that, at a minimum, an
instance could be obtained by resolving the 7
mandatory hotspots and accepting the default be-

5

havior provided by REMF architecture for the
other 10 optional ones. All hotspots have been
implemented by using design patterns which al-
lowed experienced programmers to understand
rapidly the rationale behind them. Table 7 gives an
overview of the REMF hotspots, its recipes, and
the design patterns used.

Roughly, there were three major elements that
can be customized in the REMF architecture: the
Event’s Producer, the Filtering Capabilities, and
the Alarms.

Figure 2: REMF Instance Screenshot

The Event’s Producer was in charge of produc-
ing the real-time events that would be displayed in
the graphical user interface. For example, a given
REMF instance may have decided to use a socket

to connect to a server application in order to listen
for events. Event Producers were implemented
based on the Producer/Consumer design pattern
but had their hotpots exposed by the Template
Method design pattern. The Filtering Capabilities
allowed instances to customize filtering options
based on their requirements. Filtering options
were based on the Template Method, Observer
and Factory Method design patterns. Finally,
Alarms could be raised whenever a certain filter
expression was matched. Each REMF instance
could customize the alarm action (algorithm) to be
taken. For example, a particular implementation
may have decided to play a short audio file as an
alarm action. Alarm actions were based on the
Strategy design pattern.

The REMF also provided a mechanism to glue
the application specific increments with the frame-
work. The glue mechanism used reflection as a
means to achieve runtime composition (Java
reflection) and was based on the Abstract Factory
design pattern.

3.2 Running the Case-Study

In order to assess the effectiveness of our ap-
proach properly we decided to reason about and
document the previous REMF instantiation ex-
periences first. Then, we defined a set of specific
requirements to motivate our case study and the
need for a new REMF adaptation. Finally, we ap-
plied our approach to produce the application in-
stance planned.

ID Hotspot Recipe Type Default
Behavior

Design
Pattern

HNA1 Creating an Alarm Object Notifica-
tion Alarms Optional No alarms are

defined
Factory
Method

HNA2 Specifying the Alarm Action Notifica-
tion Alarms Optional

No alarms
algorithm is
defined

Strategy

HAF1 Handling Visual Filter Selection
Changes

Application
Filters Mandatory - Template

Method

HAF2 Creating a Visual Filter Panel Application
Filters Mandatory - Factory

Method

HAF3 Creating a Textual Filter Expression Application
Filters Mandatory - Template

Method

HTF1 Defining the Application Top-level
Filter

Top-level
Filter Optional No Event is

Filtered
Template
Method

HFS1 Specifying the Event Message’s Fields
to be Saved

Filters to
Save Optional

All Event’s
Fields are
saved

Template
Method

6

HEP1 Specifying the Events Message’s
Fields Meta Definitions

Events
Producer Mandatory - Template

Method

HEP2 Preparing Producer Resources Events
Producer Optional No Action Template

Method

HEP3 Releasing Producer Resources Events
Producer Optional No Action Template

Method

HEP4 Producing New Events Events
Producer Mandatory - Template

Method

HEP5 Defining a New Message Producer Events
Producer Mandatory - Factory

Method

HEP6
Specifying the Appropriate Action
when Producer Starts Producing Mes-
sages

Events
Producer Optional No Action Observer

HEP7
Specifying the Appropriate Action
when Producer Stops Producing Mes-
sages

Events
Producer Optional No Action Observer

HEP8
Specifying the Appropriate Action
when Producer is Repairing an Error
During a Message Production

Events
Producer Optional No Action Observer

HEP9
Specifying the Appropriate Action
when Producer Produces a New Mes-
sage

Events
Producer Optional No Action Observer

HGL1 Instantiating a Factory to create MVC
Components Glue Mandatory - Abstract Fac-

tory
Table 7: REMF Hotspots

Previous Adaptations
Prior to our case study the REMF had already
been instantiated on other five occasions produc-
ing distinct application instances (see Table 8).

REMF Instance Hotspots
Adapted

Credit card monitoring tool
1 instance 17

Loyalty card monitoring tool
1 instance 14

Prepaid cell phone account recharge
monitoring tool
3 instances w/ specific requirements

13, 13, 15

Table 8: REMF Previous Instances

All previous adaptations were carried out based
on the REMF cookbook which consisted of a
document describing the framework hotspots and
their proper adaptation. Since no active guidance
or tool support was provided application develop-
ers were required to perform the appropriate
instantiation steps manually.

