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1 Introduction

An Embedded control program (ECP) is a software system in which a collection of modules or subsystems
access the common database in main memory through a set of pre-defined transaction types [11]. Many
legacy systems, e.g,control programs of private branch exchanges (PBXs) and operating systems, are good
examples of ECPs. Moreover, in the new mobile computing area, the control softwares on handheld
computers also fall into the ECP category.

There has been previous research work to provide database management for ECPs [5] [7] [11] [8] [9] [14].
Such efforts aim to ease the software development and maintenance of ECPs with two DB payoffs. First,
a relational or object data model along with a declarative query language gives a conceptual view of each
ECP subsystem, which reduces the development cost. Second, an ECP subsystem inherits automatically
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from the database engine solutions to concurrency control, reliability, and security issues. Hereinafter, we
limit the scope of the term “ECP” to the ECPs with the proposed database wrappers.

In particular, we address to the concurrency control issue for ECPs in [14]. In the part of experiments
in [14], we took the OLTP benchmark TPC-C [2], and built up from it the input for our experimental
simulations. However, we have noticed the limitations of the TPC-C workload. It is mainly for on-disk
database, and does not fit very well for the main-memory data processing in ECPs. Such limitations
motivate our work in this technical report. We believe it is important to explore some ECPs in the real
world, and make a new workload from them.

We decide to take the operating system MINIX [10] as our study case. A set of system calls that access
a set of shared kernel data structures are selected as ECP transaction types. Furthermore, we extract the
quantitative elements, e.g,costs and probabilities, from the source code. This report shows the current
status of our work.

The remainder of the report is organized as such. Section 2 reviews the TPC-C workload in [14] and
summaries its limitations. Section 3 introduces our decisions for designing the new workload. Section 4
changes the definition of the transaction type in [14]. Section 5, the main part of the report, gives the
detailed steps to obtain the transaction types. Section 6 is about getting the probabilities of the transaction
types to finalize the workload. Section 7 addresses to getting the costs of locking. Section 8 concludes the
report and suggests the future work.

2 Review of the TPC-C workload

2.1 Definitions of the ECP workload

In [14], the transaction types are defined as probabilistic finite state machines, and a transaction is an
instance of its transaction type. A set of transaction types form a transaction system, which represents a
workload.

Definition 2.1 [14] Let D be a data set that consists data items in the database, and each data item is
identified with a name.

A transaction type T is defined as T = 〈N , s, F , A, data, duration, prob〉.
• N is a set of states, each representing an operation.

• s ∈ N is a starting state.

• F ⊆ N is a set of terminating states.

• A ⊆ (N − F ) × N . A is a set of transition arcs from states to states. Terminating states have no
outgoing arcs.

• data is a function from N to D. For each n ∈ N , data(n) is the data item accessed at state n.
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• duration is a function from N to nonnegative real number set. For each n ∈ N , duration(n) is the
time cost for state n to access data(n).

• prob is a function from A to real numbers between 0 and 1. For each arc 〈n1, n2〉 ∈ A, prob(〈n1, n2〉)
is the probability that a transaction (defined below) goes from n1 to n2. For each fixed n ∈ (N − F ),

∑

〈n,n′〉∈A

prob(〈n, n′〉) = 1.

A transaction t of transaction type T = 〈N, s, F, A, data, duration, prob〉 is a sequence n0, · · · , nk,
where ni ∈ N for 0 ≤ i ≤ k. Moreover, n0 = s, nk ∈ F , and for each adjacent pair ni−1, ni such that
1 ≤ i ≤ k, 〈ni−1, ni〉 ∈ A.

A transaction system S = 〈D, TS, prob〉 is characterized by a set of transaction types TS = {T1, · · · ,
Tk}, on a data set D, and a function prob from TS to real numbers between 0 and 1. For each Ti ∈ TS,
prob(Ti) specifies the probability that a transaction of the transaction type T is chosen when it is to select
the next transaction to execute.

∑
Ti∈TS prob(Ti) = 1. Moreover, D =

⋃
Ti∈TS{datai(n) | n ∈ Ni}, where

each Ti = 〈Ni, si, Fi, Ai, datai, durationi, probi〉.

2.2 The TPC-C workload

To carry on our experiments to evaluate the concurrency control techniques on ECPs, we need a workload
of ECP. Because adding database management to ECPs is a new field of research, we did not have such a
workload at hand at the stage of [14]. Therefore, we took the TPC-C benchmark [2] as a transaction system.
TPC-C contains 5 transactions that access 9 tables, and each transaction has a probability. We converted
each TPC-C transaction to a transaction type under our workload definitions. We first transformed the
transaction programs to finite state machines. The steps in [14] are:

1. Mapping each embedded SQL statement (one-table operation or two-table join) in the TPC-C trans-
action program to a component in the transaction type:

(a) if it is a SELECT or UPDATE on a single table A, we add a state n and set data(n) to A
(Figure 1(a));

(b) if it is a two-table join on table A and B:

i. if the two tables are pre-selected on there keys before they are joined, we add two nodes n1

and n2 such that data(n1) = A and data(n2) = B, and let n2 be the only successor of n1

(Figure 1(b));
ii. otherwise, the join is transformed to Figure 1(c).

2. Transforming control flow in the C programming language to the components:

(a) a sequential execution of two embedded SQL statement blocks s1, · · · , sn is transformed to a
lineal path through these nodes as in Figure 2(a);
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(b) an if-else statement is transformed to a branch out in the graph (Figure 2(b));

(c) a loop statement is transformed as Figure 2(c).

A B
1

(c)

A A B
1

(a) (b)

Figure 1: Transformations of queries

1 1
....

s1 sn

(c)

1 .... 1

s1 sn

(a) (b)

s1

Figure 2: Transformations of control flows

For the join in Case 1(b)ii, the probabilities on the arcs in Figure 1(c) can be estimated from the
table cardinality and query selectivity. For if-else statements (Case 2b), the probability on each branch
in Figure 2(b) are obtainable from the TPC-C specifications. In Case 2c, if it is a for loop of the form,

for(i=0; i<n; i++){
S1; ...; Sn;

}

we set the probability from sn back to s1 to n−1
n , and the probability to exit the loop from sn to 1

n . If it
is a while loop, unfortunately, we have to rely on some “guess work” to approximate the probabilities.

Next we partitioned each table to table0, · · · , tablen, in which n is a partition factor. We also added
indexes if it is necessary. If the query is a key-matching search, we change the state as in Figure 3(a). If
it is a fully sequential table scan, we change it according to Figure 3(b) [14].

The next task in [14] is getting duration(n) for each state n. Following the TPC-C specifications, we
created tables and indexes in an IBM DB2 database and inserted row into the tables. For all embedded
SQL statements in the TPC-C programs, we ran the SQL statements in DB2 with plugged-in parameters,
and got the time costs on the tables and indexes from the query plan graph that are provided by the DB2
visualization tool.

To evaluate the performance of the concurrency control techniques on ECPs, it is important that the
workload can be used to simulate main-memory data. To describe the main-memory data and on-disk data
situations separately, in [14] we used two parameters, waiting factor and logging factor. We separate the
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Figure 3: Adding indexes and partitions

duration of each state to a CPU time and a following waiting time. During the CPU time, a transaction
occupies the CPU exclusively. The waiting time is for I/O and network delaying, in which the waiting
transaction relinquishes the CPU and another transaction can use it. The waiting factor is the ratio of
the waiting time to the CPU time. Moreover, for two-phase locking simulation, we also added a logging
duration for each state that updates data, which also contains a CPU time and a waiting time. The CPU
time and waiting time of logging are obtained from those of the original write by multiplying a logging
factor. For on-disk database, because I/O cost dominates the data processing overhead, and logging can
be done efficiently, we set the waiting factor to a large value, e.g,10, and set the logging factor to a small
value, e.g 0.2. On the contrary, for main-memory data repository, the CPU time is the main factor and the
logging overhead is relatively high, we set the waiting factor to a small value, e.g,1, and logging factor to
a large value, e.g,5. Such parameter settings influence the experiment results greatly, as reported in [14].

2.3 Limitations of the TPC-C workload

Although we tried to simulate the main-memory database by setting parameters, there are still some crucial
features missing [14]:

• Many (although not all) lock-protected data accesses do not involve I/O at all. Their costs need to
be measured in terms of CPU costs only.

• The inter-state cost of the host program instructions cannot be ignored.

• Overhead of locking/unlocking operations should be taken into account. Moreover, the implementa-
tion of locking protection influences the locking overhead. When the protected data operations are
short and have no I/O involved, short interrupt disabling (on uniprocessor systems) and spinlocks (on
SMP systems) are preferred to the costly semaphores [12] [4]. If semaphores are used for transaction
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control, under deadlock-free situations, latches are preferred than locks because they have much lower
overhead [13].

• To reduce the locking overhead, setting the unit of lock protection to a coarse granularity may be
preferable. From the main-memory database experiences [6] [3], the table-level granularity and even
database-level granularity (serial execution) are good choices.

As our TPC-C workload is derived from the on-disk IBM DB2 database, it is hard to capture all these
features except the last one. We find it is important to design a dedicated workload for ECP applications
in addition to the previous TPC-C one. For the time being, we expect to satisfy the features 2.3, 2.3, and
2.3. We describe the CPU costs in terms of number of instructions that process data.

3 Choice of an open-source ECP

If there were a main-memory database which had tools to provide the relevant cost information similar to
that in DB2, we could run the TPC-C queries in such a database and obtain new costs, as we did in [14].
However, to the best of our knowledge, no such product has such functionalities as DB2. Consequently,
we take an alternative approach. We decide to select an open-source ECP as our study case, and derive
our new workload from its source code.

Open-source operating systems are good ECP study cases. The justifications are:

• The kernel data of the operating system are memory-resident.

• The semantics of the kernel data structures and system calls are well-known. Therefore, the former
can be re-engineered to relational data, while the latter can be modelled as pre-defined transaction
types.

• The operating systems are mainly written in C language. The C-compilers can generate the cor-
responding low-level assembly instructions. Therefore, we can sum up the numbers of assembly
instructions to approximate the costs.

There are two candidates of such operating systems, Linux [4] [1] and MINIX [10]. Linux is a sophisti-
cated operating system widely used in industry. It has a rich collection of mechanism for mutual exclusion
and synchronization, e.g,atomic operations, spinlocks, and semaphores. However, the Linux source code is
too complicated for our current purpose. The reasons are:

• The programs are written by “hacker programmers”. The control flows are often difficult to follow.

• The data structures are huge and messy.

• The implementation of system calls usually involves many levels of function calling, which is not
suitable for our workload at this time.
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As an operating system for operating system course instruction, MINIX has simple code and data struc-
tures, which are fairly readable. The textbook [10] gives a very good explanation of the code. Therefore,
it is comparatively easy to manually re-engineer the MINIX system calls to transaction types and measure
the costs by the number of CPU instructions. On the other hand, different from Linux, MINIX has no
mutual exclusion and synchronization primitives except the basic interrupt disabling. Therefore, when we
consider adding the locking overhead, we will use the locking implementations in Linux, or implement it
upon MINIX source code by ourselves.

We remind the readers that our goal is to get a workload for ECP transaction processing. Therefore, we
do not stick to all the features of MINIX or Linux themselves. MINIX assumes a single user and the system
calls are processed sequentially. Early releases of Linux has a non-preemptive kernel, and such limitation
is greatly relaxed in the latest Linux 2.6. Although we get our transaction types from the MINIX code
and locking overhead from Linux, we just use them as reference and are not restricted to the limitations
of the operating systems themselves. Our workload is adjustable from fully preemptive to fully sequential,
based on particular experiment settings.

4 Redefinition of transaction types

First, to characterize the inter-state cost in terms of machine instructions, we change the definition of a
transaction type in Definition 2.1.

Definition 4.1 Let D be a data set that consists data items in the database, and each data item is identified
with a name.

A transaction type T is defined as T = 〈N , s, F , A, data, cost, prob〉.
• N , s, F , A, data, and prob are the same as in Definition 2.1;

• Change the duration element in Definition 2.1 to the counterpart cost: cost is a function from N
⋃

A
to nonnegative integer set. This represents the number of CPU instructions it takes on the a ∈ A or
n ∈ N .

Other definitions are the same as in Section 2.1.

5 Building transaction types

We build the transaction types from the MINIX code of the system calls. At first, we do not consider the
locking implementations and costs. The steps are:

1. Selecting system calls;

2. Modifying and simplifying the C code of the system calls;
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3. Mapping the kernel data structures to relational tables;

4. Changing the pure C code to the C code with embedded SQL statements;

5. Generating assembly instructions from the C code at Step 3 and obtaining the costs by summing up
the number of instructions;

6. Getting the probabilities for state transitions.

5.1 Selecting system calls

From the MINIX code in [10], we choose 5 system calls, fork, exit, waitpid, exec, and brk to build up
our workload. The reasons that we choose them are:

1. All these system calls are well-known and frequently used in Unix-like operating systems [12] [10];

2. They are highly related to the data structures that represent process and memory chunk descriptors.

5.2 Modifying C code

The MINIX operating system has a microkernel architecture with 4 layers, from the lowest to the highest,
process management, I/O tasks, server processes, and user processes [10]. The kernel consists of the 2
lowest layers. Many traditional kernel functionalities are moved to the 3rd layer to make the kernel small.
In particular, main memory management is put to the main memory server (MM ), and file system is put
to the file system server (FS). Usually several layers are involved to handle a system call.

Example 5.1 To process the system call fork, MM is invoked to assign the memory for the new process,
FS is invoked to duplicate the opened file descriptors to the new process, and the low-level kernel is invoked
to record the new process for further scheduling. From the code perspective, MM, FS, and the kernel
all have their own fork handlers, each implements the corresponding processing in its own module. In
addition, all the above three modules have their own process descriptors and process tables. The process
descriptor in the kernel keeps the register information of the process, the one in the memory server keeps
its memory information, and the one in the file server keeps its opened file information.

For simplicity, we would like to “flatten” the system call processing to one layer. Because we are mainly
interested in the accesses to the process descriptors and the main memory data structures, we focus on
the handlers of the system calls in MM. We also add some processing from the kernel and FS. From the
kernel level, we take the part that maintains the ready queue but ignore the processing of the register
values. From FS, we only take in account the processing of the file descriptors to reflect that the files are
duplicated in fork, and are closed in exit and exec. However, the code in exec that opens and reads the
executable file to get its image, is ignored. Correspondingly, we also combine the process descriptor data
structures at different levels. Although in MINIX not all of these data structures and programs are in its
kernel part, here we still call them kernel data structures and kernel programs.
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We modified the MINIX data structures and programs given in [10]. The modified data structures are
listed below, and the modified programs are in Appendix A.1.

