
Index-Trees
for Descendant Tree Queries

on XML documents
(long version)

Jérémy Barbay

University of Waterloo, School of Computer Science,
200 University Ave West, Waterloo, Ontario, Canada, N2L 3G1

Phone 1-519-885-1211x7824, Fax: 1-519-885-1208, jbarbay@uwaterloo.ca

Abstract. We propose an index structure and an algorithm to answer Descendant Tree queries, the subset of XPath
queries limited to the descendant axis, in computational models where elements can be accessed in non-sequential
order. The indexing scheme uses classical labeling techniques, but structurally represents the ancestor-descendant
relationships between nodes of same type, in order to allow faster searches. The algorithm solves XPath location
path queries along the descendant axis in a holistic way, looking at the whole query rather than just concentrating
on individual components, as opposed to “set-at-a-time” strategies. Using an adaptive analysis, we prove tight
bounds on the worst case complexity in the comparison model, and a reasonable upper bound on the worst case
complexity in the hierarchical memory model, which accounts for the number of I/O transfers at any fixed level.
Keywords: XPath location paths; comparison model; holistic; cache-oblivious; adaptive.

1 Introduction

1.1 Context

XML [30] is a rapidly emerging format for exchanging data on the web. It standardizes document tree structures, so
that general tools can be developed and used for the many distinct applications adopting this standard. Among those
tools, search engines are prominent, and are strongly based on path navigation. XPath [9] is a language for addressing
nodes of an XML document by their positions in its tree structure. Each node is specified by the path from the root
of the document to it, the path being incrementally described by a sequence of location steps. The simplest queries
describe a chain of node tests in specified relations, and more complex queries describe a tree structure of node tests.
For instance, the expression //hidden//figure corresponds to the set of figure nodes, descendant of hidden
nodes, where // stands for the descendant axis. The query //hidden[//section]//figure has a branch,
and corresponds to the figure nodes of the previous query sharing the hidden sub-tree with a section node.
The XPath 2.0 [9] specifications define two syntaxes (abbreviated, used above, and un-abbreviated), 13 axes, and many
expressions for predicates, but only a small subset of them is considered in most applications and studies. To evaluate
such queries, a naive tree traversal strategy could cause a scan of the whole XML data tree even where there are few
results.

As relational database implementations are now quite mature and well optimized, a natural approach to query ef-
ficiently XML documents has been to input XML documents in relational databases, and to use the existing relational
technologies to query those [19, 27]. This results in one-set-at-a-time strategies, which decompose a query such as
//hidden[//section]//figure in simpler queries, such as //hidden//figure and //hidden//section,
and then combine the answers. This is termed as structural join [2], and as it is the most costly operation performed
to solve a search query, various optimizations have been proposed. One solution consists in labeling and indexing the
document, and to solve the queries using only the index. Some indexing schemes which take advantage of numbering
schemes and encode each element as an interval [1, 3, 19] have been introduced, and algorithms which use in-memory
stacks to insure that each input list from the index is scanned only once [2, 21]. Another solution consists in compress-
ing the XML document. Buneman et al. [11] separate the textual content from the tree structure of the document, to
compress the tree structure, and to use specific algorithm to search directly the compressed structure. Min et al. [24]



2propose to compress the whole document in conjunction with a labeling scheme also encoding each element as an
interval.

Holistic algorithms [10, 13] consider the whole query rather than just concentrating on the individual localization
steps. They improve over one-set-at-a-time strategies, in which intermediate result sizes can get large, even when
the input and output sizes are more manageable. Bruno et al. [10] proposes instead to study algorithms which avoid
unnecessarily large intermediate results by scanning all lists in parallel and computing one final element of the answer
set at a time. This approach supposes a native implementation to treat XML queries, an approach getting more and
more interest [17, 20], as opposed to the storage and querying of XML documents in relational databases.

The Stream Model, where elements of the index can be accessed only sequentially, is a basic assumption used in
all theoretical studies, whether they are based on a relational database implementation or a native one. It is a natural
model for XML indexes and query results in relational databases, and is probably a cultural inheritance from the
funding papers on the optimizations of structural joins. However in practice the assumption that all elements must be
accessed sequentially does not hold for all applications, and stream indexes are implemented in B-trees, to reduce
the complexity to sub-linear [19, 10], improving on the linear worst case complexity lower bound of the theoretical
analysis, based on the stream model without B-trees. XR-trees [21] are an interesting exception, where a variant of
B-trees is used, and theoretically analyzed, to index the nodes per tag. But the algorithms using this structure are still
following the “set-at-a-time” strategy, with its associated limitations: although it performs well on structural joins, it
might perform more joins than necessary, and be out-performed by a holistic algorithm.

The comparison model, a standard model in algorithmic analysis, allows random access to any element in con-
stant time. It is mostly ignored in the context of XML queries, where people prefer to consider the more restricted
Stream model. Among the various efficient techniques available, Bentley and Yao [8] propose several algorithms for
unbounded search, which can be used to search efficiently for several items in a sorted array [4–6, 14, 15]. One of those
algorithms permits the search for δ ordered elements in a sorted array of size n using 2δ log 2(1+n/δ) comparisons.
It is sometime called one sided binary search [29, 28], exponential search [12], or doubling search [4–6, 14, 15]: we
will use this last name. A first analysis would conclude that the complexities of those algorithms are linear in n in the
worst case, i.e. when δ=n. A finer analysis distinguishes the two variables δ and n and concludes that the algorithm’s
complexity is O(δ log(1+n/δ)). Such finer analysis has proved useful in the study of adaptive algorithms for sorting
problems [16, 23, 25] and for the computation of the intersection of sorted arrays [4, 5, 14, 15], but have not been used
yet to analyze the complexity of queries on XML documents.

Those algorithms use binary search and as such do not perform very well when the data does not hold in memory,
e.g. in the hierarchical memory [18] model, which accounts for the memory transfers between the levels of the
memory (such as between cached and main memory, or between main memory and swapped memory on hard-drive).
Bender et al. [7] propose a cache-oblivious implementation called finger search, which permits a similar performance
in the hierarchical memory model: δ ordered elements can be found using O(δ(log B(1+n/δ))) transfers of memory
blocs of size B, where the size of the memory bloc is imposed by the cache system.

1.2 Contributions

We consider models where elements of the index can be accessed in any order, such as the comparison and the
hierarchical memory models, which allow to use faster algorithmic techniques.

As traditional inverted list indexes do not permit such techniques, we propose using index-trees which structurally
represent in the index the ancestor-descendant relationships between nodes of same type. The impending improvement
in performance is similar in a minor way to the one obtained by the use of B-trees or variants for algorithms in
the stream model, in the sense that some node references are not accessed in the index, which permits a sub-linear
complexity. It is much more important though, as the semantic of the tree structure permits to skip an optimal number
of elements of the index. This permits a proven sub-linear worst case complexity, which is optimal in a fine analysis
grouping the instances upon their difficulty for a non-deterministic algorithm.