Every REMF adaptation followed a top-down
development approach. First, design models were
manipulated, i.e., the framework UML class dia-
grams were extended, then class stubs were auto-
matically generated based on the UML models,

and finally, specific Java application code was
added to the stubs using a Java editor.

Although the adaptation process just described
seemed to be appropriately high-level and straight-
forward, it was indeed complex and problematic.
In particular, the lack of automation to assist in
finding and extending REMF hotspots in UML
class diagrams made the process of producing
design models for application instances intricate
and lengthy. Application developers were required
to navigate though the framework class diagram,
identify the hotspots, differentiate mandatory and
optional hotspots, and properly extend the frame-
work classes and methods, without any active as-
sistance. This scenario turned out to be even worse
when time-to-market forces started to pressure the
application’s deployment.

In order to alleviate the lack of guidance and
adequately cope with time-to-market issues some
important decisions had to be made. First, the
recipes in the REMF cookbook were written to
reflect the framework main architectural compo-
nents. In particular, the MVC components were
used as a guide to specify the recipes in a way that
resembled what was done in [28]. The primary
goal was to minimize the need to manipulate de-
sign elements spread throughout the model, and
consequently diminish the complexity associated
with it, and thus have instantiation steps referring

7

to design elements located in a specific architec-
tural module. We say that the recipes followed an
architecture-oriented arrangement. Figure 3 de-
picts the recipes and their relationships for the first
five REMF adaptations.

Second, we decided to postpone detailed hot-
spot resolution such as method extensions to a
later phase and let the design adaptation steps fo-
cus more on simple tasks such as class extensions.

This strategy appeared to be effective since at
source code manipulation time the compiler is a
helpful tool in identifying mandatory hotspots. For
instance, a compiler will raise an error whenever a
super-class abstract method is not overridden by a
sub-class (mandatory hotspots).

Figure 3: REMF Architecture-oriented Recipes

Given that the resolution of most of the hot-
spots was delayed to source code development
time, we say that the instantiation followed a code-
centric approach as opposed to a design-centric
one (driven mainly by design model manipula-
tions).

Although the decisions made were able to re-
duce the complexity of the REMF instantiation
process the level of abstraction was still too low,
as it was driven by architectural elements, follow-
ing a code-centric approach, and lacking a more
appropriate tool support.

Applying our Approach
After carefully understanding and documenting
how previous REMF instantiations occurred we
started our case study. Our goal was to produce a
new application instance based on the REMF ar-
chitecture. In particular, we aimed at developing a
real-time monitoring tool for a credit card authori-
zation system (named WatCreditCard). As we did
not have an actual credit card server application
and it was not relevant for the purpose of our case
study, we specified stub classes that would pro-
duce random data to represent credit-card transac-
tions (ex.: purchases, cancellations, credits, etc.).
The steps we followed to construct the new in-

stance are detailed next and as expected used our
approach to framework instantiation.

The REMF UML Model- Since our approach
encourages a design-centric development para-
digm the very first step was to make sure that the
REMF UML model was current. Therefore, de-
cided to perform a reverse engineering process to
obtain the revised design. Following this step, we
exported the REMF UML class diagram to a file
conforming with the XMI (XML Metadata Inter-
change) format, that would later serve as an input
to our framework instantiation tool (xFIT).

Creating the RDL Script- In the next step, we
created the RDL script that would guide the
REMF instantiation process. We started by creat-
ing an RDL Pattern Library to represent REMF
design patterns, in particular, the patterns used to
expose hotspots. For each pattern we defined a
corresponding RDL Pattern. Five design patterns
have been implemented: Factory Method, Tem-
plate Method, Strategy, Observer, and Abstract
Factory.

Next, we created the REMF RDL script. For
each recipe in the REMF cookbook we specified
an equivalent RDL recipe with the appropriate
parameters. As a result we ended up with six reci-
pes: Model, View, Controller, Connector, Factory
and the main recipe (Figure 3).

However, as the previous REMF adaptations
had already revealed the level of abstraction of the
instantiation process had not been appropriate,
disclosing too many details of the framework ar-
chitecture, especially its MVC-based design. Since
now we had a supporting tool to cope with the
low-level instantiation steps we decide to raise the
level of abstraction during the instantiation proc-
ess by hidden low-level details from the applica-
tion developers. We rearranged the recipes in the
REMF cookbook document in order to move from
an architecture-oriented perspective to a feature-
oriented one (see Figure 4).