Main memory structures MINIX has a very simple memory management. There is no paging and
swapping. Each memory chunk assigned to a process is called a segment. Each segment has a physical
address and a virtual (in-process) address. The length unit of a memory chunks is a click, which equals to
256 bytes.

typedef unsigned int vir_clicks;

typedef unsigned int phys_bytes;

typedef unsigned int phys_clicks;

struct mem_map_t {

vir_clicks mem_vir; /* virtual address */

phys_clicks mem_phys; /* physical address */

vir_clicks mem_len; /* length in clicks */

};

The free memory is organized in a list of holes. The segments of each process are assigned from the
holes whose sizes are big enough.

#define NR_HOLES 128 /* system limitation of number of holes */

#define NIL_HOLE (struct hole_t *) 0 /* null pointer */

struct hole_t {

phys_clicks h_base; /* physical address */

phys_clicks h_len; /* length */

struct hole_t *h_next; /* pointer to the next entry */

} hole[NR_HOLES];

Opened file descriptor In MINIX, there is a global list which stores the in-memory inodes of the
opened files.

#define NR_INODES 65 /* the maximum number of opened files */

typedef short dev_t; /* device number */

typedef long time_t; /* time */

typedef unsigned short ino_t; /* inode number */

struct inode_t {

int count; /* reference count */

time_t i_ctime; /* when was inode itself changed */

dev_t i_dev; /* which device is the inode on */

ino_t i_num; /* inode number on its device */

} inode[NR_INODES];

A file descriptor structure filp t associates a process descriptor with an inode structure. It contains a
position field for the process to read or write the file. The process descriptor maintains an array of pointers
to file descriptors of the files the process opens. After a system call fork, the new child process shares the
same file descriptors with the parent, and the reference count of each shared descriptor is incremented by
1.
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#define NR_FILPS 128 /* size limit of the filp table */

#define NIL_FILP (struct filp_t *)0

typedef unsigned short mode_t; /* file type and permission bits */

typedef unsighed long off_t; /* position in a file */

struct filp_t {

int filp_count; /* how many file descriptors share this structure*/

struct inode_t *filp_ino; /* pointer to the inode */

mode_t mode; /* file mode */

off_t position; /* position in the file for read and write */

} filp[NR_FILPS];

Process descriptor The definition of the process descriptor is presented below.

#define NR_PROCS 32 /* maximum number of processes */

#define IN_USE 001 /* the process array element is used */

#define WAITING 002 /* the process is waiting: it has called waitpid

and is waiting a child to exit */

#define HANGING 004 /* the process is hanging: it has called exit and

is waiting for the parent to call waitpid */

#define SEPARATE 040 /* the process has separate text and data segments */

#define NR_SEGS 3 /* text, data, and stack segments */

#define T 0 /* text */

#define D 1 /* data */

#define S 2 /* stack */

#define OPEN_MAX 20 /* maximum number of files opened by a process */

typedef unsigned reg_t; /* the register value format */

struct proc_t {

pid_t pid; /* process id */

pid_t parent_pid; /* id of parent process */

pid_t wpid; /* pid this process is waiting for */

char exitstatus; /* storage for status when process exits */

char sigstatus; /* storage for signal number for killed processes */

struct mem_map_t seg[NR_SEGS]; /* points to text, data, stack segments */

/* File identification for sharing */

ino_t ino; /* inode number of file */

dev_t dev; /* device number of file system */

time_t ctime; /* inode changed time */

unsigned proc_flags; /* flag bits: IN_USE, WAITING, HANGING, SEPARATE*/

reg_t sp; /* stack pointer */

struct filp_t *fp_filp[OPEN_MAX]; /* opened file descriptors */

struct proc_t *p_next_ready; /* pointer in the ready queue */
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} proc[NR_PROCS];

Most of the fields of the process descriptor are from the process descriptor in MM. The fp filp field is
from the descriptor in FS. The p next ready field is from the MINIX kernel, and it is the pointer to the
next process in the ready queue for scheduling.

#define NQ 3

#define TASK_Q 0 /* task */

#define SERVER_Q 1 /* server */

#define USER_Q 2 /* user process */

struct proc_t *rdy_head[NQ]; /* head of a queue */

struct proc_t *rdy_tail[NQ]; /* tail of a queue */

Each process has a unique identifier. Some identifiers are assigned by MINIX for system processes.
Here are the 2 of our interest, the MM server process and the init process.

#define MM_PROC_NR 0 /* process number of memory manager */

#define INIT_PID 1 /* init process */

5.3 Mapping data structures to relational tables

We map the kernel data structures defined in Section 5.2 to relational tables. Most of the mappings are
straightforward. They are listed below, in which the left hand side is data structure in the C language,
and right hand side is the table name.

• proc[NR PROCS] → proc;

• inode[NR INODES] → inode;

• filp[NR FILPS] → filp;

• hole[NR HOLES] → hole;

• rdy head[USER Q], rdy tail[USER Q] → ready user proc;

• fp filp[OPEN MAX] in proc[NR PROCS] → proc filp;

• seg[NR SEGS] in proc[NR PROCS] → segment.

• 1..30000 → pids
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In the data structure definitions in Section 5.2, the segments (seg) are defined as a nested array inside
the process descriptor (proc t). Since the relational model supports only “flat” tables, we put the segment
information into a separate table segment, and define an artificial identifier field seg id for segment and
the corresponding foreign keys in the table proc. Moreover, the fp filp array in proc t shows the m : n
relationship between process descriptors and file descriptors, which reflects that several files can shared
the same file descriptor and a process can open several files. This cannot be encoded in relational model
without an auxiliary table. Therefore, we introduce a key filp id in filp and create an additional table
proc filp which contains the foreign keys to both proc and filp.

The DDL statements that create the tables are listed below.

segment table of main memory segments that hold code, data, or stack of processes:

create table segment(

seg_id integer NOT NULL,

virtual_address integer,

physical_address integer,

length integer,

PRIMARY KEY (seg_id)

)

proc process descriptor table:

create table proc(

pid integer NOT NULL,

parent_pid integer,

wait_pid integer,

exit_status integer,

sig_status integer,

data_segment integer,

text_segment integer,

stack_segment integer,

ino integer,

dev integer,

ctime timestamp,

stack_pointer integer,

proc_flags integer,

PRIMARY KEY (pid),

FOREIGN KEY (parent_pid) REFERENCES proc(pid),

FOREIGN KEY (wait_pid) REFERENCES proc(pid),

FOREIGN KEY (data_segment) REFERENCES segment(seg_id),

FOREIGN KEY (text_segment) REFERENCES segment(seg_id),

FOREIGN KEY (stack_segment) REFERENCES segment(seg_id)

)

In the table definition, proc flags is an integer whose bits correspond to the flags SEPARATE,
WAITING, and HANGING, which are defined together with the process descriptor proc t in
Section 5.2. Another flag IN USE defined there does not need to be mapped, as it is shown by
whether the row “exists” in the table.

inode table of the in-memory inodes of opened files.
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create table inode (

inode integer,

dev integer,

ctime timestamp,

count integer,

PRIMARY KEY (inode)

)

filp file descriptor table:

create table filp(

filp_id integer NOT NULL,

inode_id integer,

position integer,

mode integer,

filp_count integer,

PRIMARY KEY (filp_id)

)

proc filp table that associates processes to their file descriptors:

create table proc_filp(

proc_id integer,

flip_id integer,

FOREIGN KEY (proc_id) REFERENCES proc(pid),

FOREIGN KEY (proc_id) REFERENCES filp(filp_id)

)

hole free memory hole table:

create table hole (

base integer,

len integer

)

pid table of integers from 1 to 30000 to get a process identifier:

create table pid (

pid integer

)

ready user proc table of user processes that are ready to run:

create table ready_user_proc (

pid integer,

FOREIGN KEY (pid) REFERENCES proc(pid)

)

5.4 Changing the pure C code to the C code with embedded SQL statements

Following the mapping from C-language data structures to relations in Section 5.3, we also transfer the pure
C program in Appendix A.1 to the corresponding C program with embedded SQL statements (C/SQL).
The main work at the step is changing the code blocks that operate on the kernel data structures to
embedded SQL statements that manipulate the mapped tables. The C/SQL programs for the system calls
are listed in Appendix A.2.
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Figure 4: The finite state machine of fork

5.5 Obtaining finite state machines from the C/SQL code

Given the C/SQL programs of the transaction types, we can follow the methods in [14] (also reviewed
in Section 2.2 of this report) to transform them to finite state machines. However, we do not partition
the table, because we assume that the unit of protection for main memory databases should be of coarse
granularity, i.e,the table level. The finite state machines are given in Figure 4 to 8. The numbers attached
to states are state identifiers. In addition, the r or w attached to each state indicates whether the state
read or write the data item.

5.6 Generating assembly instructions and getting the costs

The next task is getting the costs at each arc and each state in the finite state machine to build up the final
transaction types. Because we map the statements in the C program to the embedded SQL statements, we
can view the C statements as the low-level query plan for the SQL statements. Therefore, if we can find
the cost of a “block” of C statements that represents a query plan, we can then get the costs of the states
involved in the SQL query. Moreover, from the C statements that do not belong to any block corresponding
to a query plan, we get the inter-state costs on the arcs.

Currently we measure the cost of a sequence of C statements with the total number of their assembly
instructions. We run the gcc -g -S command on the C programs. This produces the assembly code of
the program without code optimization. The sequence of assembly instructions for each C statement are
generated by the compiler. Therefore, we can get the costs at the states and arcs by summing up the
number of instructions of their statements. When there are loops or conditional statements in the code,
we have to approximate the numbers by ad hoc “averaging” or even “guessing”.

We characterize the general features of the kernel data structures in Section 5.2 as below:

15



w

w

w

holehole hole

ww

hole

w

hole

proc

r

proc

8 9

12 13

14 15 16

17

18

232628

w

w

hole

w

hole

ww

proc

w

segment

w

w

segment

proc

w

proc

w

proc

w

proc

procproc
ww

w

hole

w

hole

22

r

20

19

w

proc

proc 34

35

w

36

37

40

41

0

w

r

r

10

11

filpproc_filp

filp inode

wr

r w

segment

2527

24

29
30

31

32

33

3839

w

proc_filp

filp

w

inode

1 2

3 4

5

6

7
proc

w

segment

21

r

hole

proc ready_user_proc

w

proc

segment
r

holew

hole

w

hole

w

hole

Figure 5: The finite state machine of exit

16



r

0

proc

11

10

9

8

7

4

2

ok

w
proc

wproc

wproc

w

1

r

r r

proc

13

6

12

proc

rr3

procproc

proc proc

5 rr

w

proc

proc

error

Figure 6: The finite state machine of waitpid

hole: hole is an array of hole t elements of size 128, which specifies the maximal number of holes.
However, the real hole list is chained by the h next pointer field in hole t. We assume that on
average the hole list has 128

2 = 64 elements. For segment allocation, we assume on average the
searching goes over 64

2 = 32 elements before it finds a hole big enough for the segment.

proc: proc is an array of proc t elements of size 32. Whether the element is a valid is indicated by the
lowest bit (IN USE) in the proc flags field of proc t. We assume that 3

4 × 32 = 24 elements in
the array are in use. Moreover, we also assume:

• Given a process id, we assume that the searching scans 32
2 = 16 elements in the array to find

the corresponding process descriptor.

• On average there are 32−24 = 8 proc t elements are not in use. They are distributed uniformly
in the array. To find the first free element in the proc array, the searching scans on average
32
8 = 4 elements.

rdy head: We assume the probability that the ready queue of user processes (rdy head[USER Q]) is
empty is 1

10 , and the respective probabilities that the ready queue of kernel tasks (rdy head[TASK Q])
and servers (rdy head[SERVER Q]) are 1

4 .

filp: The descriptors of the files opened of a process is represented by the fp filp array enclosed in the
proc t. Each element of the array is a pointer to filp t, and the size of the array is 20. We assume
that on average a process open 20

2 = 10 files, so 10 pointers in the array are not NULL.
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Currently we get the costs manually. Because there are too many technical details in the procedure,
we illustrate how to get the costs by examples.

Example 5.2 In fork, we need to get the information of the parent process ( state 1 in Figure 4). The
SQL statement embedded in the C/SQL program (Appendix A.2.1) is:

EXEC SQL SELECT

parent_pid into :parent_pid,

wait_pid into :wait_pid,

exit_status into :exit_status,

sig_status into :sig_status,

data_segment into :data_segment,

text_segment into :text_segment,

stack_segment into :stack_segment,

proc_flags into :proc_flags,

ino into :ino,

dev into :dev,

ctime into :ctime

FROM proc

WHERE pid = :current_pid;

The C statements that process the query, taken from Appendix A.1.3, are listed with line numbers:

/*line 1*/ for(i=0; i<NR_PROCS; i++){

/*line 2*/ if((proc[i].proc_flags & IN_USE != 0) &&

/*line 3*/ (proc[i].pid == parent_pid))

/*line 4*/ {

/*line 5*/ parent_proc = proc[i];

/*line 6*/ break;

/*line 7*/ }

/*line 8*/ }

/*line 9*/ ino = parent_proc.ino;

/*line 10*/ dev = parent_proc.dev;

/*line 11*/ ctime = parent_proc.ctime;

/*line 12*/ sp = parent_proc.sp;

/*line 13*/ wpid = parent_proc.wpid;

/*line 14*/ proc_flags = parent_proc.proc_flags;

The corresponding assembly instructions for the above C code are shown below. They are annotated
with the line numbers in the C program.

!**********************************

!*********** line 1****************

!**********************************

movl $0, -12(%ebp)

!1 instruction

!**********************************

.L8:

cmpl $31, -12(%ebp)

jle .L11

!2 instructions

!**********************************

jmp .L9

!1 instruction

!**********************************

!************line 2 ***************
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!**********************************

.L11:

movl -12(%ebp), %edx

movl %edx, %eax

sall $3, %eax

addl %edx, %eax

sall %eax

addl %edx, %eax

sall $3, %eax

movl proc+60(%eax), %eax

andl $1, %eax

testl %eax, %eax

je .L10

!11 instructions

!**********************************

!************line 3 ***************

!**********************************

movl -12(%ebp), %edx

movl %edx, %eax

sall $3, %eax

addl %edx, %eax

sall %eax

addl %edx, %eax

sall $3, %eax

movl proc(%eax), %eax

cmpl 8(%ebp), %eax

jne .L10

!10 instructions

!**********************************

!************line 5****************

!**********************************

movl -12(%ebp), %edx

movl %edx, %eax

sall $3, %eax

addl %edx, %eax

sall %eax

addl %edx, %eax

sall $3, %eax

leal -200(%ebp), %edi

leal proc(%eax), %esi

cld

movl $38, %eax

movl %eax, %ecx

rep

movsl

!14 instructions

!**********************************

!************line 6****************

!**********************************

jmp .L9

!1 instruction

!**********************************

!************line 8****************

!**********************************

.L10:

leal -12(%ebp), %eax
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incl (%eax)

jmp .L8

!3 instructions

!**********************************

!**********************************

!************line 9****************

.L9:

movl -148(%ebp), %eax

movw %ax, -222(%ebp)

!2 instructions

!**********************************

!************line 10***************

!**********************************

movw -146(%ebp), %ax

movw %ax, -224(%ebp)

!2 instructions

!**********************************

!************line 11***************

!**********************************

movl -144(%ebp), %eax

movl %eax, -228(%ebp)

!2 instructions

!**********************************

!************line 12***************

!**********************************

movl -136(%ebp), %eax

movl %eax, -240(%ebp)

!2 instructions

!**********************************

!************line 13***************

!**********************************

movl -192(%ebp), %eax

movl %eax, -236(%ebp)

!2 instructions

!**********************************

!************line 14***************

!**********************************

movl -140(%ebp), %eax

movl %eax, -232(%ebp)

!2 instructions

!**********************************

NR PROC is 32. By assumption, 3
4 of the elements in proc are in use and they are distributed evenly.