We propose a holistic algorithm using index-trees to solve XPath location paths along the descendant axis.
As Bruno et al.’s holistic algorithm [10] for Twig Pattern Matching, the algorithm presented here treats the query
as a whole and builds the answer to the query incrementally, one match at a time, in the document order. We define
an adaptive analysis of XPath location steps along the descendant axis using index-trees. For this analysis, we
distinguish several variables playing an important role in the difficulty of instances: the size k of the query; the number



3n of nodes of the document concerned by the query (which is different from the size of the document, see Section 4);
the maximal number h of nodes of same type on a branch of the document; the minimal number δ of comparisons
needed to check the result of the query, for instance by a non-deterministic algorithm; and, in the particular model of
hierarchical memory, the size B of the blocks exchanged at the memory level considered. This permits an analysis
of the worst case complexity of descendant tree queries using index-trees in the comparison and hierarchical memory

models, respectively Θ
(
δhk log(1+n/δhk)

)
and O

(
δhk

(
logB(1+n/δhk)+ log∗(1+n/δhk)

))
. The tight bound

on the complexity in the comparison model is of theoretical interest, but the upper bound on the number of cache
transfers in a hierarchical memory is of practical importance, as the number of cache transfers is a closer estimate of
the running time of algorithms on huge amount of data.

1.3 Outline

The rest of the paper is organized as follows. We define shortly in Section 2 our labeling scheme, query language and
index structure. In Section 3, we present our algorithm to solve descendant tree queries. We also prove its correctness,
and we compare informally its performances with those of previous algorithms. In Section 4, we define a measure
of the difficulty of an instance, analyze the complexity of the algorithm, and prove its optimality in the comparison
model, as compared to deterministic algorithms. We finally conclude with a summary of results and some perspectives
in Section 5.

2 Definitions

2.1 Labelling scheme for XML documents

Most of the examples in this paper are based on a simple XML document describing an article, from which Figure 1
gives the first lines, each line being prefixed by its number. In this sample of the document, article is the type
of the <article> tag; the <article> tag marks the beginning of the document; the <title> and </title>
tags correspond to the title of an article or of a section; and the <section> tag marks the beginning of a section,
which ending will be marked by a </section> tag. The whole document contain tags of other types, among which
the <figure> and </figure> tags, which correspond to subtrees defining the schemes of the article; and the
<hidden> and </hidden> tags, which correspond to subtrees temporarily excluded from the publication process,
for instance because they are still under-work. Each pair of tags, such as <title> and </title>, corresponds
to a node of the tree described by the document, and its type is the type of those tags. In an index, the nodes of the
document are referenced by labels. A good labeling scheme helps to solve navigation steps efficiently. We borrow the
labeling scheme defined by Bruno et al. [10], where each node is referenced by an interval of integers. This labeling
scheme reduces the decision whether two nodes are in a descendant relationship to a finite number of comparisons on
their respective labels.

Definition 1 (label). The label of an internal node a of the document is a pair s:e where s and e are the respective
ranks in the document order of the corresponding starting and ending a-tags. The label of a leaf b (e.g. a text or an
attribute node) of the document is the rank s (noted s or s:s) in the document order of b.

When there is exactly one tag or text per line of the document, the line numbers then correspond to the rank of the
corresponding element, making it easier to compute the label of a node. For instance, the first title node has label
2:4, because the corresponding<title> and </title> tags are on lines 2 and 4. Figure 2 presents a part of the tree
representation of the same document, each node being annotated with its label. The interval formed by the labels of a
node is a superset of all the labels of its descendant nodes, hence the labels permit the reduction of the the resolution
of location steps to searches in sorted arrays. Given a context node of label (s:e), the descendant axis corresponds
to a search for nodes of label (s′:e′) such that s<s′<e, and location steps along the ancestor axis can be solved in
exactly the same way using symmetric inequalities. Note that because of the tree-structure of the document, given two
labels (s:e) and (s′:e′), s<s′<e implies s<e′<e and s′≤e′ by definition: it is obviously not necessary to check more
than s<s′<e.
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1:<article>
2: <title>
3:Index-Trees for (...)
4: </title>
5: <section>
6: <title>
7:Introduction
8: </title>
9: <section>
10: <title>
11:Context
12: </title>
13: <para>
(...)

Fig. 1. The numbered first lines of the document.

article
(1:594)

title
(2:4)

text
(3)

section
(5:60)

title
(6:8)

text
(7)

section
(9:31)

title
(10:12)

text
(11)

para
(13:15)

text
(14)

. . .

· · ·
... · · ·

hidden
(281:304)

section
(282:303)

title
(283:285)

text
(284)

figure
(295:302)

text
(296)

Fig. 2. A subset of the XML tree.

2.2 Query Language: a subset of XPath

In this paper, we focus on a subset of XPath queries consisting of descendant axis navigation steps (//), branches
([...]) and node-tests: Figure 3 gives such a query. The answer to this query is the list of figure labels, such that
each corresponding node is descendant of a hidden node, which itself is ancestor of a section node. The purpose
could be for instance to find the figures which have been removed from the publication process together with a whole
section.

Q = //hidden[//section]//figure

Fig. 3. A simple XPath Query Q

section figure

hidden

Fig. 4. The query tree of Q

1

32

4

section figure

hidden

Fig. 5. The iterated tour of Q

Such queries can be represented as trees with a distinguished node, and are called descendant tree queries: Fig-
ure 4 gives the descendant tree corresponding to the query given Figure 3. We will denote by dist(Q) the node-
test distinguished by the query; by tour(Q) the iterated tour of the nodes of Q defined by its preorder traversal,
and by |tour(Q)| the period of this tour; by ad and da respectively represent the ancestor-descendant and
descendant-ancestor axes. For instance, the distinguished node of the descendant tree query given in Fig-
ure 4 is dist(Q)=figure; and the tour of this tree is tour(Q)=(hidden, section, hidden, figure,
hidden, ...), of period |tour(Q)| = 4, as shown on Figure 5.

2.3 Our data-structure: Index-trees

We propose an index based on a tree structure which structurally represents the ancestor-descendant relationships
of nodes, and which permits the use of algorithmic techniques taking advantage of the comparison and hierarchical
memory models.

Definition 2 (index-tree). The index-tree corresponding to a node α of a descendant tree query is a tree I[α] con-
taining the labels of all the nodes matching α, such that any ancestor-descendant relationship in D corresponds to a
parent-child or ancestor-descendant relationship in I[α], and such that the children of each node of an index-tree are
consecutive elements in a sorted set.



5The simplest way to encode an index-tree is to create a dynamic tree which, for each node, lists pointers to the
children in a sorted array. Such an encoding has only a constant factor space overhead in comparison with inverted
list indexes commonly used for XML documents, and performs well in the comparison model. The lists of pointers to
children can also be implemented using an exponential tree [7]. Such an encoding’s space is within a constant factor
of the array encoding, and performs well in both the comparison model and the hierarchical memory model. But as the
exponential tree are much more complicated to represent than arrays, all the index-trees of this article are represented
as arrays: it is sufficient to understand the underlying principle.

