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Abstract 

Application frameworks have been successfully 
used as valuable tools to improve software quality 
while reducing development efforts. Nevertheless, 
frameworks still face important challenges in or-
der to be widely adopted. In particular, framework 
instantiation is still a painful task requiring appli-
cation developers to understand the intricate de-
tails surrounding the framework design. Some 
approaches to alleviate this problem have already 
been proposed in the literature but they are usually 
either just a textual cross-referenced document of 
the instantiation activities or too tied to technology 
or specific application domains. In this paper, we 
present the results of our latest investigations to 
improving our approach to framework instantia-
tion. In particular, we discuss a process language 
we have developed to guide framework instantia-
tion explicitly, and the most recent updates we 
have made to improve the language expressive-
ness. Furthermore, we present a case study used to 
evaluate our approach and to identify current and 
future extensions. 
 
Keywords: frameworks, instantiation, software 
process, software design, transformation. 
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1 Introduction 

Framework concepts have been successfully em-
ployed as important tools to achieve software re-
use [6]. At the same time they reduce 
developments efforts and increase the overall 
quality of produced software systems. ET++ [24], 
MacApp [25] Hotdraw [30], MFC [26], just to 
name a few, are important examples of early 
frameworks that helped demonstrate the feasibility 
of a framework-centered development approach. 
They were able to capture common features suc-
cessfully and represent the variability of a family 
of applications within a specific domain. There are 
now a large number of frameworks that have been 
developed for a variety of different purposes in-
cluding CORBA [23] (middleware for distributed 
systems), JADE [20] (agent systems), Struts [12] 
(web applications), JBoss-AS [27] (enterprise ap-
plications), and JUnit [22] (application testing).  

However, as frameworks become popular their 
weaknesses as well as their strengths are becoming 
apparent. In particular, framework instantiation is 
still a painful task because application developers 
must understand the intricate details surrounding 
the framework design. Thus, instantiation of a 
specific application can often be a slow and costly 
process. For some frameworks such as the MFC it 
may take up to 12 months for an application de-
veloper to be highly productive [6]. Thus, the in-
stantiation process is a time-consuming activity 
which is counter to one of the most valuable prop-
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erties of reuse, i.e., significant shortening in 
development time.  

Some approaches to alleviate the framework 
instantiation problems we mentioned have been 
proposed in the literature [5],[7],[8],[9],[29]. 
However, they are normally either just a textual 
cross-referenced documentation of the instantia-
tion activities or too closely to technology or spe-
cific application domains.  

In this paper we initially give an overview of 
our approach to framework instantiation. We pre-
sent RDL (Reuse Definition Language) a process 
language we have created to represent framework 
instantiation activities explicitly. RDL along  with 
xFIT, our supporting instantiation tool, operates 
on UML [17] models through transformations in 
order to produce valid application instances. Fol-
lowing this description, we present the latest en-
hancements we have made to our RDL in order to 
improve its expressiveness.  Finally, we discuss a 
case study we conducted to assess how our 
framework improved framework instantiation. 

The sections of this paper are organized as fol-
lows. Section 2 presents our approach to frame-
work instantiation and its latest enhancements. 
Section 3 depicts the case study we carried out in 
order to assess our approach properly. In section 4 
we discuss how our approach improved frame-
work instantiation in the light of our case study 
evidences. Section 5 includes some related work, 
and finally Section 6 presents our conclusions and 
future work. 

2 Our Approach to Frame-
work Instantiation 

A typical framework adaptation has two phases: i) 
understanding the overall rationale behind the 
framework design; ii) extending the framework 
flexible points according to specific requirements 
in order to produce application specific increments 
(ASI) [4]. 
 
As we have mentioned, the first phase has been 
supported by some framework documentation 
approaches. Basically, they describe the purpose 
of the framework, its major design elements, their 
relationships, how the flexible points can be 
adapted to produce applications, and provide some 
examples. For example, in the cookbook approach 
[8], recipes are used to explain how a certain ex-
tension point can be adapted. Recipes can refer-

ence each other, thus helping application 
developers to understand better how the hotspots 
(and the design elements they represent) are 
interrelated.  

Our approach complements framework docu-
mentation techniques, in particular cookbooks. It 
closes the gap left by purely text-based approaches 
by providing means to represent instantiation ac-
tivities explicitly. Our approach consists of a proc-
ess language, RDL, that allow framework 
developers to represent adaptation steps, and a 
supporting tool, xFIT, that operates on UML mod-
els by transforming a framework’s class diagrams 
into application class diagrams based on applica-
tion developer’s inputs. Figure 1 below depicts our 
approach. 
 

 
Figure 1: Overview of Our Approach  
 

The steps required to instantiate a framework 
using our approach consists of: 
• The framework developer provides a frame-

work class diagram conforming with the XMI 
format (an XML file representing the model); 

• The framework developer provides an RDL 
script containing the framework instantiations 
steps; 

• The application developer runs xFIT provid-
ing it with the RDL script and the framework 
UML class diagram. Likewise, the application 
developer provides feedback according to 
specific application requirements. 
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• At the end of the generation process xFIT will 
run validation tasks and report the errors en-
countered (if some exist). Otherwise, a UML 
class diagram is produced including the 
framework and the specific application in-
stance classes. 

• The application developer can then use a Case 
tool to open the application model and gener-
ate stubs for the classes produced. By filling 
out the stubs with appropriate code the proc-
ess is ended. 

2.1 The Process Language (RDL) 
RDL is a process language that aims at providing 
mechanisms for framework developers to repre-
sent instantiation tasks explicitly. RDL is pro-
gramming-language and framework-domain 
independent and manipulates design elements ex-
pressed in UML. RDL abstractions have been pro-
posed based on the cookbook approach and exploit 
the use of design patterns [1].  

