
Similarity Search in Metric Spaces

Yuhui Wen

School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

Technical Report CS-2004-47
September 30, 2004

This report is a reprint of a thesis that embodies the results of research done in par-
tial ful�llment of the requirements for the degree of Master of Mathematics in Computer
Science at the University of Waterloo.

Abstract

Similarity search refers to any searching problem which retrieves objects from a
set that are close to a given query object as re�ected by some similarity criterion. It
has a vast number of applications in many branches of computer science, from pattern
recognition to textual and multimedia information retrieval.

In this thesis, we examine algorithms designed for similarity search over arbitrary
metric spaces rather than restricting ourselves to vector spaces. The contributions in
this paper include the following:

First, after de�ning pivot sharing and pivot localization, we prove probabilistically
that pivot sharing level should be increased for scattered data while pivot localization
level should be increased for clustered data. This conclusion is supported by extensive
experiments. Moreover, we proposed two new algorithms, RLAESA and NGH-tree.
RLAESA, using high pivot sharing level and low pivot localization level, outperforms
the fastest algorithm in the same category, MVP-tree. NGH-tree is used as a framework
to show the e�ect of increasing pivot sharing level on search e�ciency. It provides a
way to improve the search e�ciency in almost all algorithms. The experiments with
RLAESA and NGH-tree not only show their preformance, but also support the �rst
conclusion we mentioned above.

Second, we analyzed the issue of disk I/O on similarity search and proposed a new
algorithm SLAESA to improve the search e�ciency by switching random I/O access to
sequential I/O access.

Keywords - similarity search, metric space, pivot selction, pivot sharing , pivot
localization, RLAESA

ii

Acknowledgements

My greatest thanks are extended to my supervisor, Professor Frank Tompa, whose
guidance and encouragement are the most important help to my study. He is a really
friendly and responsible supervisor, who always gave me timely and valuable comments,
who even kindly advised me during his holiday.

I would also like to give my special thanks to my �rst supervisor, Professor Gisli
Hjaltason, who passed away during my study. His teaching and guidance gave me lots
of help to understand the area of "Similarity Search" and triggered me to study in this
area.

I want to thank my classmate, Lei Chen, for giving me important suggestions and
helping me on some of the experiments.

Moreover, I would like to thank my readers, Professors Edward Chan and Alex
Lopez-Ortiz, for their time in reviewing my thesis and their comments on improving
my work.

Financial support from the University of Waterloo is gratefully acknowledged.

iii

Contents

1 Introduction 1

2 Related Work 9
2.1 Range Search . 9

2.1.1 Distance Matrix Structures . 9
2.1.1.1 AESA . 9
2.1.1.2 LAESA . 11
2.1.1.3 Other Distance Matrices 12

2.1.2 Tree Structures . 13
2.1.2.1 VPT . 13
2.1.2.2 MVPT . 14
2.1.2.3 GHT . 15
2.1.2.4 GNAT . 15
2.1.2.5 SAT . 16
2.1.2.6 MT . 17
2.1.2.7 TLAESA . 18

2.2 Nearest Neighbour Search . 19
2.2.1 Increasing Radius . 20
2.2.2 Decreasing Radius . 20
2.2.3 Recursive Traversal with Priority 20

iv

3 Pivot Selection 22

4 Pivot Sharing And Localization 29
4.1 Two Pivot Selection Techniques . 30
4.2 Balancing pivot sharing and localization 31

4.2.1 Analysis . 31
4.2.2 Experimental Results . 33

4.3 RLAESA . 36
4.3.1 LAESA . 36
4.3.2 Construction Process for RLAESA 37
4.3.3 Nearest Neighbour Search with RLAESA 38
4.3.4 Storage Space and Construction Cost Analysis for RLAESA . . 40
4.3.5 Experimental Results . 41

4.4 NGHT . 43
4.4.1 Construction Process for NGHT 44
4.4.2 Search on NGH-tree . 45
4.4.3 Analysis . 45

4.4.3.1 Space Requirement . 45
4.4.3.2 Construction Cost . 46

4.4.4 Experimenetal Results . 46
4.5 Conclusions . 48

5 Reducing I/O 49
5.1 SLAESA . 50
5.2 Experimental Results . 53
5.3 Conclusions . 53

6 Conclusions and Future Work 54

v

Chapter 1

Introduction

Similarity search is an important search problem in many branches of computer sci-
ence, from pattern recognition to textual and multimedia retrieval. During the last
decades, the applications of these branches have increased in many areas, such as geog-
raphy, molecular biology, approximate text search, image and video retrieval, pattern
classi�cation and matching. The demand for a fast similarity search is thus increasing.

The similarity search problem is de�ned as follows: Given a set of objects and a
query object, �nd the most �similar� object to the query object. Depending on the
similarity criterion, multiple features from the objects or the whole contents of the
objects are used to determine their similarity. By treating each feature from the objects
as one dimension in a multiple dimensional space, the similarity search problem can be
mapped into a nearest neighbour search problem in multiple dimensional spaces and
the similarity criterion is then mapped into a distance function. Thus, similarity search
is sometimes called nearest neighbour search and the results of similarity search are
called nearest neighbours. In this thesis, these terms will be used interchangeably.

The de�nition of similarity search doesn't apply any restrictions on the number of
dimensions. However, the problem becomes more di�cult when the dimension increases.
Since it is di�cult to visualize a space with more than 3 dimensions, people tends to
use 2 or 3 dimensional space as an analogy of higher dimensional spaces. However, we

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sphere in high-dimensional spaces

must note that many properties in lower dimensional spaces do not remain in higher
dimensions. To demonstrate this, let us consider the following examples, as presented
by Bohm et al. [3]. In a cubic-shaped D-dimensional data space of extension [0, 1]D,
the center point c of the data space is de�ned as (0.5, 0.5,, 0.5). The lemma, �Every
D-dimensional sphere touching (or intersecting) all (D − 1) dimensional surfaces of
the data space also contains c�, is obviously true for D = 2, as shown in Figure 1.1.
It is not di�cult to show that it is also true for D = 3. However, the lemma is
de�nitely false for D = 16, as shown in the following. De�ne a sphere around the point
p = (0.3, 0.3,, 0.3). This point p has a Euclidean distance of √D � 0.22 = 0.8 from
the center point. If we de�ne the sphere around p with a radius of 0.7, the sphere
will touch or intersect all 15-dimensional surfaces of the space but will not include the
center point c.

