
The complexity of Domino Tiling

Therese Biedl ∗

Abstract
In this paper, we study the problem of how to tile a layout with dominoes. For

non-coloured dominoes, this can be determined easily by testing whether the layout
graph has a perfect matching. We study here tiling with coloured dominoes, where
colours of adjacent dominoes must match. It was known that this problem is NP-hard
when the layout graph is a tree. We first strengthen this NP-hardness result in two
ways: (1) we can use a path instead of a tree, or (2) we can force that exactly all given
dominoes are used. However, both these reductions (as well as the existing one) use an
unbounded numbers of colours, which is not realistic for domino tiling. As our main
interest, we hence study domino tiling with a constant number of colours. We show
that this is NP-hard even with 3 colours.

1 Introduction

In this paper, we consider the problem of tiling a given layout with dominoes. More specif-
ically, a layout L is an integral orthogonal polygon, i.e., a polygon for which all edges are
horizontal or vertical and have integer length. A domino is a 1 × 2-rectangle. We want to
test whether there is a placement of dominoes such that every point inside L is covered by
exactly one domino, and no point outside L is covered by a domino.

It is folklore that this can be tested in polynomial time as follows. Translate L such that
none of its vertices has integer coordinates. Now let V be all grid points (points with integer
coordinates) that are inside the layout, and let E be all edges between two vertices of V at
unit distance. The pair (V,E) defines the layout graph GL. See also Figure 1(a) and (b).

L can be tiled with dominoes if and only if GL has a perfect matching, i.e., a set of edges
M such that every vertex is incident to exactly one edge in M . The existence of such a
matching can be tested in O(n3/2) time [6], where n is the number of vertices of GL, since
GL is bipartite with O(n) edges.

In this paper, we study domino tiling while considering colours of dominoes; this appears
to first have been studied in [10]. Let C = {c1, . . . , cl} be a finite set of l colours. A coloured
domino is an unordered pair (ci, cj). Uni-coloured dominoes, i.e., dominoes for which ci = cj,
are not expressively forbidden, but will not be used in our NP-hardness reductions. A
coloured domino tiling of a layout graph GL is similar to a domino tiling, except that colours
of dominoes must match up. Thus, given a multi-set D of coloured dominoes, a coloured
domino tiling1 of GL with D is a perfect matching M in GL and a colouring c : V → C such
that

∗School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada, e-mail
biedl@uwaterloo.ca. Research partially supported by NSERC.

1Our definition is different from the one in [10], but describes exactly the same concept.
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Figure 1: (a) Grid points inside the layout. (b) The layout graph with a perfect matching
(bold.) (c) A tiling with coloured dominoes. All vertices marked with the same symbol must
be coloured the same.

• if (v, w) is an edge in M , then (c(v), c(w)) is a domino in D,

• if (v, w) is an edge not in M , then c(v) = c(w), and

• every domino is used at most once, i.e., there is an injective mapping from {(c(v), c(w)) :
(v, w) ∈ M} onto D.

See also Figure 1(d). In what follows, we never consider non-coloured dominoes and/or
tilings, and hence drop “coloured” from now on.

We can distinguish domino tilings by whether they are using all given dominoes. In the
Exact Domino Tiling problem every domino must be used exactly once in the tiling, so
the number of dominoes must equal half the number of vertices of the layout graph. In the
Partial Domino Tiling problem we can have arbitrarily many dominoes. Watson and
Worman [10] showed the following results:

• Exact Domino Tiling is solvable if the layout graph is a path or a cycle.

• Partial Domino Tiling is NP-hard, even if the layout graph is a tree.

Watson and Worman left as an open question whether Exact Domino Tiling is NP-
hard. We prove this, and strengthen their NP-hardness results, as follows:

• We show that Exact Domino Tiling is NP-hard, even if the layout graph is a cater-
pillar, i.e., a tree that consists of a path with degree-1 vertices attached. Alternatively,
it is NP-hard even if the layout is a union of paths.

• We show that Partial Domino Tiling is NP-hard, even if the layout graph is a
cycle or a path.

Rather than proving these results directly, we relate domino tiling to a graph homomor-
phism problem, and show its NP-hardness; this graph homomorphism problem may be of
independent interest.