In the next sections we describe the main con-
struct of the RDL and the latest enhancements we 
have made to increase the language expressiveness. 
Since it is not the purpose of this paper to be an 
RDL reference manual we suggest reading [2] for 
a more detailed description of the language. 
 
RDL Main Structure- RDL higher level con-
structs are represented by cookbooks, recipes and 
patterns. AN RDL cookbook contains a set of 
RDL recipes. RDL recipes embody instantiation 
tasks related to particular variable aspect of a 
framework architecture. RDL Patterns describe 
recurring instantiation steps encountered during a 
framework adaptation (e.g. design patterns). 

RDL can be used to produce two types of arte-
facts: RDL scripts and Pattern Libraries. A general 
structure of an RDL script is shown in Table 1. 

 
COOKBOOK myCookBook 
   RECIPE main 
      … 
      CALL_RECIPE( R1, (…) ); 
      … 
   END_RECIPE 
   RECIPE R1(…) 
      … 
   END_RECIPE 
   … 
END_COOKBOOK 

Table 1: General structure-RDL Script 
 

In an RDL script, at least one recipe must be 
named main representing the cookbook start point. 
Recipes can call each other, receive parameters 
and return values in a way similar to functions in 
procedural languages.  

RDL Pattern Libraries describe instantiation 
patterns, i.e., recurring instantiation tasks. Since 
some design patterns exhibit an abstract and a 
concrete part (e.g. Template Method, Abstract 
Factory, and Strategy) they can be properly used 
to expose framework hotspots. Therefore, design 
patter instances can be represented as RDL Pat-
terns. Pattern Libraries represent an enhancement 
we have made to our approach. The general struc-
ture of an RDL Pattern Library can be found in 
Table 2. 
 

PATTERN_LIBRARY  myPatternLibraryName 
   PATTERN Pattern1(…) 
      … 
   END_PATTERN 
   PATTERN Pattern2(…) 
      … 
   END_PATTERN 
   … 
END_PATTERN_LIBRARY 

Table2:  General structure-RDL Pattern Library 
 

Pattern libraries are normally stored in files 
with the .rdp extension (reuse definition pattern). 
UML class models are expected to conform to the 
XMI format and are stored in .xmi files. In the 
current version of RDL only one RDL script (.rdl) 
is allowed to specify the instantiation steps of a 
framework. There is still no way to import and 
combine RDL scripts. This has been left as a pos-
sible enhancement for future versions of our lan-
guage.  

 
RDL Types- In order to keep the syntax of the 
language simple, the previous versions of RDL did 
not considered data types explicitly. However, as 
we used the language in practical situations the 
need for a strong typed-language became apparent. 
Thus, the types now encountered in RDL are basi-
cally those found in UML class diagrams plus 
some additional ones to represent strings, numbers, 
booleans and list of types (Table 3). Each type has 
a set of associated operations and attributes that 
allow framework developers (RDL script users) to 
make proper references to model elements. 
 
RDL Type Description 
STRING Represent Strings in RDL 
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NUMBER Represent Numbers in RDL 
BOOLEAN Represent Booleans in RDL 
PACKAGE Represent UML Packages 
CLASS Represent UML Classes 
METHOD Represent UML Class Methods 
ATTRIBUTE Represent UML Class Attributes 
Lists Represent lists (vectors) in RDL 
Table 3: RDL Types 
 

RDL commands fall into three categories: Ba-
sic, Instantiation, and Pattern Commands. Follow-
ing we discuss each one of the categories. 
 
RDL Basic Commands- The basic commands 
provide low-level facilities to manipulate the 
framework design elements. For instance, new 
classes, methods or attributes can be created and 
added to UML class diagram models. Table 4 be-
low illustrates some of the RDL basic commands. 
 

Description Basic Command 
Class creation NEW_CLASS(…) 
Method creation NEW_METHOD(…) 
Attribute creation NEW_ATTRIBUTE(…) 
Inheritance  NEW_INHERITANCE(…) 
Selection IF (e) … [ELSE ...] END_IF 
Repetition LOOP (e) … END_LOOP 
Assignment Var = expression 

Table 4: Main RDL Basic Commands 
 
Instantiation Commands- RDL Instantiation 
Commands increase the level of abstraction by 
combining basic commands into single tasks. Ba-
sically, RDL Instantiation Commands represent 
object-oriented reuse activities such as extending a 
class, overriding a method, and assigning a value 
to a class attribute. Table 5 depicts the main In-
stantiation Commands.  
 

Description Instantiation Command 
Class Extension CLASS_EXTENSION(…) 
Method Extension METHOD_EXTENSION(…) 
Value Assignment VALUE_ASSIGNMENT(…) 
Value Selection VALUE_SELECTION(…) 

Table 5: Main RDL Instantiation Commands 
 
Pattern Commands- The highest level statements 
in RDL are represented by Pattern Commands. 
Pattern Commands allow framework developers to 
reuse a set of recurring instantiation activities pre-
viously specified. In previous versions of RDL, 
Patterns Commands were represented by the Pat-
tern Class Extension and Pattern Method Exten-

sion commands. These commands required 
specific types to be passed as input parameters in 
order to be used properly. We decided to simplify 
the language support for patterns by defining a 
single command for an RDL Pattern call. No pa-
rameters are required and it is up to the framework 
developer to define how patterns will be properly 
described. Table 6 describes the RDL command to 
call an RDL Pattern. 
 

Description Pattern Command 
Pattern call command CALL_PATTERN(..) 

Table 6: RDL Pattern Call Command 
In the following we illustrate the implementa-

tion of an RDL Pattern Library including an im-
plementation for the Factory Method design 
pattern, and an RDL Script benefiting from the 
RDL Pattern implementation. 
 