Figure 4: REMF Feature-based Recipes

Main

Glue

Notification Alarms

Top-level Filter

FieldsToSave

EventsProducer

Notification Alarms

Main

Model

View

Factory

Controller

Connector

8

For example, Model, View, and Controller

recipes were substituted by others such as Notifi-
cationAlarms, ApplicationFilters, and EventsPro-
ducer. A feature-oriented recipe embraced REMF
hotspots represented by design elements that may
crosscut different architectural modules. Therefore,
at the same time the level of abstraction was raised,
since architectural details were omitted, the need
for automation became essential in order to prop-
erly cope with the inherent crosscutting nature of
the design elements handled. Thus, the provision
of a supporting tool for framework turned out to
be critical in our approach. After restructuring the
REMF cookbook document we created the corre-
sponding REMF RDL script.

Next, we depict the REMF RDL script we used
to obtain a new framework instance in our case
study. Some details were omitted for space rea-
sons.

COOKBOOK REMF
RECIPE main
 modelClass, viewClass, controllerClass, connectorClass :
CLASS;
 -- Instantiating a Factory to create MVC Components
 CALL_RECIPE(Glue, (modelClass, viewClass, controller-
Class, connectorClass));
 -- Handling Notification Alarms
 CALL_RECIPE(NotificationAlarms, (viewClass));
 -- Handling Application-Specific Filters
 CALL_RECIPE(AppFilters, (viewClass));
 -- Specifying the Application Top-Level Filter
 CALL_RECIPE(TopLevelFilter, (controllerClass));
 -- Specifying the Events’ Fields to be Saved
 CALL_RECIPE(FieldsToSave, (modelClass));
 -- Specifying the Application Message Producer
 CALL_RECIPE(EventsProducer, (controllerClass, model-
Class));
END_RECIPE

RECIPE NotificationAlarms (IN viewClass : CLASS)
 concreteAlarmClass : CLASS;
 -- Hotspot HNA1, Pattern: Factory Method, Creating an
Alarm Object, Type: Optional
 CALL_PATTERN(FactoryMethod, (“AbstractView”, “cre-
ateAlarm”, viewClass));
 -- Hotspot HNA2, Pattern: Strategy, Specifying the Alarm
Action, Type: Optional
 CALL_PATTERN(Strategy, (“AbstractAlarm”, “raise”,
concreteAlarmClass));
END_RECIPE

RECIPE AppFilters(IN viewClass : CLASS)

...
END_RECIPE

RECIPE TopLevelFilter(IN controllerClass : CLASS)

...
END_RECIPE

RECIPE FiltersToSave(IN modelClass : CLASS)
...

END_RECIPE

RECIPE EventsProducer(IN controllerClass: CLASS , IN:
modelClass : CLASS)

...
END_RECIPE

RECIPE Glue (OUT modelClass, OUT viewClass, OUT con-
trollerClass, OUT connectorClass)

…
END_RECIPE
END_COOKBOOK
Defining the Application Requirements- Before
running the instantiation process we detailed the
requirements of our new WatCreditCard applica-
tion instance. This phase was especially important
as it helped us identifying the optional hotspots to
be adapted.

Table 9 depicts the WatCreditCard instance
goal, its specific requirements, and the corre-
sponding hotspots. As expected, the 10 mandatory
hotspots had to be adapted since there was no de-
fault implementation provided for them. As for
optional hotspots, 3 of them were redefined and 7
reused the framework default implementation.

WatCreditCard
Goals, Requirements and Hotspots
Goal: Monitor real-time credit-card transac-
tions produced by the WatCreditCard applica-
tion server (ex.: purchase, cancellation, credit,
terminal initialization, terminal shutdown). The
application server was represented by Stub
classes to produce random credit-card-related
transactions.
R1: Raise audio alarms for events
Hotspots Involved:
• Creating an Alarm Object (optional/adapted)
• Specifying the Alarm Action (optional/adapted)
R2: Expunge mal-formed transactions
Hotspots Involved:
• Defining the Application Top-Level Filter (op-

tional/adapted)
R3: Save all transaction’s information
Hotspots Involved:
• Specifying the Event Msg’s Fields to Save (op-

tional/default)
R4: Enable visual filtering for Credit-card
transactions
Hotspots Involved:
• Handling Visual Filter Selection Changes (manda-

tor)
• Creating a Visual Filter Panel (mandatory)

9

• Creating a Textual Filter Expression (mandatory)
R5:Produce Credit-card real-time transactions
Hotspots Involved:
• Specifying the Events Message’s Fields Meta

Definitions (mandatory)
• Preparing Producer Resources (optional/default)
• Releasing Producer Resources (optional/default)
• Producing New Events (mandatory)
• Defining a New Message Producer (mandatory)
• Specifying the Appropriate Action when Producer