For a node-type α which nodes have no descendants of the same type, the index-tree is simply an inverted list of
the labels corresponding to nodes of type α. In the document of Figure 1, the figure and hidden nodes are in this
case: each index-tree, given Figure 6, consists just of a list of labels in document order.

hidden 138:147 209:221 281:304 471:473 503:505 · · ·

figure 72:77 78:85 87:94 122:129 130:137 139:146 148:155 295:302 319:326 · · ·

Fig. 6. A subset of the index-trees for hidden and figure nodes.

The tree structure of index-trees is apparent only for recursive node-types, which nodes can have descendants of
same type. In the document of Figure 1, the section nodes are in this case: their index-tree, given Figure 7, is a tree
structure of arrays of labels, where each array pointed by a label a corresponds to a list of section nodes accessible
from a by a path containing no section node.

section 5:60 61:194 195:402 403:567 · · ·

9:31 32:51 52:59 65:105 106:156 157:173 174:193 199:280 282:303 305:391 394:401 407:451 · · ·

210:220 222:232 233:243 244:254 255:268 269:279

Fig. 7. A subset of the index-tree for section nodes.

We will denote by parent(a) the function returning the label of the parent of a in its index-tree, if it has one;
firstChild(a) the function returning the label of the first child of a in its index-tree; rightSibling(a) the
function returning the first right sibling of a in its index-tree if there is one (there is at least ∞ if a �= ∞), and returning
∞ if a = ∞; lastRightSibling(a) the function returning the last right sibling of a, the ∞ label excluded, in
its index-tree; and hasParent(a), and hasChild(a) the boolean functions true if and only if respectively a has a
parent or some children in its index-tree.

A minor improvement brought by the use of index-trees is similar to the one obtained by the use of B-trees or
variants, in the sense that not all labels are accessed in the index, which permits a sub-linear complexity. But the
usefulness of index-tree goes far beyond this: as there can be only one ancestor (resp. descendant) b of a given node a
at each level of a subtree, b can be searched with a number of comparisons logarithmic in the size of the array: this the
reason to introduce Index-Trees.

2.4 Doubling search

Doubling search looks for an element x in a sorted array A of unknown size, starting at position init. It returns a value
p such that A[p − 1]<x≤A[p], called the insertion point of x in A.

Searching for the insertion point p of x in A from position init is can be done in two phases: In the first phase the
algorithm performs i = �log2(p−init)� comparisons to find the interval [init+2i−1, init+2i+1−1), and containing



6p. To do so, it compares x to the elements occupying positions (init, init+1, init+3, init+7, . . . , init+2 i+1−1).
In the second phase, a simple binary search on this interval, of size 2 i, finds p using i comparisons. The total number
of comparisons performed is then 2�log2(p−init)�, but more sophisticated algorithms improve the complexity by a
constant factor [8, 26].

For instance, the first hidden node of the document, has label 138:147 (see the hidden index-tree of Figure 6).
A doubling search for descendants of this hidden node in the figure index-tree, results in the comparisons shown
Figure 8. The first three arrows correspond to the first phase of the algorithm, the other corresponds to the binary
search, and the label finally found is 139:146.

figure
72:77 78:85 87:94 122:129 130:137 139:146 148:155 295:302 319:326 · · ·

0 1 2 3 4 5 6 7 8

Fig. 8. Comparisons performed during the doubling search in the index-tree for figure nodes.

This technique applies as well to recursive node-types, when indexed by an index-tree. For instance, the figure
node of label 122:129 is a descendant of both section nodes of label 61:194 and 106:156 (see the section index-
tree of Figure 7). A doubling search in the array at the first level finds the label of the first section ancestor; and
a second search in the array pointed by this node finds the label of the second section ancestor. The application
of the doubling search algorithm to the label search in a sorted array of labels necessitates a few more comparisons
which don’t change the order of its complexity. It is implemented in function SearchInArray(a, b), which is given
by Algorithm 5.

An index based on inverted lists, even if optimized by B-tree or variants, do not permit the use of binary nor
doubling search algorithms to find the ancestors or descendants of recursive nodes. The reason is that, in a list of
recursive node labels, a comparison does not permit the division in two of the search space, as it is the case in the
sorted arrays of each node of an index-tree. For instance, the labels of the section nodes, ancestors of the figure
node in the previous example, are not consecutive in the preordered list of section labels (given in Figure 9). From
a test on the section-node label 65:105, no algorithm can decide to reduce its research to the left or right side of the
array, as both sides can (and here do) contain the label of an ancestor of the figure node.

section · · · 52:59 61:194 65:105 106:156 157:173 · · ·

section 5:60 61:194 · · ·

· · · 52:59 65:105 106:156 157:173 · · ·

Fig. 9. A subset of the list of section node labels, in document order, and the corresponding fragment of the section index-tree.
The labels in bold font correspond to the ancestors of the figure node of label 122:129, and are not consecutive.

3 Algorithm

We propose a holistic algorithm composed of four functions, described in Section 3.2. Each function is presented
with a short description, its algorithm, and an execution example. The correctness of each function, and hence of the
whole algorithm, is proved in Section 3.3, and the space, comparison and memory transfer complexities are briefly
discussed in Section 3.4. The complexity of the algorithm is formally analyzed in Section 4. In general we denote



7by Q the descendant tree query; by α, β ∈ Q some of its location step; by A = I[α] the index-tree corresponding to
the node-test of α (resp. B = I[β] for β); and by a ∈ A a label in A (resp. b ∈ B). Table 1 gives the notations and
denominations of some helpful relations between labels. Furthermore, to simplify the algorithm, we signal the end of

a ⊂ b b.s < a.s a is a descendant of b.
and a.e < b.e b is an ancestor of a.

a < b a.s < b.s a is a preorder predecessor of b.
b is a preorder successor of a.

â b a.e < b.s a is a predecessor of b.
b is a successor of a.

a
r→ b (r = ad and b ⊂ a) a is in relation r with b,

or (r = da and a ⊂ b) or b is in relation r from a.
Table 1. Notations given a relation r ∈ {ad, da} on labels a, b.

the arrays by a “fake” label ∞, such that ∀a, a is a predecessor of ∞, and such that ∀r, ∞ is in relation r with ∞.

3.1 General outline of the algorithm

Given an index I and a query Q:

note α the first location step of the tour of Q;
while no index-tree is empty do

match a, the first element of I[α], with α;
while some location step of Q are unmatched do

note α the last matched test-node;
note β the next test-node in the tour of Q;
move up and down the index tree I[β] using doubling searches, to find the first label b ∈ I[β] such that a ′, b
matches α, β, where a′ is either a or a preorder successor of a;
eliminate all predecessors of b in I[β];
if the relations a, b and α, β are the same then match b with β;
else unmatch all nodes of Q, and match b with β; end if

end while
outputs the label matching the distinguished node of Q;

end while
The algorithm outputs the labels of all the nodes matching Q. Each search in I[β] eliminates some labels which

cannot be part of a match of Q, and eventually one search will result in a partial match. Choosing the location steps
by following a tour of the descendant tree query insures that the algorithm will perform at most k searches, for each
search performed by a non-deterministic algorithm. When all labels of an index-tree I[α] have been eliminated, no
more match of Q can be found: the algorithm can then terminate.