PATTERN_LIBRARY GammaPatterns 
 
  PATTERN FactoryMethod(  
       IN  absCreatorName  : STRING ,  
       IN  facMethodName  : STRING ,  
      INOUT concreteCreatorClass : CLASS  )  
 

-- Create Concrete Creator 
IF (concreteCreatorClass = NIL)  
   concreteCreatorClass =  
       CLASS_EXTENSION(  
              absCreatorName, ? ); 
END_IF 
-- Extends Creator Factory Method 
METHOD_EXTENSION( absCreatorName, 
facMethodName, concreteCreatorClass ); 

   END_PATTERN 
END_PATTERN_LIBRARY 
 
 
COOKBOOK myCookBook 
   RECIPE main 
      conCreator : CLASS; 
      CALL_PATTERN(  
          FactoryMethod, (  
            “AbstractView”, 
            ”createAlarm”, conCreator)); 
END_RECIPE 
END_COOKBOOK 

2.2 The Framework Instantia-
tion Tool (xFIT)  

Our approach is supported by an instantiation tool 
known as xFIT (Framework Instantiation Tool). 
xFIT provides a runtime environment for RDL 
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scripts. The framework class diagram and an RDL 
script are taken as inputs and based on application 
developers feedback xFIT generates the applica-
tion instance class diagram. xFIT performs valida-
tion tasks over the design elements produced to 
ensure that its structure is regular and well-formed. 
As an example, xFIT certifies that all abstract 
classes and methods have been resolved in the 
final design since all the hotspots must have been 
handled. 

3 The Case Study 
Our case study aimed at assessing our approach to 
framework instantiation. In particular, we were 
interested in comprehending how an explicit ap-
proach would improve framework instantiation 
when contrasted with purely text-based ap-
proaches (e.g. [5],[7],[8],[9]). Yet, it was not our 
intention to address any specific text-based ap-
proach but rather to treat them as a category. In 
summary, our goal was to answer the following 
questions: 
• How did our approach improved framework 

instantiation when compared with purely text-
based approaches? 

• Which issues in framework instantiation were 
not addressed by our approach? How can we 
support them in the future? 

 
In the next sections we provide a detailed de-

scription of our case study. We begin by present-
ing the framework we have chosen as the target of 
our study, then we discuss how previous instantia-
tions were carried out, and finally we give details 
on how the case study was conducted. 

3.1 The Framework (REMF) 
The Real-time Event Monitoring Framework 
(REMF) (see Figure 2) has been developed and 
maintained by our group to be applied to the moni-
toring of real-time events. Originally, the intention 
was to develop an application to monitor real-time 
events produced by one of our server applications. 
However, we realized that some other applications 
and projects within our research program could 
also take advantage of our monitoring tool so we 
decided to develop it as a framework. 

Several factors influenced our choice in favor 
of the REMF as our case study:  
 

i) the quality of its architecture strongly sup-
ported by design patterns and the MVC [28] 
pattern;  

ii) the maturity of its architecture after several 
successful adaptations;  

iii) our previous experiences adapting its design 
to address specific application requirements, 
which provides insight in assessing the im-
provements brought by our approach;  

iv) and finally, its straightforward architecture 
that allow us to concentrate our efforts on dis-
cussing our approach rather than on the spe-
cific design solutions adopted. 

 
The domain covered by the REMF is quite 

wide but we identified some sub-domains that can 
benefit from its design: 
 
• Business-rules monitoring tools (ex.: tools to 

monitor the business-rules of server applica-
tions in general, such as those for credit cards, 
health services, debit cards, loyalty cards, etc.; 
also, web-servers, service-oriented applica-
tions, etc.) 

• Application monitoring tools (ex.: tools to 
monitor the performance of server applica-
tions such as the number of resources allo-
cated, time spent in processes, exceptions, etc.) 

• System monitoring tools (ex.: tools to monitor 
system events such as memory and CPU per-
formance, SNMP events, etc.)  

 
REMF Flexible Points-  REMF was written in 
Java 1.3 [21] using Eclipse 3.0.1 [16] as the Java 
compiler/debugging tool and the Eclipse plug-in 
Omondo EclipseUML 2.0 [13] as the UML Case 
tool. The framework contained 64 classes distrib-
uted across 7 packages. Eighteen (18) of the 
classes were abstract and 46 were concrete reveal-
ing the framework developer’s commitment to 
providing a rich set of ready-to-use functions (fro-
zen spots) shared among all application instances. 
REMF architecture was supported by 7 design 
patterns: Factory Method, Strategy, Observer, 
Template Method, Abstract Factory, Pro-
ducer/Consumer, and Iterator. The MVC pattern 
constitutes the core of the framework architecture 
exposing a variety of flexible points. Seventeen 
(17) hotspots were exposed by the REMF architec-
ture. Seven (7) of them were mandatory and 10 
were optional. It means that, at a minimum, an 
instance could be obtained by resolving the 7 
mandatory hotspots and accepting the default be-
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havior provided by REMF architecture for the 
other 10 optional ones. All hotspots have been 
implemented by using design patterns which al-
lowed experienced programmers to understand 
rapidly the rationale behind them. Table 7 gives an 
overview of the REMF hotspots, its recipes, and  
the design patterns used. 

Roughly, there were three major elements that 
can be customized in the REMF architecture: the 
Event’s Producer, the Filtering Capabilities, and 
the Alarms. 
 