Starts Producing Messages (optional/default)
• Specifying the Appropriate Action when Producer

Stops Producing Messages (optional/default)
• Specifying the Appropriate Action when Producer

is Repairing an Error in a Msg. Prod. (op-
tional/default)

• Specifying the Appropriate Action when Producer
Produces a New Message (optional/default)

Table 9: WatCreditCard Requirements/Hotspots

Producing Application Increments- In order to
produce the WatCreditCard instance we ran our
framework instantiation tool xFIT. xFIT took as
input the REMF model files (XMI) and the REMF
RDL script. During the instantiation process the
application developer was required to answer in-
stantiation questions (e.g. names of classes and
methods, and whether or not an optional hotspot
should be adapted). At the end, xFIT produced a
UML model (in XMI) containing the framework
and the application instance design elements. Not
only classes, as occurred in previous REMF
adaptations, but also methods were properly
extended. Because of xFIT active guidance all
hotspots were properly addressed and reviewed by
the application developer.

Completing the Stubs Produced- Once the UML
model was produced for the WatCreditCard in-
stance, we performed a code generation process
using our case tool in order to generate stub
classes for the WatCreditCard instance. After add-
ing specific code, and compiling/debugging our
application was finally deployed.

4 Discussion
In this section we discuss how our approach im-
proved framework instantiation and describe some
future extensions in the light of our case study. In
short, we claim that our approach i) raises the
level of abstraction of framework adaptation proc-
esses, ii) enforces correctness of instantiation tasks,

iii) provides adequate means for representing and
reusing framework instantiation activities, and iv)
reduce application development time.

4.1 Process Improvements
Correctness on Design Manipulation- As we
have mentioned, previous REMF adaptations were
performed based solely on the REMF cookbook,
leaving it up to the application developer to under-
stand and perform the instantiation steps. Thus, the
instantiation process became time-consuming and
error-prone. For example, method and class exten-
sions were normally achieved through multiple
design manipulation. Figure 5 below illustrates a
typical manual method extension scenario in
which the raise method has been mistakenly mis-
spelled in the sub-class (step 4).

Not surprisingly, it was quite common for ap-
plication developers to make mistakes such as
misspelling methods/classes names, setting up
erroneous inheritance relationships, specifying
method signatures with the wrong type or number
of parameters, and so forth. That is why in previ-
ous adaptations of the REMF application develop-
ers were encouraged to postpone method
extensions to a later phase, typically at source
code manipulation, when the compiler would be
helpful in assist with correctness issues.

Let us examine a practical example. Looking at
our case study consider the recipe EventsProducer.
Lots of instantiation steps were provided towards
the construction of Event Producers. Whenever a
mandatory step was mistakenly performed (ex.:
the getMetaDefinitions method signature in the
sub-class did not mach with the super-class one)
the application instance produced contained an
error. This problem could be considerably more
catastrophic if we think about a large framework
containing numerous hotspots.

Another example of lack of support for design
correctness regards the need to establish correct
connections among major REMF architectural
elements. The advantageous use of design patterns
in the REMF architecture also required that design
elements played specific roles and interacted with
each other in a particular way. In order to conform
properly with a pattern’s specifications, applica-
tion developers had to through manual means to
ensure i) make sure that design elements have
been correctly created and assigned to their corre-
sponding pattern roles, and ii) ensure that the con-

10

nections among the design elements were properly
set.

Figure 5: Manual method overriding steps

In contrast, our case study proved useful in
supporting correctness of instantiation activities.
RDL scripts provided the right mechanisms to
ensure correctness based on syntax precise ma-
nipulation. For example, the RDL method exten-
sion command ensured that the overridden
methods in the super-classes would always have
the exact same signature in the sub-classes. There-
fore, method and class extensions were always
performed correctly in our case-study.

RDL Patterns were also important mechanisms
to enforce design correctness. By properly com-
bining RDL instantiation commands, RDL Pat-
terns were able to connect design elements
correctly into micro-architectures removing that
burden from the application developers. For in-
stance, the RDL recipe Glue called the RDL Pat-
tern AbstractFactory in order to create a Concrete
Factory and a set of Concrete Products (Model,
View, and Controller) for the WatCreditCard ap-
plication instance. The RDL pattern hid from the
application developer the complexity of assem-
bling the design elements needed to conform to
the Abstract Factory design pattern. Likewise, the
Template Method, whose instantiation involved a
lot of method extensions, was also implemented in
terms of RDL patterns decreasing the chances for
errors.