3.2 Functions

The function Enumerate (Alg. 1) builds the list of nodes corresponding to the location steps of a descendant tree
query Q. To do so, it iteratively calls the functions Next and Skip; which respectively finds the label of the next
node matching Q, and skips it once it is reported; till all elements of one of the index-trees have been considered. For
instance, given the index-trees of Figures 6 and 7, and the descendant tree query given Figure 4, the first call to the
function Next updates the pointers of P and returns the label a = 295:302, which corresponds to the first figure
node, descendant of a hidden node, which itself is ancestor of a section node. Entering the loop, the label a is
added to the list R and disabled by updating the corresponding value in P to its successor in the figure index-tree,
319:326. The loop is then iterated till Next returns ∞, when finally the function returns R.



8Algorithm 1 Enumerate(I, Q)
Given an index I , a query tree Q; the function returns the list of all labels corresponding to Q.

for all α ∈ Q do
P [α] ← first element of I [α] ;

end for
R ← empty list; a ← Next(Q,P );
while a �= ∞ do

R ← R ∪ {a};
P [dist(Q)] ← Skip(P [dist(Q)]);
a ← Next(Q,P );

end while
return R;

The function Skip (Alg. 2) returns the next label in preorder traversal of an index-tree. Its implementation is straight-
forward. For instance, given the figure label 295:302, which has no children, but has a sibling, the function Skip

Algorithm 2 Skip(a)
Given a label a �= ∞, the function returns the next label in the same index-tree in the preorder traversal, or ∞ if none exists.

if hasChild(a) then return firstChild(a);endif
while rightSibling(a) = ∞ and hasParent(a) do

a ← parent(a);
end while
return rightSibling(a);

returns directly its successor 319:326. If given the section label 269:279, which has no children and no sibling, the
function Skip returns directly the first right sibling of its parent, 319:326.

The function Next (Alg. 3) searches for the next match of the query Q among preorder successors of the labels
given in P . During its search, it updates the values of P , so that the next search ignores the labels already disabled.
Note that there is always a match corresponding to Q, if only the set of ∞ labels which terminate the array of the roots
of the index-trees. Once the match is found, the function returns the distinguished node of this match. To perform the
search of the next match of Q, each node of Q is successively bound to a label of the corresponding index-tree. The
nodes are considered in the order given by the iterated tour of Q. Each node is bound at least once every period of a
tour, which is at most 2k: this permits a better complexity on easy instances (see Section 4). For instance, given the

Algorithm 3 Next(Q, P )
Given a query tree Q, and an array P of pointers to labels of the index-trees; the function returns the first label matching the
distinguished node of Q, while ignoring all labels preceding the positions indicated by P in the index-trees.

α ← any element of tour(Q); s ← 1;
while s < |tour(Q)| do

β ← the node following α in tour(Q);
r ← the relation corresponding to (α, β) in Q;
P [β] ← SearchInTree(P [α], r, P [β]);
if (P [α]

r→ P [β]) then s ← s + 1; else s ← 1; endif
α ← β;

end while
return P [dist(Q)];



9descendant tree query Q of Figure 4 and the array P pointing to the first labels of the index-trees of Figures 6 and 7,
the function Next successively binds the nodes of Q in the order defined by the tour of Q, as shown in Figure 10. The
root of Q (any other node of Q could have been chosen) is first bound to the first hidden label available, 138:147
(Fig. 10a). As no label in the section index-tree is a descendant of this label, the hidden node of Q is unbound,
and the section node of Q is bound to the label 157:173, which corresponds to the first section node possibly a
descendant of a preorder successor of the hidden node (Fig. 10b). Similarly, no label in the hidden index-tree is
an ancestor of the node of label 157:173. The section node is unbound, and the hidden node is bound to the label
209:221, the first node possibly an ancestor of a successor of the section node (Fig. 10c).

Following the tour of Q, it is now the turn of the figure node to be bound. No figure node is a descendant of
the node of label 209:221, hence the hidden node of Q is unbound, and the figure node of Q is bound to the label
295:302 (Fig. 10d). This node is finally part of a match of the query, so the function successfully binds the hidden
node to the label 282:303 (Fig. 10e) and the section node to the label 281:304 (Fig. 10f ). Having found a match to
the tree descendant query, the function then returns the label 295:302, which corresponds to the distinguished node of
Q, the figure node.

hidden

section figure

138:147

? ?

138:147

157:173 ?

209:221

157:173 ?
(a) (b) (c)

209:221

? 295:302

281:304

? 295:302

281:304

282:303 295:302
(d) (e) (f)

Fig. 10. The successive bindings of the nodes of Q during an execution of the function Next. The newly bound labels are in bold,
and the newly disabled labels are crossed. The arrows indicate the tour of Q performed by the function.

The function SearchInTree (Alg. 4) searches, among b0 and its preorder successors in its index-tree, for a label b
in relation r from a. It returns this label if there is one, and otherwise returns the first label which could be in relation
r from a successor of a. If even such a label does not exist in the index-tree, it returns the label ∞, the last element
of the array at the root of the index-tree. To do so, the function first moves up from b 0 in the index-tree, as long as
all labels of the array containing b are predecessors of a. Once found an array containing at least one label which is
either an ancestor, a descendant, or a successor of a, the function returns this label if r = da. Otherwise it goes down
the index-tree, searching in each array for an ancestor or descendant of a, till it finds a descendant and returns it, or
finds that none can exist. If there is no descendant of a in the index-tree of b 0, the function searches the label of the
first node possibly a descendant of a preorder successor of a, if necessary going up the index-tree to find a finite label.
For instance, consider the hidden label a=138:147, the section label b=5:60, and the relation r=ad. In the array
containing b, the label 61:194 corresponds to an ancestor of a (see Fig. 11). Any section node descendant of a has
to be a descendant of this node, hence the function updates b down one level in the section index-tree. In this new
array the label b = 106:56 corresponds also to an ancestor of a, which has no section descendants: hence there are
no section nodes among the descendants of a.

Any preorder successor a′ of a is either a descendant of b or a successor of it: b cannot be a descendant of a ′.
Hence the label of the first section node possibly descendant of a preorder successor of a is the sibling of b, of label
157:173, which is returned by the function. Note that if the function is called with b = 23:51, instead of the first label
of the section index-tree, the function behaves the same, after checking that no label of the array containing b can
be in relation with a (see Fig. 7).