In addition, the loop iterates 32
2 = 16 iterates on average to find the qualified element that matches the

process id parameter. Therefore, from the the number of assembly instructions for each each line of the C
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code, the cost to process the SQL statement is

cost =1 + 2× 16 (line 1)
+ 11× 16 (line 2)

+ 10× 16× 3
4

(line 3)

+ 14 (line 5)
+ 1 (line 6)
+ 3× (16− 1) (line 8)
+ 2 + 2 + 2 + 2 + 2 + 2 (line 9-14)

=401

Example 5.3 In exit, the opened files are to be closed. The C/SQL statements (from Appendix A.2.2)
are:

EXEC SQL UPDATE filp set filp_count = filp_count - 1

WHERE EXISTS (

SELECT * FROM proc_filp

WHERE proc_filp.proc_id = :current_pid

AND proc_filp.filp_id = filp.filp_id

);

EXEC SQL UPDATE inode set count = count - 1

WHERE EXISTS (

SELECT * from filp

WHERE filp.filp_count = 0

AND filp.inode_id = inode.inode

)

EXEC SQL DELETE FROM proc_filp

WHERE proc_id = :current_pid;

EXEC SQL DELETE FROM filp

WHERE filp_count = 0;

EXEC SQL DELETE FROM inode

WHERE count = 0;

They represent the subgraph of the finite state in Figure 5 generated by Node 1 to 7. We show the subgraph
in Figure 9.

The C program that process the queries, taken from Appendix A.2.2, are:
/*line 1*/ for(i=0; i<OPEN_MAX; i++){

/*line 2*/ if((current_proc_ptr->fp_filp[i])!=NIL_FILP){

/*line 3*/ (current_proc_ptr->fp_filp[i])->filp_count--;

/*line 4*/ if((current_proc_ptr->fp_filp[i])->filp_count == 0){

/*line 5*/ (current_proc_ptr->fp_filp[i])->filp_ino->count--;

/*line 6*/ }

/*line 7*/ current_proc_ptr->fp_filp[i] = NIL_FILP;

/*line 8*/ }

/*line 9*/ }
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To map the C statements to the embedded SQL statements, we partition the for loop. The first embedded
SQL statement that joins filp and proc filp is processed by scanning the fp filp array in the process
descriptor. So the first join (the loop with with state 1 and 2 in Figure 9) is processed by line 1, 2, 3,
8, and 9. The second one that joins filp and inode is processed by line 1, 2, 5, 6, 8, and 9. The third
deletes the relevant rows in the proc filp table. This is processed by line 1, 2, 7, 8, 9. The last two delete
statements actually have nothing to do at the physical level, because when the reference counts in inode t
and filp t equal to 0, the entry is free.

The assembly code is:

!**********************************

!************line 1****************

!**********************************

movl $0, -4(%ebp)

!1 instruction

!**********************************

.L7:

cmpl $19, -4(%ebp)

jle .L10

!2 instructions

!**********************************

jmp .L8

!1 instruction

!**********************************

!************line 2****************

!**********************************

.L10:

movl -12(%ebp), %edx

movl -4(%ebp), %eax

cmpl $0, 68(%edx,%eax,4)

je .L9

!4 instructions

!**********************************

!************line 3****************
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!**********************************

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl 68(%edx,%eax,4), %eax

decl (%eax)

!4 instructions

!**********************************

!************line 4****************

!**********************************

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl 68(%edx,%eax,4), %eax

cmpl $0, (%eax)

jne .L12

!5 instructions

!**********************************

!************line 5****************

!**********************************

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl 68(%edx,%eax,4), %eax

movl 4(%eax), %eax

decl (%eax)

!5 instructions

!**********************************

!************line 7****************

!**********************************

.L12:

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl $0, 68(%edx,%eax,4)

!3 instructions

!**********************************

!************line 9****************

!**********************************

.L9:

leal -4(%ebp), %eax

incl (%eax)

jmp .L7

!3 instructions

!**********************************

The costs are:

State 1 is processed by the 2 instructions under .L1 for line 1. Its cost is 2.

State 2 is processed by line 2 and 3. As we assume half of the elements in fp filp are non-null pointers
and the other half are null, there is 50% probability that line 3 is executed. Therefore,

cost =4 (line 2)
+ 4× 0.5 (line 3)

=6
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Arc(1, 2) has cost 0.

Arc(2, 1) is done by line 9. Its cost is 3.

State 3 is similar to state 1. Its cost is 2.

Arc(1, 3) is processed by 2 instructions for line 1 (the first one that initializes and last one that jumps).
Its cost is 2.

Arc(3, 4) has cost 0.

State 4 is processed by line 2, 5, and 6 (empty). As we assume that half of fp filp elements are not null,
the probability that line 4 is executed is 50%. We also assume the probability that line 5 is executed
is 40%.

cost =4 (line 2)
+ 5× 0.5 (line 4)
+ 5× 0.4 (line 5)

=9

Arc(4, 3) is processed by line 9. The cost is 3.

State 5 is processed by line 1, 2, 7, 8 (empty), and 9. As the state occupies the whole loop block,
OPEN MAX is 20, and we assume 10 elements are not null, the total cost is,

cost =1 + 2× 20 + 1 (line 2)
+ 4× 20 (line 2)
+ 3× 10 (line 7)
+ 3× 19 (line 9)

=209

Arc(3, 5) is done by the last instruction for line 1. So the cost is 1.

Arc(5, 6), State 6 and State 7 are have the cost 0.

The transaction types with costs we acquired are shown in Figure 10 to 14. The numbers attached to
the states and arcs are their costs.

5.7 Getting the probabilities for state transitions

The last step in getting the transaction types is getting the probabilities for the state transitions from
states with multiple successors. Some probabilities can be estimated from the number of iterations of the
for loop, and the others have to be drawn from assumptions.
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Figure 10: The costs of fork

arc prob arc prob arc prob
(0, 1) 0.95 (0, 16) 0.05 (4, 5) 0.95
(4, 16) 0.05 (6, 5) 0.967 (6, 7) 0.033
(8, 11) 0.67 (8, 10) 0.33 (12, 13) 0.95
(12, 14) 0.05

Table 1: The probabilities of state transitions in fork

Example 5.4 For the part of exit in Figure 9, as the for loop iterates 20 times, we can estimate that the
probability from state 1 to 2 is 1− 1

20 = 0.95, and from 1 to 3 is 0.05. For the same reason, the probability
from state 3 to 4 is 0.95, and from 3 to 5 is 0.05.

We include in Table 1 to 5 the probabilities of transitions for the states with multiple successors. The
state identifiers in the tables are from Figure 4 to 8.

6 Getting the probability of the transaction types

After we have the set of transaction types, we also need their probabilities to make the final transaction
system. Here we assume that there is the same percentage of fork and exit in the transaction mixture, 80%
of forked processes calls exec, and 80% of the parent processes call waitpid for their child processes. brk
is the underlying system call that implements malloc and free. We also assume on average each process
calls brk for 5 times. So we can calculate the percentage of each transaction type. The probabilities are
given in Table 6.
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Figure 11: The costs of exit

arc prob arc prob arc prob
(1, 2) 0.95 (1, 3) 0.05 (3, 4) 0.95
(3, 5) 0.05 (10, 10) 0.9375 (10, 11) 0.0417

(10, 19) 0.0208 (11, 12) 0.2 (11, 13) 0.8
(12, 14) 0.8 (12, 15) 0.2 (21, 22) 0.2
(21, 23) 0.8 (22, 24) 0.8 (22, 25) 0.2
(30, 31) 0.67 (30, 32) 0.33 (32, 36) 0.5
(32, 34) 0.125 (32, 33) 0.375 (37, 38) 0.5
(37, 40) 0.5

Table 2: The probabilities of state transitions in exit
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Figure 12: The costs of waitpid

arc prob arc prob arc prob
(0, 1) 0.225 (0, 3) 0.05 (0, 12) 0.225
(0, 5) 0.225 (0, 6) 0.05 (0, 13) 0.225

Table 3: The probabilities of state transitions in waitpid

arc prob arc prob arc prob
(4, 4) 0.9375 (4, 5) 0.0575 (4, 6) 0.005
(5, 6) 0.005 (5, 7) 0.995 (7, 7) 0.9375
(7, 8) 0.0417 (7, 16) 0.0208 (8, 9) 0.2
(8, 10) 0.8 (9, 11) 0.8 (9, 12) 0.2
(17, 18) 0.2 (17, 19) 0.8 (18, 21) 0.2
(18, 22) 0.8 (26, 27) 0.67 (26, 28) 0.33
(28, 29) 0.67 (28, 30) 0.33 (33, 34) 0.95
(35, 36) 0.95 (35, 37) 0.05

Table 4: The probabilities of state transitions in exec
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arc prob arc prob arc prob
(1, 2) 0.05 (1, 3) 0.95 (3, 2) 0.05
(3, 4) 0.095 (3, 7) 0.19 (3, 5) 0.19
(3, 6) 0.475

Table 5: The probabilities of state transitions in brk

transaction type probability
fork 11.7%
exit 11.7%
waitpid 9.3%
exec 9.3%
brk 58%

Table 6: The probabilities of the transaction types

Hence we finalize the workload.

7 Calculating the costs of locking

To model the workload for main-memory data, we also consider the costs of locking protections. The
MINIX system, which is used for eduction, has only interrupt disabling protection. This is equivalent to
serial scheduling on a uniprocessor system, and can implemented by one cli instruction for locking and one
sti for unlocking. Additionally, we take into account spinlock which is used in UNIX/Linux for protection
on SMP [12] [4]. We take the code that implements spinlock from the Linux source code [4]. In Linux,
there are two versions of spinlock, exclusive and read-write. Next we analyze their costs separately.

7.1 Exclusive spinlock

For exclusive spinlock, assuming the lock is encoded in a byte slp, the assembly code for locking is [4]:

1: lock; decb slp

jns 3f

2: cmpb $0, slp

pause

jle 2b

jmp 1b

3:

The unlocking code is:

lock; movb $1, slp

So when the value of slp is 1, the lock is free. The locking code will directly jump to label 3. So it
takes 2 instructions (the first 2 instructions). Otherwise, the code loops after label 2 and tests whether
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the value is reset to 1. If it is, the code goes back to label 1 to retest whether the lock is still free. So
the resumption of the process takes 4 instructions, including a jle and a jmp. The unlocking has only 1
instruction.

7.2 Read-write spinlock

The read-write spinlock addresses to the classical reader and writer problem, and allows multiple simulta-
neous readers and only one write at one time. However, different from high-level semaphore lock, it does
not prevent a waiting writer from being starved by the subsequent readers. It is encoded as a long integer
value (suppose at address rwlp). When the value is set to 0x01000000, there is no read or write lock
holder, and the 1 at the 24th bit shows that the write lock is free. When the value is a positive number,
it is the 2’s complement of the counter of readers. When it is 0 or negative, there is a writer. The code to
acquire a read lock is [4]:

mobl $rwlp, %eax

lock; subl $1, (%eax)

jns 1f

call __read_lock_failed

1:

__read_lock_failed:

lock; incl (%eax)

1: cmpl $1, (%eax)

js 1b

lock; decl (%eax)

js __read_lock_failed

ret

A successful locking takes 3 instructions and goes to label 1. So it takes 3 instructions. It takes a
waiting processing 4 instructions to acquire the lock after the spinlock holder releases it. They including
a js, a decl, another js, and a ret in the function read lock failed.

The unlocking code is [4]:

lock; incl rwlp

The unlocking takes 1 instruction.
The locking procedure for a write request is [4]:

movl $rwlp, %eax

lock; subl $0x01000000, (%eax)

jz 1f

call __write_lock_failed

1:

__write_lock_failed:

lock; add $0x0100000, (%eax)

1: cmpl $0x01000000, (%eax)

jne 1b

lock; subl $0x0100000, (%eax)

jnz __write_lock_failed

ret
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Similar to the read locking, the write locking takes 3 instructions. And a process that resumes from
spinning takes 4 instructions to get the lock. The unlocking takes 1 instruction, as shown below [4].

lock; add $0x01000000, rwlp

7.3 Locks based on semaphores

In addition, Unix/Linux also uses high-level semaphores for synchronization and protection. A lock or
latch is usually implemented by a semaphore. We treat exclusive locks (x-lock) and locks that allowing
sharing (rw-lock) separately. Both types of semaphores are implemented in Linux. However, we do not
the Linux implementation code because it is too complicated. Instead we implement a simple version of
both types of locks based on MINIX data structures, except that the spinlock functions (spin lock and
spin unlock) called are from the Linux code in [4].

7.3.1 X-lock

First we consider the costs of x-locks. The data structures of an x-lock are:

#define LOCK_FREE 0

#define LOCK_X 1

typedef int lock_mode_t;

/* the waiting queue */

struct wait_queue_t {

struct proc_t * head;

struct proc_t * tail;

};

struct semaphore_t {

lock_mode_t mode; /* free or exclusive */

spinlock_t lock;

pid_t owner;

struct wait_queue_t wait_queue;

};

Also we add a pointer field into the process descriptor structure (proc t, defined in Section 5.2).

struct proc_t {

.....

/* add waiting queue list */

struct proc_t * wait_next;

} proc[NR_PROCS];

The pointer links the process descriptor into the waiting queue. The implementations of x-lock is given in
Appendix A.3.1.
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By using the machine instruction counting method used in Section 5.6, we calculate the average cost
for locking. We assume the probability that queue is empty is 1

2 . We avoid other technical details but just
give the results.

For locking, if the lock is free and the process can get it immediately, the cost is 30 instructions; if
the lock is held by another process and the process has to wait, the cost is 134. The unlocking takes 62
instructions.