 
Figure 2: REMF Instance Screenshot 
  

The Event’s Producer was in charge of produc-
ing the real-time events that would be displayed in 
the graphical user interface. For example, a given 
REMF instance may have decided to use a socket 

to connect to a server application in order to listen 
for events. Event Producers were implemented 
based on the Producer/Consumer design pattern 
but had their hotpots exposed by the Template 
Method design pattern. The Filtering Capabilities 
allowed instances to customize filtering options 
based on their requirements. Filtering options 
were based on the Template Method, Observer 
and Factory Method design patterns. Finally, 
Alarms could be raised whenever a certain filter 
expression was matched. Each REMF instance 
could customize the alarm action (algorithm) to be 
taken. For example, a particular implementation 
may have decided to play a short audio file as an 
alarm action. Alarm actions were based on the 
Strategy design pattern. 

The REMF also provided a mechanism to glue 
the application specific increments with the frame-
work. The glue mechanism used reflection as a 
means to achieve runtime composition (Java 
reflection) and was based on the Abstract Factory 
design pattern. 
 
3.2 Running the Case-Study 

In order to assess the effectiveness of our ap-
proach properly we decided to reason about and 
document the previous REMF instantiation ex-
periences first. Then, we defined a set of specific 
requirements to motivate our case study and the 
need for a new REMF adaptation. Finally, we ap-
plied our approach to produce the application in-
stance planned. 

 

ID Hotspot Recipe Type Default  
Behavior 

Design 
Pattern 

HNA1 Creating an Alarm Object  Notifica-
tion Alarms Optional No alarms are 

defined 
Factory 
Method 

HNA2 Specifying the Alarm Action Notifica-
tion Alarms Optional 

No alarms 
algorithm is 
defined 

Strategy 

HAF1 Handling Visual Filter Selection 
Changes 

Application 
Filters Mandatory - Template 

Method 

HAF2 Creating a Visual Filter Panel Application 
Filters Mandatory - Factory 

Method 

HAF3 Creating a Textual Filter Expression Application 
Filters Mandatory - Template 

Method 

HTF1 Defining the Application Top-level 
Filter 

Top-level 
Filter Optional No Event is 

Filtered 
Template 
Method 

HFS1 Specifying the Event Message’s Fields 
to be Saved 

Filters to 
Save Optional 

All Event’s 
Fields are 
saved 

Template 
Method 
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HEP1 Specifying the Events Message’s 
Fields Meta Definitions 

Events 
Producer Mandatory - Template 

Method 

HEP2 Preparing Producer Resources Events 
Producer Optional No Action Template 

Method 

HEP3 Releasing Producer Resources Events 
Producer Optional No Action Template 

Method 

HEP4 Producing New Events Events 
Producer Mandatory - Template 

Method 

HEP5 Defining a New Message Producer Events 
Producer Mandatory - Factory 

Method 

HEP6 
Specifying the Appropriate Action 
when Producer Starts Producing Mes-
sages 

Events 
Producer Optional  No Action  Observer 

HEP7 
Specifying the Appropriate Action 
when Producer Stops Producing Mes-
sages 

Events 
Producer Optional  No Action  Observer 

HEP8 
Specifying the Appropriate Action 
when Producer is Repairing an Error 
During a Message Production 

Events 
Producer Optional  No Action  Observer 

HEP9 
Specifying the Appropriate Action 
when Producer Produces a New Mes-
sage 

Events 
Producer Optional  No Action  Observer 

HGL1 Instantiating a Factory to create MVC 
Components Glue Mandatory - Abstract Fac-

tory 
Table 7: REMF Hotspots 
 
Previous Adaptations 
Prior to our case study the REMF had already 
been instantiated on other five occasions produc-
ing distinct application instances (see Table 8). 
  

REMF Instance Hotspots 
Adapted 

Credit card monitoring tool 
1 instance 17 

Loyalty card monitoring tool  
1 instance 14 

Prepaid cell phone account recharge 
monitoring tool  
3 instances w/ specific requirements 

13, 13, 15 

Table 8: REMF Previous Instances 
 

All previous adaptations were carried out based 
on the REMF cookbook which consisted of a 
document describing the framework hotspots and 
their proper adaptation. Since no active guidance 
or tool support was provided application develop-
ers were required to perform the appropriate 
instantiation steps manually.  

Every REMF adaptation followed a top-down 
development approach. First, design models were 
manipulated, i.e., the framework UML class dia-
grams were extended, then class stubs were auto-
matically generated based on the UML models, 

and finally, specific Java application code was 
added to the stubs using a Java editor.  

Although the adaptation process just described 
seemed to be appropriately high-level and straight-
forward, it was indeed complex and problematic. 
In particular, the lack of automation to assist in 
finding and extending REMF hotspots in UML 
class diagrams made the process of producing 
design models for application instances intricate 
and lengthy. Application developers were required 
to navigate though the framework class diagram, 
identify the hotspots, differentiate mandatory and 
optional hotspots, and properly extend the frame-
work classes and methods, without any active as-
sistance. This scenario turned out to be even worse 
when time-to-market forces started to  pressure the 
application’s deployment. 

In order to alleviate the lack of guidance and 
adequately cope with time-to-market issues some 
important decisions had to be made. First, the 
recipes in the REMF cookbook were written to 
reflect the framework main architectural compo-
nents. In particular, the MVC components were 
used as a guide to specify the recipes in a way that 
resembled what was done in [28]. The primary 
goal was to minimize the need to manipulate de-
sign elements spread throughout the model, and 
consequently diminish the complexity associated 
with it, and thus have instantiation steps referring 
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to design elements located in a specific architec-
tural module. We say that the recipes followed an 
architecture-oriented arrangement. Figure 3 de-
picts the recipes and their relationships for the first 
five REMF adaptations.  

Second, we decided to postpone detailed hot-
spot resolution such as method extensions to a 
later phase and let the design adaptation steps fo-
cus more on simple tasks such as class extensions.  