The function SearchInArray (Alg. 5) searches, in the part of the array on the right side of b 0, for a label which
can be an ancestor or descendant of the label a. It returns this label if there is one, and otherwise returns the first
label which could possibly be an ancestor or descendant of a preorder successor of a. To do so, it simply performs a
doubling search for the insertion rank of a.s among the b.s components of the labels of the array. Then the relative



10Algorithm 4 SearchInTree(a, r, b0)
Given the labels a and b0, and a relation r ∈ {ad, da}; the function returns, if there is one, the first label b, placed after b0 in the
preorder traversal of the index-tree of b0, such that a

r→ b. Otherwise it returns the first label which could be in relation with a
successor of a.

b ← b0;
while hasParent(b) and lastRightSibling(b)̂ a do

b ← parent(b);
end while
b ← SearchInArray(a, b);
if r = da then return b; endif
while hasChild(b) and a ⊂ b do

b ← SearchInArray(a,firstChild(b));
end while
if a ⊂ b then b ← rightSibling(b); endif
while b = ∞ and hasParent(b) do

b ← rightSibling(parent(b));
end while
return b;

section
(61:194)

· · · section
(106:156)

hidden
(138:147)

section
(57:173)

· · ·

· · ·
Fig. 11. No section node is a descendant of the hidden node
of label a=138:147. The first section node which could be a
descendant of a preorder successor of the node of label a has label
157:173.

position of a can be deduced by simply comparing a.s with the b.e component of the elements in the array around the
insertion rank. For instance, given the hidden label 138:147 , and the figure label 139:146, the function performs

Algorithm 5 SearchInArray(a, b0)
Given the labels a and b0 the function returns the first label b succeeding to b0 in the same array, such that either a ⊂ b, b ⊂ a, or
â b.

Using doubling search, find b1 and b2,
consecutive labels from the same array as b0 such that
b0.s ≤ b1.s < a.s ≤ b2.s;
if a.s < b1.e then return b1; else return b2;

the comparisons described in Figure 8, to find the consecutive labels b 1=130:137 and b2=139:146. As 138 > 137, the
function finally returns b2 = 139:146.

3.3 Correctness proof

We prove the correctness of our algorithm in four steps, the last one being the proof of the correctness of Function
Enumerate. Lemma 1 states the correctness of Function SearchInArray, which is simply adapting the doubling
search algorithm to search on arrays of labels. Lemma 2 states the correctness of Function SearchInTree, and
is used in the proof of Lemma 3 which states the correctness of Function Next. Lemma 4 states the correctness of
Function Skip, and is used with Lemma 3 to prove Theorem 1, which states the correctness of Function Enumerate
and hence of the general algorithm.

Lemma 1 (Correctness of SearchInArray). Given the labels a and b0, Algorithm 5 returns the first label b,
succeeding to b0 in its index-tree, such that either a ⊂ b, b ⊂ a, or â b.
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Fig. 12. The possible positions of a in comparison to b1 and b2 in Algorithm 5.

Proof. By definition of the doubling search, b0.s ≤ b1.s < a.s ≤ b2.s (see fig. 12). By definition of the labelling
scheme, each pair of intervals is related either by an inclusion or by an empty intersection. By definition of the index-
tree, there can be only one label b in the array such that a ⊂ b, and all labels b such that b ⊂ a must be consecutive in
the array.

If a.s < b1.e, then a.e ≤ b1.e and b1 is the unique label of the array such that a ⊂ b1: that is the correct value to
be returned. On the other hand if a.s > b1.e, then b1̂ â b2 of b2 ⊂ a: either way, b2 is then the label corresponding to
the definition of the correct output of the algorithm. 	


Lemma 2 (Correctness of SearchInTree). Given the labels a and b0, and a relation r∈{ad, da}, Algorithm 4
returns, if there is one, the first label b, preorder successor of b0 in its index-tree, such that a

r→ b. Otherwise it returns
the first label which could be in relation with a preorder successor of a.

Proof. Throughout Algorithm 4, the values taken by variable b delimit which labels are a potential output of the
algorithm or not. For conciseness, we call disabled the preorder predecessor of b, available the others, and b f the
correct return value of Algorithm 4.

The path from the root to b in the index-tree delimits, in each array crossed, the boundary between disabled and
available labels. The labels in the arrays not crossed by this path have recursively the same status than their parent.
The two successive loops which constitutes the algorithm, disable more labels by updating b with preorder successors,
till b = bf for the relation r.

a

b0

b1

b′1

b2

. . .

(a)

a

b0

b1

b′1

b2

. . .

(b)

a

b0

b1

b′1

b2

. . .

(c)

Fig. 13. Schematic representation of the index-tree for b-nodes during the execution of the function SearchInTree, at the time
of the call (a), after the first loop (b) and after the second loop (c). The crossed locations correspond to disabled labels, and the
noted labels are such that b0̂ b1 ⊃ b′1 ⊃ a ⊃ b2. The algorithm returns b1 if r=da, and b2 if r=ad.

Whether r = da or r = ad, either a and bf are on the same root-to-leaf path in the document, or â b f . The first
loop disables the sub-trees of the index-tree which can’t possibly intersect a root-to-leaf path containing a, by updating
b up from b0 when lastRightSibling(b)̂ a. It finds the first array on the path from b0 up to the root, containing at
least one label which is either an ancestor, a descendant, or a successor of a: in Figure 13, this is the array containing
b1. The following doubling search (through the call to SearchInArray, proved correct in Lem. 1 ), finds such a
label.

At this point, b is the searched label for r=da (descendant-ancestor relation): if b is an ancestor of a, then by
construction it is the first one available; otherwise, it is the first available label which could be an ancestor to a
successor of a, as all ancestors of b have already been disabled (by being anterior to b 0) and all predecessors of b in
the array are such that b.s < a.s.

The second loop updates b in the index-tree down the path intersecting the root-to-leaf path containing a, as long
as b is a descendant of a: at the end of this loop either b ⊂ a or â b: in Figure 13 it corresponds to the path containing



12b1, b′1 and b2. At this point, the ancestors of b are either anterior to b0 or ancestors of a, and the left siblings of b
are not on a root-to-leaf path containing a. If b ⊂ a, then by construction b is the first descendant of a available, it
won’t be modified anymore by the function and it will be returned. If a ⊂ b but b has no descendant of the same type,
then b cannot be an ancestor of any preorder successor of a, hence the algorithm returns its preorder successor in the
index-tree.

If b = ∞, a whole array has been disabled. The third loop updates b up the index-tree to find the next available
label different from ∞, or ∞ if there is none in the whole index-tree. Hence the correctness of the algorithm, as â ∞.

	


Lemma 3 (Correctness of Next). Given a query tree Q, and an array P of pointers to labels of the index-trees,
Algorithm 3 returns the first label matching Q, while ignoring all labels being preorder predecessors of the labels
of P .

Proof. The algorithm counts in variable s the number of consecutive matches in the tour of Q. As the call to the
function SearchInTree does not change anything if the labels pointed by P are already in relation, any value of
s larger than the period |tour(Q)| of the iterated tour of Q indicates that a match is complete: any label returned by
the algorithm corresponds to a match. As Lemma 2 proved that the function SearchInTree returns the first label b,
preorder successor of b0, such that either a

r→ b or â b, no label part of a match is disabled: the label returned by the
algorithms corresponds to the first match available. 	