7.3.2 Rw-lock

The second type of lock, rw-lock, takes into account of the classical multiple readers and single writer
problem. Its implementation is more complicated than x-lock. The data structures are:

#define LOCK_INVALID (-1)

#define LOCK_FREE 0

#define LOCK_S 1

#define LOCK_X 2

typedef int lock_mode_t;

/* the waiting queue */

struct wait_queue_t {

struct proc_t * head;

struct proc_t * tail;

};

struct rw_semaphore_t {

lock_mode_t mode; /* free, share, or or exclusive */

spinlock_t lock;

int count; /* number of holders: 0 free,

1 exclusive or shared, >1 shared */

struct wait_queue_t wait_queue;

};

We add three fields to the process descriptor structure (proc t originally defined in Section 5.2).

struct proc_t {

.....

struct proc_t * wait_next; /* waiting queue link */

lock_mode_t hold_lock; /* lock mode the process is holding */

lock_mode_t wait_for_lock; /* lock mode the process is waiting for */

} proc[NR_PROCS];

wait next is the linking pointer inside the waiting queue. hold lock shows the mode of the lock the
process is holding (free, shared, or exclusive). When a process is waiting for a lock in the waiting queue,
wait for lock shows the mode of the lock it is waiting for. The implementations of exclusive lock is
given in Appendix A.3.2. Following the same assumption as the above x-lock, we calculate the numbers
of instructions of locking and unlocking for rw-locks. For locking in shared mode, a successful locking
takes 37 instructions, and if the lock cannot be granted, a blocking takes 136 instruction. For locking in
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exclusive mode, the corresponding costs are 32 and 131 respectively. Unlocking takes 68 instructions on
average.

7.3.3 Comments on semaphore-based lock costs

From the costs obtained from our simplified implementations, we can see that if a locking causes a blocking,
the cost is much higher than when it can directly obtain the lock. Another observation is the locking costs
of x-locks and rw-locks are quite comparable, although the latter has more complicated logic.

If the data access in memory takes only short time, say, about 10 instructions, using the semaphore-
based locking protection can be costly because of the costs of the locking operations themselves. This
conforms to the claims in [12] and [4] that semaphores are more suitable for operations which involves I/O
and which takes long time.

8 Summary and future work

In the report, we present our step to make an ECP workload. The workload is for further experimental
simulation of the transaction processing under different concurrency control protocols. The workload
follows the formal model proposed in [14]. The transaction types are transformed from the system calls
in the MINIX operating system, and the cost of the states and transitions are measured in terms of
CPU instructions. We also take into account the costs of locking operations. We expect to conduct our
experiment on this workload alongside the TPC-C workload in [14].

Our future work includes:

1. Because the workload was extracted mainly manually, we need to design the techniques to automate
it.

2. We plan to add I/O operations cost to our workload, as they still exist in ECPs.

Appendix

A.1 C programs that handle the selected system calls

In the section, we list the programs of the selected system calls. They are modified from the MINIX source
code in [10]. In the programs for fork and exec, the function phys copy called is a function written in
assembly language in MINIX source code.

A.1.1 Constants, types, and data structures

The constants and types are taken from various header files in [10]. We gather their definitions in file
types.h.
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/***********************************************************/

/* constants */

/***********************************************************/

/* error messages */

#define OK 0

#define EGENERIC (-99) /* generic errors */

#define ECHILD (-10) /* no child process */

#define EAGAIN (-11) /* resource temporarily unavailable */

#define ENOMEM (-12) /* no enough memory */

/* memory chunk */

#define CLICK_SIZE 256 /* click unit size */

#define CLICK_SHIFT 8 /* bit shift */

/* segments */

#define NR_SEGS 3 /* segments text, data, stack */

#define T 0 /* text */

#define D 1 /* data */

#define S 2 /* stack */

/* holes */

#define NR_HOLES 128 /* line 18820 */

/* file system */

#define OPEN_MAX 20 /* line 167 */

#define NR_FILPS 128 /* line 19506 */

#define NR_INODES 65 /* line 19507 */

/* processes */

#define MM_PROC_NR 0 /* process id of memory manager */

#define INIT_PID 1 /* process id of init process */

#define IDLE 2 /* idle task */

#define NR_PROCS 32 /* maximum number of user processes */

#define IN_USE 001 /* the process array element is used */

#define WAITING 002 /* the process is waiting: it has called waitpid

and is waiting a child to exit */

#define HANGING 004 /* the process is hanging: it has called exit and

is waiting for the parent to call waitpid */

#define SEPARATE 040 /* the process has separate text and data segments */

/* misc constants */

#define FALSE 0

#define TRUE 1

#define MAX(a, b) ((a) > (b) ? (a):(b));

#define MIN(a, b) ((a) < (b) ? (a):(b));

#define ARG_MAX 4096 /* args + environ on small

machines (for exec()) */

/***********************************************************/

/* types and structures */

/***********************************************************/

typedef int boolean;

typedef int pid_t; /* process id */
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typedef long time_t; /* time */

typedef unsigned short mode_t; /* file type and permission */

typedef unsighed long off_t; /* position in a file for r/w */

typedef short dev_t; /* device id */

typedef unsigned short ino_t; /* inode id */

typedef unsigned reg_t; /* register value format */

typedef unsigned int vir_clicks; /* virtual memory chunk */

typedef unsigned int vir_bytes; /* virtual memory byte */

typedef unsigned int phys_clicks; /* physical memory chunk */

typedef unsigned int phys_bytes; /* physical memory byte */

/* memory segment */

struct mem_map {

vir_clicks mem_vir; /* virtual address */

phys_clicks mem_phys; /* physical address */

vir_clicks mem_len; /* length in clicks */

};

/* holes */

struct hole_t {

phys_clicks h_base; /* physical starting address */

phys_clicks h_len; /* length */

struct hole_t *h_next; /* pointer to the next entry */

} hole[NR_HOLES];

#define NIL_HOLE (struct hole_t *) 0 /* null hole pointer */

struct hole_t *hole_head; /* pointer to the first hole */

struct hole_t *free_slots; /* pointer to the first

unused hole table slot */

/* inode */

struct inode_t {

int count; /* reference count:

if it is 0, the entry is free */

time_t i_ctime; /* when was inode itself changed*/

dev_t i_dev; /* which device is the inode on */

ino_t i_num; /* inode number on its device */

} inode[NR_INODES];

/* file descriptor */

struct filp_t {

int filp_count; /* how many processes share this slot?*/

struct inode_t *filp_ino; /* pointer to the inode */

mode_t mode; /* file mode and permission */

off_t pos; /* position for read or write */

} filp[NR_FILPS];

#define NIL_FILP (struct filp_t *)0 /* null filp pointer */

/* process descriptor */

struct proc_t {

pid_t pid; /* process id */

pid_t parent_pid; /* parent process id */
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pid_t wpid; /* pid this process is waiting for */

char exitstatus; /* storage for status when process

exits */

char sigstatus; /* storage for signal number for

killed processes */

struct mem_map seg[NR_SEGS]; /* text, data, stack segments */

/* File identification for sharing */

ino_t ino; /* inode number of exec file */

dev_t dev; /* device number of file system */

time_t ctime; /* inode changed time */

unsigned proc_flags; /* flag bits */

reg_t sp; /* stack pointer */

struct filp_t *fp_filp[OPEN_MAX]; /* opened file descriptors */

struct proc_t *p_next_ready; /* pointer to the next process

in the ready queue */

} proc[NR_PROCS];

/* ready queues */

#define TASK_Q 0 /* kernel tasks */

#define SERVER_Q 1 /* servers */

#define USER_Q 2 /* user process */

#define NQ 3 /* totally 3 queues */

struct proc_t *rdy_head[NQ]; /* header of a ready queue */

struct proc_t *rdy_tail[NQ]; /* tail of a ready queue */

struct proc_t *proc_ptr; /* current running process */

struct proc_t *bill_ptr; /* process to be billed */

A.1.2 Memory allocation

The function alloc mem allocates a memory chunk for for a process segment from the free memory holes,
and free mem frees a memory chunk and returns it to the hole list. The del slot is an auxiliary function
to delete a hole list slot. They are modified from the functions of the same names in [10].

#include "types.h"

phys_clicks alloc_mem(phys_clicks clicks)

{

register struct hole_t *hp, *prev_ptr;

phys_clicks old_base;

hp = hole_head;

/* scan the hole list */

while(hp != NIL_HOLE) {

if(hp->h_len >= clicks) {

/* we find a hole big enough, use it */

old_base = hp->h_base;
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hp->h_base += clicks;

hp->h_len -= clicks;

if(hp->h_len == 0){

del_slot(prev_ptr, hp);

}

return(old_base);

}

prev_ptr = hp;

hp = hp->h_next;

}

return(NO_MEM);

}

void free_mem(phys_clicks base,

phys_clicks clicks)

{

boolean flag;

struct hole_t *hp, *hp1, *prev_hp1, *hp2,

*new_ptr, *prev_ptr;

if(clicks == 0) return;

new_ptr = free_slots;

/* trying add the freed memory to front of a hole */

flag = FALSE;

hp1 = (prev_hp1 = hole_head);

while(hp1 != NIL_HOLE){

if(hp1->h_base == base + clicks){

flag = TRUE;

hp1->h_base = base;

hp1->h_len = hp1->h_len + clicks;

break;

}

prev_hp1 = hp1;

hp1 = hp1->h_next;

}

/* trying add the freed memory to the end of

a hole */

hp2 = hole_head;

while(hp2 != NIL_HOLE){

if(hp2->h_base + hp2->h_len == base){

if(!flag){

flag = TRUE;

hp2->h_len += clicks;

}

else{

/* we need to merge the two holes */

hp2->h_len += hp1->h_len;

del_slot(prev_hp1, hp1);

}

break;

}

38



hp2 = hp2->h_next;

}

/* we cannot attach the memory chunk to

any existing hole. So we have to add

a new hole to the hole list. */

if(!flag){

new_ptr->h_base = base;

new_ptr->h_len = clicks;

free_slots = new_ptr->h_next;

hp = hole_head;

if(hp != NIL_HOLE || base <= hp->h_base) {

new_ptr->h_next = hp;

hole_head = new_ptr;

}

else{

while(hp != NIL_HOLE && hp->h_base < base){

prev_ptr = hp;

hp = hp->h_next;

}

new_ptr->h_next = prev_ptr->h_next;

prev_ptr->h_next = new_ptr;

}

}

}

void del_slot(register struct hole_t prev_ptr,

register struct hole_t hp)

{

if(hp==hole_head)

hole_head = hp->h_next;

else

prev_ptr->h_next - hp->h_next;

hp->h_next = free_slots;

free_slots = hp;

}

A.1.3 fork

The function is combined and modified from the respective do fork in MM, do fork in FS, and do newmap
in the kernel part in [10].

#include <string.h>

#include "types.h"

int fork(pid_t parent_pid){

int i, j;

int index;

pid_t pid;

boolean flag;

int proc_in_use;

struct proc_t parent_proc;

phys_clicks prog_clicks, child_base = 0;
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phys_bytes prog_bytes, parent_abs, child_abs;

ino_t ino;

dev_t dev;

time_t ctime;

unsigned proc_flags;

pid_t wpid;

reg_t sp;

struct mem_map text_seg, data_seg, stack_seg;

/* count the number of processes */

proc_in_use = 0;

for(i=0; i<NR_PROCS; i++){

if(proc[i].proc_flags & IN_USE != 0) {

proc_in_use++;

}

}

/* if the number of processes exceeds the

system limit, return error. */

if (proc_in_use > NR_PROCS) {

return(EAGAIN);

}

/* get the information of the parent process. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0) &&

(proc[i].pid == parent_pid))

{

parent_proc = proc[i];

break;

}

}

ino = parent_proc.ino;

dev = parent_proc.dev;

ctime = parent_proc.ctime;

sp = parent_proc.sp;

wpid = parent_proc.wpid;

proc_flags = parent_proc.proc_flags;

/* calculate the memory that is needed for the new

process. */

/* stack */

stack_seg.mem_vir = parent_proc.seg[S].mem_vir;

stack_seg.mem_len = parent_proc.seg[S].mem_len;

/* data */

data_seg.mem_vir = parent_proc.seg[D].mem_vir;

data_seg.mem_len = parent_proc.seg[D].mem_len;

/* text */

text_seg.mem_len = parent_proc.seg[T].mem_len;

text_seg.mem_vir = parent_proc.seg[T].mem_vir;

/* total memory size for the new process */

prog_clicks = (phys_clicks)parent_proc.seg[S].mem_len;

40



prog_clicks += (parent_proc.seg[S].mem_vir - parent_proc.seg[D].mem_vir);

/* allocate memory */

if((child_base = alloc_mem(prog_clicks))==NO_MEM)return(EAGAIN);

/* Create a copy of the parent’s core image for the child */

child_abs = (phys_bytes)child_base << CLICK_SHIFT;

parent_abs = (phys_bytes)parent_proc.seg[D].mem_phys << CLICK_SHIFT;

phys_copy(parent_abs, child_abs, prog_bytes);

/* now get an id for the new process */

for(i=0; i<30000; i++){

flag = FALSE;

for(j=0; j< NR_PROCS; j++) {

if((proc[j].pid == i) && (proc[j].proc_flags & IN_USE != 0)){

flag = TRUE;

break;

}

}

if(!flag) {

pid = i;

break;

}

}

/* set the text segment physical address */

if(!(proc_flags & SEPARATE)){

text_seg.mem_phys = child_base;

}

else {

text_seg.mem_phys = parent_proc.seg[T].mem_phys;

}

/* find an available entry in the . */

for(i=0; i<NR_PROCS; i++){

if(0 == (proc[i].proc_flags & IN_USE)){

index = i;

break;

}

}

/* there must be one. assign the values to the

fields */

proc[index].pid = pid;

proc[index].parent_pid = parent_pid;

proc[index].ino = ino;

proc[index].dev = dev;

proc[index].ctime = ctime;

proc[index].sp = sp;

proc[index].seg[T] = text_seg;

proc[index].seg[D] = data_seg;

proc[index].wpid = wpid;

proc[index].proc_flags = proc_flags;

/* share the open file descriptors with the
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new child */

for(i=0; i<OPEN_MAX; i++){

proc[index].fp_filp[i] = parent_proc.fp_filp[i];

if(proc[index].fp_filp[i] != NIL_FILP){

(proc[index].fp_filp[i])->filp_count++;

}

}

/* add to ready queue *

if(rdy_head[USER_Q] == NIL_PROC)

rdy_tail[USER_Q] = &proc[index];

rdy_head[USER_Q] -> p_next_ready = rdy_head[USER_Q];

rdy_head[USER_Q] = &proc[index];

return (pid);

}

A.1.4 exit

The function is combined and modified from the do exit handler in MM, and then do xit in the kernel
part in [10].