One of the most important e�ects of high dimensions is that the volume grows
exponentially with the number of dimensions. The volumes of the hypercube and
hypersphere are the following:

V (cube) = eD where e is the length of the cube, and
V (sphere) = πD/2rD

Γ(1+D/2)
where r is the radius and Γ(n) is the gamma function Γ(n) =

(n− 1)!

From the following ratio from the volumes of a cube and that of its embedding
sphere, we will have some intuitive idea of �the curse of dimensionality�. Let a sphere

CHAPTER 1. INTRODUCTION 3

be embedded into a cube and touch each face of a d-dimensional cube. The radius r is
half of the length e of the cube. Let the center of the sphere be the query object and
retrieve all of the objects within the distance r. The ratio from the volume of the sphere
to the volume of the cube is ratio = V (sphere)

V (cube)
= πD/2

Γ(1+D/2)·2D = 1
Γ(1+D/2)·(4/π)D/2 . When

the dimension D increases, the ratio decreases at least exponentially. When D = 3,
ratio = π/6 ≈ 0.524; when D = 10, ratio = 1/(5! · (4

π
)5) ≈ 2.5 × 10−3; when D = 16,

ratio = 1/(9! · (4
π
)8) ≈ 4.0 × 10−7. If objects are uniformally distributed in the cube,

then the fraction of retrieval decreases exponentially. Therefore, if the traditional data
structures are used to divide the data space into cubes, when the dimension is high, e.g.
D = 10 or D = 15, most of the objects contained in any cube are uninteresting objects.
Such divide-and-conquer searches are ine�ective because they are like a sequential scan.
In fact, any approach of using a set of cubes to contain the sphere will not work in high
dimensions: If we �x the radius r of the sphere and the length e of the cube where e < r,
when the dimension D increases, the number of cubes will increase exponentially. This
means the space requirement of a data structure containing such cubes will increase
exponentially and the number of non-interesting objects also increases exponentially.
Moreover, it can be shown that using any �xed shapes instead of cubes will end up with
similar results.

The �curse of dimensionality� can also be considered from another prospective. In
high dimensional space, most of the volume is close to the surface of the data space,
as is shown in the following example. Let us have a D-dimensional space with all the
lengths equal to 1. In order to consider the region close to the surface, let us assume we
only consider the locus of points with distance ≤ 0.05 from the surface. This de�nes a
hollow cube with a volume V = 1 − (1 − 2 × 0.05)D. For D = 3, we have the volume
V = 1 − 0.93 = 0.27. For D = 10, we have the volume V = 1 − 0.910 = 0.65 and
for D = 15, we have the volume V = 1 − 0.915 = 0.79. Actually in any size and any
shape of data space, the above property will be satis�ed. Because of this property, if
data objects are uniformally distributed in the space, progressively more of them will

CHAPTER 1. INTRODUCTION 4

be close to the surfaces of the data spaces when the number of dimensions increases.
Let the center of the cube be the query object, we can see the above property causes
two e�ects on the nearest neighbour search. First, if the number of objects is �xed, the
average distance of the nearest neighbour will be increased as the dimension increases.
Second, the distances of all objects from the centre are becoming more and more similar
when the number of dimensions increases.

These examples show that similarity search is a very hard problem and traditional
approaches and thinking styles for lower dimensional spaces are not suitable for high
dimensional spaces.

Currently the similarity search problems can be divided into two categories: vector
space and metric space similarity search problems. In vector space similarity search,
each object is represented as a point in D-dimensional space and its value on each
dimension is available. Corresponding distance functions belong to the Minkowski Lr

family: Lr = (
∑

1≤i≤D |xi−yi|r)1/r. The best known special cases are r = 1 (Manhattan
distance), r = 2 (Euclidean distance) and r = ∞ (maximum distance). The last
distance deserves an explicit formula: L∞ = max1≤i≤D |xi−yi|, [18]. The data structures
for vector spaces are designed to take full advantage of the precise location information.
However, if such information is not available or not applicable, the data structures either
can't be constructed or don't help the search. For example, if the object positions in
each dimension are unknown, the data structures can't be constructed. It is quite
di�erent for similarity search in metric space. Even though each object is also treated
as a point in some dimensional space, it is not mandatory to know the positions in
each dimension, nor the dimensionality. It requires only a blackbox distance function,
which given two objects returns a distance. In principle, one data structure can be
used for any distance function. It can be seen that vector space similarity search is a
special case of metric space similarity search. In this thesis, we are interested in the
more general metric space similarity search instead of restricting ourselves to the vector
space similarity search.

CHAPTER 1. INTRODUCTION 5

Distance functions in metric spaces have the following three common properties.
The distance functions are de�ned as d : U × U → R+ where U is the universe of the
objects.

1. d(x, y) = 0 ⇔ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

These three properities are valid for many reasonable similarity functions and de�nitely
valid for the Minkowski Lr family. Note that since d(x, y) ≥ 0, ∀x, y can be derived
from the above three properities, it is not listed as metric space properities as in other
papers. As shown in Section 2, the third property, known as triangle inequality, is the
key for all current metric space similarity searches.

In the previous examples, we have shown that the di�culity of the similarity search
increases when the dimensionality of the data space increases. But the di�culty of
the search also relies not only on the dimensionality of the data space, but also on
the characteristics of the data objects [29, 5]. Let's consider the following well-known
example [8]. We have a universe U of objects where d(x, x) = 0,∀x ∈ U and d(x, y) =

1,∀x, y ∈ U and x 6= y. To �nd a nearest neighbour, the query has to check all of the
objects in the universe U . On the other hand, if there is a D-dimensional space and the
universe U of objects in that space fall into one plane, the dimensionality of the search
problem in this case should be 2 instead of D. To quantify the �actual� dimensionality
and the search di�culity, the idea of intrinsic dimensionality was �rst introduced by
Brin [5]. The basic idea is that intrinsic dimensionality grows when the mean of the
distance is increased and the variance of the distance is reduced. Figure 1.2 gives some
intuition why the search problem is harder when the variance is small. Let p be the
data object and q be the query object. By the triangle inequality, object x can't have
a distance to object q equal to or less than r if |d(p, q) − d(p, x)| > r (the non-grayed

CHAPTER 1. INTRODUCTION 6

Figure 1.2: A �atter (left) versus a more concentrated (right) histogram. The latter
implies the search will be harder because the triangle inequality discards fewer objects
(the non-grayed area).

area). When the variance is small, more data objects will fall in the grayed area and
few objects in the non-grayed area. Then the probability of discarding an object x will
be lower. This phenomena is independent of the dimensionality of data space and only
relies on the distribution of the data objects.