Both our NP-hardness proofs and the one in [10] use an unbounded number of colours.
This is unrealistic, since normally dominoes are “coloured” with between 0 and 9 dots. We
hence next study domino tiling where only a small number of colours are used. As our main
result, we show that the problem is NP-hard even if only 3 colours are used.

We are generally only concerned with proving NP-hardness; the domino tiling problems
are clearly verifiable in polynomial time, and hence our results really prove NP-completeness.
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2 Edge-injective homomorphisms of graphs

Domino tiling can be phrased equivalently in graph-theoretic terms. To do so, we need three
graphs related to a domino tiling instance; we review/define these now.

(1) The layout graph GL: This graph was defined earlier and is an induced subgraph of the
(2D rectangular) grid, whose vertices are the points inside the layout.

Note that given an induced subgraph of the grid, we can easily construct a layout for
which this is the layout graph. Hence we can drop the geometry of the layout and instead
consider tiling the layout graph. Note that our definition of domino tiling is purely graph-
theoretic as well.

This raises an interesting modification of the problem: We could consider the problem of
tiling an arbitrary graph that is not the graph of a layout. This is not needed for our proofs,
i.e., the graphs we create are indeed induced subgraphs of the grid.

(2) The domino graph GD: This graph is used to describe the given multi-set of dominoes
as graph. Recall that C = {c1, . . . , ck} is the set of colours used on dominoes. Define one
vertex for every colour. For every domino (ci, cj) in the set D of dominoes, add an edge
between the vertex of ci and the vertex of cj in GD. We use ci both for the colour and for the
corresponding vertex in GD, and (ci, cj) both for a domino and for its corresponding edge in
GD. Note that GD is possibly a multi-graph (has multiple edges between a pair of vertices),
and it has loops if there are uni-coloured dominoes.

For any graph, we can easily define a multi-set of dominoes for which this is the domino
graph; hence the concept of a multi-set of dominoes and of a domino graph are equivalent.

(3) The contracted graph GC(M): Assume we are given a layout graph GL and a perfect
matching M in it. The contracted graph GC(M) is then defined by contracting every edge
that is not in M .2 Here, contraction of an edge (v, w) is the standard graph-theoretic
operation defined as follows: Remove edge (v, w). If v �= w, then additionally remove v and
w, add a new vertex x, and make it incident to every edge that previously was incident to v
or w.

Note that the contracted graph depends on the choice of the perfect matching M . For
many simple layouts (paths, cycles, trees) all perfect matchings give the same contracted
graph, and we simply write GC instead of GC(M).

Domino tilings can be described in terms of mapping the contracted graph into the
domino graph. More precisely, a homomorphism from graph G to graph H is a mapping
σ from V (G) to V (H) such that edges are mapped to edges, i.e., for any edge (v, w) in G,
(σ(v), σ(w)) is an edge in H. The homomorphism is vertex-injective if it is injective, i.e., no
two vertices in G are mapped to the same vertex of H. It is edge-injective if the mapping
of the edges can be made injective. More formally, for an edge-injective homomorphism
we need the homomorphism σ : V (G) → V (H) as before, and an injective edge-mapping
σE : E(G) → E(H) with σE((v, w)) = (σ(v), σ(w)).

Graph homomorphisms (also known as H-colourings) have been studied extensively be-
fore; see for example [3] and the references therein. When adding injectiveness constraints,

2This concept was considered only for a path or cycle in the proof of Lemma 1 in [10].
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we know of two related topics: Fiala and Kratochv́il [4] study locally injective homomor-
phisms, where for each vertex the incident edges must be mapped injectively. Another
related concept are orthogonal graph drawings, which are vertex-injective homomorphisms
of a subdivision of G into the rectangular grid (see for example [2]). For domino tiling, we
are interested in edge-injective (but not necessarily vertex-injective) homomorphisms. To
our knowledge, this topic has not been studied before.

The equivalence of edge-injective homomorphisms and domino tiling follows almost im-
mediately by translating the condition on the colouring function c of a domino tiling to the
function σ for the homomorphism. We omit the details here for space reasons.

Theorem 1 A layout L has a domino tiling if and only if the layout graph GL has a perfect
matching M such that GC(M) has an edge-injective homomorphism into GD.