#include "types.h"

void do_exit(pid_t pid){

int i, j;

struct proc_t *current_proc_ptr, *init_proc_ptr,

*parent_proc_ptr;

struct proc_t *xp, *rp, **qtail;

boolean text_shared, right_child;

unsigned parent_waiting;

pid_t parent_pid;

pid_t wait_pid, parent_wait_pid;

char exit_status;

char sig_status;

unsigned proc_flags, parent_proc_flags;

ino_t ino;

dev_t dev;

time_t ctime;

/* find the index of the process to exit. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0) && (proc[i].pid == pid)){

/* there must be one, because myself exists */

current_proc_ptr = &proc[i];

break;

}

}

/* first close all open file. */

for(i=0; i<OPEN_MAX; i++){
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if((current_proc_ptr->fp_filp[i])!=NIL_FILP){

(current_proc_ptr->fp_filp[i])->filp_count--;

if((current_proc_ptr->fp_filp[i])->filp_count == 0){

(current_proc_ptr->fp_filp[i])->filp_ino->count--;

}

current_proc_ptr->fp_filp[i] = NIL_FILP;

}

}

/* get all information of the current process. */

parent_pid = current_proc_ptr->parent_pid;

wait_pid = current_proc_ptr->wpid;

exit_status = current_proc_ptr->exitstatus;

sig_status = current_proc_ptr->sigstatus;

proc_flags = current_proc_ptr->proc_flags;

ino = current_proc_ptr->ino;

dev = current_proc_ptr->dev;

ctime = current_proc_ptr->ctime;

/* remove the process from the ready queue,

and pick the next process to run. */

if((xp = rdy_head[USER_Q]) == current_proc_ptr){

rdy_head[USER_Q] = xp->p_next_ready;

/* pick the next proc to run */

if ( (rp = rdy_head[TASK_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ( (rp = rdy_head[SERVER_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ( (rp = rdy_head[USER_Q]) != NIL_PROC) {

proc_ptr = rp;

bill_ptr = rp;

}else{

/* No one is ready. Run the idle task. The idle task might be made an

* always-ready user task to avoid this special case.

*/

bill_ptr = proc_ptr = &proc[IDLE];

}

}

qtail = &rdy_tail[USER_Q];

while (xp->p_next_ready != current_proc_ptr){

if ( (xp = xp->p_next_ready) == NIL_PROC) break;

}

if(xp != NIL_PROC){

xp->p_next_ready = xp->p_next_ready->p_next_ready;

if (*qtail == current_proc_ptr) *qtail = xp;

}
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/* find whether the text segment is shared */

text_shared = FALSE;

for(i=0; i<NR_PROCS; i++) {

if((proc[i].proc_flags & (IN_USE | SEPARATE | HANGING))

!= (IN_USE | SEPARATE)) continue;

if( proc[i].pid == pid || proc[i].ino != ino

|| proc[i].dev != dev || proc[i].ctime != ctime)

continue;

text_shared = TRUE;

break;

}

/* if text is not shared, free the text segment */

if(!text_shared){

free_mem((current_proc_ptr->seg[T]).mem_phys,

(current_proc_ptr->seg[T]).mem_len);

}

/* free the data and stack segments */

free_mem((current_proc_ptr->seg[D]).mem_phys,

(current_proc_ptr->seg[S]).mem_len +

(current_proc_ptr->seg[S]).mem_vir

- (current_proc_ptr->seg[D]).mem_vir);

/* find the init process, and let it be parent of the

children processes if necessary. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) || (proc[i].pid == INIT_PID)){

init_proc_ptr = &proc[i];

break;

}

}

parent_waiting = init_proc_ptr->proc_flags & WAITING;

/* if parent is waiting */

if(parent_waiting){

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) &&

(proc[i].parent_pid == pid)){

/* if the child already exits */

if(proc[i].proc_flags & HANGING){

/* free the child entry. */

proc[i].proc_flags = 0;

init_proc_ptr->proc_flags &= ~WAITING;

break;

}

}

}

}

/* reset the parent of the children to

the process init */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) &&

(proc[i].parent_pid == pid))
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{

proc[i].parent_pid == INIT_PID;

}

}

/* find the parent of the exiting process */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) &&

(proc[i].pid = parent_pid)){

parent_proc_ptr = &proc[i];

break;

}

}

parent_wait_pid = parent_proc_ptr->wpid;

parent_wait_pid = parent_proc_ptr->proc_flags & WAITING;

/* Is the parent waiting for the exiting process? */

if(parent_wait_pid == -1 || parent_wait_pid == pid){

right_child = TRUE;

}

else{

right_child = FALSE;

}

if(parent_waiting && right_child){

/* the parent is waiting for the exiting

process, so free the process descriptor,

and clear the waiting flag of the parent.

*/

current_proc_ptr->proc_flags = 0;

parent_proc_ptr->proc_flags &= ~WAITING;

}

else{

/* set the flag showing the exiting process

is a zombie. */

current_proc_ptr->proc_flags |= HANGING;

}

}

A.1.5 waitpid

The code is modified from the do waitpid function in MM in [10].

#include "types.h"

int waitpid(pid_t current_pid,

pid_t pidarg)

{

int i;

unsigned parent_proc_flags;

struct proc_t *current_proc, *child_proc;

pid_t wait_pid;

boolean flag;

/* pidarg == -1, wait for any child,
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pidarg > 0, wait for a special child with the pid specified by

the parameter.

*/

if(pidarg != -1 && pidarg <= 0) return(EGENERIC);

/* get the info of current process. */

for(i=0; i<NR_PROCS; i++){

if(proc[i].pid == current_pid){

current_proc = &proc[i];

break;

}

}

if(pidarg == -1){

/* pidarg == -1: waiting for any child. */

flag = FALSE;

/* scan the children to see if there is

a zombie. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE)

&& proc[i].parent_pid == current_pid){

child_proc = &proc[i];

flag = TRUE;

if(child_proc->proc_flags & HANGING){

/* find a zombie, delete the process descriptor,

and clear the parent process flag. */

child_proc->proc_flags = 0;

current_proc->proc_flags &= ~WAITING;

return(OK);

}

}

}

if(!flag){

/* Error: we have no child */

return (ECHILD);

}

else{

/* pidarg is a certain pid

that we are waiting for */

flag = FALSE;

for(i=0; i<NR_PROCS; i++){

if(proc[i].proc_flags & IN_USE) &&

proc[i].parent_pid == current_pid &&

proc[i].pid == pidarg){

child_proc = &proc[i];

flag = TRUE;

if(child_proc->proc_flags & HANGING){

/* find a zombie, delete the process

descriptor, and clear the parent

process flag */

child_proc->proc_flags = 0;

current_proc->proc_flags &= ~WAITING;

return(OK);

}

}
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}

/* no child, return an error. */

if(!flag){

/* no qualified children, must be error */

return(ECHILD);

}

}

current_proc->proc_flags |= WAITING;

return (OK);

}

A.1.6 exec

The code is combined and modified from the respective do exec functions from MM and FS in [10]. As
a simplification, the code here omits the procedure that reads in the executable file from the file system.
We assume the image of executable is already in the main memory. The information of the image is passed
to the system call handler as parameters.

#include "types.h"

#include <string.h>

int exec(pid_t current_pid,

vir_bytes stack_ptr,

vir_bytes stk_bytes,

vir_bytes data_bytes,

vir_bytes bss_bytes,

vir_bytes text_bytes,

vir_bytes tot_bytes,

ino_t ino,

dev_t dev,

time_t ctime,

int ft

)

{

int i;

struct proc_t *current_proc_ptr, *mm_proc_ptr;

vir_bytes src, dst;

vir_bytes data_vir_addr, data_phy_addr;

vir_bytes bytes, base, bss_offset, count;

vir_clicks max_hole_clicks, new_base, proc_clicks;

boolean text_shared, delete_text;

vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks;

phys_clicks tot_clicks;

struct hole_t *hp;

struct mem_map text_seg;

ino_t old_ino;

dev_t old_dev;

time_t old_ctime;

static char zero[1024];

static char mbuf[ARG_MAX];

/* find the process descriptor of the current process */

for(i=0; i<NR_PROCS; i++){
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if((proc[i].proc_flags & IN_USE != 0)

&& (proc[i].pid == current_pid)){

current_proc_ptr = &proc[i];

old_ino = current_proc_ptr->ino;

old_dev = current_proc_ptr->dev;

old_ctime = current_proc_ptr->ctime;

break;

}

}

/* store the stacks of the process temporarily at the memory server. */

data_vir_addr = (current_proc_ptr->seg[D]).mem_vir << CLICK_SHIFT;

data_phy_addr = (current_proc_ptr->seg[D]).mem_phys << CLICK_SHIFT;

src = stack_ptr - data_vir_addr + data_phy_addr;

/* find the memory management server. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0)

&& (proc[i].pid == MM_PROC_NR)){

mm_proc_ptr = &proc[i];

break;

}

}

data_vir_addr = (mm_proc_ptr->seg[D]).mem_vir << CLICK_SHIFT;

data_phy_addr = (mm_proc_ptr->seg[D]).mem_phys << CLICK_SHIFT;

dst = (vir_bytes)mbuf - data_vir_addr + data_phy_addr;

phys_copy(src, dst, stk_bytes);

/* find whether the new executable image is already used by

some existing process and whether we can still share it */

text_shared = FALSE;

for(i=0; i<NR_PROCS; i++) {

if((proc[i].proc_flags & (IN_USE | SEPARATE | HANGING))

!= (IN_USE | SEPARATE)) continue;

if( proc[i].pid == current_pid || proc[i].ino != ino

|| proc[i].dev != dev || proc[i].ctime != ctime)

continue;

text_shared = TRUE;

text_bytes = 0;

text_seg = proc[i].seg[T]; /* shared text */

break;

}

/* sizes of the segments for the executed proc */

text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

gap_clicks = tot_clicks - data_clicks - stack_clicks;

if ((int)gap_clicks < 0) return(ENOMEM);

/* get the hole of maximum size to assign memory for the

segments. */

max_hole_clicks = 0;
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hp = hole_head;

while(hp != NIL_HOLE) {

if(hp->h_len > max_hole_clicks) max_hole_clicks = hp->h_len;

hp = hp->h_next;

}

if(max_hole_clicks < tot_clicks + text_clicks) return (EAGAIN);

/* if the text is shared by other process, we cannot delete it. */

delete_text = TRUE;

for(i=0; i<NR_PROCS; i++) {

if((proc[i].proc_flags & (IN_USE | SEPARATE | HANGING))

!= (IN_USE | SEPARATE)) continue;

if( proc[i].pid == current_pid || proc[i].ino != old_ino

|| proc[i].dev != old_dev || proc[i].ctime != old_ctime)

continue;

delete_text = FALSE; /* it is shared */

break;

}

/* delete the segments of the original process. */

if(delete_text){

free_mem((current_proc_ptr->seg[T]).mem_phys,

(current_proc_ptr->seg[T]).mem_len);

}

free_mem((current_proc_ptr->seg[D]).mem_phys,

(current_proc_ptr->seg[S]).mem_len +

(current_proc_ptr->seg[S]).mem_vir

- (current_proc_ptr->seg[D]).mem_vir);

/* allocate memory for the segments of the executed image */

proc_clicks = tot_clicks + text_clicks;

if((new_base = alloc_mem(proc_clicks))==NO_MEM)return(EAGAIN);

if(!text_shared){

(current_proc_ptr->seg[T]).mem_phys = new_base;

(current_proc_ptr->seg[T]).mem_vir = 0;

(current_proc_ptr->seg[T]).mem_len = text_clicks;

}

else{

current_proc_ptr->seg[T] = text_seg;

}

/* data segment. */

(current_proc_ptr->seg[D]).mem_phys = new_base + text_clicks;

(current_proc_ptr->seg[D]).mem_vir = 0;

(current_proc_ptr->seg[D]).mem_len = data_clicks;

/* stack segment. */

(current_proc_ptr->seg[S]).mem_phys = new_base + text_clicks +

data_clicks + gap_clicks;

(current_proc_ptr->seg[S]).mem_vir = data_clicks + gap_clicks;

(current_proc_ptr->seg[S]).mem_len = stack_clicks;

/* "zero" the bbs, gap, and stack */

bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;

base = (phys_bytes)((new_base+text_clicks) << CLICK_SHIFT);
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bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;

base += bss_offset;

bytes -= bss_offset;

data_vir_addr = (mm_proc_ptr->seg[D]).mem_vir << CLICK_SHIFT;

data_phy_addr = (mm_proc_ptr->seg[D]).mem_phys << CLICK_SHIFT;

src = (vir_bytes)zero - data_vir_addr + data_phy_addr;

while (bytes > 0) {

count = MIN(bytes, (phys_bytes) sizeof(zero));

phys_copy(src, base, count);

base += count;

bytes -= count;

}

/* copy the stacks back from memory server */

src = dst;

dst = (vir_bytes)((current_proc_ptr->seg[S]).mem_phys << CLICK_SHIFT);

dst += (vir_bytes)((current_proc_ptr->seg[S]).mem_len << CLICK_SHIFT);

dst -= stk_bytes;

phys_copy(src, dst, stk_bytes);

current_proc_ptr->proc_flags &= ~SEPARATE;

current_proc_ptr->proc_flags |= ft;

/* set the fields of the process descriptor */

current_proc_ptr->proc_flags &= ~SEPARATE;

current_proc_ptr->proc_flags |= ft;

current_proc_ptr->ino = ino;

current_proc_ptr->dev = dev;

current_proc_ptr->ctime = ctime;

current_proc_ptr->sp = (reg_t)dst;

/* close the files open originally by the process before

exec. */

for(i=0; i<OPEN_MAX; i++){

if((current_proc_ptr->fp_filp[i])!=NIL_FILP){

(current_proc_ptr->fp_filp[i])->filp_count--;

if((current_proc_ptr->fp_filp[i])->filp_count == 0){

(current_proc_ptr->fp_filp[i])->filp_ino->count--;

}

current_proc_ptr->fp_filp[i] = NIL_FILP;

}

}

}

A.1.7 brk

The function is modified from the function do brk in MM in [10].