The de�nition of intrinsic dimensionality is given as follows:
De�nition. The intrinsic dimensionality of a metric space is de�ned as ρ = µ2

X/2σ2
X ,

where X is the random variable representing d(p, q) for p, q ∈ U and µXand σ2
X are the

mean and variance of X, respectively.
An interesting result is that the intrinsic dimensionality under the above de�nition

matches the traditional dimensionality of the data space. As shown by Yianilos [30],
the intrinsic dimensionality for a D-dimension space with uniformly distributed data
objects and a distance function belonging to Minkowski Lr family is Θ(D) (although
the constant depends on r).

Queries that are considered to be similarity search problems can be categorized into
the following:

• Range Search: Given a query object q and a maximum search distance r, retrieve
all of the objects from the universe U whose distances to q equal or are less than

CHAPTER 1. INTRODUCTION 7

r.

• k-Nearest Neighbour Query: Given a query object q and the number of requested
objects k, retrieve the k objects in any order from the universe U whose distances
to q are not larger than the distance of any remaining objects in U . This is usually
represented as k-NN, where 1-NN is the special case in which only the nearest
neighbour is returned.

• Incremental Nearest Neighbour Query: Given a query object q, retrieve the near-
est neighbour o from the universe U and exclude o from consideration in the
remaining steps of this query. Repeat this step until the query is stopped by the
user or an external application. Such queries are referred to as INN, and both
k-NN and INN together are referred to as NN search.

Range search is a simpler search than NN search, and many NN searches are built on
range search. We will address this in detail in Chapter 2. The main di�erence between
k-NN and INN are that the number of returning objects is given to k-NNs before the
start of the query, while it is unknown to INN until the query is stopped. In principle,
INN is a harder problem, and to avoid redundant calculations it needs to store many
intermediate values for the query. As shown by Hjaltason [14], INN search can be
implemented on the basis of k-NN search.

In many data retrieval applications, the similarity search is just a �rst step from
which a large set of candidate objects are obtained and further �ltering will be applied
with more criteria before the �nal results are sent to the users. Many existing systems
with this approach are listed by Baeza-Yates and Ribeiro-Neto [2]. For this kind of
system, INN provides more �exibility than range query and k-NN queries because the
external applications might not know the number of requested objects or the search
distance in advance.

The total query time T is
T = # of distance computations× cost of d() + extra CPU time + I/O time

CHAPTER 1. INTRODUCTION 8

In many applications, the cost of distance computations is much more expensive
than the other two components. Thus, as shown by Chavez [8], many similarity searches
evaluate the query time via the number of distance computations. We will apply the
similar cost model in this paper, however, we also pay some attention to the I/O time
in Chapter 5.

We have brie�y introduced the characteristics of similarity search in this chapter.
The remainder of this thesis is organized as follows. In Chapter 2, we cover the main
previous work in metric space similarity search. In Chapters 3 and 4, we �rst analyze
the advantages and disadvantages of various indexing structures currently used and pro-
pose that it is important to balance pivot sharing and localization when constructing
the indexing structures. Two new algorithms, RLAESA and NGH-tree, are presented.
RLAESA outperforms the state-of-the-art algorithm. NGH-tree is a generalized frame-
work that can be applied to most of the current indexing structures. It shows how
search e�ciency can be improved by increasing the pivot sharing level and to what ex-
tent. The experiments with RLAESA and NGH-tree not only show their performance,
but also support, with other experiments, the above conclusion about pivot sharing and
localization. In Chapter 5, we addresse the issue of disk I/O and propose an approach,
SLAESA, to reducing the disk I/O by using sequential instead of random access. Ex-
periments show that SLAESA has shorter query time than the algorithm on which it
is based. In Chapter 6, we summarize our contributions and list possible future work.

Chapter 2

Related Work

Many indexing structures have been proposed to facilitate similarity search in metric
spaces. Most, if not all, of the indexing structures can be applied to range search and
NN search. We will �rst explain how range search and NN search can be performed
with these structures.

2.1 Range Search

Recall that range search is de�ned as the following: Given a query object q and a
maximum search distance r, retrieve all of the objects from the universe U of the
objects whose distances to q equal or are less than r. To facilitate the range search,
many di�erent indexing structures are used. In general, they can be divided into two
categories, distance matrix structures and tree structures.

2.1.1 Distance Matrix Structures

2.1.1.1 AESA

One of the commonly used distance matrix structures is AESA (Approximating and
Eliminating Search Algorithm), proposed by Vidal et al. in 1986 [24] and modi�ed by
Vidal et al. in 1988 [25] and in 1994 [26]. AESA performs surprisingly better than other

9

CHAPTER 2. RELATED WORK 10

algorithms by an order of magnitude, but su�ers from its quadratic storage requirement
[8]. According to Vidal, search time in AESA is constant and is not a�ected by the size
of the data set. The distance matrix of AESA is constructed by the following method:

Let the universe of the data objects be U and its size be n. ∀x, y ∈ U , compute
the distance d(x, y). The distances are stored in an n by n matrix. Since the distances
are symmetric, half of the elements in the matrix are redundant and can be removed.
So, the space requirement of the matrix is n(n − 1)/2 which is O(n2). It is clear that
the complexity of distance precomputation is also O(n2). During a range search, an
arbitrary object p is chosen as pivot and its distance to the query d(p, q) is computed.
By the triangle inequality mentioned in Chapter 1, all of the data objects o ∈ U which
don't satisfy d(p, q) − r ≤ d(p, o) ≤ d(p, q) + r will certainly not be the results of this
range search and can be eliminated from further consideration. The process of choosing
an arbiratry object from the non-eliminated object set and eliminating more objects will
be continued until the non-eliminated object set is empty. Since all of the eliminated
objects are not the results of this range search and all of the other objects have already
had computed distances, by comparing the computed distances with the range radius r,
the result of this range search can be obtained. In 1994, instead of choosing pivots from
the non-eliminating object set, Vidal proposed a heuristic function for pivot selection.
Using this heuristic function, some speed can be gained in the search time. The heuristic
function being used in this paper is the lower-bound distance function and denoted as
dlo(q, o) for query q and data object o. It is de�ned in the followng:

The universe of the data objects U is composed of the set of computed objects,
Uc and the set of non-computed objects, Un, where Uc and Un are disjoint. For query
object q and data object o, dlo(q, o) = max

p∈Uc

{|d(p, q)− d(p, o)|}.
The lower-bound distance function dlo(q, o) is the max di�erence value by appling

the triangular inequality on all of the pivots obtained so far. It can be seen that the
closer the object o is to the query q, the smaller the value dlo(q, o) is. It can also
been seen that if the value dlo(q, o) is small, object o is likely close to the query q.