Lemma 4 (Correctness of Skip). Given a label a �= ∞, Algorithm 2 returns the preorder successor of a in its
index-tree, or ∞ if none exists.

Proof. For any node of a tree, the next node in the preorder traversal is its child if it has one, the first right sibling if it
has one, or the next node to its parent if it has one. As the array at the root of each index-tree is terminated by a label
∞ which has no children, the algorithm will return the label ∞ at the end of the traversal. 	


Theorem 1 (Correctness of Enumerate). Given an index I , a query tree Q, Algorithm 1 returns the list of all labels
corresponding to Q.

Proof. Algorithm 1 is a simple application of the functions Next (Alg. 3) and Skip (Alg. 2): Iteratively, the function
computes the first match constituted of available labels by a call to function Next, adds it to the variable R, disables
the label matched by the distinguished node of the descendant tree query by a call to function Skip, till all the labels
are disabled in at least one of the index-trees. The correctness of the functions used is proved by Lemmas 3 and 4:
hence Algorithm 1 returns the list of all labels corresponding to Q. 	


3.4 Comparisons with Other Algorithms

Space complexity The index itself is of size linear in the size of the document, which is comparable to the space
required by other data structures. As the algorithm outputs sequentially the nodes matching the query, it needs only
to maintain a partial matching and the positions in each index delimiting the disabled labels. If all positions in the
index hold in a single memory unit, its needs are linear in the size of the query, and are independent of the input and
output sizes. If the document is so large that the positions in the index take more than one unit of memory, it will need
O(k log(N)) bytes, where k is the size of the query and N is the size of the document.

Hence its memory requirements, apart from the index itself, are small. Those requirements are comparable to the
requirements of other holistic algorithms based on native implementations. They are quite small in comparison to the
worst case space requirements of algorithms in the stream model, where intermediary results can be of size linear in
the size of the document, even if the final result is empty.

Time Performance In a model where the cost of memory accesses is uniform, doubling search is performing better
than sequential access, making our algorithm much more efficient than any other algorithm based on the stream model.

In a model where memory is divided in different levels forming a hierarchy, with different access costs for each
level of the hierarchy, performance cannot be measured by the number of comparisons performed. In this context,



13the performance is usually studied only on the interface between two levels, the slowest one being called the main
memory, and the fastest one being called the cache.

The number of memory transfers is then a more adequate measure of the performance of algorithms. By implement-
ing each sorted set of the index-trees as exponential trees defined by Bender et al [7] and using their cache-oblivious
algorithm for doubling search, the number of memory transfer is kept logarithmic in the number of nodes concerned.
The result from Bender et al. is not known to be optimal (yet), but its optimality would imply directly the optimality
of our algorithm, by a proof similar to the proof of Theorem 3.

Hence our algorithm, using efficiently the tree-structure of the index-tree, can largely outperform the usual algo-
rithms in the stream model: Section 4 proves how much it does.

4 Adaptive Analysis

4.1 Certificates and non-deterministic algorithms

All correct algorithms have in common that they must check a certificate of their result, which can be much larger
than the solution of the problem. In particular, queries without a match can have a certificate of arbitrary size, very
small or as large as the size of the instance. For instance, the document presented in Figure 14 has no node matching

R
(1:10)

...

A
(2)

A
(3)

A
(4)

A
(5)

...

B
(6)

B
(7)

B
(8)

B
(9)

Fig. 14. An easy document for the query A//B.
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Fig. 15. A difficult document for the query A//B.

the query Q = B//A. A single comparison, between the last label 5 of the A index-tree, and the first label 6 of the B
index-tree, certifies it: all the A labels are equal or preorder predecessors of 5 and all the B labels are equal or preorder
successors of 6, hence 5 < 6 implies that all the A labels are preorder predecessors of all the B nodes. On the other
hand, the document presented in Figure 15 also has no node matching Q = A//B, but this is more difficult to certify:
7 comparisons are needed to check this (2 < 3 < 4 < 5 < 6 < 7 < 8 < 9).

All correct deterministic, probabilistic or non-deterministic algorithms must compute a certificate of some sort, but
non-deterministic algorithms can just guess a certificate and check it. Then the complexity of the best non-deterministic
algorithm corresponds to the size of the certificate, and is called the non-deterministic complexity of the instance. The
function NonDeterministic (Alg. 6) is a non-deterministic algorithm computing the list of all labels correspond-
ing to Q with the minimum number of comparisons needed.

Of course this algorithm do not use any binary nor doubling search, because the non-determinism permits a direct
guess of the insertion ranks. Beside this point, the algorithm performs all the steps that a randomized or deterministic
algorithm would perform: it traverses the index-trees in parallel, looking for either some match or some proof that the
label currently considered do not correspond to a part of a match.

Definition 3 (non-deterministic complexity). The minimal number of comparisons that a non-deterministic algo-
rithm performs on an instance is called the Non-Deterministic Complexity of the instance. It is a lower bound of the
complexity of any algorithm on this instance.

This lower bound on the complexity in the comparison model is usually weak, but is still a good measure of the relative
difficulty of the instances. When an instance is more difficult for a non-deterministic algorithm, then it is also more
difficult for restricted algorithms, such as probabilistic or randomized algorithms.



14Algorithm 6 NonDeterministic(I, Q)
Given an index I , a descendant tree query Q; the function returns the list of all labels corresponding to Q.

R ← ∅;
for all α ∈ Q do

P [α] ← first element of I [α] ;
end for
while ∀α ∈ Q, I [α] �= ∞ do

guess β ∈ Q; α ←Parent(β);
a ← P [α];
P [β] ← min{b ∈ I [β], b ≥ P [β] and (b ⊂ P [α] or b̂ P [α])};
if ∀β ∈ Q, P [β] ⊂ P [Parent(β)] then

R ← R ∪ {P [dist(Q)]};
P [dist(Q)] ← min{b ∈ I [dist(Q)], b > P [dist(Q)]};

end if
return R;

end while

It is important to note that the non-deterministic complexity in the comparison model does not correspond to a
lower bound on the number of cache transfer in the hierarchical memory model: all the comparisons could occur in
the same memory bloc. Nevertheless, it is still a good measure of the difficulty of the instances for deterministic or
randomized algorithms in the hierarchical memory model, because it corresponds to the minimal size of a certificate,
that any correct algorithm must check, whatever the model.

4.2 Difficulty of an instance

Measures of difficulty distinguishes between the instances of same size but distinct difficulties. The obvious measures
of difficulty for descendant tree queries on XML documents, provided their index-trees, are the sizes of the constituents
of the instance: the size k of the tree-query Q, and the number n of nodes of the document concerned by Q:

Definition 4 (concerned nodes). A node of the document is concerned by a query Q if it matches any node-type test
of Q. For each node-type test α of Q, note nα the number of nodes matching α. Then the number of nodes of the
document concerned by Q is n =

∑
α nα.