By providing correctness support at the design
level our approach also provided a means to re-
duce application construction time/cost once it
was understood that the instantiation activities
performed always handled the design elements in
a correct way.

Effective Handling of Optional Hotspots- A
difficulty reported in previous adaptations of the
REMF regarded the effective handling of optional
hotspots. As the instantiation process did not pro-
vide active guidance developers were required to
find the proper design elements associated with

the optional hotspots and correctly extend them.
However, as the design elements may be spread
throughout different framework architecture mod-
ules it turned out to be a time-consuming task for
application developers to extend the optional hot-
spots properly. In addition, the consequences of
missing a hotspot could be as serious as producing
an application with undesirable features and thus
having to repeat the whole instantiation process
again.

In contrast, our approach provided effective
mechanisms to cope with optional hotspots. RDL
scripts were able to capture and represent all
REMF optional extensions and present them pro-
gressively to application developers as the instan-
tiation process was performed. Then, based on the
specific application requirements application de-
velopers were able to decide which hotspots
should be extended.

This explicit guidance through optional exten-
sions kept the instantiation decisions under the
control of the application developer, avoided run-
time application behavioural problems, and
shorten ed the application construction process.

Reuse of Framework Instantiation Artefacts-
Some important artefacts can be reused across
different framework instantiations. For example,
the framework architecture and the cookbook
document can be reused across multiple adapta-
tions of the same framework. However, these arte-
facts do not provide effective means to capture
and represent the expertise of the framework team
in describing the actions needed to produce a valid
and correct application instance. Therefore, the
advantageous knowledge of the framework devel-
opers is wasted thus compelling application devel-
opers to create their own instantiation strategies.
Indeed, knowledge waste occurred with all REMF
previous adaptation processes.

In contrast, our approach introduced two new
artefacts to framework instantiation: the RDL
scripts and the RDL Pattern Libraries. As we dis-
cussed, RDL scripts embodied detailed instantia-
tion steps for a given framework and could be
reused across distinct framework adaptations.
Framework developers had an adequate means to
represent their know-how and explicitly represent
the instantiation steps required to produce valid
framework’s instances. For instance, the REMF
RDL script devised in our case study specified a
standard and safe way to customize the REMF

11

architecture thus discouraging the application de-
velopers to define their own strategies.

Similarly, RDL Patterns represented recurring
instantiation tasks that may occur in different
framework instantiation processes. Moreover, they
produced reusable RDL Pattern Libraries for the
cases in which the patterns described were domain
independent (e.g. Gamma patterns [1]). Thus,
RDL Patterns were also important reusable arte-
facts that were able to communicate effectively the
framework developer’s expertise across different
framework projects.

Feature versus Architecture-oriented Guid-
ance- As we have mentioned, some important
factors influenced the way the recipes were organ-
ized in the REMF cookbook document for the first
five adaptations. Since there was no assisted guid-
ance or tool support for framework instantiation
the manipulation of design model elements corre-
sponding to the framework hotspot was complex
and may have involved addressing various archi-
tectural modules. In addition, time-to-market re-
quirements of some of the REMF application
instances compelled us to specify a more prag-
matic approach to facilitate framework instantia-
tion. As a consequence, the REMF cookbook
recipes were arranged to follow an architecture-
oriented approach..

Architecture-oriented recipes usage was advan-
tageous in this scenario especially because the
design elements manipulated were normally found
concentrated in a few architectural modules. Fig-
ure 6 depicts three architecture-oriented recipes
Model, View and Controller that manipulates de-
sign elements within same-named framework
modules. By ensuring that application developers
did not need to cope with scattered design manipu-
lations we kept the instantiation process more
manageable. However, despite the efforts to im-
prove the REMF instantiation process it remained
error-prone, time-consuming and too low-level,
because it revealed the intricacies of the frame-
work architecture to the application developers.

In contrast, one of the main goals of our ap-
proach was to raise the level of abstraction of
framework instantiation. Application features
rather than architectural modules should guide the
instantiation process. In fact, the RDL process
language in conjunction with the supporting tool
provided (xFIT) enabled a feature-oriented ar-
rangement of the recipes in the REMF cookbook.
Architectural solutions were kept hidden from

application developers as the same time as cross-
cut manipulations of design elements could be
carried out in a straightforward manner. xFIT took
care of handling multiple architectural modules
spread throughout the REMF design model. Figure
6 shows Feature-Oriented recipes manipulating
design elements that crosscut multiple REMF ar-
chitectural modules (Model, View and Controller).