As a consequence, the results of [10] for Exact Domino Tiling are easily re-proved:
An exact domino tiling of a path/cycle corresponds to an edge-bijective homomorphism of
a path/cycle into GD, which exists iff GD has an Eulerian path/circuit; this can easily be
tested in polynomial time.

For our NP-hardness results, we now study the complexity of edge-injective homomor-
phisms. It is quite straightforward to see that this problem is NP-hard since H-coloring is
NP-hard; see also Section 3. We here prove NP-hardness for three special cases of the source
graph G.

Theorem 1 Testing whether G has an edge-injective homomorphism in H is NP-hard, even
if

(a) G is a cycle, or

(b) G is a path, or

(c) G is a caterpillar and G and H have equally many edges.

Proof: The reduction for (a) is done using the Hamiltonian cycle problem defined as
follows: Given a 3-regular graph H with n vertices, does H contain a Hamiltonian cycle,
i.e., a cycle that visits every vertex exactly once? This is known to be NP-hard [5].

Given a 3-regular graph H, let G be a cycle with n vertices. Clearly if H has a Hamil-
tonian cycle, then G has an edge-injective homomorphism into H. On the other hand, if
G has an edge-injective homomorphism into H, then this homomorphism must in fact be
vertex-injective, since by 3-regularity of H every vertex in H has only three incident edges.
Thus, H contains an n-cycle, which is a Hamiltonian cycle.

The reduction for (b) is similar to (a), except that we use Hamiltonian paths instead
of Hamiltonian cycles; the problem of testing whether a 3-regular graph has a Hamiltonian
path is also NP-hard [5].

Given a 3-regular graph H, let G be a path with n + 2 vertices, say v0, v1, . . . , vn, vn+1.
Assume we have an edge-injective homomorphism of G into H. This homomorphism need
not be vertex-injective, because v0 and vn+1 have only one incident edge in G, and hence
one vertex of H could be used both for v0 (or vn+1) and for some other vertex of G. But for
1 ≤ i, j ≤ n, vertices vi and vj cannot be mapped to the same vertex in H, since vi and vj
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have two incident edges each in G, but a vertex in H has degree 3. Therefore, the mapping
of v1, . . . , vn forms a path with n vertices in H, which is a Hamiltonian path of H.

Conversely, assume H has a Hamiltonian path w1, . . . , wn. Let w0 be any neighbour
other than w2 of w1, and let wn+1 be any neighbour other than wn−1 and w1 of wn. Setting
σ(vi) = wi for i = 0, . . . , n + 1 then gives an edge-injective homomorphism of G into H.

The reduction for (c) is the most complicated, and again uses Hamiltonian path in 3-
regular graphs. (Only here do we use “3-regular” as opposed to “maximum degree 3”.)
Assume H ′ is a 3-regular graph with n vertices in which we are searching for a Hamiltonian
path. Graph H is obtained from H ′ by subdividing all edges. More precisely, H contains
one vertex uv for every vertex v of H ′ and one vertex ue for every edge e of H ′, and we add
an edge (uv, ue) in H if and only if v and e are incident in H ′. H ′ has 3

2
n edges, so H has

3n edges.
Graph G consists of a path b1, a1, b2, . . . , an−1, bn and n + 2 more vertices (the legs)

l0, . . . , ln+1. For i = 1, . . . , n, leg li is adjacent to bi; leg l0 is adjacent to b1 and leg ln+1 is
adjacent to an. See Figure 2. Clearly G has 3n edges, so |E(G)| = |E(H)| as desired. Also
note that G is a caterpillar.

b1 b2 b3 b4 bn

l1 l2 l3 l4 ln

a1 a2 a3 an−1

l0 ln+1

Figure 2: The graph G used for the reduction.

We claim that G has an edge-injective homomorphism into H if and only if H ′ has a
Hamiltonian path. Assume first that H ′ has a Hamiltonian path P = v1−e1−v2−e2−. . .−vn.
Then H contains the path

uv1 − ue1 − uv2 − ue2 − . . . − uvn .

For all i, we map bi to uvi
and ai to uei

. We map the legs to the vertices corresponding to
edges not in the Hamiltonian path. More precisely, for i = 2, . . . , n−1, vertex vi has exactly
one incident edge e′i not in P , and bi (which maps to uvi

) has one incident leg li; we map
li to ue′i . Similarly v1 and vn each have two incident edges not in P , and b1 and bn have
two incident legs; we map correspondingly. One easily verifies that this is an edge-injective
homomorphism of G into H.

