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Abstract

Call admission control is a key element for providing quality of service (QoS) in mobile wireless

networks. Traditional admission control schemes only address call-level QoS guarantee because of the

underlying circuit-based network architecture. In contrast, emerging wireless technologies such as 3G

and 4G tend to be packet-switched rather than circuit-switched because the packet-based architecture

allows better sharing of the scarce wireless resources. This paper introduces a novel distributed call

admission control scheme called PFG, which maximizes the wireless channel utilization subject to a

predetermined bound on the call dropping and packet loss probabilities for variable-bit-rate traffic in

a packet-switched wireless cellular network. In particular, we show that in wireless packet networks,

the undesired event of dropping an ongoing call can be completely eliminated without sacrificing the

bandwidth utilization. The proposed control algorithm is stochastic and dynamic, hence it is able to adapt

to a wide range of traffic fluctuations and mobility patterns. Extensive simulation results show that our

scheme satisfies the hard constraint on call dropping and packet loss probabilities while maintaining a

high bandwidth utilization.
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Stochastic Admission Control for Quality of

Service in Wireless Packet Networks

I. I NTRODUCTION

Emerging wireless technologies such as 3G and 4G [1], [2] tend to be packet-switched rather

than circuit-switched because the packet-based architecture allows better sharing of limited wire-

less resources. In a packet network, calls do not require dedicated circuits for the entire duration

of connection. Unfortunately, this enhanced flexibility makes it more difficult to effectively

control the admission of connections into the network [3], [4].

In wireless packet networks there exist two levels of quality of service, namely, call-level and

packet-level [5]. At call-level, two important parameters which determine the quality of service

are call blocking probabilityand call dropping probability. Since dropping a call in progress

has more negative impact from the user perspective, handoff calls are given higher priority than

new calls in access to wireless resources. This preferential treatment of handoffs increases the

blocking of new calls and hence degrades the utilization of wireless bandwidth. At packet-level,

packet loss probability, delay and jitter are the most important QoS parameters. There is always

a trade-off between the network utilization and the QoS perceived by users. It is desired to have a

resource allocation scheme which can satisfy the prespecified QoS constraints while maximizing

the utilization of the network resources.

Most of the researchers in wireless networking field have focused only on call-level quality of

service parameters for admission control and resource allocation [5]–[17] because the primary

concern has been voice traffic support in a circuit-switched wireless network. Therefore, there is

no packet transmission and consequently no packet-level quality of service. Our approach consists

of taking into consideration a combination of both call-level and packet-level QoS parameters in

making the admission decision. The main idea is to model the bandwidth requirement in each

cell based on two factors: 1) mobility patterns of users, and 2) packet generation characteristics

of individual calls. Based on this model, the time-dependent packet loss probability is calculated

and used to find the appropriate acceptance ratio for new calls requesting access to the network.

The motivation behind this study is to support variable-bit-rate (VBR) multimedia traffic in
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emerging wireless packet cellular networks.

The rest of the paper is organized as follows. Section II reviews the related work in the area.

Our system model, assumptions and notations are described in section III. Section IV describes

the high-level operation of the proposed admission control algorithm while in section V, detailed

analysis of the algorithm is presented. Some simulation results are presented in section VI and

finally, section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

Call admission control (CAC) has been extensively studied in circuit-switched (voice) wireless

cellular networks (see [5], [11], [15] and references there in). Hong and Rappaport [6] are the

first who systematically analyzed the famousguard channel(GC) scheme, which is currently

deployed in cellular networks supporting voice calls. Ramjee et al. [7] have formally defined

and categorized the admission control problem in cellular networks. They showed that the

guard channel scheme is optimal for minimizing a linear objective function of call blocking

and dropping probabilities while thefractional guard channelscheme (FG) is optimal for

minimizing call blocking probability subject to a hard constraint on call dropping probability.

Instead of explicit bandwidth reservation as in the GC, the FG accepts new calls according to a

randomization parameter called theacceptance ratio.

Because of user mobility, it is impossible to describe the state of the system by using only

local information, unless we assume that the network is uniform and approximate the overall

state of the system by the state of a single cell in isolation. To include the global effect of

mobility, collaborative or distributed admission control schemes have been proposed [8]–[10],

[12], [16]. Information exchange among a cluster of neighboring cells is the approach adopted

by all distributed schemes.

In particular, Naghshineh and Schwartz [8] proposed a collaborative admission control known

as distributed call admission control (DCA). DCA periodically gathers some information, namely

the number of active calls, from the adjacent cells to make, in combination with the local

information, the admission decision. It has been shown that DCA is not stable and violates

the required dropping probability as the load increases [16]. Levin et al. [9] proposed a more

sophisticated version of the original DCA based on the shadow cluster concept, which uses

dynamic clusters for each user based on its mobility pattern instead of restricting itself (as
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DCA) to direct neighbors only. A practical limitation of the shadow cluster scheme in addition

to its complexity and inherent overhead is that it requires a precise knowledge of the mobile’s

trajectory. Recently, Wu et al. [16] proposed a stable distributed scheme (SDCA) based on the

classical fractional guard channel scheme which can precisely achieve the target call dropping

probability. A key feature of SDCA is the formulation of the time-dependent call dropping

probability which can be computed by the diffusion approximation of the channel occupancy.