The REMF RDL script mapped each frame-
work feature to its corresponding architectural
components through recipes. In order to facilitate
the understanding of the feature-oriented recipes
in our approach we make an analogy between
RDL recipes and Aspects in Aspect-Oriented Pro-
gramming [14],[18]. While Aspects are normally
used to modularize crosscutting concerns related
to tangled and scattered code, RDL Recipes modu-
larize crosscutting instantiation tasks.

Figure 6: Feature x Architecture-based Recipes

Now, the advantages of using our approach be-
came more evident. The level of abstraction of the
instantiation process was raised from an architec-
tural to a feature-oriented perspective, the steps
were actively guided, and the time to produce new
application instances shortened.

Design versus Code-centric Approach- Unas-
sisted REMF previous instantiations tended to
follow a code-centric approach. Although design
manipulations had been encouraged most of the
instantiation steps were postponed to the imple-
mentation phase (e.g. method extensions). This
way we expected the Java compiler to work as a
validation tool, especially in the case of mandatory
hotspots (method overriding). Although the deci-

12

sions taken helped reduce the general complexity
of the REMF instantiation process the level of
abstraction turned out to be excessively low-level
centered on source code manipulations and driven
by architecture-oriented recipes.

On the other hand, our approach encourages a
design-based instantiation process. RDL scripts
manipulates and transforms UML class diagrams
in such a way that source code details are hidden
and postponed for a future phase. After obtaining
the final UML class diagram for the application
instance ,application developers are encouraged to
complete the corresponding source code. Doubt-
less, a design-centric approach is much more
convenient once it allows application developers
to progressively cope with instantiation details.
Basically, it offers two phases: i) adapting
framework design to obtain an application in-
stance(design), and ii) completing source code
stubs (implementation).

4.2 Extensions to Our Approach
Although the application of our approach in the
REMF case study presented very interesting re-
sults in terms of automation/guidance, support for
design correctness, and shortening of development
time, we were also able to identify some possible
extensions.

First, the lack of integration between our ap-
proach and a framework documentation approach,
especially in terms of tool support, was missing.
Changes in REMF cookbook recipes are not re-
flected on RDL recipes and vice-versa. As well,
we had to consult the REMF cookbook at times
during the instantiation process in order to provide
the right inputs to the xFIT tool.

Second, only UML class diagrams were han-
dled by our approach. It was our intention to en-
hance the REMF UML documentation by
exploiting new UML diagrams but we realized
there would be no gain in terms of the framework
instantiation.

Finally, our approach did not handle source
code generation in any way. For example, in our
case study just the design elements of the Wat-
CreditCard instance were produced and the source
code generation relied on the Case tool we had
chosen.

5 Related Work
Several approaches claim to facilitate framework
instantiation. In [9] the authors used a structured
specification to support framework instantiation.
Although their work led the area of instantiation
assistance, their contribution can be summarized
as a template to a reuse document expressed in
natural language, which can be hard to follow due
to the lack of a formal construction. Moreover, a
Cookbook can not be processed automatically,
living space for inconsistencies in its definition.
As an extension to Cookbooks, Hooks [7] also
provided a template for framework instantiation
assistance and they share the same problems.

In the area of instantiation guidance Smart-
books [15] advocate the use of Software Agents to
execute instantiation plans. The main issue with
this approach is the introduction of non-standard
notations, such as TOON [15], which causes an
extra burden to the Framework Development. In
OBS [10] the authors used a generative approach
to framework instantiation that shares some char-
acteristics with our previous work [3]. However,
the OBS approach is based on ready-to-use black-
box frameworks, which constraints instantiation
processes to component configuration not cus-
tomization. FRED [29] is a framework editor tool
that uses specialization patterns in order to
generate applications. However, FRED is code-
centric and tied to the Java language whereas our
approach is design-centric and programming-
language independent. Finally, UMLAUT [32]
presents a general UML transformation framework
based on algebraic compositions and reified ele-
mentary transformation. Our approach also per-
forms transformations on UML models but is
rather focused on the domain of framework instan-
tiation.

6 Conclusion
In this paper, we presented our approach to
framework instantiation, the enhancements we
have made to improve its effectiveness, and a case
study we developed to evaluate our approach. Our
case study showed that the use of our approach
was helpful in raising the level of abstraction of
framework adaptation processes. Our approach
encouraged a feature-oriented design-centric
framework instantiation process. Moreover, It
effectively supported correctness by assisting de-

13

sign manipulations and providing active guidance
throughout the adaptation process. We also identi-
fied some extensions needed to improve our ap-
proach as our research moves further on.