CHAPTER 2. RELATED WORK 11

Experiments showed that the approach of choosing pivots by the heuristic function
slightly out-performed the approach of choosing pivots randomly. By the triangular
inequality, if dlo(q, o) is bigger than the range search radius r, we know that object o is
not the result for this range search and can be eliminated from further consideration.
Condition dlo(q, o) ≤ r equals to condition d(p, q) − r ≤ d(p, o) ≤ d(p, q) + r. So, the
lower bound distance dlo(q, o) is used both as a heuristic function for pivot choosing
and as an object-eliminating condition in AESA.

The problems of the AESA approach are that the space requirement and construc-
tion time are quadratic in the size of the data set, which make this approach only
suitable for very small data sets. Without these problems, AESA is a good approach
in terms of search e�ciency. Experiments show that AESA has constant search times
with respect to the data size and signi�cantly increasing search times with respect to
the dimensionalities [24, 26].

2.1.1.2 LAESA

LAESA stands for Linear AESA and is a derivative of AESA proposed by Mico in 1994
[16]. The intension of LAESA is to smoothen the harsh requirements of space and
construction time in AESA. Instead of computing and storing the pairwise distances
of all of the data objects, it chooses a constant number of pivots, k of them, from the
data set and computes and stores the distance from each of the k pivots to each of the
data objects. Mico followed the suggestion [6, 20] that the pivots should be chosen as
far away from the clusters as possible. But instead of �nding the k furthest objects
as pivots, Mico proposed a greedy algorithm to �nd the k pivots. The �rst pivot is
chosen from the data set randomly. Compute the distances from this pivot to all of the
objects in the data set and store these distances in the �rst row of a k by n matrix,
where n is the size of the data set. These distances are also added into an accumulator
array. The next pivot is chosen as that for which the (accumulated) distance is the
largest. Keep repeating this, until all of the k pivots are chosen. Because it is based on

CHAPTER 2. RELATED WORK 12

largest accumulated distance, this greedy algorithm is sometimes called pivot selecion
by largest accumulated distance. The space requirement and construction in LAESA
is O(k · n) where k is a constant number and n is the size of the data set.

The range search in LAESA is a little bit di�erent from in AESA. In LAESA, the
order in which pivots are computed is random. However, all of the pivots must be
computed to eliminate as many data objects as possible, before any non-pivot data
object is computed. Because all of the pivots will be computed in each query, previous
work [28] suggests that the order in which the pivots are computed can be arbitrary
instead of random, and the order in which the pivots are applied to eliminate the data
objects should be the ascending order of the distances to query. This will eliminate the
data objects in the earlier stages of the qeury, which speeds up the search by reducing
the extra CPU time, one of the three parts of the total search time.

Through experiments, it can be seen that the number of distance computations in a
search is k + O(n), when the dimensionality is �xed. The optimal choice for k grows as
the dimensionality grows. When optimal k is too large, we set k to some large value such
that both the space requirement and construction time are acceptable. As for AESA,
the search time of LAESA increases signi�cantly as the dimensionality increases.

2.1.1.3 Other Distance Matrices

Shapiro [20] proposed a search algorithm that is related to LAESA and uses a k by n

matrix where k is the number of pivots and n is the size of the data set. The data objects
are sorted by their distances to the �rst pivot p1, and they are labelled as o1,o2, o3,, on.
All distances from pivots to the query object are computed in the beginning of the
search. The search is initiated in the object oj where |d(p1, q)− d(p1, oj)| ≤ |d(p1, q)−

d(p1, oi)| for any i 6= j. That is, object oj is the object whose distance from pivot p1

is most similar to d(p1, q). All pivots are used to compute the lower bound distance
dlo(q, oj) = maxall pivot p

{|d(p, q)− d(p, oj)|}. Compare lower bound distance with range
search radius r and oj can be eliminated if dlo(q, oj) > r. If oj can not be eliminated,

CHAPTER 2. RELATED WORK 13

compute the distance d(q, oj) and output oj as result if d(q, oj) ≤ r . Similarly, repeat
the above steps on other objects in the order of (oj−1, oj+1, oj−2, oj+2,). The search
stops in either direction when the condition |d(p1, q)− d(p1, oi)| > r is satis�ed. When
the range search radius r is �xed, the number of distance computations in Shapiro's
algorithm is the same as in LAESA, because they use the same eliminating conditions.
But Shapiro's algorithm has a smaller CPU overhead due to the ordering of the objects
by their distances to the �rst pivot, which does not require a linear scan on all of the
objects as in LAESA. The e�ciency for NN search will be discussed later.

Wang and Shasha proposed a dynamic programming approach [27]. During a search,
two n by n matrices are used where n is the size of the data set. One matrix is used for
lower bound distance dlo(q, o) and the other matrix is used for higher bound distance
dhi(q, o) . For any objects x and y, dlo(x, y) ≤ d(x, y) ≤ dhi(x, y) . Before the search,
some of the distances between two random objects are precomputed and stored in the
above two matrices and all other distances in the distance matrices are either 0 or ∞.
Note that the distances along the diagonal are 0. During the search, the query object q

is treated as the n + 1st object in the augmented distance matrices. Update the lower
bound distance dlo and upper bound distance dhi so that they are as tight as possible
whenever new distances are computed. Similar conditions are used to eliminate the
objects. Like AESA, this algorithm has quadratic space requirement which makes it
unsuitable for large data sets.

TLAESA is an algorithm combining the technologies from distance matrix and tree
structures. We will discuss it in the subsection of tree structures below.