None of these papers has considered a wireless packet-switched network. There is no packet-

level consideration in these works. Call dropping and blocking probabilities are the only QoS

parameters considered. In circuit-switched networks, when a handoff call arrives while there is

no idle circuit (wireless channel), the handoff fails and hence the call is dropped. In contrast, in a

packet-switched network it is still possible to accept the handoff call at the expense of probably

increasing the number of dropped packets. While this approach completely eliminates the call

dropping event, we will show that its impact on packet loss can be effectively controlled.

We introduce apacketized fractional guard channel(PFG) call admission control mechanism

for cellular packet networks that achieves a high bandwidth utilization while satisfying a target

packet loss probability without dropping any ongoing call. In particular, we consider a packetized

version of the so-called MINB problem [7] in packet-switched cellular networks. We define the

packetized MINB as follow:

for a given cell capacity, maximize the bandwidth utilization while achieving zero

percent call dropping probability subject to a hard constraint on the packet loss

probability.

To the best of our knowledge, PFG is the first to address the packetized MINB problem. The

main features of PFG are as follows:

1) PFG achieves zero percent call dropping.

2) PFG is dynamic, therefore, adapts to a wide range of system parameters and traffic

conditions.

3) PFG is distributed and takes into consideration the information from direct neighboring

cells in making admission decisions.

4) The control mechanism is stochastic and periodic to reduce the overhead associated with

distributed control schemes.
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III. SYSTEM MODEL

A packet-switched cellular network is considered in this paper. We assume that there is one

type of calls in the system. As mentioned earlier, in the system under consideration, no handoff

call is dropped instead overflow packets are dropped. The considered system is bufferless, hence

packet delay and jitter due to packet queueing process are zero. Therefore, packet loss probability

is the only packet-level QoS parameter. Furthermore, we assume that cell overflow (receiving

more traffic than what can be actually transmitted) is the only source of packet loss, i.e. no

packet loss due to wireless channel effects.

Below is the notation which will be used throughout this paper.

• B: total number of cells in the network

• Ai: the set of adjacent cells of celli

• ci: capacity of celli, which is equal to the packet transmission rate of base stationi

• Ri(t): packet arrival rate at timet in cell i

• Li(t): packet loss probability at timet in cell i

• Ni(t): number of active calls at timet in cell i

• ai: new call acceptance ratio in celli

• λi: new call arrival rate into celli

• 1/µ: mean call duration

• 1/h: mean cell residency time

• T : length of the control period

• PL: target packet loss probability

• rji: routing probability from cellj ∈ Ai to cell i

• Pji: handoff probability from cellj ∈ Ai to cell i

• E[z]: the mean of random variablez

• V [z]: the variance of random variablez

• z̃: the time-averaged value of random variablez

The considered system is not required to be uniform. Each cell can experience a different

load, e.g. some cells can be over-utilized while others are under-utilized. Also cells may have

different capacities. Moreover, we consider that

1) The cell capacity is fixed over time. However, the approach that we propose next can be
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extended to include cases in whichci varies over time.

2) New call arrivals to a cell are independent and Poisson distributed.

3) Cell residency times are independent and exponentially distributed. However, we show that

the proposed algorithm is insensitive to this assumption.

4) Call durations are independent and exponentially distributed.

The exponential call durations and cell residency times are widely used in literature [5]–[8],

[10]–[13], [16]. In the real word, the cell residence time distribution may not be exponential

but exponential distributions provide the mean value analysis, which indicates the performance

trend of the system. Furthermore, our proposed admission control algorithm involves a periodic

control where the length of the control period is set to much less than the average cell residency

time of a call to make the algorithm insensitive to this assumption.

A. Maximum Occupancy in a Cell

Let Mi denote the maximum occupancy, i.e. maximum number of calls, in celli under the

so-calledaverage bandwidth assignmentscheme. This scheme allocates to each VBR call a

share of bandwidth equal to the call’s average bandwidth requirement. Letm denote the average

bandwidth requirement of a call, then

Mi =
ci

m
. (1)

Although this scheme achieves a high bandwidth utilization, it leads to a high rate of packet

loss [18]. If there are more thanMi calls in cell i, then we say that the cell is inoverloaded

state. In the overloaded state, probability of packet loss is very high. Our scheme, PFG, rejects

new call requests when a cell is in overloaded state.

B. Multiple Handoffs Probability

As mentioned earlier, in order to make the optimal admission decision, distributed schemes

regularly exchange some information with other cells in the network. Those cells involved in

the information exchange form acluster. Due to the intercell information exchange, base station

interconnection network incurs a high signalling overhead. Moreover, as the cluster size increases

the operational complexity of the control algorithm increases too. In particular, two major factors

affect the overhead and complexity of distributed CAC schemes; (1) frequency of information
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exchange, and, (2) depth of information exchange, i.e. how many cells away information is

exchanged.

To reduce the overhead, distributed CAC schemes typically have a periodic structure in which

only at the beginning of control periods information exchange is triggered. Moreover, information

exchange is typically restricted to a cluster of neighboring cells. Note that, if the control interval

is too small then frequent communications increases the signalling overhead. On the other hand,

if the control period is too long then the state information stored locally may become stale.

Similarly, if the cluster is too small then the exchanged information will poorly reflects the state

of the network. On the other hand, a big cluster will lead to higher overhead. An efficient CAC

scheme must compromise between the frequency and depth of information exchange.