This strategy appeared to be effective since at 
source code manipulation time the compiler is a 
helpful tool in identifying mandatory hotspots. For 
instance, a compiler will raise an error whenever a 
super-class abstract method is not overridden by a 
sub-class (mandatory hotspots). 

Figure 3: REMF Architecture-oriented Recipes 
 

Given that the resolution of most of the hot-
spots was delayed to source code development 
time, we say that the instantiation followed a code-
centric approach as opposed to a design-centric 
one (driven mainly by design model manipula-
tions). 

Although the decisions made were able to re-
duce the complexity of the REMF instantiation 
process the level of abstraction was still too low, 
as it was driven by architectural elements, follow-
ing a code-centric approach, and lacking a more 
appropriate tool support.   

Applying our Approach 
After carefully understanding and documenting 
how previous REMF instantiations occurred we 
started our case study. Our goal was to produce a 
new application instance based on the REMF ar-
chitecture. In particular, we aimed at developing a 
real-time monitoring tool for a credit card authori-
zation system (named WatCreditCard). As we did 
not have an actual credit card server application 
and it was not relevant for the purpose of our case 
study, we specified stub classes that would pro-
duce random data to represent credit-card transac-
tions (ex.: purchases, cancellations, credits, etc.). 
The steps we followed to construct the new in-

stance are detailed next and as expected used our 
approach to framework instantiation. 
 
The REMF UML Model- Since our approach 
encourages a design-centric development para-
digm the very first step was to make sure that the 
REMF UML model was current. Therefore, de-
cided to perform a reverse engineering process to 
obtain the revised design. Following this step, we 
exported the REMF UML class diagram to a file 
conforming with the XMI (XML Metadata Inter-
change) format, that would later serve as an input 
to our framework instantiation tool (xFIT). 
 
Creating the RDL Script- In the next step, we 
created the RDL script that would guide the 
REMF instantiation process. We started by creat-
ing an RDL Pattern Library to represent REMF 
design patterns, in particular, the patterns used to 
expose hotspots. For each pattern we defined a 
corresponding RDL Pattern. Five design patterns 
have been implemented: Factory Method, Tem-
plate Method, Strategy, Observer, and Abstract 
Factory.  

Next, we created the REMF RDL script. For 
each recipe in the REMF cookbook we specified 
an equivalent RDL recipe with the appropriate 
parameters.  As a result we ended up with six reci-
pes: Model, View, Controller, Connector, Factory 
and the main recipe (Figure 3).  

However, as the previous REMF adaptations 
had already revealed the level of abstraction of the 
instantiation process had not been appropriate, 
disclosing too many details of the framework ar-
chitecture, especially its MVC-based design. Since 
now we had a supporting tool to cope with the 
low-level instantiation steps we decide to raise the 
level of abstraction during the instantiation proc-
ess by hidden low-level details from the applica-
tion developers. We rearranged the recipes in the 
REMF cookbook document in order to move from 
an architecture-oriented perspective to a feature-
oriented one (see Figure 4).  
 

 
Figure 4: REMF Feature-based Recipes 

Main 

Glue 

Notification Alarms 

Top-level Filter 

FieldsToSave 

EventsProducer 

Notification Alarms 

Main 

Model 

View 

Factory 

Controller 

Connector 
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For example, Model, View, and Controller 

recipes were substituted by others such as Notifi-
cationAlarms, ApplicationFilters, and EventsPro-
ducer. A feature-oriented recipe embraced REMF 
hotspots represented by design elements that may 
crosscut different architectural modules. Therefore, 
at the same time the level of abstraction was raised, 
since architectural details were omitted, the need 
for automation became essential in order to prop-
erly cope with the inherent crosscutting nature of 
the design elements handled. Thus, the provision 
of a supporting tool for framework turned out to 
be critical in our approach. After restructuring the 
REMF cookbook document we created the corre-
sponding REMF RDL script.  

Next, we depict the REMF RDL script we used 
to obtain a new framework instance in our case 
study. Some details were omitted for space rea-
sons. 
 
COOKBOOK REMF 
RECIPE main 
  modelClass, viewClass, controllerClass, connectorClass : 
CLASS;  
  -- Instantiating a Factory to create MVC Components 
  CALL_RECIPE( Glue, (modelClass, viewClass, controller-
Class, connectorClass) ); 
  -- Handling Notification Alarms 
  CALL_RECIPE( NotificationAlarms, (viewClass) ); 
  -- Handling Application-Specific Filters 
  CALL_RECIPE( AppFilters, (viewClass) ); 
  -- Specifying the Application Top-Level Filter 
  CALL_RECIPE( TopLevelFilter, (controllerClass) ); 
  -- Specifying the Events’ Fields to be Saved 
  CALL_RECIPE( FieldsToSave, (modelClass) ); 
  -- Specifying the Application Message Producer 
  CALL_RECIPE( EventsProducer, (controllerClass, model-
Class) ); 
END_RECIPE 
 
RECIPE NotificationAlarms ( IN viewClass : CLASS ) 
  concreteAlarmClass : CLASS; 
  -- Hotspot HNA1,  Pattern: Factory Method, Creating an 
Alarm Object, Type: Optional  
  CALL_PATTERN( FactoryMethod, ( “AbstractView”, “cre-
ateAlarm”, viewClass ) ); 
  -- Hotspot HNA2, Pattern: Strategy,  Specifying the Alarm 
Action,  Type: Optional  
  CALL_PATTERN( Strategy, ( “AbstractAlarm”, “raise”, 
concreteAlarmClass ) ); 
END_RECIPE 
 
RECIPE AppFilters( IN viewClass : CLASS ) 

...   
END_RECIPE 
 
RECIPE TopLevelFilter( IN controllerClass : CLASS ) 

...   
END_RECIPE 
 

RECIPE FiltersToSave( IN modelClass : CLASS ) 
...   