For the other direction, assume that G has an edge-injective homomorphism into H.
Graph H is bipartite with vertices uv (for some vertex v ∈ H ′) of degree 3, and vertices ue

(for some edge e ∈ H ′) of degree 2. Since each bi has degree 3, it must be mapped to uvi
for

some vertex vi ∈ H ′, i = 1, . . . , n. Since H is bipartite, each ai therefore must be mapped
to uei

for some edge ei ∈ H ′. Since the mapping is a homomorphism, and ai is adjacent to
bi and bi+1, edges (uvi

, uei
) and (uei

, uvi
) must exist in H, which means by construction of

H that ei = (vi, vi+1). So v1, . . . , vn forms a path in H. No vertex can appear twice in the
path, since the mapping is edge-injective, each bi has degree 3, and uv has degree 3 for any
v ∈ H ′. So v1, . . . , vn is a Hamiltonian path as desired. �

We now combine Theorem 1 with Observation 1 to achieve our NP-hardness results.

5



Theorem 2 Partial Domino Tiling is NP-hard, even if the layout graph is a path or a
cycle.

Proof: By Theorem 1(a) and (b), testing whether a path/cycle has an edge-injective homo-
morphism into a graph H is NP-hard. For n ≥ 4 a path/cycle of length n is the contracted
graph of a layout graph (namely, of a path/cycle of length 2n, which for n ≥ 4 is an induced
subgraph of the grid.) Choosing this layout, and as dominoes a multi-set D with GD = H
gives the desired reduction to domino tiling. �

Using this result, we can now easily prove Exact Domino Tiling to be NP-hard, by
“padding” the layout with extra 1×2-rectangles. More precisely, assume we have an instance
of Partial Domino Tiling where the layout requires m1 dominoes, and there are m2 > m1

dominoes available. Add m2 − m1 1 × 2-rectangles to the layout, which are not adjacent
to any other vertices of the layout graph. Then tiling the new layout with the same set of
dominoes means an exact domino tiling, and exists if and only if the old layout had a partial
domino tiling.

Corollary 1 Exact Domino Tiling is NP-hard, even if the layout is a union of paths.

However, for this corollary the layout consists of disjoint polygonal regions, not one
connected polygon as originally intended for the domino layout problem. We hence give a
second NP-hardness proof which overcomes this difficulty.

Theorem 3 Exact Domino Tiling is NP-hard, even if the layout graph is a caterpillar.

Proof: Theorem 1(c) shows that edge-injective homomorphism is NP-hard even if G is a
caterpillar and G and H have equally many edges. Thus similar as in Theorem 2, all that
is required to prove is that the graph G used in the proof of Theorem 1(c) is in fact the
contracted graph of some layout graph GL that is a caterpillar. This is indeed the case; see
Figure 3. �

l1

a1

b1

l0

a2

b3b2

l2 l3

bn

ln+1

ln

Figure 3: A layout whose graph is a caterpillar, and contracting the unique perfect matching
(bold) gives graph G from Figure 2.

Theorem 3 thus solves the open problem posed in [10]: domino tiling is NP-hard even
if we require that every given domino is used exactly once. In particular, while Exact
Domino Tiling is solvable in paths, it becomes NP-hard as soon as we allow multiple
paths, or attach legs to a path.

We note here that with a similar proof one can show NP-hardness for Exact Domino
Tiling for the case of a cycle with legs attached.
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3 Few colours

We now study the more realistic case of dominoes which use only a small number of colours.
As our main result, we show that the problem then still remains NP-hard, even with only 3
colours.

Note that if we have a constant number of colours, then necessarily there must be many
multiple copies of the same type of domino. In fact, our NP-hardness proofs do not use
the ability to impose bounds on the number of dominoes. In essence, we therefore revert
from edge-injective homomorphisms back to general (not necessarily edge-disjoint) homomor-
phisms, also known as H-colourings. If we use 3 colours, then the graph H to be mapped
to has only 3 vertices.