In this paper, we set the control interval in such a way that the probability of having multiple

handoffs in one control period becomes negligible. Therefore, we can effectively assume that

only those cells directly connected to a cell can influence the number of calls in that cell during

a control period. In a sense, we reduce the control interval in favor of a smaller cluster size. We

claim that using this technique, the signalling overhead will not increase, while the collected

information on the network status will be sufficiently accurate for the purpose of a stochastic

admission control. The reason is that: first, by decreasing the control interval, the probability

of multiple handoffs decays to zero exponentially (see section V-E); second, a cluster shrinks

quadratically with decreasing the depth of information exchange (see below).

Without loss of generality, consider a symmetric network where each cell has exactlyA

neighbors. Consider celli and all the cells around it forming circular layers as shown in Fig. 1.

From celli, all the cells up to layern are accessible withn handoffs assuming that celli forms

layer 0. The number of cells reachable byn handoffs from celli denoted byM(n) is given by

M(n) = 1 +A+ · · ·+ nA

= 1 +
1

2
n(n + 1)A .

(2)

Therefore, by slightly reducing the control interval, we essentially achieve the same control

accuracy but with reduced signalling overhead. The problem of choosing the proper control

interval will be further addressed in section V-E.
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Fig. 1. A cellular system with 3 layers.

C. Time-Dependent Handoff Probability

Let random variablestd andtr denote the call duration and cell residency time of a typical call,

respectively. We compute here some useful probabilities required for the rest of our discussion.

Let Ph(t) denote the probability that a call hands off to another cell by timet and remains

active until t, given that it has been active at time0. Also, let Ps(t) denote the probability that

a call remains active in its home cell until timet, given that it has been active at time0. Then,

Ph(t) = Pr(tr ≤ t) Pr(td > t)

= (1− e−ht) e−µt,
(3)

and,

Ps(t) = Pr(tr > t) Pr(td > t)

= e−(µ+h)t .
(4)

These equations are valid as far as the memoryless property of call duration and cell residency

is satisfied. On average, for any call which arrives at timet′ ∈ (0, t], the average handoff and

stay probabilitiesP̃h and P̃s are expressed as

P̃h(t) =
1

t

∫ t

0

Ph(t− t′) dt′, (5)

P̃s(t) =
1

t

∫ t

0

Ps(t− t′) dt′ . (6)

These integrals can be easily computed with respect to (3) and (4).

Similar to [8] and [10], we assume that during a control period each call experiences at most

one handoff. This assumption is justified by setting the length of the control periodT reasonably
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shorter than the average cell residency time. Since cell residency is exponentially distributed, the

number of cell crossings (handoff events) that an active call experiences during its lifetime has

a Poisson distribution with the mean rateh. Therefore,Th is the expected number of handoffs

during an interval of lengthT for an arbitrary call. By settingT � 1/h, we make sure that the

probability of having more than one handoff during the interval of lengthT is negligible. This

will be further addressed in section V-E.

Finally, let Pji(t) denote the time-dependent handoff probability that an active call in cellj at

time 0 will be in cell i at timet, wherej ∈ Ai. Since each call experiences at most one handoff

during the control period, it is obtained that

Pji(t) = Ph(t) rji . (7)

Similarly, the average handoff probabilitỹPji(t) for a call which arrives at any timet′ ∈ (0, t]

is given by

P̃ji(t) = P̃h(t) rji . (8)

In next section, we will use the computed probabilities to find the maximum acceptance ratio

for a given celli with respect to the prespecified packet loss probabilityPL.

IV. A DMISSION CONTROL ALGORITHM

The proposed distributed algorithm, PFG, consists of two components. The first component

is responsible for retrieving the required information from the neighboring cells and computing

the acceptance ratio. Since each call experiences at most one handoff during the control period,

the immediate neighbors of celli, i.e.Ai, are the ones that will affect the number of calls, and

consequently the packet arrival process in celli during a control period. Hence, in our distributed

admission control algorithm, information exchange is limited to direct neighboring cells. Using

the computed acceptance ratio, the second component enforces the admission control locally in

each cell. The following sections describe these two components in detail.

A. Distributed Control Algorithm

As mentioned earlier, to reduce the signalling overhead, PFG has a periodic structure. All the

information exchange and acceptance ratio computations happen only once at the beginning of
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Fig. 2. Packetized fractional guard channel transition diagram.

each control period of lengthT . Several steps involved in PFG distributed control are described

below:

1) At the beginning of a control period, each celli sends the following information to its

adjacent cells:

a) the number of active calls in the cell at the beginning of the control period denoted

by Ni(0).

b) the number of new calls,Ni, which were admitted in the last control period.

2) Each celli receivesNj(0) andNj from every adjacent cellj ∈ Ai.

3) Now, cell i uses the received information and those available locally to compute the

acceptance ratioai using the technique described in section V.

4) Finally, the computed acceptance ratioai is used to admit call requests into celli using

the algorithm presented in section IV-B.

B. Local Control Algorithm

In PFG, handoffs are always accepted with probability1 even when the destination cell is

overloaded. In this situation, accepting incoming handoffs may increase the number of dropped

packets. There is no buffer in the system and packets are served/dropped according to a FIFO

scheduling.

Let si denote the state of celli, where there ares calls active in the cell. Letai(s) denote

the acceptance ratio where the cell state issi. Fig. 2 shows the state transition diagram of the

PFG scheme in celli. In this diagram,νi is the handoff arrival rate into celli, andMi is the

maximum occupancy given by (1).