END_RECIPE 
 
RECIPE EventsProducer( IN controllerClass: CLASS , IN: 
modelClass : CLASS) 

...   
END_RECIPE 
 
RECIPE Glue ( OUT modelClass, OUT viewClass, OUT con-
trollerClass, OUT connectorClass ) 

… 
END_RECIPE 
END_COOKBOOK 
Defining the Application Requirements- Before 
running the instantiation process we detailed the 
requirements of our new WatCreditCard applica-
tion instance. This phase was especially important 
as it helped us identifying the optional hotspots to 
be adapted.  

Table 9 depicts the WatCreditCard instance 
goal, its specific requirements, and the corre-
sponding hotspots. As expected, the 10 mandatory 
hotspots had to be adapted since there was no de-
fault implementation provided for them. As for 
optional hotspots, 3 of them were redefined and 7 
reused  the framework default implementation. 
 

WatCreditCard  
Goals, Requirements and Hotspots 
Goal: Monitor real-time credit-card transac-
tions produced by the WatCreditCard applica-
tion server (ex.: purchase, cancellation, credit, 
terminal initialization, terminal shutdown). The 
application server was represented by Stub 
classes to produce random credit-card-related 
transactions. 
R1: Raise audio alarms for events 
Hotspots Involved: 
• Creating an Alarm Object (optional/adapted) 
• Specifying the Alarm Action (optional/adapted) 
R2: Expunge mal-formed transactions 
Hotspots Involved: 
• Defining the Application Top-Level Filter (op-

tional/adapted) 
R3: Save all transaction’s information
Hotspots Involved: 
• Specifying the Event Msg’s Fields to Save (op-

tional/default) 
R4: Enable visual filtering for Credit-card 
transactions
Hotspots Involved: 
• Handling Visual Filter Selection Changes (manda-

tor) 
• Creating a Visual Filter Panel (mandatory) 
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• Creating a Textual Filter Expression (mandatory) 
R5:Produce Credit-card real-time transactions
Hotspots Involved: 
• Specifying the Events Message’s Fields Meta 

Definitions (mandatory) 
• Preparing Producer Resources (optional/default) 
• Releasing Producer Resources (optional/default) 
• Producing New Events (mandatory) 
• Defining a New Message Producer (mandatory) 
• Specifying the Appropriate Action when Producer 

Starts Producing Messages (optional/default) 
• Specifying the Appropriate Action when Producer 

Stops Producing Messages (optional/default) 
• Specifying the Appropriate Action when Producer 

is Repairing an Error in a Msg. Prod. (op-
tional/default) 

• Specifying the Appropriate Action when Producer 
Produces a New Message (optional/default) 

Table 9: WatCreditCard Requirements/Hotspots  
 
Producing Application Increments- In order to 
produce the WatCreditCard instance we ran our 
framework instantiation tool xFIT. xFIT took as 
input the REMF model files (XMI) and the REMF 
RDL script. During the instantiation process the 
application developer was required to answer in-
stantiation questions (e.g. names of classes and 
methods, and whether or not an optional hotspot 
should be adapted). At the end, xFIT produced a 
UML model (in XMI) containing the framework 
and the application instance design elements. Not 
only classes, as occurred in previous REMF 
adaptations, but also methods were properly 
extended. Because of xFIT active guidance all 
hotspots were properly addressed and reviewed by 
the application developer.  
 
Completing the Stubs Produced- Once the UML 
model was produced for the WatCreditCard in-
stance, we performed a code generation process 
using our case tool in order to generate stub 
classes for the WatCreditCard instance. After add-
ing specific code, and compiling/debugging our 
application was finally deployed. 

4 Discussion 
In this section we discuss how our approach im-
proved framework instantiation and describe some 
future extensions in the light of our case study. In 
short, we claim that our approach i) raises the 
level of abstraction of framework adaptation proc-
esses, ii) enforces correctness of instantiation tasks, 

iii) provides adequate means for representing and 
reusing framework instantiation activities, and iv) 
reduce application development time.  

4.1 Process Improvements 
Correctness on Design Manipulation- As we 
have mentioned, previous REMF adaptations were 
performed based solely on the REMF cookbook, 
leaving it up to the application developer to under-
stand and perform the instantiation steps. Thus, the 
instantiation process became time-consuming and 
error-prone. For example, method and class exten-
sions were normally achieved through multiple 
design manipulation. Figure 5 below illustrates a 
typical manual method extension scenario in 
which the raise method has been mistakenly mis-
spelled in the sub-class (step 4). 

Not surprisingly, it was quite common for ap-
plication developers to make mistakes such as 
misspelling methods/classes names, setting up 
erroneous inheritance relationships, specifying 
method signatures with the wrong type or number 
of parameters, and so forth. That is why in previ-
ous adaptations of the REMF application develop-
ers were encouraged to postpone method 
extensions to a later phase, typically at source 
code manipulation, when the compiler would be 
helpful in assist with correctness issues.  

Let us examine a practical example. Looking at 
our case study consider the recipe EventsProducer. 
Lots of instantiation steps were provided towards 
the construction of Event Producers. Whenever a 
mandatory step was mistakenly performed (ex.: 
the getMetaDefinitions method signature in the 
sub-class did not mach with the super-class one) 
the application instance produced contained an 
error. This problem could be considerably more 
catastrophic if we think about a large framework 
containing numerous hotspots. 