It is well-known that H-colouring is NP-hard even if H is a 3-cycle. This holds by
reduction from 3-colouring, i.e., given a graph G, can the vertices be coloured with 3 colours
such that no two endpoints of an edge have the same colour? If H is a 3-cycle, then any
homomorphism from G onto H corresponds to a 3-colouring of G, so H-colouring is NP-hard.

However, this does not immediately transfer to NP-hardness for domino tiling for two
reasons: (1) The reduction for 3-colouring uses an arbitrary graph G to be mapped to H.
Thus, we must find for any graph G a layout graph GL with GC(M) = G for some perfect
matching M of GL. To simplify the reduction, we furthermore want that the perfect matching
is unique. (2) While it is not too complicated to construct such a graph GL, even more work
must be done to create one that is an induced subgraph of the grid. To ease presentation,
we defer this part to later, and first show NP-hardness for graphs that need not be graphs
of layouts.

So assume from now on that we are given a graph G and we want to know whether G
has a 3-colouring. We may assume that every vertex of G has at least three incident edges.
It is known that this problem is NP-hard [5]. We create the layout graph GL from G in two
steps; see also Figure 4.

• Let G′ be the graph obtained from G by splitting every vertex into a path. More
precisely, if v is a vertex with neighbours w1, . . . , wk, then replace v by a path u1, . . . , uk

and make ui adjacent to wi. Edges in this path are called path edges, whereas all other
edges (those connecting paths of two different vertices) are called the original edges.

• Let GL be the graph obtained from G′ by subdividing every path edge and attaching
a vertex of degree 1 to the subdivision vertex. The two edges that replaced the path
edge are again called path edges. The edges to the vertices of degree 1 are called leaf
edges.

Since any perfect matching must contain edges incident to a vertex of degree 1, we can
easily prove the following:

Claim 1 GL has a unique perfect matching consisting of the leaf edges and the original
edges.

Claim 2 GC is 3-colourable if and only G is 3-colourable.
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(b)(a)

Figure 4: (a) Replacing a vertex by a path. (b) Subdividing the path and attaching leaves
(in white), and the unique perfect matching (bold).

Proof: Recall that GC is obtained from GL by contracting all edges that are not in the
(unique) perfect matching M . In particular, we contract all path edges, and hence undo the
splitting of vertices. Thus, GC is almost the same as G, except that at every vertex v we
have a number of leaf edges attached to vertices of degree 1.

If GC can be 3-coloured, then G (as an induced subgraph) can also be 3-coloured. Con-
versely, assume G can be 3-coloured. Then for every vertex v, we colour the extra vertices
of degree 1 at v with some colour that is not used for v; this gives a 3-colouring of GC . �

Theorem 4 Testing whether a graph (not necessarily resulting from a layout) can be tiled
with a given set of dominoes is NP-hard, even if only 3 colours are used by the dominoes.

Proof: Let G be a graph for which we want to test the existence of a 3-colouring. Define the
graph GL as described above. Let D be a set of dominoes with three colours c1, c2, c3, and for
each ci �= cj, add sufficiently many dominoes (ci, cj).

3 Assume GL has a domino tiling, with
colouring function c. Any vertex v in GC is obtained by contracting some vertices w1, . . . , wk

of GL that are connected by edges not in the perfect matching M . Thus w1, . . . , wk all
must have the same colour; set c(v) = c(w1). Any edge in GC corresponds to a domino
in the tiling; since there are no uni-coloured dominoes therefore this colouring of GC is a
3-colouring of GC . By Claim 2 G is 3-colourable. The other direction is similar. If G is
3-colourable, then so is GC . Assign to each vertex in GL the colour of the vertex in GC into
which it was contracted. Then all matching edges have differently coloured endpoints, and
thus correspond to a domino. This gives a valid domino tiling, since every type of domino
exists sufficiently often. �

The rest of this section is devoted to extending Theorem 4 to graphs that result from a
layout. The basic idea is the same, but we need to modify our graph further and apply some
graph drawing results to find the layout.

Recall that G was the graph which we wanted to 3-colour. We now choose G to be a
planar graph, i.e., G can be drawn without crossing in the plane. Furthermore, we assume
that G has maximum degree 4. It is known that 3-colouring remains NP-hard even for planar
graphs with maximum degree 4 [5].