For an accurate control, the call blocking probability in each period is given by complementing

the acceptance ratio. Therefore, by averaging acceptance ratios over a number of control periods,
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if (x is a handoff call) then

accept call;
else /* x is a new call */

if (rand(0, 1) < ai) & (Ni(t) ≤ Mi) then

accept call;
else

reject call;
end if

end if

Fig. 3. Local call admission control algorithm in celli.

the call blocking probability in celli denoted bypbi is expressed as

pbi = 1− ãi . (9)

Consequently, the average network-wide call blocking probability for the considered network is

given by

pb =

∑B
j=i λipbi∑B

j=i λi

. (10)

The pseudo-code for the local admission control in celli is given by the algorithm in Fig. 3.

In this algorithm,x is a call requesting a connection into celli. The acceptance ratio for the

respective control period isai. Also, rand(0, 1) is a uniform random generator function. In the

next section, we will present a technique to compute the acceptance ratioai in order to complete

this algorithm.

V. COMPUTING THE ACCEPTANCERATIO

Assuming the target loss probability is sufficiently small, we approximate the packet loss

probability by the overflow probability in each cell. Similar approximation is used for computing

the effective bandwidth of a call in [4] and [19]. In particular, it is shown in [18] that, for a

given network configuration, the overflow probability is superior to the packet loss probability.

However, as the overflow probability decays to zero, both measures converge to the same value

and the difference becomes negligible.

The approximated packet loss probability here can be interpreted as a tight upper bound on

the actual packet loss probability. Therefore, the time-dependent packet loss probability at time

t in cell i is given by

Li(t) = Pr
(
Ri(t) > ci

)
, (11)
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whereRi(t) denotes the total (new and handoff) packet arrival rate into celli at time t.

The proposed approach for computing the acceptance ratio includes the following steps:

1) Each celli uses the information received from its adjacents and the information available

locally to find the time-dependent mean and variance of the number of calls in the cell

using (22) and (25), respectively.

2) The computed mean and variance of the number of calls is used to find the mean and

variance of the packet arrival process in the cell using (16) and (17), respectively.

3) Having the mean and variance of the packet arrival process, the time-dependent packet

arrival process is approximated by a Gaussian distribution.

4) The tail of this Gaussian distribution is used to find the time-dependent packet loss

probability in each celli.

5) Time-dependent packet loss probability is averaged over a control interval of lengthT to

find an average packet loss probability as expressed by (31).

6) Using the computed packet loss probability and the prespecified QoS constraint, i.e.L̃i ≤

PL, acceptance ratioai is computed from (32).

The motivation behind Gaussian traffic characterization is that it is very natural when a large

number of sources are multiplexed (motivated by the central limit theorem [20]), as is expected

to be the case in future wireless networks. It is expected that future wireless technologies such as

3G and 4G increase the available cell capacities to several Mbps [1], [2]. In such networks, the

number of active calls (and consequently, the number of packets being transmitted) is so high

that the central limit theorem can be successfully applied to model the packet arrival process in

each cell.

In fact, it has been observed that the aggregation of even a fairly small number of traffic

streams is usually sufficient for the Gaussian characterization of the input process [19], [21].

Further, Gaussian processes are completely specified by their first two moments. This makes

Gaussian traffic characterization ideal from a measurement point of view, since measuring

statistics beyond the second moment is usually impractical. Also, Gaussian processes can have

an arbitrary correlation structure and this includes self-similar processes [22], [23] as well.

In following subsections we show the derivation of packet loss probability which is used to

find the acceptance ratio.
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A. Traffic Characterization

Let rn denote the packet generating process of an individual calln. It is assumed that individual

packet generating processes are independent and identically distributed (iid) random variables

with the mean and varianceE[r] and V [r], respectively. Then,Ri(t), the total packet arrival

rate in celli at timet, is expressed as the summation of packet generating process of individual

calls. That is

Ri(t) =

Ni(t)∑
n=1

rn . (12)

where Ni(t) denotes the number of calls at timet. Our objective is to apply the central

limit theorem to approximateRi(t) by a Gaussian distribution. At first we have to specify

the parameters ofRi(t), namely, mean and variance.

Let Φr denote the moment generating function ofrn, i.e.Φr(θ) = E[eθrn ]. Also, letΦR denote

the moment generating function ofRi(t), thenΦR(θ) can be found as follows:

ΦR(θ)|Ni(t)=N = E[eθRi(t)|Ni(t) = N ]

= E[eθ
∑Ni(t)

n=1 rn|Ni(t) = N ]

= E[eθ
∑N

n=1 rn ]

= {Φr(θ)}N ,

(13)

therefore,

E[eθRi(t)|Ni(t)] = {Φr(θ)}Ni(t), (14)

and,

E[eθRi(t)] = E[{Φr(θ)}Ni(t)] . (15)

Using these equations, it is obtained that

E[Ri(t)] = E[Ni(t)]E[r], (16)

V [Ri(t)] = E[Ni(t)]V [r] + V [Ni(t)]E
2[r] . (17)

As expected, the variance of the total packet arrival rate is a function of both variance of

individual call packet generating process and the variance of the number of calls at timet. This

indicates that static treatment of the number of calls in a cell, i.e. assuming that there isE[Ni(t)]

calls in a cell, is not accurate and must be avoided.
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Therefore, in order to computeE[Ri(t)] andV [Ri(t)] we have to first haveE[r] andV [r]. In

this paper, we assume thatE[r] andV [r] are known to the admission controller a priori. This is

a minimal set of requirements since it does not assume anything specific about the actual packet

generating process of the individual calls. Two cases can happen in practice:

1) The traffic generation process of individual calls can be described by means of an analytical

model. In this case,E[r] andV [r] are simply computed using probabilistic techniques [20].