As for future work, we aim to extend our ap-
proach to support the instantiation of Aspect-
Oriented Frameworks [11],[19] since we believe
that the use of aspects as means to separate soft-
ware concerns is a trend. Furthermore, we want
our approach to support other UML diagrams,
initially Interaction and Activity diagrams. Finally,
the idea of using generative techniques [31],[10]
to enable our approach to go beyond design ma-
nipulations is a potential target for investigation.

Acknowledgements
This work has been partially supported by the
Natural Sciences and Engineering Research Coun-
cil (NSERC) and CAPES (Brazilian Ministry of
Education Agency).

About the Authors

Marcilio Mendonca received the MSc degree in
computer science (1996) from the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio),
Brazil. He is currently a PhD student in the School
of Computer Science at the University of Waterloo,
Canada. Prior to the PhD he worked for 10 years
in industry and academia as a Software Architect,
Project Manager, and University Lecturer.
Paulo Alencar is a Research Professor in the
School of Computer Science at the University of
Waterloo. Dr. Alencar has received international
research awards from organizations such as Com-
paq (Compaq Award for best research paper in
1995 for his work on a theory of evolving software
systems), and IBM (IBM Innovation Award,
2003). His research, teaching, and consulting ac-
tivities have been directed to software engineering
in general and his current research interests spe-
cifically include software design, architecture,
composition, Web-based and hypermedia systems,
software processes and formal methods. His work
on software engineering has been recognized by
NSERC international referees as “clearly excel-
lent,” “very accomplished,” and of “great value.”
His last joint NSERC Strategic Project Grant was
considered as being in the top-three in Canada. He
has been the principal or co-principal investigator
in many national and international projects sup-

ported by NSERC, CITO, Precarn, IBM, Bell,
Rogers, Sybase, and many other software compa-
nies and funding agencies in Canada, Germany,
Argentina, and Brazil.
Toacy Oliveira Toacy C. Oliveira received the
BSc degree in electrical engineering (1991) and
the MSc (1997) and PhD (2001) degrees in com-
puter science from the Pontifical Catholic Univer-
sity of Rio de Janeiro (PUC-Rio), Brazil. He also
spent two years as a postdoctoral fellow at the
University of Waterloo, Canada. He is currently
professor at the University of Liverpool, UK and
at Pontifical Catholic University of Rio Grande do
Sul, Brazil. Dr. Oliveira has participated in several
projects in cooperation with industry and worked
as a consultant to the United Nations Development
Programs (UNDP). His current research interests
include software design, software processes and
tools.
Don Cowan is Distinguished Professor Emeritus
in the School of Computer Science at the Univer-
sity of Waterloo. He was the funding Chair of
Computer Science at the University of Waterloo
and is currently Director of the Computer Systems
Group at the same University. His current research
interests include software engineering, software
tools, Web-based systems for asset management,
software processes, and hypermedia documenta-
tion. Dr. Cowan is the designer of twenty unique
Web-based information portals.

References

[1] E. Gamma, R. Helm, R. E. Johnson, and J.
Vlissides, Design Patterns, Elements of Re-
usable Object-Oriented Software, Addison-
Wesley, 1995.

[2] Oliveira, T. C. Filho, I. M., Lucena, C. J. P. ,
Alencar, P. S. C., Cowan, D. D., Software
Process Representation and Analysis for
Framework Representation, IEEE Transac-
tions on Software Engineering, March 2004,
Volume 30, Issue 3, p.145-159.

[3] Oliveira, T.C., Alencar, P., Cowan, D.: To-
wards a declarative approach to framework
instantiation, Proceedings of the 1st Work-
shop on Declarative Meta-Programming
(DMP-2002), September 2002,Edinburgh,
Scotland, p 5-9.

[4] Fontoura M., Pree W., Rumpe B., The UML
Profile for Framework Architectures, Addi-
son Wesley, 2001.

14

[5] Ortigosa A., Campo M., SmartBooks: A Step
Beyond Active-Cookbooks to Aid in Frame-
work Instantiation,Technology of Object-
Oriented Languages and Systems, 1999.

[6] Fayad M.E., Schimdt, D.C, Johnson R., Ap-
plication Frameworks. In Fayad, M.E.,
Schimdt, D.C., Johnson R. (Eds.), Building
Application Frameworks-Object-Oriented
Foundations of Frameworks Design. John
Wiley, New York, 1999.

[7] Froehlich G., Hoover H., Liu L., Sorenson P.,
Hooking into Object-Oriented Application
Framework, ICSE’97, IEEE Press, 491-501,
1997.