Another example of lack of support for design 
correctness regards the need to establish correct 
connections among major REMF architectural 
elements. The advantageous use of design patterns 
in the REMF architecture also required that design 
elements played specific roles and interacted with 
each other in a particular way. In order to conform 
properly with a pattern’s specifications, applica-
tion developers had to through manual means to 
ensure i) make sure that design elements have 
been correctly created and assigned to their corre-
sponding pattern roles, and ii) ensure that the con-

10 



nections among the design elements were properly 
set.  

 

 
Figure 5: Manual method overriding steps 

In contrast, our case study proved useful in 
supporting correctness of instantiation activities. 
RDL scripts provided the right mechanisms to 
ensure correctness based on syntax precise ma-
nipulation. For example, the RDL method exten-
sion command ensured that the overridden 
methods in the super-classes would always have 
the exact same signature in the sub-classes. There-
fore, method and class extensions were always 
performed correctly in our case-study.  

RDL Patterns were also important mechanisms 
to enforce design correctness. By properly com-
bining RDL instantiation commands, RDL Pat-
terns were able to connect design elements 
correctly into micro-architectures removing that 
burden from the application developers. For in-
stance, the RDL recipe Glue called the RDL Pat-
tern AbstractFactory in order to create a Concrete 
Factory and a set of Concrete Products (Model, 
View, and Controller) for the WatCreditCard ap-
plication instance. The RDL pattern hid from the 
application developer the complexity of assem-
bling the design elements needed to conform to 
the Abstract Factory design pattern. Likewise, the 
Template Method, whose instantiation involved a 
lot of method extensions, was also implemented in 
terms of RDL patterns decreasing the chances for 
errors. 

By providing correctness support at the design 
level our approach also provided a means to re-
duce application construction time/cost once it 
was understood that the instantiation activities 
performed always handled the design elements in 
a correct way.  
 
Effective Handling of Optional Hotspots- A 
difficulty reported in previous adaptations of  the 
REMF regarded the effective handling of optional 
hotspots. As the instantiation process did not pro-
vide active guidance developers were required to 
find the proper design elements associated with 

the optional hotspots and correctly extend them. 
However, as the design elements may be spread 
throughout different framework architecture mod-
ules it turned out to be a time-consuming task for 
application developers to extend the optional hot-
spots properly. In addition, the consequences of 
missing a hotspot could be as serious as producing 
an application with undesirable features and thus 
having to repeat the whole instantiation process 
again. 

In contrast, our approach provided effective 
mechanisms to cope with optional hotspots. RDL 
scripts were able to capture and represent all 
REMF optional extensions and present them pro-
gressively to application developers as the instan-
tiation process was performed. Then, based on the 
specific application requirements application de-
velopers were able to decide which hotspots 
should be extended.  

This explicit guidance through optional exten-
sions kept the instantiation decisions under the 
control of the application developer, avoided run-
time application behavioural problems, and 
shorten ed the application construction process.  
 
Reuse of Framework Instantiation Artefacts-  
Some important artefacts can be reused across 
different framework instantiations. For example, 
the framework architecture and the cookbook 
document can be reused across multiple adapta-
tions of the same framework. However, these arte-
facts do not provide effective means to capture 
and represent the expertise of the framework team 
in describing the actions needed to produce a valid 
and correct application instance. Therefore, the 
advantageous knowledge of the framework devel-
opers is wasted thus compelling application devel-
opers to create their own instantiation strategies. 
Indeed, knowledge waste occurred with all REMF 
previous adaptation processes. 

In contrast, our approach introduced two new 
artefacts to framework instantiation: the RDL 
scripts and the RDL Pattern Libraries. As we dis-
cussed, RDL scripts embodied detailed instantia-
tion steps for a given framework and could be 
reused across distinct framework adaptations. 
Framework developers had an adequate means to 
represent their know-how and explicitly represent 
the instantiation steps required to produce valid 
framework’s instances. For instance, the REMF 
RDL script devised in our case study specified a 
standard and safe way to customize the REMF 
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architecture thus discouraging the application de-
velopers to define their own strategies.  

Similarly, RDL Patterns represented recurring 
instantiation tasks that may occur in different 
framework instantiation processes. Moreover, they 
produced reusable RDL Pattern Libraries for the 
cases in which the patterns described were domain 
independent (e.g. Gamma patterns [1]). Thus, 
RDL Patterns were also important reusable arte-
facts that were able to communicate effectively the 
framework developer’s expertise across different 
framework projects. 
 
Feature  versus Architecture-oriented Guid-
ance- As we have mentioned, some important 
factors influenced the way the recipes were organ-
ized in the REMF cookbook document for the first 
five adaptations. Since there was no assisted guid-
ance or tool support for framework instantiation 
the manipulation of design model elements corre-
sponding to the framework hotspot was complex 
and may have involved addressing various archi-
tectural modules. In addition, time-to-market re-
quirements of  some of the REMF application 
instances compelled us to specify a more prag-
matic approach to facilitate framework instantia-
tion. As a consequence, the REMF cookbook 
recipes were arranged to follow an architecture-
oriented approach..  

Architecture-oriented recipes usage was advan-
tageous in this scenario especially because the 
design elements manipulated were normally found 
concentrated in a few architectural modules. Fig-
ure 6 depicts three architecture-oriented recipes 
Model, View and Controller that manipulates de-
sign elements within same-named framework 
modules. By ensuring that application developers 
did not need to cope with scattered design manipu-
lations we kept the instantiation process more 
manageable. However, despite the efforts to im-
prove the REMF instantiation process it remained 
error-prone, time-consuming and too low-level, 
because it revealed the intricacies of the frame-
work architecture to the application developers.  