2) The traffic generation process of individual calls can not be described by means of an

analytical model. In this case,E[r] and V [r] are simply measured from real traffic data

[21].

In next section, we computeE[Ni(t)] andV [Ni(t)] based on the mobility information available

locally and the information obtained from neighboring cells.

B. Mobility Characterization

The number of calls in celli at timet is affected by two factors: (1) the number of background

(existing) calls which are already in celli or its adjacent cells, and, (2) the number of new calls

which will arrive in cell i and its adjacent cells during the period(0, t] (0 < t ≤ T ). Let gi(t)

andni(t) denote the number of background and new calls in celli at time t, respectively.

A background call in celli will remain in cell i with probability Ps(t) or will handoff to an

adjacent cellj with probability Pij(t). A new call which is admitted in celli at time t′ ∈ (0, t]

will stay in cell i with probability P̃s(t) or will handoff to an adjacent cellj with probability

P̃ij(t). Therefore, the number of background calls which remain in celli and the number of

handoff calls which come into celli during the interval(0, t] are binomially distributed. For a

binomial distribution with parameterq, the variance is given byq(1− q). Using this property it

is obtained that

Vs(t) = Ps(t) (1− Ps(t)), (18)

Vji(t) = Pji(t) (1− Pji(t)), (19)

Ṽs(t) = P̃s(t) (1− P̃s(t)), (20)

Ṽji(t) = P̃ji(t) (1− P̃ji(t)), (21)

where,Vs(t) andVji(t) denote the time-dependent variance of stay and handoff processes, and,

Ṽs(t) and Ṽji(t) are their average counterparts, respectively.
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The number of calls in celli is the summation of the number of background calls,gi(t), and

new calls,ni(t). Therefore, the mean number of active calls in celli at time t is given by

E[Ni(t)] = E[gi(t)] + E[ni(t)], (22)

where,

E[gi(t)] = Ni(0)Ps(t) +
∑
j∈Ai

Nj(0)Pji(t), (23)

E[ni(t)] = (aiλit)P̃s(t) +
∑
j∈Ai

(ajλjt)P̃ji(t) . (24)

Similarly the variance is given by

V [Ni(t)] = V [gi(t)] + V [ni(t)], (25)

where,

V [gi(t)] = Ni(0)Vs(t) +
∑
j∈Ai

Nj(0)Vji(t), (26)

V [ni(t)] = (aiλit)Ṽs(t) +
∑
j∈Ai

(ajλjt)Ṽji(t) . (27)

Note that given the arrival rateλi and the acceptance ratioai, the actual new call arrival rate

into cell i is given byλiai. Therefore, the expected number of call arrivals during the interval

(0, t] is given byaiλit.

C. Packet Loss Probability

As mentioned earlier, the packet arrival distribution in each cell can be approximated by a

Gaussian distribution:

Ri(t) ∼ G
(
E[Ri(t)], V [Ri(t)]

)
, (28)

where,E[Ri(t)] andV [Ri(t)] are given by (16) and (17), respectively.

Hence, the original admission control problem is reduced to maintaining the packet arrival

rate below the available capacityci with probability1−PL at any point in timet ∈ (0, T ]. Using

(11) and (28) it is obtained that

Li(t) =
1

2
erfc

(
ci − E[Ri(t)]√

2 V [Ri(t)]

)
, (29)
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whereerfc(c) is the complementary error function defined as

erfc(c) =
2√
π

∫ ∞

c

e−t2 dt . (30)

Using (29), the average packet loss probability over a control period of lengthT is given by

L̃i =
1

T

∫ T

0

Li(t) dt . (31)

Then, the acceptance ratio,ai, can be found by numerically solving (refer to [24]) equation

L̃i = PL . (32)

The boundary condition is thatai ∈ [0, 1], hence ifL̃i is less thanPL even forai = 1 thenai

is set to1. Similarly, if L̃i is greater thanPL even forai = 0, thenai is set to0.

D. Actual New Call Arrival Rate

In section V-C, we used productsajλj to compute the mean and variance of the number of

calls in celli (j ∈ Ai). Let us define theactual new call arrival rateinto cell j, denoted bȳλj,

as follows

λ̄j = ajλj . (33)

In order to computeai for the new control period we need to know̄λj for every adjacent cell

j (j ∈ Ai). Similarly, cell j needs to know̄λi in order to be able to computeaj. Therefore,

every cell depends on its adjacents and vice versa. To break this dependency, instead of using

the actual value of̄λj, each celli estimates the actual new call arrival rates of its adjacents for

the new control period.

Let λ̄j(n) denote the actual new call arrival rate into cellj during then-th control period.

Also, let Nj(n) denote the number of new calls that were accepted in cellj during then-th

control period. An estimator for̄λj is expressed as

λ̄j(n + 1) = (1− ε)
Nj(n)

T
+ ελ̄j(n), (34)

where,λ̄j(n + 1) is the actual new call arrival rate into cellj at the beginning of the(n + 1)-th

control period. Note that̄λj(n) is known at the beginning of the(n + 1)-th control period. In

our simulations we found thatε = 0.3 leads to a good estimation of the actual new call arrival

rate.
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E. Control Interval

The idea behind at-most-one handoff assumption is that by setting control interval appropri-

ately, the undesired multiple handoffs during a control period can be avoided. As discussed in

section III-B, this minimizes the signalling overhead and operational complexity of PFG. In this

section, we address the control interval selection problem.