#include "types.h"

#include "proc.h"

#define DATA_CHANGED 1
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#define STACK_CHANGED 2

int brk(vir_bytes addr, pid_t current_pid){

int i;

reg_t sp;

struct proc_t *current_proc_ptr;

vir_bytes v;

vir_clicks new_clicks, sp_clicks, gap_base, lower;

phys_clicks data_phy, stack_phy;

vir_clicks data_vir, data_len, stack_vir, stack_len;

long base_of_stack, delta;

int changed;

/* find the current process descriptor and its stack

pointer. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0)

&& (proc[i].pid == current_pid)){

current_proc_ptr = &proc[i];

sp = current_proc_ptr->sp;

break;

}

}

v = addr;

new_clicks = (vir_clicks)( ((long)v + CLICK_SIZE - 1) >> CLICK_SHIFT);

data_vir = (current_proc_ptr->seg[D]).mem_vir;

data_phy = (current_proc_ptr->seg[D]).mem_phys;

data_len = (current_proc_ptr->seg[D]).mem_len;

/* the address will before the start of data segment. */

if(new_clicks < data_vir)

return(ENOMEM);

new_clicks -= data_vir;

stack_vir = (current_proc_ptr->seg[S]).mem_vir;

stack_phy = (current_proc_ptr->seg[S]).mem_phys;

stack_len = (current_proc_ptr->seg[S]).mem_len;

base_of_stack = (long) stack_vir + (long) stack_len;

sp_clicks = sp >> CLICK_SHIFT; /* click containing sp */

if (sp_clicks >= base_of_stack) return(ENOMEM); /* sp too high */

/* Compute size of gap between stack and data segments. */

delta = (long) stack_vir - (long) sp_clicks;

lower = (delta > 0 ? sp_clicks : stack_vir);

/* Add a safety margin for future stack growth. Impossible to do right. */

#define SAFETY_BYTES (384 * sizeof(char *))

#define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)

gap_base = data_vir + new_clicks + SAFETY_CLICKS;

if (lower < gap_base) return(ENOMEM); /* data and stack collided */

/* Update data length (but not data orgin) on behalf of brk() system call. */

if (new_clicks != data_len) {
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data_len = new_clicks;

changed |= DATA_CHANGED;

}

/* Update stack length and origin due to change in stack pointer. */

if (delta > 0) {

stack_vir -= delta;

stack_phy -= delta;

stack_len += delta;

changed |= STACK_CHANGED;

}

if(changed & STACK_CHANGED){

(current_proc_ptr->seg[S]).mem_vir = stack_vir;

(current_proc_ptr->seg[S]).mem_phys = stack_phy;

(current_proc_ptr->seg[S]).mem_len = stack_len;

}

if(changed & DATA_CHANGED) {

(current_proc_ptr->seg[D]).mem_vir = data_vir;

(current_proc_ptr->seg[D]).mem_phys = data_phy;

(current_proc_ptr->seg[D]).mem_len = data_len ;

}

}

A.2 C/SQL programs for the system calls

A.2.1 fork

int fork(int pid){

EXEC SQL BEGIN DECLARE SECTION;

int proc_in_use;

int parent_pid;

int child_pid;

int wait_pid;

int available_holes;

int hole_base;

int hole_len;

int mem_len_stack;

int mem_len_data;

int mem_len_text;

int mem_vir_stack;

int mem_vir_data;

int mem_vir_text;

int mem_phys_data;

int mem_phys_stack;

int mem_phys_text;
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int prog_clicks;

int seg_id_stack;

int seg_id_data;

int seg_id_text;

int curr_proc_flags;

int exit_status;

int sig_status;

int ino;

int dev;

char change_time[27];

int filp_id;

int stack_pointer;

EXEC SQL END DECLARE SECTION;

int i;

int child_base;

int child_abs;

int parent_abs;

int ret_value;

/* wether we reach the upperlimit of number of processes? */

EXEC SQL

SELECT count(*) into :proc_in_use

FROM proc;

if (proc_in_use >= NR_PROCS) {

ret_value = EAGAIN;

goto out;

}

/* select all fields from the proc */

parent_id = pid;

EXEC SQL

SELECT data_segment into :seg_id_data,

stack_segment into :seg_id_stack,

text_segment into :seg_id_stack,

ino into :ino,

dev into :dev,

change_time into :change_time,

proc_flags into :curr_proc_flags,

wait_pid into :wait_pid,

stack_pointer into :stack_pointer

FROM proc

WHERE proc.pid = :parent_id;

/* calculate the memory that is needed for the new

process */

/* stack */

EXEC SQL

SELECT segment.length into :mem_len_stack,

segment.virtual_address into :mem_vir_stack
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FROM segment

AND segment.seg_id = :seg_id_stack;

/* data */

EXEC SQL

SELECT segment.virtual_address into :mem_vir_data,

segment.physical_address into :mem_phys_data

FROM segment

WHERE segment.seg_id = :seg_id_data;

/* calculate the full memory */

/* for text, it is either shared (in same physical

memory) by multiple processes, or merged with

data segment, so we handle it later. */

mem_len_data = mem_vir_stack - mem_vir_data

proc_click = mem_len_stack + mem_len_data;

/* get memory chunk from the holes and adjust the hole size */

EXEC SQL DECLARE hole_cursor CURSOR FOR

SELECT len, base

FROM hole

WHERE len >= :proc_click

FOR UPDATE;

EXEC SQL OPEN hole_cursor;

EXEC SQL FETCH hole_cursor into :hole_len, :hole_base;

if(SQL_CODE != 0){

EXEC CLOSE hole_cursor;

ret_value = EGAGAIN;

goto err_label;

}

child_base = hole_base;

hole_len -= proc_click;

hole_base += proc_click;

if(hole_len>0){

EXEC SQL

UPDATE hole SET len = :hole_len, base = :hole_base

WHERE CURRENT OF CURSOR hole_cursor;

}

else{

/* if the segment takes the entire hole, the hole is

deleted */

EXEC SQL

DELETE FROM hole

WHERE CURRENT OF CURSOR hole_cursor;

}

EXEC SQL CLOSE hole_cursor;

/* copy the content of main memory */

child_abs = child_base << CLICK_SHIFT;

parent_abs = mem_phys_data << CLICK_SHIFT;
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phys_copy(parent_abs, child_abs, prog_bytes);

/* now get a child id */

/* it must be different from any existing process */

EXEC SQL DECLARE pid_cursor FOR

SELECT pid

FROM pids

WHERE NOT EXISTS

(SELECT *

FROM proc

WHERE proc.pid = pids.pid

);

EXEC OPEN pid_cursor;

EXEC fetch pid_cursor into :child_pid;

EXEC close pid_cursor;

/* set the address of the child’s segments */

mem_phys_stack = childbase + mem_len_data;

mem_phys_data = childbase;

/* get segment ids */

/* times 10 to get room for text segment id */

/* overwrite the value of the variables, which are the parent’s segments,

except the text segment if it shared. */

seg_id_data = mem_phys_data;

seg_id_stack = mem_phys_stack;

seg_id_data *= 10;

seg_id_stack*= 10 + 2;

/* insert into segment table */

EXEC SQL

INSERT INTO segment

VALUES(:seg_id_stack, :mem_vir_stack, :mem_phys_stack, :mem_len_stack);

EXEC SQL

INSERT INTO segment

VALUES(:seg_id_data, :mem_vir_data, :mem_phys_data, :mem_len_data);

/* if non-separate text and data */

if(!(curr_proc_flags & SEPARATE)){

/* make the segment id */

seg_id_text = seg_id_data + 1;

/* text segment and data segment are not separated */

EXEC SQL

INSERT INTO segment

VALUES(:seg_id_text, :mem_vir_text, :mem_phys_data, :mem_len_text);

}

/* else share the original text segment */

/* insert a row into the process table */

EXEC SQL

INSERT INTO

proc(pid,

parent_id,
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wait_pid,

exit_status,

sig_status,

data_segment,

text_segment,

stack_segment,

ino,

dev,

change_time,

stack_pointer,

proc_flags)

VALUES(:child_pid, :parent_pid, :wait_pid,

:exit_status, :sig_status,

:seg_id_data, :seg_id_text, :seg_id_stack,

:ino, :dev, :change_time,

:stack_pointer, :curr_proc_flags);

/* share the files with the child */

EXEC SQL DECLARE proc_filp_cursor CURSOR FOR

SELECT filp_id

FROM proc_filp

WHERE proc_id = :parent_pid;

EXEC SQL OPEN proc_filp_cursor;

if(SQLCODE == 0){

while(true){

EXEC SQL FETCH proc_filp_cursor into :filp_id;

if(SQLCODE != 0 ) break;

EXEC SQL

INSERT INTO proc_filp

VALUES(:child_pid, :filp_id);

EXEC SQL

UPDATE filp SET filp_count = filp_count + 1

WHERE filp_id = :filp_id;

}

}

EXEC SQL CLOSE proc_filp_cursor;

/* add to ready queue */

EXEC SQL

INSERT INTO ready_user_proc

VALUES (:child_pid);

out:

return (ret_value);

}

A.2.2 exit

exit(int pid) {
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EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int parent_pid;

int wait_pid;

int exit_status;

int sig_status;

int data_segment;

int text_segment;

int stack_segment;

int proc_flags;

int file_count;

int text_share_count;

int generic_count;

int mem_vir_text;

int mem_phy_text;

int mem_len_text;

int mem_vir_data;

int mem_phy_data;

int mem_len_data;

int mem_vir_stack;

int mem_phy_stack;

int mem_len_stack;

int mem_phy_base;

int mem_phy_len;

int mem_phy_end;

int parent_wait_pid;

int parent_proc_flags;

int init_proc_pid;

int child_id;

int child_proc_flags;

int ino;

int dev;

int ctime;

int base1;

int len1;

int base2;

int len2;

int temp_pid;

int temp_proc_flags;

int temp_ino;

int temp_dev;
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int temp_c_time;

EXEC SQL BEGIN DECLARE SECTION;

int flag;

int right_child;

int parent_waiting;

boolean delete_text;

int temp_len;

current_pid = pid;

/* first close all open files */

/* we simplify file close to delete */

/* decrement the reference count in filp */

EXEC SQL UPDATE filp set filp_count = filp_count - 1

WHERE EXISTS (

SELECT * FROM proc_filp

WHERE proc_filp.proc_id = :current_pid

AND proc_filp.filp_id = filp.filp_id

);

/* decrement the count of the inode in memory of an

open file */

EXEC SQL UPDATE inode set count = count - 1

WHERE EXISTS (

SELECT * from filp

WHERE filp.filp_count = 0

AND filp.inode_id = inode.inode

)

/* delete from the proc-filp relationship */

EXEC SQL DELETE FROM proc_filp

WHERE proc_id = :current_pid;

/* delete the entries which has no

process that references it */

EXEC SQL DELETE FROM filp

WHERE filp_count = 0;

/* delete the entries of inodes which has

been closed by all processes */

EXEC SQL DELETE FROM inode

WHERE count = 0;

/* get all info of the exiting process */

EXEC SQL SELECT

parent_pid into :parent_pid,

wait_pid into :wait_pid,

exit_status into :exit_status,

sig_status into :sig_status,

data_segment into :data_segment,

text_segment into :text_segment,

stack_segment into :stack_segment,

proc_flags into :proc_flags,

ino into :ino,

dev into :dev,
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ctime into :ctime

FROM proc

WHERE pid = :current_pid;

/* get the process out of the ready queue */

DELETE FROM ready_user_proc

WHERE pid = :current_pid

/* delete segments */

delete_text = FALSE;

EXEC SQL DECLARE proc_cursor CURSOR FOR

SELECT pid, ino, dev, ctime, proc_flags

FROM proc;

EXEC OPEN proc_cursor;

while(SQLCODE == 0){

EXEC FETCH proc_cursor

into :temp_pid, :temp_ino, :temp_dev, :temp_ctime,

:temp_proc_flags;

if( (temp_proc_flags & (SEPARATE | HANGING)) !=

SEPARATE ) continue;

if((temp_pid == pid) || (temp_ino != ino) ||

(temp_dev != dev) || (temp_ctime != ctime))

continue;

else{

delete_text = TRUE;

break;

}

}

EXEC CLOSE proc_cursor;

/* check the case of shared text segment */

if(delete_text){

/* get the physical address and length of the text */

EXEC SQL SELECT physical_address into :mem_phy_text,

length into :mem_len_text

FROM segment

WHERE segment.sid = :text_segment;

/* next, we free the text_segment and insert the

physical segment into the hole table */

/* fist see whether we can merge it to other holes. */

flag = FALSE;

/* now we have the end of the text segment */

mem_phy_end = mem_phy_text + mem_len_text;

/* can we merge it with the hole after it */

EXEC SQL DECLARE hole_cursor1 CURSOR FOR

SELECT base, len

FROM hole

WHERE base = :mem_phy_end
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FOR UPDATE;

EXEC SQL OPEN hole_cursor1;

EXEC SQL FETCH hole_cursor1 INTO :base1, :len1;

if(SQLCODE == 0){

/* we can merge */

flag = TRUE;

len1 = len1 + mem_len_text;

base1 = mem_phy_text;

/* merge */

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor1;

}

/* can we merge it with the hole ahead of it */

EXEC SQL DECLARE hole_cursor_2 FOR

SELECT base, len

FROM hole

WHERE base + len = :mem_phy_text

FOR UPDATE;

EXEC SQL OPEN hole_cursor_2;

EXEC SQL FETCH hole_cursor_2 to :base2, :len2;

/* we can merge */

if(SQLCODE == 0){

/* Have we already merged it with the one afterwards. */

if(!flag){

/* no. so merge it to the one in front of it. */

flag = TRUE;

EXEC SQL UPDATE hole

SET len = :len2 + :mem_len_text

WHERE current of hole_cursor_2;

}

else{

/* the hole afterwards is from the merging in

the above step. */

/* merge the hole with the hole after it. */

EXEC SQL UPDATE hole

SET len = :len2 + :len1

WHERE current of hole_cursor_2;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_1;

}

}

EXEC SQL CLOSE hole_cursor_1;

EXEC SQL CLOSE hole_cursor_2;

if(!flag){
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/* no merge at all, add the segment to the hole table. */

EXEC SQL INSERT INTO hole

VALUES(:mem_phy_text, :mem_len_text);

}

}

/* handle the stack and data */

/* they are contiguous physical segments */

/* so we return them together */

EXEC SQL SELECT mem_phy_data into :mem_phy_data,

mem_vir_data into :mem_vir_data

FROM proc, segment

WHERE segment.seg_id = :data_segment

AND proc.pid = :current_pid;

EXEC SQL SELECT mem_vir_stack into :mem_vir_stack,

mem_len_stack into :mem_len_stack

FROM segment

WHERE segment.seg_id = :stack_segment

temp_len = mem_vir_stack -

mem_vir_data + mem_len_stack;

mem_phy_end = mem_phy_data + temp_len;

flag = FALSE;

/* merge with the one after it */

EXEC SQL DECLARE CURSOR hole_cursor_3 FOR

SELECT base, len

FROM hole

WHERE base = :mem_phy_end

FOR UPDATE;

EXEC SQL OPEN hole_cursor_3;

EXEC SQL FETCH hole_cursor_3 INTO :base1, :len1;

if(SQLCODE = 0){

flag = TRUE;

base1 = mem_phy_data;

len1 = len1 + temp_len;

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor_3;

}

/* merge the one ahead of it */

EXEC SQL DECLARE CURSOR hole_cursor_4 FOR

SELECT base, len

FROM hole

WHERE base + len = :mem_phy_data;