[8] Pree W., Pomberger G., Schapert A., Som-
merlad P., Active Guidance of Framework
Development, Software-Concepts and Tools
(1995) 16: 94-103, Springer-Verlag.

[9] R. Johnson, Documenting Frameworks Us-
ing Patterns, OOPSLA’92, ACM Press, 1992,
p. 63-76.

[10] Vaclav Cechticky, Philippe Chevalley, Ales-
sandro Pasetti, Walter Schaufelberger, A
Generative Approach to Framework Instan-
tiation, Lecture Notes in Computer Science,
Volume 2830, Nov 2003, Pages 267 – 286.

[11] Rausch A., Rumpe B., Hoogendoorn L., As-
pect-Oriented Framework Modeling, AOSD
International Conference 2003, Workshop on
Aspect Oriented Modeling.

[12] Struts Project, The Jakarta Software Founda-
tion, http://struts.apache.org/

[13] Omondo EclipseUML Project,
www.omondo.com/

[14] Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C., Loingtier, J.M., and Ir-
wing, J., Aspect-Oriented Programming,
Procedings of ECOOP’97, Springer Verlag,
pages 220-242, 1997.

[15] Ortigosa A., Campo M., Salomon R., To-
wards Agent-Oriented Assistance for
Framework Instantiation. In Proc. OOPSLA
'00, Minneapolis, Minnesota USA, ACM
SIGPLANNotices, 35, 10, 2000, 253-263

[16] The Eclipse Project, IBM,
http://www.eclipse.org/

[17] The Unified Modelling Language, OMG,
http://www.uml.org/

[18] Aspect-Oriented Software Development,
AOSD.NET, http://aosd.net/

[19] Constantinides C., Bader A., Elrad T., Fayad
M., and Netinant P., Designing an Aspect-
Oriented Framework in an Object-Oriented
Environment, ACM Computing Surveys,
32(1), 2000.

[20] Jade-Java Agent Development Framework,
Jade Research Group, http://jade.tilab.com/

[21] Java Technology, Sun Microsystems,
http://java.sun.com/

[22] JUnit Testing Framework, JUnit.org,
http://www.junit.org/

[23] CORBA - Common Object Request Broker,
OMG, http://www.corba.org/

[24] Weinand A., Gamma E., Marty R., ET++ -
An Object-Oriented Application Framework
in C++. In OOPSLA’88, Special Issue on
SIGPLAN Notices, 23(11), 1988.

[25] Wilson D.A., Roseinstein L.S., Shafer D.,
Programming with MacApp, Reading, Mas-
sachusetts: Addison Wesley, 1990.

[26] Feuer A., MFC Programming, Addison
Wesley, 1997.

[27] JBoss-AS Webpage, JBoss,
http://www.jboss.org/

[28] Krasner G, Pope S., A Cookbook for Using
the Model-View-Controller User Interface
Paradigm in Smalltalk-80, Journal of Object-
Oriented Programming, 1(3):26-49, 1988.

[29] Hakala M., Hautamaki J., Koskimies K., Pa-
akki J., Viljamaa A., Annotating Reusable
Software Architectures with Specialization
Patterns, Proceedings of the Working
IEEE/IFIP Conference on Software Architec-
ture (WICSA'01) - Volume 00, 2001

[30] The HotDraw Framework,
 st-www.cs.uiuc.edu/users/brant/HotDraw

[31] Czarnecki K., Eisenecker U., Generative
Programming-Methods, Tools and Applica-
tions, Addison Wesley, 2000.

[32] Ho W.M. , Jezequel J., Guennec A.L., Pen-
naneac’h F., UMLAUT: an Extendible UML
Transformation Framework, INRIA, Re-
search Report #3775, Oct/1999.

15

http://struts.apache.org/
http://www.omondo.com/
http://www.eclipse.org/
http://www.uml.org/
http://aosd.net/
http://jade.tilab.com/
http://java.sun.com/
http://www.junit.org/
http://www.corba.org/
http://www.jboss.org/
http://st-www.cs.uiuc.edu/users/brant/HotDraw/HotDraw.html

	Abstract(
	Introduction
	Our Approach to Framework Instantiation
	The Process Language (RDL)
	The Framework Instantiation Tool (xFIT)

	The Case Study
	The Framework (REMF)
	Running the Case-Study
	Previous Adaptations
	Applying our Approach

	Discussion
	Process Improvements
	Extensions to Our Approach

	Related Work
	Conclusion
	Acknowledgements
	About the Authors
	References