2.1.2 Tree Structures

2.1.2.1 VPT

VPT or vantage point tree is presented by Yianilos [29]. Independently, Uhlmann has
proposed the same basic structure, which is called a metric tree [22, 23]. The root

CHAPTER 2. RELATED WORK 14

node of VPT represents the whole data set. A vantage point v is chosen randomly
from the data set. Compute the distances from all data objects to the vantage points,
�nd the median M , and store it into the node. Divide the data set into the left/inner
subset Sl and the right/outer subset Sr such that d(v, o) ≤ M ∀o ∈ Sl and d(v, o) ≥ M

∀y ∈ Sr. Note that |Sl| = |Sr| or they have a di�erence of 1 . The left/inner subset
Sl is represented by the left child of the root node and the right/outer subset Sr is
represented by the right child of the root node. Choose another vantage point for the
2nd level of the tree. For each node in the 2nd level, divide the set of data objects it
represents into left/inner and right/outer subsets and create the corresponding left and
right child nodes. This is done recursively. One vantage point is selected for each level
of the tree until the sizes of the subsets represented by the leaf nodes are smaller than
some threshold.

Range searches start from the root of VPT. The left subtree will be visited if
d(v, q) ≤ M + r and the right subtree will be visited if d(v, q) ≥ M − r where r is
the range search radius. It is possible that both subtrees are visited. When leaf nodes
are reached, compute all distances from the objects inside that leaf node.

VPT has a linear space requirement. It is argued that VPT has a range search
complexity equal to the height of the tree O(log n) [29], but as pointed out, it is only
true when the range search radius r is very small, so that both subtrees are rarely
visited.

2.1.2.2 MVPT

VPT can be extended into MVPT (multi-vantage point tree) [4] by dividing each node
into multiple subsets. Instead of being divided into two subsets by the median distance,
each set in VPT can be divided into m subsets with equal sizes by m−1 cut-o� distances.
Moreover, for each object in the leaf nodes, the exact distances from that object to some
number of vantage points are stored in the corresponding leaf nodes. These distances
can provide further pruning before the distances of the objects are computed.

CHAPTER 2. RELATED WORK 15

2.1.2.3 GHT

Generalized hyperplane tree, GHT, is proposed by Uhlmann [22]. A generalized hyper-
plane in a metric space is de�ned by two points p1 and p2, p1 6= p2, and every point
on the hyperplane has the same distances from both p1 and p2. Note that it is called
�generalized� because it is a plane with Euclidean distance function and might not be
so under other distance functions.

GHT is a binary tree being constructed recursively. Initially, two random points
p1 and p2 are selected and a generalized hyperplane is de�ned accordingly. A space is
divided into two parts, the data objects on the same side of p1 belong to the left subtree
and the data objects on the same side of p2 belong to the right subtree. Repeat this
to construct a binary tree recursively until the numbers of the objects in the leaf nodes
are small enough. By the randomness of the algorithm, the expected height of GHT is
O(log n) .

Search starts from the root node and the distances from the query to the two points
p1 and p2 are computed. For range search with query q and radius r, the search will
visit the left subtree if d(p1,q)−d(p2,q)

2
≤ r and the right subtree if d(p2,q)−d(p1,q)

2
≤ r. The

reason these conditions are used is the following: If q is on the same side of p2, we want
to check if the objects on the p1 side can be eliminated. Let o be an object on the same
side of p1. Object o can be pruned away if d(p1, q)−d(p1, o) ≥ r or d(p2, o)−d(p2, q) ≥ r.
Since o is on the same side of p1, d(p1, o) < d(p2, o) , we have d(p1, q) − d(p2, q) ≥ 2r.
Again, it is possible to visit both subtrees. Repeat the above steps recursively. It is
argued that GHT has better performance than VPT in higher dimensions [8].

2.1.2.4 GNAT

GNAT, geometric near-neighbour access tree, is an extended version of GHT. It was
�rst presented by Brin [5]. Instead of choosing two points on each split, choose several
points from the objects. With a number of points p1, p2, ..., pm, the original spaces

CHAPTER 2. RELATED WORK 16

can be divided into m subspaces S1, S2,, Sm such that ∀o ∈ Si, d(pi, o) ≤ d(pj, o)

and i 6= j. The subspaces are called Dirichlet domains, which are related to Voronoi
diagrams except that they don't require Euclidean spaces.

To have better usage of the distance calculation, GNAT not only uses the pruning
conditions in GHT, but also stores and uses the ranges of distances from each point
to each Dirichlet domain. An m by m matrix is created for each node of GNAT,
where its elements are pairs of distance with the format of (mini,j, maxi,j) and ∀o ∈ Sj,
mini,j ≤ d(o, pi) ≤ maxi,j. For a range search with query q and radius r, the jth subtree
of a node can be pruned away if ∃i, such that d(q, pi)+r < mini,j or d(q, pi)−r > maxi,j.
Note that the pruning conditions in GHT can also be used for further pruning.

GNAT takes O(m2n) space and O(nm logm n) construction time, where m is the
number of points for each space division and n is the size of data set. Experiments [5]
show that GNAT will beat VPT in search time only when the number of points, m, is
bigger than 20.

2.1.2.5 SAT

Navarro [18] presented a search algorithm based on approaching the query object spa-
tially, instead of the general divide-and-conquer methods. The data structure used
in it is called a Spatial Approximation Tree, SAT. To construct the tree, a random
object a is selected as the root from the data set. Initially, the set of a's neighbours
N(a) is empty. Compute all of the distances from objects to a and sort them by non-
decreasing order. Now start adding objects into N(a) by checking the objects in their
non-decreasing distance order. If that object is closer to an object x in N(a) than to a

, that object will not be added into N(a),but instead put into a �bag� associated with
x. Otherwise, it will be added into N(a) . After checking all of the data objects, the
set of neighbours N(a) is obtained, each with a corresponding �bag� of objects. Object
a is assigned to the root node. Each neighbour of a and the objects in that neighbour's
�bag� are assigned to a subtree. Repeat the above procedures on each subtree recur-

CHAPTER 2. RELATED WORK 17

sively, except that the object assigned the root node of the subtree is no long selected
randomly, instead it is the neighbour of a. The covering radius, r(a) = max d(a, x)

where x ∈ N(a) ∪ bag(N(a)), for each node is computed and stored as well.
The search starts from the root node a. If d(q, b) − R(b) ≤ r where b ∈ N(a) and

R(b) is the covering radius of b, the subtree rooted at b can be pruned away. Here q and
r is the query object and search radius of the range search, respectively. An additional
pruning condition may be used to achieve further pruning [19]. Let object c ∈ N(a)

and c is the closet object to query q in N(a). If (d(q, b) − d(q, c))/2 > r, the subtree
rooted at b can be pruned away. The pruning condition is based on the same reasoning
as in GHT.