Consider a symmetric network where each cell has exactlyA neighbors, and the probability

of handoff to every neighbor is the same. Then, the routing probabilityrij from cell i to cell j

is given by

rij =

1/A, j ∈ Ai,

0, j /∈ Ai .
(35)

Let q(n) denote the probability that an active call experiencesn handoffs during time intervalT .

Also, let qij(n) denote the probability that a call originally in celli moves to cellj over a path

consisting ofn handoffs during time intervalT . Define δ as the multiple handoffs probability

from cell i to cell j. We then can write

δ =
∞∑

n=2

qij(n) . (36)

Our goal is to find a relation betweenT andδ in order to be able to controlδ by controllingT .

For an effective control (pf in the range of10−4 to 10−2) we can assume thatpf is effectively

zero. Similarly, if δ ≈ pf for a givenT , we can assume that the multiple handoffs probability

is zero. Since cell residency is exponential, the number of handoffs a call experiences during

an interval is Poisson distributed with meanhT , given that the call is active during the whole

interval. Therefore, it is obtained that

q(n) =
(hT )n

n!
e−(h+µ)T . (37)

In order to computeqij(n) based on (37), we need to find the probability of moving from cell

i to cell j by n handoffs. LetLij(n) denote the number of paths consisting ofn handoffs from

i to j, then

qij(n) =
Lij(n)

An
q(n) . (38)

Consider the network depicted in Fig. 1. LetT = 20 s, 1/µ = 180 s, 1/h = 100 s andA = 6.

Table (I) shows the maximum probability of multiple handoffs from any cellj to cell 0, Pj0(n),
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TABLE I

MULTIPLE HANDOFFS PROBABILITY FORT = 20 s.

n Layer max{Lj0(n)} max{Pj0(n)}

0 0 1 0.73263

1 0 1 0.02442

2 0 6 0.00244

3 1 15 0.00007

4 0 90 0.00000

5 0 360 0.00000
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Fig. 4. Effect ofT on multiple handoffs probability.

based on the number of handoffs,n. For eachn, we have also determined which layer has the

maximum paths to cell0. Interestingly, cell0 has the most paths to itself through other cells.

We have also illustrated in Fig. 4 the impact of the control intervalT on the multiple handoffs

probability δ for the same set of parameters.

Consider celli and all the cells around it forming circular layers. From celli, all the cells up

to layer n are accessible withn handoffs assuming that celli forms layer 0. It can be shown

that

Lij(n) ≤ An−1, n ≥ 1 (39)

because forn ≥ 1, at each level there are at leastA cells which have the same number of paths
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Fig. 5. ON/OFF model.

to the destination celli. Therefore

qij(n) ≤ 1

A
(hT )n

n!
e−(h+µ)T , n ≥ 1 . (40)

Using (36) and (40), it is obtained that

δ ≤
∞∑

n=2

1

A
(hT )n

n!
e−(h+µ)T

=
ehT − hT − 1

Ae(h+µ)T
.

(41)

Using the Taylor expansion of exponential terms forδ � 1
A( h

µ+h
), it is obtained that

T ≤ Aδ(µ + h) + h
√

2Aδ

Aδ(µ + h)2 − h2
, (42)

which finally leads to the following simple relation

T ≈
√

2Aδ

h
. (43)

VI. SIMULATION RESULTS

A. Simulation Parameters

Simulations were performed on a two-dimensional cellular system consisting of 19 hexagonal

cells (see Fig. 1). Opposite sides wrap-around to eliminate the finite size effect. As the basic

traffic type, packetized voice calls are generated for simulation purposes. For packetized voice,

a packet loss probability ofPL = 0.01 is acceptable.

The common parameters used in the simulation are as follows. All the cells have the same

capacityc. Target packet loss probability isPL = 0.01, control interval is set toT = 20 s and

all the neighboring cells have the same chance to be chosen by a call for handoff, i.e.rji = 1/6.
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Besides, for ease of illustrating the results, we assumed that the system is uniform and the input

load is the same for every cell, although PFG is designed to handle the nonuniform case and

also, the simulation can accommodate arbitrary load distributions. In all of the cases simulated,

normalized loadis used to show a fair comparison of performance measures irrespective of the

absolute values of cell capacity and arrival rates, where the normalized load is defined as

ρ =
1

Mi

(λ

µ

)
, (44)

whereMi is given by (1).

For each load, simulations were done by averaging over 8 samples, each for104 s of simulation

time. Call duration and cell residency times are exponentially distributed with meansµ−1 = 180 s

andh−1 = 100 s, respectively (except the last simulated case). We found this set of parameters

more or less common and reasonable for a simulation setup (see for example [16]).