Most often, n is smaller than the size of the document, especially when all node-type tests of the query are distinct. In
the worst case n is smaller than k times the size of the document. Some other properties can make some documents
more difficult than others, among which is the height of the document, and in particular the maximal height of the
index-trees.

Definition 5 (recursivity). The recursivity of an instance is the maximal number h of nodes of same type on a root-
to-leaf path in it.

The recursivity of an instance depends only of the document structure. One aspect of the relation between the tree-
query and the document which creates variation in the difficulty of the instance is the number of nodes concerned, but
there are deeper ones, such as the performance of a non-deterministic algorithm such as Algorithm 6: the performance
of the best non-deterministic algorithm is a natural lower bound of the performance of any probabilistic or deterministic
algorithm.

Definition 6 (alternation). For a given instance composed of a descendant tree query, an XML document and its
index-trees, we denote by δ the number of negative tests and whole matches performed by Algorithm 6 on this instance.
As it is the number of times when Algorithm 6 starts over the matching process from one single node (and “alternate”
its template match), we call this measure of difficulty the alternation of the instance.



15For instance the alternation of the instance formed by the query Q = A//B and the document of Figure 14 is
δ = 1; and the alternation of the instance formed by the query Q = A//B and the document of Figure 15 is δ = 7;

Note that, for instances without match, the alternation is exactly the number of comparisons performed by the
Algorithm 6, i.e. the non-deterministic complexity of the instance. For instances with some matches, the alternation is
the number of matches plus the number of comparisons disabling labels. This is different from the non-deterministic
complexity, but adequate for a study of the complexity of deterministic algorithms: a document, built by the adversary
of a deterministic algorithm A, will maximize the number of comparisons performed by A for each failed match; to
the extent where A performs as many comparisons on a successful match than on a failed match.

4.3 Complexity of the algorithm in the Comparison Model

We analyze the worst-case complexity of our algorithm by an adaptive analysis in function of δ, h, k, and n. The
worst-case complexity in the comparison model is proved optimal in our adaptive model by Theorem 3. Note that an
instance of recursivity h has no index-tree of height larger than h.

Theorem 2 (Complexity in the Comparison Model). Our algorithm performs O
(
δhk log(1+n/δhk)

)
comparisons

on an instance of alternation δ, composed of a descendant tree query of k nodes, concerning n nodes, of a document
of recursivity h.

Proof. Let δ be the alternation of the instance, and (a i)i≤δ the corresponding ordered sequence of labels chosen
initially or just after a failed or successful match, as guessed by a non-deterministic algorithm. By definition, δ is the
minimal length of such a sequence. For commodity, note a 0 a pedigree preceding any other in the document.

Each doubling search performed by the algorithm is said to be “in phase i” if the label a searched is either placed
between ai−1 and ai, or equal to ai, for all i ∈ {0, . . . , δ − 1}. Such a phase is called positive if ai is a match, and
negative otherwise. There are exactly δ such phases, and as the nodes are considered following the iterated tour of Q,
in each phase the algorithm performs at most 2k calls to the function SearchInTree. During each of these calls, in
the worst case b is going up to the root and down to a leaf. As the index-tree is of height at most h, at most h calls to
the function SearchInArray are performed during a call to the function SearchInTree.

For each phase i ∈ {0, . . . , δ}, for each call j ∈ {1, . . . , k} to the function SearchInTree, and for each of
the levels l ∈ {1, . . . , h} of the corresponding index-tree, let be n (i,j,l) the number of labels skipped by the function
SearchInArray. Each call to the function SearchInArray performs then O(log(1 + n (i,j,l))) comparisons,

summing to O(
∑δ−1

i=0

∑k
j=1

∑h
l=1 log(1+n(i,j,l))). This is smaller than

O

⎛
⎝δhk log

⎛
⎝1 +

δ−1∑
i=0

k∑
j=1

h∑
l=1

n(i,j,l)/δhk

⎞
⎠

⎞
⎠ ,

because of the concavity of the function log(1 + x). As each search starts exactly where the previous one ended,∑δ−1
i=0

∑k
j=1

∑h
l=1 n(i,j,l) ≤ n, and the algorithm’s complexity is O(δhk log(1 + n/δhk)). 	


4.4 Lower Bound

In this section we show that the complexity of the algorithm presented in Section 3 is asymptotically optimal.

Theorem 3 (Lower Bound in the Comparison Model). For any δ ≥ 1, h ≥ 1, k ≥ 2, n ≥ δhk any determin-
istic algorithm answering descendant tree queries, on instances formed by a descendant tree query of O(k) nodes,

concerning O(n) nodes, of a document of recursivity O(h); has complexity Ω
(
δhk log(n/δhk)

)
in the comparison

model.



16Proof. Here is a summary of the proof: we show first how the lower bound in the case where (δ = 1, h = 1, k =
2, n ≥ 2) is exactly the lower bound for the binary search in a sorted array. Then we successively generalize the lower
bound to the cases where the values of h,k and δ are relaxed.

We first consider the descendant tree query A//B of size 2; on documents of n + 2 nodes, such that the root is of
type R, has n− 1 children of type B and 1 child of type A, which itself has a child of type B (see Fig. 16). This forms
instances of alternation δ = 1, as guessing the B-node child of the A-node suffices to certify the match. The index-tree
for B is an array of n elements among which exactly one is the solution. As each comparison permits only to divide
the search space by two, log2 n comparisons are necessary to any deterministic algorithm solving the instance, hence
the lower bound for the instances such that (δ = 1, h = 1, k = 2, n ≥ 2).

n

R

B B. . . . . .A

B

Ω(log(n))

Fig. 16. (δ=1, h=1, k=2, n≥2)
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Fig. 17. (δ=1, h≥1, k=2, n≥2h)
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Fig. 18. (δ=1, h≥1, k≥2, n≥hk)
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Fig. 19. (δ≥1, h≥1, k≥2, n≥δhk)

Next we relax the recursivity h of the document: this is the maximal height of an index-tree. We consider the
query Q = A//B of length 2; on documents of size n + 2, containing 1 node of type R, 1 node of type A, and n
nodes of type B, such that the root and the B nodes form a tree with a unique trunk of B nodes, and such that the
A node is parent of a B-node (see Fig. 17). The alternation of this kind of instance is always δ = 1, as guessing
the positions of the B-node child of an A-node is sufficient to certify the unique match. An adversary strategy can
force any deterministic algorithm to perform Ω(h log n/h) comparisons on such instances, by hiding at each level the
positions of the B-nodes which are parents, and hiding in the whole tree the A-node. Hence the lower bound, for the
instances such that (δ = 1, h ≥ 1, k = 2, n ≥ 2h).