The space requirement of SAT is O(n) and it takes O(n log n/ log log n) to construct
the tree. The depth of SAT is O(log n

log log n
) on average.

2.1.2.6 MT

M-Tree, or, MT, was proposed by Ciaccia et al. [9]. The structure of MT has some
resemblance with GNAT, since it is a tree structure where a set of representatives are
chosen at each internal node. All of the data objects are stored in the leaf nodes. For
each internal node (the root of some subtree), an object is chosen from the set of objects
in its subtree and stored in that node as the representative of the whole set. Note that
one object can be selected as representative more than once. Each representative t has
a covering radius de�ned as rt = max{d(o, t)}, for all of the objects o it represents.
Moreover, each representative, except the one for the root node, has a distance from
itself to the representative for the parent node. This distance and the covering distance
are stored in the same node where the corresponding representative is stored.

Range search in MT starts from the root node and traverses recursively down the
tree. Two pruning conditions can be applied in MT. Let's consider a range query with
query q and search radius r. Let an internal node have a representative t and its parent
node have a representative s. If |d(q, s)− d(s, t)| > rt + r or d(q, t) > rt + r, the subtree

CHAPTER 2. RELATED WORK 18

rooted at this node can be eliminated.
The main di�erence between MT and other tree structures is the way it handles

insertion and deletion of data objects. During an insertion, the procedure traverses
down the tree and repeatedly �nds the best subtree to store the object. The best
subtree is the subtree needing the smallest expansion on its covering in order to store
the new object. In case of a tie, the subtree with its representative closest to the new
object is the best subtree. On the leaf level, if the number of objects exceeds the storing
capacity, the leaf node will be split into two leaf nodes. An entry will be inserted into
the parent node to point to the new node. If the storing capacity of the parent node
exceeds the limit, the parent node will be split recursively. The deletion is done by
merging. The whole process is similar to that of a B-tree.

There are many criteria to select a representative and split a node. The best is to
obtain a split which minimizes the sum of two covering radii.

MT is a balanced tree with linear space requirement. Experiments [9] show that it
outperforms the vector space R-tree. MT is the only method so far that is e�cient in
terms of I/O cost as well as the number of distance computations.

2.1.2.7 TLAESA

Mico et al. [17] presented TLAESA, which can be treated as a combination of distance
matrix and tree structures. The main di�erence between it and other tree-like structures
is that it is able to break the dependency between the pivot selection and the object
partition by the tree structure. In TLAESA, a certain number of pivots are selected
as in LAESA. However, in addition to a distance matrix, a binary tree structure is
used. Each node t represents a set of data objects St and stores a representative of that
set, mt , where mt ∈ St . If t is leaf node, it contains exactly one object. Otherwise,
St = Stl ∪ Str , where tl and tr are the left and right child, respectively.

TLAESA is built recursively. For the root node ρ, Sρ is the whole data set and mρ

is chosen randomly from the data set. The right child of a node t has mtr = mt. The

CHAPTER 2. RELATED WORK 19

left child has d(mtl , mtr) ≥ max(o,mtr) ∀o ∈ St and mtl ∈ St. Moreover, Str = {o ∈

St|d(o,mtr) ≤ d(o,mtl)} and Stl = St − Str . The recursion stops at the leaves which
represent singleton sets.

For each node t in the tree, a covering radius rt = max(d(o,mt)), ∀o ∈ St is calcu-
lated and stored. Furthermore, the distances from every pivot to every representative
of the tree are computed and stored into a distance matrix.

The search algorithm starts initially from the root node. For a range search with
query object q and search radius r, the distances from the query to each pivot are
computed. The representative of a tree node has a lower bound distance dlo(q, mt) =

max{|d(q, p)−d(p, mt)|}, for all pivots p. By the triangle inequality, we can see that no
object represented by node t will be within range r of the query q if r + rt < d(q, mt) .
Thus, we can eliminate the subtree rooted at node t. The search traverses recursively
down the tree. If reaching a leaf node, it computes the distance of the object in that
node.

The space requirement of TLAESA is O(n) where n is the size of the data set.
Experiments [17] show that LAESA has better pruning ability while TLAESA has
smaller time complexity. Thus, TLAESA is preferable when the data set is large or the
distance computation is not very expensive. No experiment is done against other tree
structures.

2.2 Nearest Neighbour Search

Most of the nearest neighbour searches are built over range searches, no matter which
data structures are used. The only exception is presented by Clarkson [11], which is a
GNAT-like data structure. Due to its lack of relevance to this paper, we do not discuss
it here. The methods by which nearest neighbour searches are built over range searches
can be grouped into the following three categories.

CHAPTER 2. RELATED WORK 20

2.2.1 Increasing Radius

The k-NN search built on range search with increasing radius is de�ned as follows.
Search query object q with �xed radius r = aiε where a > 1 and ε is some small
constant. Search starts with i = 0 and increases i repeatedly until the number of the
returned objects reaches or exceeds k. Since the search cost increases exponentially in
the search radius, the NN search cost here is close to that of the �nal range search with
suitable search radius.

2.2.2 Decreasing Radius

The k-NN search can also be built over range search with decreasing radius. The
search starts with search radius r = ∞ . Whenever a query-object distance d(q, o) is
computed, it is compared with r . If r > d(q, o) , update r = d(q, o). A list stores the
k nearest objects returned by the range search so far. When a new object is returned,
it is inserted into this list, then remove the object with the largest distance so that the
list always contains k objects. The search stops when the range search stops. So, this
NN search is a range search whose search radius r is narrowed down continuously.

Some examples of NN searches using this method are VPT [29] and GNAT [5].

2.2.3 Recursive Traversal with Priority

The search will be more e�cient if the above k-NN search is able to decrease the search
radius r in earlier stages of the search. Since this will lead to more objects being pruned
in the search. A heuristic function is added to the original range search so that the
subtree with higher probabililty to reduce search radius r will be chosen �rst.

For example, in SAT [19], a lower-bound distance is used for the heuristic function.
A priority queue stores a set of possible subtrees and their associated lower-bound
distances are used as keys. The smaller the lower-bound distance, the earlier the subtree
will be chosen. After a subtree is chosen and removed from the priority queue, the

CHAPTER 2. RELATED WORK 21

distance from the pivot in the root of the subtree to the query is computed and search
radius r is updated if necessary. Each direct child node of the root of the subtree
represents a smaller subtree. All of these smaller subtrees are inserted back into the
priority queue with their corresponding lower-bound distances. Repeat the above steps
until the priority queue is empty.