In contrast, one of the main goals of our ap-
proach was to raise the level of abstraction of 
framework instantiation. Application features 
rather than architectural modules should guide the 
instantiation process. In fact, the RDL process 
language in conjunction with the supporting tool 
provided (xFIT) enabled a feature-oriented ar-
rangement of the recipes in the REMF cookbook. 
Architectural solutions were kept hidden from 

application developers as the same time as cross-
cut manipulations of design elements could be 
carried out in a straightforward manner. xFIT took 
care of handling multiple architectural modules 
spread throughout the REMF design model. Figure 
6 shows Feature-Oriented recipes manipulating 
design elements that crosscut multiple REMF ar-
chitectural modules (Model, View and Controller). 

The REMF RDL script mapped each frame-
work feature to its corresponding architectural 
components through recipes. In order to facilitate 
the understanding of the feature-oriented recipes 
in our approach we make an analogy between 
RDL recipes and Aspects in Aspect-Oriented Pro-
gramming [14],[18]. While Aspects are normally 
used to modularize crosscutting concerns related 
to tangled and scattered code, RDL Recipes modu-
larize crosscutting instantiation tasks. 

 

Figure 6: Feature x Architecture-based Recipes 
 

Now, the advantages of using our approach be-
came more evident. The level of abstraction of the 
instantiation process was raised from an architec-
tural to a feature-oriented perspective, the steps 
were actively guided, and the time to produce new 
application instances shortened.  
 
Design versus Code-centric Approach- Unas-
sisted REMF previous instantiations tended to 
follow a code-centric approach. Although design 
manipulations had been encouraged most of the 
instantiation steps were postponed to the imple-
mentation phase (e.g. method extensions). This 
way we expected the Java compiler to work as a 
validation tool, especially in the case of mandatory 
hotspots (method overriding). Although the deci-
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sions taken helped reduce the general complexity 
of the REMF instantiation process the level of 
abstraction turned out to be excessively low-level 
centered on source code manipulations and driven 
by architecture-oriented recipes. 

On the other hand, our approach encourages a 
design-based instantiation process. RDL scripts 
manipulates and transforms UML class diagrams 
in such a way that source code details are hidden 
and postponed for a future phase. After obtaining 
the final UML class diagram for the application 
instance ,application developers are encouraged to 
complete the corresponding source code. Doubt-
less, a design-centric approach is much more 
convenient once it allows application developers 
to progressively cope with instantiation details. 
Basically, it offers two phases: i) adapting 
framework design to obtain an application in-
stance(design), and ii) completing source code 
stubs (implementation).  

4.2 Extensions to Our Approach 
Although the application of our approach in the 
REMF case study presented very interesting re-
sults in terms of automation/guidance, support for 
design correctness, and shortening of development 
time, we were also able to identify some possible 
extensions.  

First, the lack of integration between our ap-
proach and a framework documentation approach, 
especially in terms of tool support, was missing. 
Changes in REMF cookbook recipes are not re-
flected on RDL recipes and vice-versa. As well, 
we had to consult the REMF cookbook at times 
during the instantiation process in order to provide 
the right inputs to the xFIT tool.  

Second, only UML class diagrams were han-
dled by our approach. It was our intention to en-
hance the REMF UML documentation by 
exploiting new UML diagrams but we realized 
there would be no gain in terms of the framework 
instantiation.  

Finally, our approach did not handle source 
code generation in any way. For example, in our 
case study just the design elements of the Wat-
CreditCard instance were produced and the source 
code generation relied on the Case tool we had 
chosen.  

5 Related Work 
Several approaches claim to facilitate framework 
instantiation. In [9] the authors used a structured 
specification to support framework instantiation. 
Although their work led the area of instantiation 
assistance, their contribution can be summarized 
as a template to a reuse document expressed in 
natural language, which can be hard to follow due 
to the lack of a formal construction. Moreover, a 
Cookbook can not be processed automatically, 
living space for inconsistencies in its definition. 
As an extension to Cookbooks, Hooks [7] also 
provided a template for framework instantiation 
assistance and they share the same problems.  

In the area of instantiation guidance Smart-
books [15] advocate the use of Software Agents to 
execute instantiation plans. The main issue with 
this approach is the introduction of non-standard 
notations, such as TOON [15], which causes an 
extra burden to the Framework Development. In 
OBS [10] the authors used a generative approach 
to framework instantiation that shares some char-
acteristics with our previous work [3]. However, 
the OBS approach is based on ready-to-use black-
box frameworks, which constraints instantiation 
processes to component configuration not cus-
tomization. FRED [29] is a framework editor tool 
that uses specialization patterns in order to 
generate applications. However, FRED is code-
centric and tied to the Java language whereas our 
approach is design-centric and programming-
language independent. Finally, UMLAUT [32] 
presents a general UML transformation framework 
based on algebraic compositions and reified ele-
mentary transformation. Our approach also per-
forms transformations on UML models but  is 
rather focused on the domain of framework instan-
tiation. 

6 Conclusion 
In this paper, we presented our approach to 
framework instantiation, the enhancements we 
have made to improve its effectiveness, and a case 
study we developed to evaluate our approach. Our 
case study showed that the use of our approach 
was helpful in raising the level of abstraction of 
framework adaptation processes. Our approach 
encouraged a feature-oriented design-centric 
framework instantiation process. Moreover, It 
effectively supported correctness by assisting de-
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sign manipulations and providing active guidance 
throughout the adaptation process. We also identi-
fied some extensions needed to improve our ap-
proach as our research moves further on. 

As for future work, we aim to extend our ap-
proach to support the instantiation of Aspect-
Oriented Frameworks [11],[19] since we believe 
that the use of aspects as means to separate soft-
ware concerns is a trend. Furthermore, we want 
our approach to support other UML diagrams, 
initially Interaction and Activity diagrams. Finally, 
the idea of using generative techniques  [31],[10] 
to enable our approach to go beyond design ma-
nipulations is a potential target for investigation.  
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