Then we relax k, the size of the descendant tree query. We consider the descendant tree query

Q = A//B1//B2// . . . //Bk,

of length k + 1; on documents of size n + k + 2, containing k nodes of type R, 1 node of type A, and n/k nodes of
type Bi for all i ∈ {1, . . . , k}; such that it can be constructed recursively from i = 1 to i = k from the construction



17T for k = 1, by replacing the A-node at each step by a copy of T where each node of type B is replaced by a
node of type Bi (see Fig. 18). Each root-to-leaf path contains no more than h nodes of each type; the alternation
of each instance is δ = 1 because guessing non-deterministically the unique descendant of A in each index-tree is
sufficient to certify the only match of this instance. As before, an adversary can make any deterministic algorithm
perform Ω(hk log(n/hk)) comparisons to check the entire match, hence the lower bound, for the instances such that
(δ = 1, h ≥ 1, k ≥ 2, n ≥ hk).

Finally we relax the difficulty δ of the instances. We consider instances of difficulty δ formed by the same query
Q = A//B1//B2// . . . //Bk, of length k + 1; on documents formed by δ documents from the previous case (see
Fig. 19). As previously, each root-to-leaf path contains no more than h nodes of each type. The alternation of the
instance is exactly δ, as there are δ matches, and guessing the positions of the δ descendants of A-nodes in each index-
tree is sufficient to certify the result. Each sub-instance is independent, and an adversary can force any deterministic
algorithm to perform Ω(δhk log(n/δhk)) comparisons, hence the general lower bound, for the instances such that
(δ ≥ 1, h ≥ 1, k = 2, n ≥ δ(hk)). 	


4.5 Complexity of the algorithm in the Hierarchical Memory Model

The complexity in the comparison model is of theoretical interest, but the number of I/O transfers in a hierarchical
memory is a better estimate of the real performance of the algorithm. We prove a similar upper bound on the number
of cache transfers performed by our algorithm. It is conjectured to be optimal, at the condition that the algorithm to
perform doubling searches in exponential binary trees itself is optimal.
Theorem 4 (Complexity in the Hierarchical Memory Model). Our algorithm performs

O

(
δhk

(
logB(1+n/δhk) + log∗(1+n/δhk)

))
memory transfers on an instance of alternation δ, composed of a

descendant tree query of k nodes, concerning n nodes, of a document of recursivity h, between any pair of successive
levels of the memory hierarchy such that the slowest one is loaded in the fastest level by blocks of size B.

Proof. Using the same argument as the proof of Theorem 2, in conjunction with the memory transfer complexity of
doubling search, from Bender et al. [7]. Extra care must be taken with the function log ∗(x), originally defined on
integers as the reverse of n → 2̂ n̂ (such that log∗(2̂ n̂) = n). To be used on numbers such as n/δhk, it must be
extended to real numbers.

If extended as a step function log∗(x) : R → N, the function is not concave. But it can be extended to a continuous
and derivable function on real numbers instead, log ∗(x) : R → R which is concave, hence the final result. Note that
the difference between the values of both extensions is always smaller than 1: for the order of the complexity, it does
not matter which extension is considered. 	


5 Conclusion

In this paper we showed how the structure of an index-tree is adapted to the comparison model and to the hierarchical
memory models, in order to answer XPath location steps along the descendant axis. We gave an holistic algorithm
using index-trees, which has smaller memory requirements than algorithms based on a “set-at-a-time” approach. We
introduced a measure of the difficulty of the instances, we proved tight bounds on the asymptotic complexity of the
problem in the comparison model, and a reasonable upper bound on the number of I/O transfers.

This is important for several reasons. On one hand, it breaks the tradition of analysis in the stream model, inherited
from relational databases, and prove the inefficiency of this model. This is one more argument in favor of native
and mixed implementations of XML query systems, which can take advantage of both relational and semi-structural
systems. On the other hand, the worst-case logarithmic complexity is a first milestone on the way to real scalability of
the treatment of XML documents, and our techniques improve on previous efforts in this direction. The index-tree is an
improvement on the previous use of B-trees, used in practical implementations to encode the list of labels in traditional
indexes. B-trees are a reasonable choice for the indexes of non-recursive node types, but they are not efficient for
recursive node types. The doubling search algorithm is an improvement on the fast-forwarding [22] technique which
has been seen to perform well in practice, as compared to binary search and sequential access algorithms. Scalability



18is currently the most important issues of the search in XML documents: with the development of XHTML and of
multiple exchange formats, the volume of data to index is increasing always faster, and algorithms of complexity
linear or worse are just not acceptable.

In the future we plan to generalize this technique to other axes, and in particular to the child axis. Even with
labels augmented with some information about the level of the corresponding node (as done in similar studies [19,
10]) the same holistic approach cannot be applied to solve location steps along the child axis with index-trees, because
labels cannot be disabled solely based on their preorder position during a child axis location step. Consider for instance
the document of Figure 20: the figure child of the first section node is a successor of the figure child of the
second section node. In such a configuration, disabling the label of the first figure label for the first section
node must not disable it for the second section node (see Fig. 21). An index structured by level as in Figure 22 or

section
(1:6) · · ·

section
(2:4)

figure
(3)

figure
(5)

Fig. 20. A document on which holistic
algorithm with index-trees cannot solve
the query //section/figure.

section 1:6 · · ·
2:4

figure 3 5 · · ·

Fig. 21. The corresponding index-trees:
a dashed arrow links each section
node to its figure child.

section level 1 1:6 · · ·
level 2 2:4 · · ·

figure level 2 3 · · ·
level 3 5 · · ·

Fig. 22. Levelled indexes would per-
mit the use of doubling search for the
child and parent axes.

by Path Sequences [22] shouldn’t have this problem, and should permit the use of holistic techniques to solve location
steps along parent-child, following-sibling and all forward axes.

We are planning to work on a compact description of sets of matches, so that we can extend our results to Twig
Pattern Matching [10]. Imagine a descendant tree without any distinguished node: it is just a motif. While a descendant
tree has at most n matches in a tree of n nodes, a motif of size k can have up to n k matches in the same document. But
somehow, those matches have many nodes and substructures in common, and the set of all matches can be represented
in a concise way, maybe using Ordered Binary Decision Diagrams (OBDDS). This would be precious in many ways,
for instance to keep intermediary results short when looking for motifs, or to transmit the result of the query in a
compact way and generate the potentially exponential list of matches only at the last moment.

We also consider extending our indexing technique to rooted oriented graphs, so that we can solve query without
ignoring the links defined in XML documents. XML, in addition to model trees in a normalized way, also permits
to define additional links between the nodes of a document, via href attributes. The documented is then no longer
represented as a tree, but as a directed graph, most often acyclic but not always. The naive and brutal approach to treat
those links in the structural queries, aside from ignoring them, is to duplicate all linked subtrees. It seems that indexing
all the links of the document, and performing a doubling search in this additional index each time a node is failed
to be found in the usual index would permit to “follows” those links directly in the index without going back to the
document. It would be the efficient way to include links in a search engine, but it is not clear how it can be reflected
by our current measure of difficulty: more work is necessary on this topic.
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