Similar techniques are proposed by Hjaltason [13] and Uhlmann [22].

Chapter 3

Pivot Selection

Data structures to support similarity searches are used to eliminate objects from can-
didates as quickly as possible. In all indices, representative points, or pivots, are used
for such purpose. The choice of pivots is thus critical to the performance of the index.
Howerver, little is know about how to select a good pivot. Shapiro [20] recommends
selecting pivots outside the clusters and Baeza-Yates [1] suggests using one pivot from
each cluster. In this chapter, we will analyze probabilistically the eliminative powers of
the pivots selected from di�erent locations.

Consider a D-dimensional hypersphere with radius 1 and u data objects uniformly
distributed inside it. We use the notation VD(r) to denote the volume of a D-dimensional
hypersphere with radius r ≤ 1 . Let the pivot be selected at the center of the hyper-
sphere. The distance from that pivot to any random data object is a random variable
Z. Probability function P (0 ≤ Z ≤ r) = VD(r)/VD(1) represents the percentage of
data objects with distances in the range of 0 tos r. By de�nition, the density function
is the derivative of the probability function, fZ(r) = dP (0≤Z≤r)

dZ
= D · rD−1 (Figure 3.1).

Now let the pivot be an object extremely far away from the hypersphere data space,
the distance from the pivot to any random object in the hypersphere is a random
variable with the range of [x − 1, x + 1] for some constant x. Let Y be a random
variable in the range [−1, 1] such that Y +x is the distance from the pivot to an object

22

CHAPTER 3. PIVOT SELECTION 23

Figure 3.1: Pivot at the center

Figure 3.2: When the pivot is chosen exremely far from the hypersphere, the distance
function can be viewed as the value on one coordinate.

3.2. Since the pivot is very far from the hypersphere, all objects that share the same
value of Y can be considered to be coplanar. Thus, we have the probability function
P (−1 ≤ Y ≤ y) =

∫ y

−1
VD−1((1− Y 2)

D−1
2)dY/VD(1) (see [15]).

The corresponding density function is fY (y) = dP (−1≤Y≤y)
dY

=
VD−1(

√
1−y2)

VD(1)
= VD−1(1)·(1−y2)

D−1
2

VD(1)
.

The density functions fY and fZ are shown in Figure 3.3. For any given query object
q with Y = y and Z = r, if fY (y) < fZ(r), the expected number of data objects near q

with respect to the far pivot is less than the number with respect to the center pivot.
Thus, the pivot far away has better pruning ability. Similarly, if fY (y) > fZ(r), the
pivot at the center of hypersphere has better pruning ability. Since the hypersphere
is symmetric with respect to the hyperplane that is perpendicular to Y and passing
through the origin, for any query object q, we can always �nd another potential query
object q′ such that q and q′ are symmetric to this hyperplane. If Y = −y and Z = r

CHAPTER 3. PIVOT SELECTION 24

Figure 3.3: The density functions of Y and Z.

for query object q, we will have Y = y and Z = r for query object q′. Since the density
function of Y is also symmetric fY (−y) = fY (y), it is su�cient for us to consider the
cases where Y ≥ 0 only.

It can been seen from Figure 3.3 that the density functions fY for Y ≥ 0 and fZ

have reverse trends. For any query object with Y = y and Z = r, we want to discover
if there exists a critical radius rc > 0 such that when r < rc, fY (y) > fZ(r) and when
r > rc, fY (y) < fZ(r). In a D-dimensional space, the location of query object q can be
expressed as (r, θ1, θ2, ..., θD−1) using a polar coordinate system. By the characteristic
of a polar coordinate system, we know that Y = r ·

D−1∏
i=1

cos θi. Thus, Y ∈ [−r, r]. For the
reason addressed in the previous paragraph, it is su�cient that we consider Y ∈ [0, r]

only.
When Y = 0, let fZ(rc) = fY (0). Thus, we have
D · rc

D−1 = VD−1(1)

VD(1)
· (1− 0)

D−1
2 = VD−1(1)

VD(1)

It can be shown that 1
3
·
√

D < VD−1(1)

VD(1)
< 1

2
·
√

D. Figure 3.4 illustrates this property
when the number of dimensions D is in the range of interest for any practical similrity
search. Thus we have D · rc

D−1 = β ·
√

D where β is a number between 1
3
and 1

2
. Thus,

the solution follows:

CHAPTER 3. PIVOT SELECTION 25

Figure 3.4: Bounding the ratio of VD−1(1)

VD(1)

By solving the equation, we have rc = (β√
D

)
1

D−1 .
When Y = r, we let fZ(rc) = fY (rc). Thus, we have
D · rc

D−1 = VD−1(1)

VD(1)
· (1− rc

2)
D−1

2

D · rc
D−1 = β ·

√
D · (1− rc

2)
D−1

2

(rc√
1−rc

2)
D−1 = β√

D

Since 0 ≤ rc ≤ 1, rc can be substituted by sin α where 0 ≤ α ≤ π
2
and (1 − rc

2)

by cos2 α. Then, we have (sin α
cos α

)D−1 = β√
D
. Thus tan α = (β√

D
)

1
D−1 , and we have

rc =
√

sin2 α =
√

1
1+(1/ tan α)2

=
√

1

1+(
√

D
β

)
1

D−1
.

So, for 0 ≤ Y ≤ r, we have
√

1

1+(
√

D
β

)
1

D−1
≤ rc ≤ (β√

D
)

1
D−1 and the critical radius

rc increases as the dimensionality D increases. Moreover, since Y = r ·
D−1∏
i=1

cos θi, Y is
getting closer and closer to zero as the dimensionality D increases. Thus, rc gets closer
and closer to (β√

D
)

1
D−1 as the dimensionality D increases.

When the pivot is chosen inside the hypersphere but not at the center of the hy-

CHAPTER 3. PIVOT SELECTION 26

Figure 3.5: In a D-dimensional space, the query object q can be expressed as
(r, θ1, θ2, ..., θD−1)in a polar coordinate system. By the characteristic of a polar co-
ordinate system, we know that Y = r ·

D−1∏
i=1

cos θi

persphere, the critical radius rc will be slightly di�erent. The most extreme cases are
shown in Figure 3.6. For the case demonstrated in the left graph, rc will be smaller as
the pivot moves away from the center. For the case demonstrated in the right graph, rc

will remain the same, no matter whether the pivot is away from the center or not. In a
D-dimensional space, there is only one coordinate for each pivot satisfying the case in
the left graph, while there are D − 1 orthogonal coordinates satis�ying the case in the
right graph. As the dimension D increases, the e�ect caused by the case in the left graph
becomes smaller and smaller. An alternative way to get this conclusion is as follows:
Every pivot object p can be expressed in a polar coordinate system (s, θ1, θ2,, θD−1)

where s is the distance from the center of the hypersphere to the pivot. The longer the
length of s projected on the Y axis is, the smaller rc will be. But since the projection
of s on the Y axis is s ·

D−1∏
i=1

cos θi, its length approaches zero as the dimensionality D

increases. That is to say, when the dimensionality D is high, all of the pivots inside the
hypersphere can be treated as if the pivot was at the center of the hypersphere.