B. Traffic Model

The two-state Markov model shown in Fig. 5 is used to describe the traffic generation process

of voice calls. It has been shown that this simple process can model voice and video traffic

sources [18] as well as other complicated traffics [19]. In this model,α and β are transition

rates to OFF and ON states, respectively, from ON and OFF states. While in the ON state, traffic

is generated at a constant rate ofA packet/sec. Theactivity factor of such a traffic source is

defined to be the probability of being in the ON state and is given by

η =
β

α + β
. (45)

For this traffic model, the mean and variance of the traffic generated is given byE[r] = ηA

andV [r] = η(1 − η)A2 [18]. Commonly used parameters for human speech representation are

α−1 = 1.2 s andβ−1 = 1.8 s [25], [26]. Using an 8 Kbps encoded voice source, it is obtained

that A = 100 packet/sec and hence,E[r] = 40 packet/sec andV [r] = 50 packet/sec assuming

that each packet is 80 bits.

C. Conservative PFG

As mentioned earlier, PFG does not drop any handoff call, instead some packets may be

dropped to accommodate the incoming handoff packets. To have an intuition about the impact
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if (x is a handoff call) then

if (Ni(t) ≤ Mi) then

accept call;
else

reject call;
end if

else /* x is a new call */
if (rand(0, 1) < ai) & (Ni(t) ≤ Mi) then

accept call;
else

reject call;
end if

end if

Fig. 6. Pseudo-code of PFG-DP algorithm in celli.

of accepting handoffs even during the overloaded state, we have also implemented a slightly

different version of PFG in addition to the original PFG represented in Fig. 2.

This modified version drops handoffs during the overloaded state. We refer to the original

algorithm by PFG-D0 and the modified one by PFG-DP where D0 and DP stand for zero

dropping probability andP dropping probability, i.e. if we use PFG-DP instead of PFG-D0 then

there will beP percent call dropping. Our purpose is to find the value ofP for some simulated

scenarios to see how far it is from zero. Notice that, havingNi(t) > Mi (t ∈ (0, T ]) indicates

that cell i is in the overloaded state at timet. The pseudo-code for PFG-DP in celli is given

by the algorithm in Fig. 6.

D. Results and Analysis

As mentioned earlier, PFG is the first to achieve zero call dropping while guaranteeing a hard

constraint on packet loss probability. To the best of our knowledge there is no existing scheme

which takes into consideration a combination of call-level and packet-level QoS parameters as

defined by packetized MINB in section II. Therefore, we are not able to compare the performance

of PFG with any other scheme. Instead, by doing extensive simulations, we have shown that

PFG can achieve its defined goals.

In the rest of this section, we present our simulation results. Several scenarios have been

considered to investigate the impact of major factors such as cell capacity, control interval, cell

residency and mobility on the performance of PFG. In all the simulated cases, PFG is stable

and achieves accurate results.



21

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Normalized Load

B
lo

c
k

in
g

 P
ro

b
a

b
il

it
y

c1

c2

c5

(a) Blocking probability.

0.000

0.005

0.010

0.015

0.020

0.025

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Normalized Load

P
a
c
k
e
t 

L
o

s
s
 P

ro
b

a
b

il
it

y c1

c2

c5

(b) Packet loss probability.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Normalized Load

C
h

a
n

n
e

l 
U

ti
li

z
a

ti
o

n

c1

c2

c5

(c) Channel utilization.

Fig. 7. PFG-D0 performance results.

TABLE II

CELL CAPACITY PROFILES.

Profile Capacity

c1 1 Mbps

c2 2 Mbps

c5 5 Mbps

1) Effect of cell capacity:Intuitively, increasing the cell capacity leads to a better Gaussian

approximation, and hence, a more accurate admission decision. To investigate the effect of cell

capacity, we considered three different capacity configurations as shown in Table II. Keep in

mind that the system under consideration is a broadband wireless network such as 3G and 4G

systems. Normalized loads in range[0 . . . 2] are simulated, where the normalized load is defined

by (44).

In Figs. 7(a), 7(b) and 7(c) we have circled a region around loadρ = 1.0. This is the most
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TABLE III

PFG-DPCALL DROPPING PROBABILITY.

Load c1 c2 c5

0.2 0.000000 0.000000 0.000000

0.6 0.000000 0.000000 0.000000

1.0 0.000000 0.000000 0.000000

1.4 0.000007 0.000002 0.000001

1.8 0.000012 0.000006 0.000005

interesting part of the system which is likely to happen in practice. In the following discussion

we refer to this region as theoperating regionof the system.

Fig. 7(a) shows the new call blocking probability. It is clear from the figure that as the cell

capacity increases the blocking probability decreases which can be explained from the central

limit theorem and Gaussian approximation used in section V-C. As the system capacity increases,

the Gaussian modeling leads to more accurate approximation and hence, decreased call blocking

probability.

The packet loss probability,̃Li, is depicted in Fig. 7(b). Although̃Li goes beyond the target

limit for high system loads, it is completely satisfactory for the operating region. Nevertheless,

it is quite possible to modify PFG-D0 in order to make it more conservative for high loads.

Similar to call blocking, as the capacity increases the PFG-D0 efficiency improves.

Fig. 7(c) depicts the wireless bandwidth utilization under the three different system capacities.

As explained before, increased accuracy of the Gaussian approximation for high system capacity

leads to a better channel utilization. After all,c1 produces rather accurate results and increasing

the capacity beyond it produces only marginal improvements.

2) Effect of accepting handoffs in overloaded state:To investigate the impact of accepting

handoffs during the overloaded state (in whichNi(t) > Mi), we ran PFG-DP for the same

simulation configuration we ran PFG-D0. Table III shows the call dropping probabilities for

different loads and capacities. It is observed that the call dropping probability is almost zero

in all the simulated configurations. It means that basically there is no difference between two

schemes in terms of the call dropping probability.