FOR UPDATE;

EXEC SQL OPEN hole_cursor_4;

EXEC SQL OPEN hole_cursor_4 into :base2, :len2;
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/* has the segment already merged with the one

behind it? */

if(SQLCODE == 0){

if(!flag){

flag = TRUE;

len2 += temp_len;

EXEC SQL UPDATE hole

SET len = :len2

WHERE current of hole_cursor_4;

}

else{

/* it may cause merge of three segments */

EXEC SQL UPDATE hole

SET len = :len1 + :len2

WHERE current of hole_cursor_4;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_3;

}

}

EXEC SQL CLOSE hole_cursor_3;

EXEC SQL CLOSE hole_cursor_4;

if(!flag){

/* no merge at all, so insert the hole

into the table. */

mem_phy_len = temp_len;

EXEC SQL INSERT INTO hole

VALUES(:mem_phy_data, :mem_phy_len);

}

/* set the segments pointers to NULL */

/* this is because they are foreign keys */

/* then we will delete the three segments in

the segment table */

EXEC SQL UPDATE proc

SET stack_segment = NULL,

text_segment = NULL,

data_segment = NULL;

/* delete the segments in the segment table */

EXEC SQL DELETE FROM segment

WHERE seg_id = :stack_segment

OR seg_id = :data_segment;

if(delete_text){

EXEC SQL DELETE FROM segment

WHERE seg_id = :text_segment;

}

/* Let INIT_PROC adopt my children */

EXEC SQL DECLARE CURSOR init_cursor FOR
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SELECT proc_flags

FROM proc

WHERE pid = :init_proc_pid

FOR UPDATE;

EXEC SQL OPEN init_cursor;

EXEC FETCH init_cursor into :parent_proc_flags;

parent_waiting = parent_proc_flags & WAITING;

/* if parent is waiting */

if(parent_waiting){

EXEC SQL DECLARE child_proc_cursor CURSOR FOR

SELECT proc_flags FROM proc

WHERE parent_pid = :current_pid

FOR UPDATE;

EXEC SQL OPEN child_proc_cursor;

while(SQLCODE == 0){

EXEC SQL FETCH child_proc_cursor into :child_proc_flags;

if(child_proc_flags & HANGING){

/* delete the child if the parent is waiting and the child

has already exited */

DELETE FROM proc

WHERE CURRENT OF child_proc_cursor;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag */

EXEC SQL UPDATE proc

SET proc_flags = :parent_proc_flags;

WHERE current of init_cursor;

break;

}

}

EXEC SQL CLOSE init_cursor;

EXEC SQL CLOSE child_proc_cursor;

}

EXEC SQL UPDATE proc

SET parent_pid = :init_proc_id

WHERE parent_pid = :current_pid;

/* Is my parent waiting? */

EXEC SQL DECLARE CURSOR parent_cursor FOR

SELECT wait_pid into :parent_wait_pid,

proc_flags into :parent_proc_flags

FROM proc

WHERE proc.pid = :parent_pid;

FOR UPDATE;

EXEC SQL OPEN parent_cursor;
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EXEC SQL FETCH parent_cursor INTO :parent_wait_pid,

:parent_proc_flags;

parent_waiting = parent_proc_flags & WAITING;

/* wait for any child or wait for me? */

if(parent_wait_pid == -1 || parent_wait_pid == current_pid){

right_child = TRUE;

}

else{

right_child = FALSE;

}

if(parent_waiting && right_child){

/* parent is waiting for me */

/* delete the table record for the process */

DELETE FROM proc

WHERE pid = :current_pid;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag */

EXEC SQL UPDATE proc

SET proc_flags =: parent_proc_flags

WHERE CURRENT OF parent_cursor;

}

else{

/* parent not waiting, set the HANGING flag */

proc_flags |= HANGING;

EXEC SQL UPDATE proc

SET proc_flags = :proc_flags

WHERE CURRENT OF parent_cursor;

/* the entry will be deleted when the parent calls wait */

}

EXEC CLOSE parent_cursor;

}

A.2.3 waitpid

int waitpid(int, pid, int pidarg)

/* pidarg == -1, wait for any child,

pidarg > 0, wait for a special pid */

{

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int wait_pid;

int child_proc_flags;

int parent_proc_flags;

int wait_pid;

int child_count;

EXEC SQL END DECLARE SECTION;
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if(pidarg != -1 && pidarg <= 0) return (ERROR);

wait_pid = pidarg;

/* get the parent. */

current = pid;

EXEC SQL DECLARE CURSOR parent_flag_cursor FOR

SELECT proc_flags

FROM proc

WHERE pid = :current_pid

FOR UPDATE;

EXEC OPEN parent_flag_cursor;

EXEC FETCH parent_flag_cursor into :parent_proc_flags;

if(pidarg == -1){

/* wait for any child */

/* get a children */

EXEC SQL DECLARE child_proc_cursor FOR

SELECT proc_flags

FROM proc

WHERE parent_pid = :current_pid

FOR UPDATE;

EXEC SQL OPEN child_proc_cursor;

if(SQLCODE != 0) {

/* Error in getting children */

return(ECHILD);

}

while(SQLCODE == 0){

EXEC SQL FETCH child_proc_cursor into :child_proc_flags;

if(child_proc_flags & HANGING){

/* delete the child if the parent is waiting and the child

has already exited */

DELETE FROM proc

WHERE CURRENT OF child_proc_cursor;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag. */

EXEC SQL UPDATE proc

SET proc_flags := parent_proc_flags

WHERE CURRENT OF parent_flag_cursor;

EXEC SQL CLOSE child_proc_cursor;

EXEC SQL CLOSE parent_flag_cursor;

return(OK);

}

}

}

else{ /* pidarg is wait_pid */

/* wait for a certain pid */
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/* get the children */

EXEC SQL DECLARE child_proc_cursor FOR

SELECT proc_flags

FROM proc

WHERE parent_pid = :current_pid

AND pid = :wait_pid;

FOR UPDATE;

EXEC SQL OPEN child_proc_cursor;

if(SQLCODE != 0){

/* no qualified children, must be an error */

return(ECHILD);

}

EXEC SQL FETCH child_proc_cursor into :child_proc_flags;

if(child_proc_flags & HANGING){

/* delete the child if the parent is waiting and the child

has already exited */

DELETE FROM proc

WHERE CURRENT OF child_proc_cursor;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag. */

EXEC SQL UPDATE proc

SET proc_flags := parent_proc_flags

WHERE CURRENT OF parent_flag_cursor;

EXEC SQL CLOSE child_proc_cursor;

EXEC SQL CLOSE parent_flag_cursor;

return(OK);

}

}

/* we have qualified children, but can not find a child that has

exited */

/* set the parent’s status to waiting */

parent_proc_flags |= WAITING;

EXEC SQL UPDATE proc

SET proc_flags := parent_proc_flags

WHERE CURRENT OF parent_flag_cursor;

EXEC SQL CLOSE child_proc_cursor;

EXEC SQL CLOSE parent_flag_cursor;

return (OK);

}

A.2.4 exec

#define MM_PROC_NR 0
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#define ARG_MAX 4096

into exec(int pid,

int stack_ptr,

int stk_bytes,

int data_bytes,

int bss_bytes,

int text_bytes,

int tot_bytes,

int ino_param,

int dev_param,

int ctime_param,

int ft) {

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int mm_proc_pid;

int stack_segment_phy;

int stack_segment_vir;

int stack_segment_len;

int data_segment_phy;

int data_segment_vir;

int data_segment_len;

int text_segment_phy;

int text_segment_vir;

int text_segment_len;

int segment_end;

int text_count;

int text_seg_id;

int data_seg_id;

int stack_seg_id;

int old_text_seg_id;

int old_data_seg_id;

int old_stack_seg_id;

int proc_flags;

int max_hole_size;

int hole_base;

int hole_len;

int ino;

int dev;

int ctime;

int old_ino;

int old_dev;

int old_ctime;
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int temp_pid;

int temp_ino;

int temp_dev;

int temp_ctime;

int proc_clicks;

int count_generic;

int stack_pointer;

int base1;

int len1;

int base2;

int len2;

EXEC SQL END DECLARE SECTION;

char mbuf[ARG_MAX];

int src, dst;

boolean text_shared;

boolean delete_old_text;

boolean flag;

int new_base;

int text_clicks, data_clicks, stack_clicks,

total_clicks, gap_clicks;

int base, bytes, count, bss_offset;

static char zero[1024];

int mm_data_phy, mm_data_vir;

int temp_len;

int ft;

ino = ino_param;

dev = dev_param;

ctime = ctime_param;

/* copy the content of the stack to the mem space of mm task */

current_pid = pid;

EXEC SQL SELECT

text_segment into :old_text_seg_id,

stack_segment into :old_stack_seg_id,

data_segment into :old_data_seg_id,

proc_flags into :proc_flags,

ino into :old_ino,

dev into :old_dev,

ctime into :old_ctime

FROM proc

WHERE proc_id = :current_pid;

EXEC SQL SELECT segment.physical_address into :data_segment_phy,

segment.virtual_address into :data_segment_vir

FROM segment

WHERE seg_id = old_data_seg_id;

mm_data_vir = data_segment_vir << CLICK_SHIFT;

mm_data_phy = data_segment_phy << CLICK_SHIFT;
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src = stack_ptr - mm_data_vir + mm_data_phy;

mm_proc_pid = MM_PROC_NR;

EXEC SQL SELECT segment.physical_address into :data_segment_phy,

segment.virtual_address into :data_segment_vir

FROM proc, segment

WHERE segment.seg_id = proc.data_segment

AND proc_id = :mm_proc_pid;

mm_data_vir = data_segment_vir << CLICK_SHIFT;

mm_data_phy = data_segment_phy << CLICK_SHIFT;

dst = mbuf - mm_data_vir + mm_data_phy;

phys_copy(src, dst, stack_bytes);

/* find text share */

text_shared = FALSE;

EXEC SQL DECLARE proc_cursor CURSOR FOR

SELECT pid, ino, dev, ctime, proc_flags, text_segment

FROM proc;

EXEC OPEN proc_cursor;

while(SQLCODE == 0){

EXEC FETCH proc_cursor

into :temp_pid, :temp_ino, :temp_dev, :temp_ctime,

:temp_proc_flags, :text_seg_id;

if( (temp_proc_flags & (SEPARATE | HANGING)) !=

SEPARATE ) continue;

if((temp_pid == current_pid) || (temp_ino != ino) ||

(temp_dev != dev) || (temp_ctime != ctime))

continue;

else{

text_shared = TRUE;

text_bytes = 0;

break;

}

}

EXEC CLOSE proc_cursor;

/* new segments for the executed proc */

text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

gap_clicks = tot_clicks - data_clicks - stack_clicks;

if ( (int) gap_clicks < 0) return(ENOMEM);

/* whether there is a hole that can fit the memory */

EXEC SQL SELECT max(len) into :max_hole_size

FROM hole;

if(max_hole_size < tot_clicks + text_clicks) return (EAGAIN);
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/* first release the old segment */

/* text segment */

delete_old_text = TRUE;

EXEC SQL DECLARE proc_cursor CURSOR FOR

SELECT pid, ino, dev, ctime, proc_flags

FROM proc;

EXEC OPEN proc_cursor;

while(SQLCODE == 0){

EXEC FETCH proc_cursor

into :temp_pid, :temp_ino, :temp_dev, :temp_ctime,

:temp_proc_flags;

if( (temp_proc_flags & (SEPARATE | HANGING)) !=

SEPARATE ) continue;

if((temp_pid == current_pid) || (temp_ino != old_ino) ||

(temp_dev != old_dev) || (temp_ctime != old_ctime))

continue;

else{

delete_old_text = FALSE; /* it is shared, cannot delete it */

break;

}

}

EXEC CLOSE proc_cursor;

/* check the case of shared text segment. */

if(delete_old_text){

/* get the physical address and length of the text */

EXEC SQL SELECT physical_address into :text_segment_phy,

length into :text_segment_len

FROM segment

WHERE segment.sid = :old_text_seg_id;

/* next, we free the text_segment and insert the

physical segment into the hole table. */

/* fist see whether we can merge it to other holes. */

flag = FALSE;

/* now we have the end of the text segment. */

segment_end = text_segment_phy + text_segment_len;

/* can we merge it with the hole after it? */

EXEC SQL DECLARE hole_cursor1 CURSOR FOR

SELECT base, len

FROM hole

WHERE base = :segment_end

FOR UPDATE;

EXEC SQL OPEN hole_cursor1;

EXEC SQL FETCH hole_cursor1 INTO :base1, :len1;

if(SQLCODE == 0){

/* we can merge */

flag = TRUE;
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len1 = len1 + text_segment_len;

base1 = text_segment_phy;

/* merge */

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor1;

}

/* can we merge it with the hole ahead of it? */

EXEC SQL DECLARE hole_cursor_2 FOR

SELECT base, len

FROM hole

WHERE base + len = :text_segment_phy

FOR UPDATE;

EXEC SQL OPEN hole_cursor_2;

EXEC SQL FETCH hole_cursor_2 to :base2, :len2;

/* we can merge */

if(SQLCODE == 0){

/* Have we already merged it with the one afterwards. */

if(!flag){

/* no. so merge it to the one in front of it. */

flag = TRUE;

EXEC SQL UPDATE hole

SET len = :len2 + :text_segment_len

WHERE current of hole_cursor_2;

}

else{

/* the hole afterwards is from the merging in

the above step. */

/* merge the hole with the hole after it. */

EXEC SQL UPDATE hole

SET len = :len2 + :len1

WHERE current of hole_cursor_2;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_1;

}

}

EXEC SQL CLOSE hole_cursor_1;

EXEC SQL CLOSE hole_cursor_2;

if(!flag){

/* no merge at all, add the segment to the hole table. */

EXEC SQL INSERT INTO hole

VALUES(:text_segment_phy, :text_segment_len);

}

}

/* handle the stack and data */

/* they are contiguous physical segments */
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/* so we return them together */

EXEC SQL SELECT mem_phy_data into :data_segment_phy,

mem_vir_data into :data_segment_vir

FROM segment

WHERE segment.seg_id = :old_data_seg_id;

EXEC SQL SELECT mem_vir_stack into :stack_segment_vir,

mem_len_stack into :stack_segment_len

FROM segment

WHERE segment.seg_id = :old_stack_seg_id;

temp_len = stack_segment_vir - data_segment_vir

+ stack_segment_len;

segment_end = data_segment_phy + temp_len;

flag = FALSE;

/* merge with the one after it */

EXEC SQL DECLARE CURSOR hole_cursor_3 FOR

SELECT base, len

FROM hole

WHERE base = :segment_end

FOR UPDATE;

EXEC SQL OPEN hole_cursor_3;