Now we create a planar orthogonal drawing of G, i.e., a crossing-free drawing of G on the
2D rectangular grid such that every edge is routed as a sequence of horizontal and vertical

3“Sufficiently many” means “enough copies such that we can never run out of dominoes.” More precisely,
if the layout graph has 2n vertices, then n dominoes are needed in the tiling; adding n dominoes of every
kind is hence sufficient.
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line segments. Such drawings exist for any planar graph with maximum degree 4, see for
example [8, 7, 1]. Furthermore, the total edge-length is polynomial.

We obtain the layout by expanding the planar orthogonal drawing of G. To do so, we first
scale the drawing, i.e., we replace each row/column of the grid by many rows/columns (20
should be enough), to achieve sufficiently much separation between parallel edge segments.
Then we replace each vertex, line segment, and bend (place where an edge changes direction)
with a gadget. Our gadgets are illustrated in Figure 5.

line-gadget switch-gadget

* ** * * * * * * * *
** * *** *

Bend-gadget Straight-gadget Turn-gadget

*

++++
++++

*

++++

**
*
*
*
* * * ** *

*

*
*
*
*
*
*
*

*
*
*

+

* * * * * * * *

+++

*
*
*
*
* * * ** *

*

Figure 5: Gadgets used in the reduction.

Before explaining how exactly to do the replacement, we need some properties of the
gadgets:

Claim 3 Assume there are no uni-coloured dominoes. Then any gadget has a unique perfect
matching corresponding to the tiling illustrated in Figure 5.

Proof: (Sketch) For any vertex of degree 1, any perfect matching must contain the incident
edge. After accounting for these edges, in each gadgets we are left with some 2×3-rectangles,
possibly attached to each other. These subgraphs have more than one perfect matching, but
going through cases shows that all but one tiling force one of the dominoes to be uni-coloured.

�

Claim 4 Assume we have a domino tiling of the gadgets without uni-coloured dominoes.
Then within any gadget, all squares marked with the same symbol in Figure 5 must have the
same colour. Moreover, squares marked ∗ have a different colour than squares marked + or
◦. Squares marked + and ◦ can, but need not, have the same colour.

Proof: By Claim 3 there is only one possible perfect matching M . Therefore places
marked with the same symbol are connected via edges not in M , and must receive the same
colour. Since there exist dominoes (∗, +) and (∗, ◦), but no domino (+, ◦), the claims about
distinctness are immediate. �
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Theorem 5 Partial Domino Tiling is NP-hard, even if only 3 colours are used.

Proof: Let G be a planar graph with maximum degree 4 for which we want to find a
3-colouring. Create a planar orthogonal drawing of G and scale it as explained before.

Now impose an edge direction onto G such that every vertex has at most two outgoing
edges and at most two incoming edges. It is well-known that such an orientation exist (e.g.,
make G Eulerian by adding edges between vertices of odd degree, direct all edges while
walking along an Eulerian circuit, and then delete the added edges.)

Now we replace the drawing by gadgets as follows. Replace each bend with the bend-
gadget, rotated if needed such that the lines marked with ∗ coincide with the drawing of
the incident edge segments. Each vertex v is replaced with either the straight-gadget or
the turn-gadget, depending on the orientations of the outgoing edges of v in the orthogonal
drawing. More precisely, assume that vertex v has degree 4. If both outgoing edges of v have
the same orientation (both horizontal or both vertical), then we use the straight-gadget; we
rotate it if needed such that outgoing edges of v are on lines marked with ∗. Otherwise, we
use the turn-gadget, and rotate it such that outgoing edges of v are on lines marked with ∗.
Vertices of degree 3 use the same gadgets, but omit one of the four directions as needed.

Finally we complete the drawing by adding line gadgets to replace horizontal or vertical
line segments; note that a line gadget can be made arbitrarily long. However, inserting a
line gadget may lead to a 2× 2-square where it attaches to a bend-gadget or vertex-gadget.
This would destroy the uniqueness of the perfect matching, therefore we replace part of the
line gadget by the switch gadget. Note that the switch gadget has the same length as the
line gadget in Figure 5, but ends in a “down” domino instead of an “up” domino; hence
using it avoids creation of a 2 × 2-square.

This finishes the description of our layout L. The dominoes D have three colours c1, c2, c3,
and for each ci �= cj, we have sufficiently many dominoes (ci, cj). Note that we have no uni-
coloured dominoes, so Claims 3 and 4 hold and we have a unique perfect matching and
contracted graph GC .