Fig. 8 shows the call blocking and packet loss probabilities of PFG-D0 versus PFG-DP when



23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Normalized Load

B
lo

c
k

in
g

 P
ro

b
a

b
il

it
y

PFG-D0

PFG-DP

(a) Blocking probability.

0.000

0.005

0.010

0.015

0.020

0.025

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Normalized Load

P
a
c
k
e
t 

L
o

s
s
 P

ro
b

a
b

il
it

y PFG-D0

PFG-DP

(b) Packet loss probability.

Fig. 8. PFG-D0 vs. PFG-DP.

TABLE IV

MOBILITY PROFILES.

Profile 1/µ (s) 1/h (s) α

Mob: high 180 20 9.00

Mob: mod 180 100 1.80

Mob: low 180 500 0.36

the system capacity is set toc1 (1 Mbps). Overall, there is no difference between the two

schemes. It can be seen from Fig. 8(b) that the packet loss probability is almost the same for

both schemes indicating that accepting handoffs during the overloaded state has a negligible

effect on the admission control performance. Fig. 8(a) further confirms the same result.

3) Effect of mobility: To increase the capacity of cellular networks, micro/pico cellular ar-

chitectures will be deployed in the future. The smaller cell size of these architectures leads to a

higher handoff rate. Define themobility factor to beα = h/µ. Intuitively, α shows the average

number of handoff attempts a call makes during its life time. As the mobility factor increases

the handoff arrival rate increases as well. To investigate the impact of mobility on PFG, we

have simulated three mobility cases for the base capacityc1 as shown in Table IV. In this table,

α = 9.00 represents a highly mobile scenario such as vehicular users in a high way;α = 1.80

is a common scenario typically used in similar research papers [12], [16] and shows an urban

area mobility, and finally,α = 0.36 represents a low mobility case.

Observed from Fig. 9, PFG is almost insensitive to the mobility rate of users. As shown
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Fig. 9. Mobility impact on PFG-D0 performance.

in Figs. 9(a) and 9(c), the call blocking probability and channel utilization are almost match.

Furthermore, Fig. 9(b) shows that the effect of mobility on packet loss probability is not very

significant. In all three cases, PFG is able to satisfy the target packet loss probability in the

operating region of the system. In general, handoff degrades the performance of cellular systems.

4) Effect of Control Interval:Both signalling overhead and accuracy of PFG are affected by

the control interval. Although increasing the control interval reduce the signalling overhead, the

admission control accuracy will deteriorate. Therefore, there must be a compromise between the

incurred overhead and the achieved accuracy. As we showed in subsection V-E, this compromise

depends on the mobility of users.

Fig. 10 shows the effect of control interval on the performance of PFG. The simulated scenarios

consider the high mobility profile in Table IV, where the mobility factor is set toα = 9. It is

observed that by reducing the control intervalT , the accuracy of PFG in terms of the achieved
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Fig. 10. Effect of control interval.

packet loss probability increases.

An interesting question is that what is the appropriate control interval for high mobility scenario

to achieve the same performance as moderate mobility scenario? Fig. 9 shows that there is a

small discrepancy between two scenarios when the control interval is the same and equal to

T = 20 s.

Using (43), it is obtained that

TMob: high

TMob: mod
=

αMob: mod

αMob: high
. (46)

Therefore,TMob: high must be set to1
5
TMob: mod in order to see the same performance results.

Fig. 11 shows the simulation results for high mobility and moderate mobility scenarios where

TMob: high = 4 s andTMob: mod = 20 s.

5) Effect of non-exponential cell residence times:The first part of our analysis, which gives

the equations describing the mean and variance of the traffic generation process, is based on the

assumption of the exponential cell residency time. As mentioned earlier, exponential distributions

provide the mean value analysis, which indicates the performance trend of the system. However,

in practice, cell residence times are usually non-exponentially distributed. In this section, we

investigate the sensitivity of PFG to exponential cell residency assumption.

Using real measurements, Jedrzycki and Leung [27] showed that a lognormal distribution is

a more accurate model for cell residency time. We now compare the results obtained under

exponential distribution with those obtained under more realistic lognormal distribution. The
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Fig. 11. Robustness to mobility patterns.
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Fig. 12. Lognormal vs. Exponential residence time.

mean and variance of both distributions are the same. Fig. 12 shows the call blocking and packet

loss probability of exponential cell residency versus lognormal cell residency. It is observed that

the exponential cell residency achieves sufficiently accurate control. In other words, the control

algorithm is rather insensitive to this assumption due to its periodic control in which the length

of the control interval is much smaller than the mean residency time.

VII. C ONCLUSION

In this paper we presented a novel scheme for admission control and hence QoS provisioning

for packet-switched cellular systems. In essence, our approach is the natural generalization of

the well-known effective bandwidth [19] proposed for wireline networks. Through analysis and

simulation, we showed that the proposed scheme, PFG, is able not only to improve utilization of
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scarce wireless bandwidth thanks to the statistical multiplexing of VBR traffic sources but also

to eliminate the undesirable call dropping event inherent to circuit-switched cellular systems.

In wireless multimedia networks, there are different service classes, each of which has its

own packet and call level QoS constraints. We are currently investigating the extension of PFG

to multiple service classes where each service class has its own QoS requirements. Also, a

preliminary work shows that by embedding the loss rate into equation (31), PFG is able to have

a more precise control on actual packet loss probability.
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