EXEC SQL FETCH hole_cursor_3 INTO :base1, :len1;

if(SQLCODE = 0){

flag = TRUE;

base1 = data_segment_phy;

len1 = len1 + temp_len;

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor_3;

}

/* merge the one ahead of it */

EXEC SQL DECLARE CURSOR hole_cursor_4 FOR

SELECT base2, len2

FROM hole

WHERE base + len = :segment_data_phy;

FOR UPDATE;

EXEC SQL OPEN hole_cursor_4;

EXEC SQL OPEN hole_cursor_4 into :base2, :len2;

/* has the segment already merged with the one

behind it? */

if(SQLCODE == 0){

if(!flag){

flag = TRUE;

len2 += temp_len;
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EXEC SQL UPDATE hole

SET len = :len2

WHERE current of hole_cursor_4;

}

else{

/* it may cause merge of three segments */

EXEC SQL UPDATE hole

SET len = :len1 + :len2

WHERE current of hole_cursor_4;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_3;

}

}

EXEC SQL CLOSE hole_cursor_3;

EXEC SQL CLOSE hole_cursor_4;

if(!flag){

len1 = temp_len;

EXEC SQL INSERT INTO hole

VALUES(:mem_phy_data, :len1);

}

/* set the segments pointers to NULL */

/* this is because they are foreigh keys */

/* then we will delete the three segments in

the segment table */

EXEC SQL UPDATE proc

SET stack_segment = NULL,

text_segment = NULL,

data_segment = NULL

WHERE proc_id = :current_pid;

/* delete the segments in the segment table */

EXEC SQL DELETE FROM segment

WHERE seg_id = :old_stack_seg_id

OR seg_id = :old_data_seg_id;

if(delete_old_text){

EXEC SQL DELETE FROM segment

WHERE seg_id = :old_text_seg_id;

}

proc_clicks = tot_clicks + text_clicks;

/* get memory chunk from the holes and adjust the hole size */

EXEC SQL DECLARE hole_cursor CURSOR FOR

SELECT len, base

FROM hole

WHERE len >= :proc_clicks

FOR UPDATE;

EXEC SQL OPEN hole_cursor;

EXEC SQL FETCH hole_cursor into :hole_len, :hole_base;
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new_base = hole_base;

hole_len -= proc_click;

hole_base += proc_click;

if(hole_len > 0){

EXEC SQL

UPDATE hole SET len = :hole_len, base = :hole_base

WHERE CURRENT OF CURSOR hole_cursor;

}

else{

/* if the segment takes the entire hole, the hole is

deleted */

EXEC SQL

DELETE FROM hole

WHERE CURRENT OF CURSOR hole_cursor;

}

EXEC SQL CLOSE hole_cursor;

/* if the text is not shared yet, insert a segment for it. */

if(!text_shared){

text_segment_phy = new_base;

text_segment_vir = 0;

text_segment_length = text_clicks;

text_seg_id = new_base * 10 + 1;

EXEC SQL INSERT INTO segment

(seg_id, virtual_address, physical_address, length)

VALUES(:text_seg_id, :text_segment_vir, :text_segment_phy,

:text_segment_length);

}

data_segment_phy = new_base + text_clicks;

data_segment_vir = 0;

data_segment_length = data_clicks;

data_seg_id = data_segment_phy * 10;

EXEC SQL INSERT INTO segment

(seg_id, virtual_address, physical_address, length)

VALUES(:data_seg_id, :data_segment_vir, :data_segment_phy,

:data_segment_length);

stack_segment_phy = new_base + text_clicks + data_clicks + gap_clicks;

stack_segment_vir = data_clicks + gap_clicks;

stack_segment_length = stack_clicks;

stack_seg_id = stack_segment_phy * 10 + 2;

EXEC SQL INSERT INTO segment

(seg_id, virtual_address, physical_address, length)

VALUES(:stack_seg_id, :stack_segment_vir, :stack_segment_phy,

:stack_segment_length);

/* zero the segments in memory */

bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;

base = (phys_bytes)data_segment_phy << CLICK_SHIFT;
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bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;

base += bss_offset;

bytes -= bss_offset;

while (bytes > 0) {

count = MIN(bytes, (phys_bytes) sizeof(zero));

sys_copy(ABS, 0, zero - mm_data_vir + mm_data_phy, ABS, 0, base, count);

base += count;

bytes -= count;

}

/* recovery the stacks from the MM server. */

src = dst;

dst = stack_segment_phy << CLICK_SHIFT;

dst += stack_segment_len << CLICK_SHIFT;

dst -= stk_bytes;

stack_pointer = dst;

phys_copy(src, dst, stk_bytes);

proc_flags &= ~SEPARATE;

proc_flags |= ft;

/* update the process descriptor. */

EXEC SQL UPDATE proc

SET text_segment = :text_seg_id,

data_segment = :data_seg_id,

stack_segment = :stack_seg_id

ino = :ino,

ctime = :ctime,

dev = :dev,

stack_pointer := stack_pointer;

proc_flags = :proc_flags,

WHERE proc.pid = :current_pid;

/* close open files of the process before calling exec */

EXEC SQL UPDATE filp set filp_count = filp_count - 1

WHERE EXISTS (

SELECT * FROM proc_filp

WHERE proc_filp.proc_id = :current_pid

AND proc_filp.filp_id = filp.filp_id

);

/* decrement the count of the inode in memory of an

open file */

EXEC SQL UPDATE inode set count = count - 1

WHERE EXISTS (

SELECT * from filp

WHERE filp.filp_count = 0

AND filp.inode_id = inode.inode

)

/* delete from the proc-filp relationship */

EXEC SQL DELETE FROM proc_filp

WHERE proc_id = :current_pid;
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/* The above update filp may changes

filp_count to 0

*/

/* delete the entries which has no

process that references it */

EXEC SQL DELETE FROM filp

WHERE filp_count = 0;

/ * delete the inode if no process is

referencing to it */

EXEC SQL DELETE FROM inode

WHERE count = 0;

}

A.2.5 brk

#define DATA_CHANGED 1

#define STACK_CHANGED 2

brk(int addr, int pid){

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int stack_pointer;

int data_phy;

int data_vir;

int data_len;

int data_seg;

int stack_phy;

int stack_vir;

int stack_len;

int stack_seg;

EXEC SQL BEGIN DECLARE SECTION;

vir_bytes v, new_sp;

vir_clicks new_clicks, sp_click, gap_base, lower;

long base_of_stack, delta;

int changed;

/* get the segment info of the process. */

current_pid = pid;

EXEC SQL SELECT

data_segment into :data_seg,

stack_segment into :stack_seg,

stack_pointer into :stack_pointer

FROM proc

WHERE proc.pid = :current_pid;

v = addr;

new_clicks = (vir_clicks) ( ((long)v + CLICK_SIZE - 1) >> CLICK_SHIFT);
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EXEC SQL SELECT

virtual_address into :data_vir,

physical_address into :data_phy,

length into :data_len

FROM segment

WHERE proc.data_segment = :data_seg;

if(new_clicks < data_vir)

return(ENOMEM);

new_clicks -= data_vir;

EXEC SQL SELECT

virtual_address into :stack_vir,

physical_address into :stack_phy,

length into stack_len

FROM segment

WHERE proc.stack_segment = :stack_seg;

base_of_stack = (long) stack_vir + (long) stack_len;

sp_clicks = stack_pointer >> CLICK_SHIFT; /* click containing sp */

if (sp_clicks >= base_of_stack) return(ENOMEM); /* sp too high */

/* compute size of gap between stack and data segments. */

delta = (long) stack_vir - (long) sp_clicks;

lower = (delta > 0 ? sp_clicks : stack_vir);

#define SAFETY_BYTES (384 * sizeof(char *))

#define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)

gap_base = data_vir + new_clicks + SAFETY_CLICKS;

if (lower < gap_base) return(ENOMEM); /* data and stack collided */

/* update data length (but not data origin) on behalf of brk() system call. */

if (new_clicks != data_len) {

data_len = new_clicks;

changed |= DATA_CHANGED;

}

/* Update stack length and origin due to change in stack pointer. */

if (delta > 0) {

stack_vir -= delta;

stack_phy -= delta;

stack_len += delta;

changed |= STACK_CHANGED;

}

if(changed & STACK_CHANGED){

EXEC SQL UPDATE segment

SET virtual_address = :stack_vir,

physical_address = :stack_phy,

length = :stack_len

WHERE seg_id = :stack_seg;

}

if(changed & DATA_CHANGED) {
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EXEC SQL UPDATE segment

SET length = :data_len

WHERE seg_id = :data_seg;

}

return(OK);

}

A.3 Implementation of semaphore-based locks

A.3.1 X-lock

#define INVALID_PID (-1000)

/* add the process to the tail of the waiting queue */

void add_wait(struct wait_queue_t *wait_queue, struct proc_t *proc)

{

proc->wait_next = NIL_PROC;

/* add to tail */

if(wait_queue->tail){

(wait_queue->tail)->wait_next = proc;

}

wait_queue->tail = proc;

/* add to header if the queue is empty */

if(!(wait_queue->head)){

(wait_queue)->head = proc;

}

}

/* remove the process from the ready list,

and schedule another process to run. */

void unschedule(struct proc_t * current_proc_ptr){

struct proc_t *xp, *rp, **qtail;

/* copied from unready() and pick_proc() */

if((xp = rdy_head[USER_Q]) == current_proc_ptr){

rdy_head[USER_Q] = xp->p_next_ready;

/* pick the next proc to run */

if ( (rp = rdy_head[TASK_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ( (rp = rdy_head[SERVER_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ( (rp = rdy_head[USER_Q]) != NIL_PROC) {

proc_ptr = rp;

bill_ptr = rp;

}else{

/* No one is ready. Run the idle task. The idle task might be made an
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* always-ready user task to avoid this special case.

*/

bill_ptr = proc_ptr = &proc[IDLE];

}

}

qtail = &rdy_tail[USER_Q];

while (xp->p_next_ready != current_proc_ptr){

if ( (xp = xp->p_next_ready) == NIL_PROC) break;

}

if(xp != NIL_PROC){

xp->p_next_ready = xp->p_next_ready->p_next_ready;

if (*qtail == current_proc_ptr) *qtail = xp;

}

}

/* acquire an exclusive lock. */

void x_lock(struct proc_t* current_proc, struct semaphore_t * sem){

spin_lock(&(sem->lock));

if(sem->mode != LOCK_X) {

sem->mode = LOCK_X;

sem->owner = current_proc->pid;

spin_unlock(&(sem->lock));

return;

}

else{

/* must be locked */

/* if the current proc already locks it, do nothing. */

if(sem->owner == current_proc->pid){

spin_unlock(&(sem->lock));

return;

}

/* block it. */

add_wait(&(sem->wait_queue),current_proc);

unschedule(current_proc);

spin_unlock(&(sem->lock));

}

}

/* remove the process from the head of the waiting queue */

void remove_wait(struct wait_queue_t *queue, struct proc_t *proc){

proc = NIL_PROC;

if(queue->head != NIL_PROC){

proc = queue->head;

queue->head = (queue->head)->wait_next;

}

}

/* put the process to the ready list */

void schedule(struct proc_t *current_proc){

if(rdy_head[USER_Q] == NIL_PROC)

rdy_tail[USER_Q] = current_proc;
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rdy_head[USER_Q] -> p_next_ready = rdy_head[USER_Q];

rdy_head[USER_Q] = current_proc;

}

/* unlock */

void x_unlock(struct proc_t *current_proc, struct semaphore_t *sem){

struct proc_t *proc_wakeup;

spin_lock(&(sem->lock));

/* I am not the owner of the lock. do nothing. */

if(sem->mode != LOCK_X || sem->owner != current_proc->pid){

spin_unlock(&(sem->lock));

return;

}

/* wake up the first proc in the wait queue. */

remove_wait(&(sem->wait_queue), proc_wakeup);

if(NIL_PROC != proc_wakeup){

/* if wait queue is not empty */

schedule(proc_wakeup);

sem->owner = proc_wakeup->pid;

}

else{

/* no waiting process */

sem->owner = INVALID_PID;

sem->mode = LOCK_FREE;

}

spin_unlock(&(sem->lock));

}

A.3.2 Rw-lock

The function schedule, unschedule, add wait, and remove wait are the same as in Appendix A.3.1.
The other functions added are:

/* check what kind of lock the first process in the wait queue

requests for */

lock_mode_t get_header_wait_for(struct wait_queue_t *queue){

if(queue->head == NIL_PROC){

return LOCK_INVALID;

}

else{

return queue->head->wait_for_lock;

}

}

/* locking */

void rw_lock(struct proc_t *current_proc,

struct rw_semaphore_t *sem,

lock_mode_t mode)

{

spin_lock(&(sem->lock));

if(sem->mode == LOCK_FREE) {
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/* lock free, so obtain it. */

sem->mode = mode;

sem->count = 1;

current_proc->hold_lock = mode;

spin_unlock(&(sem->lock));

return;

}

else{

/*

/* if the current proc already locks it, do nothing. */

if(mode <= current_proc->hold_lock){

spin_unlock(&(sem->lock));

return;

}

else

if(mode == LOCK_S && sem->mode == LOCK_S &&

(sem->wait_queue).head == NIL_PROC)

{

sem->mode = mode;

sem->count++;

current_proc->hold_lock = mode;

spin_unlock(&(sem->lock));

return;

}

/* block it. */

add_wait(&(sem->wait_queue),current_proc);

current_proc->wait_for_lock = mode;

unschedule(current_proc);

spin_unlock(&(sem->lock));

}

}

/* unlocking */

void rw_unlock(struct proc_t *current_proc,

struct rw_semaphore_t *sem){

struct proc_t *proc_wakeup;

spin_lock(&(sem->lock));

/* I am not the owner of the lock. do nothing. */

if(sem->mode == LOCK_FREE ||

sem->mode != current_proc->hold_lock) {

spin_unlock(&(sem->lock));

return;

}

sem->count--;

/* wake up procs in the wait queue. */

if(sem->count == 0){

remove_wait(&(sem->wait_queue), proc_wakeup);

/* the wait queue is empty? */

if(NIL_PROC != proc_wakeup){

/* not empty, wake up the first one */

sem->mode = proc_wakeup->wait_for_lock;
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proc_wakeup->hold_lock = sem->mode;

schedule(proc_wakeup);

/* wake up more readers if necessary */

if(LOCK_S == sem->mode){

while(get_header_wait_for(&(sem->wait_queue)) == LOCK_S)

{

remove_wait(&(sem->wait_queue), proc_wakeup);

proc_wakeup->hold_lock = LOCK_S;

schedule(proc_wakeup);

}

}

}

else{

/* wait queue empty */

sem->mode = LOCK_FREE;

}

}

current_proc->hold_lock = LOCK_FREE;

spin_unlock(&(sem->lock));

}
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