Assume we have a coloured domino tiling with these dominoes. For each v, let c(v) be
the colour used for the places marked ∗ in the gadget replacing v. This is a 3-colouring for
G. For if (v, w) is an edge, then it was oriented in some way, say v → w. Then c(v) and
c(w) are the colour ∗ at the gadgets of v and w. But c(v) is transmitted along the drawing
of the edge (v, w) via the line gadgets, bend gadgets and switch gadgets (if any) replacing
it, and reaches the gadget of w as one of + or ◦. Hence c(v) �= c(w) by Claim 4.

For the other direction, given a 3-coloring of G, we can obtain a domino tiling by letting
∗ at the gadget of v be the colour of v; this requires no uni-coloured dominoes and is a
domino tiling since we have sufficiently many dominoes of all types.

Finally, note that since the drawing of G had polynomial total edge length, the construc-
tion is polynomial in the size of G, which finishes the NP-hardness proof. �

By modifying the proof slightly, we can extend this result to Exact Domino Tiling.
For disconnected layouts, this is straightforward as in Corollary 1, but we can even prove this
for connected layouts by using three copies of the previous layout and adding a connection
gadget.

Corollary 2 Exact Domino Tiling is NP-hard, even if only 3 colours are used.
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Proof: Let L be the layout of the previous proof. Attach to it a (sufficiently long) line
gadget in such a way that it does not influence whether L has a domino tiling. (For example,
we know that the leftmost column of the drawing contains a bend gadget since the graph
has minimum degree 3; attach the line gadget at the 2 × 3-rectangle of the corresponding
bend gadget.) See Figure 6(a). Call the new layout L′, and assume it contains 2n′ vertices.

Let L′′ be the layout that results from copying L′ three times, rotating the copies, and
connecting them with a gadget consisting of 9 dominoes as illustrated in Figure 6(b). The
set of dominoes is as before, except that each type of domino exists n′ + 3 times. We have
3n′ + 9 dominoes in total, and L′′ has 6n′ + 18 vertices, so if there exists a domino tiling at
all, it must be exact.

If L′′ has a domino tiling, then L′, and therefore L, also has a domino tiling. On the other
hand, if L has a domino tiling, then L′ has a domino tiling by colouring the attached line
gadget arbitrarily; we have sufficiently many dominoes for this since L′ needs n′ dominoes.
Now we can also domino tile the three copies of L′, by permuting the colours cyclically for
the other two copies. Tiling the three copies thus uses exactly n′ dominoes of each kind, and
the three “ends” of the line gadgets of the copies of L′ are coloured in three different ways.
Finally, the connector gadget can be tiled as shown in Figure 6(b); this gives three different
colours at the three connection points to the copies of L′, and hence a domino tiling of L. �

to connector gadget

rest of L

+
+

+

(b)(a)

L′ (rotated)

L′ (rotated) L′ (rotated)

+

**
*

*
*

++

+

+

*+

*
+
*

*
*

** ****
*
*
*
*

+

+++

Figure 6: (a) Extending L into L′. (b) Connecting the three copies of L′.

4 Conclusion

In this paper, we studied the domino tiling problem when colours of dominoes are taken into
account. We proves NP-hardness results for many variants of this problem. In particular,
Partial Domino Tiling is NP-hard even if the layout to be tiled is a path or cycle,
and Exact Domino Tiling is NP-hard even if the layout to be tiled is a caterpillar or a
union of paths. Of even more interest is domino tiling with few colours; here we established
NP-hardness even for three colours.

As for open problems, the main interesting question is domino tiling with two colours.
(One colour is the same as not considering colours at all, and hence polynomial.) This would
be NP-hard if the following problem were NP-hard: Given a graph G, does G have a perfect

11



matching M such that GC(M) is bipartite? We do not know the complexity status of this
problem.

Another interesting problem is whether domino tiling with a bounded number of colours
is polynomial on some special graph classes? In particular, is it polynomial on trees or partial
k-trees? (Note that H-colouring is polynomial on these classes [9].) This seems likely with
a similar approach as in [9], but we have not been able to give an algorithm that takes into
account how many dominoes of each kind are used for each subtree.
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