CHAPTER 3. PIVOT SELECTION 27

Figure 3.6: Both the graphs in the top show a pivot chosen inside the sphere while the
other is chosen very far away. The graph in the upper left corner shows both pivots
are on the same coordinate, while the graph in the upper right corner shows that the
pivot from far away is on the coordiante and the other pivot is above the coordiante
and has a projection on zero. The two graphs in the bottom show fY and fZ for the
corresponding cases above them.

CHAPTER 3. PIVOT SELECTION 28

By the density function, we have that
E[Z] =

∫ 1

0
DZD−1ZdZ = D

D+1
· ZD+1 1

0| = D
D+1

. That is, the expected distance
from a random object to the pivot at the center of the hypersphere increases when D

increases. In the previous paragraph, we have proven that the critical radius rc is closer
and closer to (β√

D
)

1
D−1 when the dimensionality D increases. With some calculation,

we can prove that for dimension D and D + 1, E[ZD+1]

E[Z]D]
<

(β√
D+1

)
1
D

(β√
D

)
1

D−1
. The critical radius

rc has a bigger increasing rate than the average distance from the center.
Since VD(1)

VD(max(rc))
= 1

(β√
D

)
D

D−1
= (

√
D
β

)
D

D−1 >
√

D
β
, VD(1)

VD(rc)
will increase at least propor-

tionally to the square root of the dimension D. The fraction of objects inside the range
of rc to the pivot at the center will decrease as D increases. Thus, although we prefer
to choose an object within rc to use as a pivot, these objects are initially unknown and
random selection of objects is unlikely to identify an object within rc. Therefore, a
pivot chosen within the hypersphere is less likely to have better pruning abilities than
a pivot chosen from far away.

Chapter 4

Pivot Sharing And Localization

The techniques of pivot sharing and localization have been used widely in similarity
search. However, no research has been done on the relationship between these two
techniques. In this section, we will discuss their relationship in detail.

Pivot sharing level is used to indicate the number of pairwise distances from a certain
pivot to other objects. The more distances available, the tighter the lower-bound and
the more objects can be eliminated. Note that in some algorithms covering radius or
range is used instead of pairwise distances. In this case, we treat the algorithm having
the same pivot sharing level as if it has pairwise distances for each object inside the
covering radius or ranges. Of course, now the pairwise distances are not the exact
distances from the pivot to the objects. We will go back to this issue later in this
section.

Pivot localization describes the distance relationship between a pivot and a set of
objects. If the pivot is near all objects in the set, it is "local" to the set. Otherwise,
it is "non-local" to the set. Pivot localization level is used to re�ect the distance from
the pivot to the set.

It can be seen that the pivot sharing level con�icts with pivot localization level.
In this chapter, we will discuss how to use the balance between the pivot sharing and
localization in order to reduce the query cost. Note that to make the comparison fair,

29

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 30

the same storage spaces are used across di�erent setting in the rest of this section if not
mentioned explicitly.

4.1 Two Pivot Selection Techniques

Pivot selection techniques determine the balance of pivot sharing and localization. Note
that pairwise distances are stored in non-tree structures while covering radii and/or
ranges are stored in tree structures. Thus some papers, like Chavez [8], use the term
�center� for tree like structures and �pivot� for non-tree structures. Here we still use
the word �pivot� for both tree and non-tree structures. In general, the pivot selection
techniques can be categorized into two kinds, divide-and-conquer and all-at-once.

Divide-and-conquer is seen in tree-structures only. It works as follows. A few pivots
are selected �rst and the data set is divided into several subsets. The distances from
objects of the current set to these pivots are computed and covering radii or ranges
are stored. For each subset, a few other pivots are selected and the subset is divided
into smaller subsets by space partitions. The above procedures are repeated recursively.
No distances are computed and stored between an object and a pivot from a di�erent
subset. As the above recursive steps go deeper, the pivot localization levels increase
since the pivots are chosen from smaller subsets via space partitions and pivot sharing
levels decrease since only the distances from the pivots to the objects of the same
subsets are computed and the sizes of the subsets decrease. Some algorithms that use
this technique are GHT [22], GNAT [5], M-tree [9] and SAT [18].

The all-at-once technique selects all pivots from the whole data set in �one step�.
It is used in both tree-structures and non-tree structures. The pairwise distances from
each object to each reference are precomputed and stored in non-tree structures while
the ranges from each subset to each reference are used in tree structures. Pivot sharing
level of a pivot reaches maximum since the distances from each object are precomputed.
Pivot localization level is minimum because the pivot is chosen from the whole data

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 31

set and no localization procedure is done. Some algorithms that use this technique are
AESA [24], LAESA [16] and VPT [29].

Little is known about the performance of these two selection techniques. In practice,
most algorithms choose pivots at random. Shapiro [20] recommends to select pivots
outside the clusters, and Baeza-Yates [1] suggests using one pivot from each cluster.
However, it is a common belief that the pivots should be far apart from each other,
since close pivots give almost the same information.

4.2 Balancing pivot sharing and localization

In this subsection, we discuss how to balance pivot sharing and localization for di�erent
data sets. We show that for non-clustering data sets, higher sharing level and lower
localization level should be used, while for clustering data sets, lower sharing level and
higher localization level should be used.

4.2.1 Analysis

Theorem:
For a uniformly distributed data set in a hypersphere of radius 1, maximizing pivot

sharing level and minimizing pivot localization level provide the best eliminating abili-
ties.

Proof:
It is su�cient to show that all-at-once selection is superior to any divide-and-conquer

selection.
Recall that in Section 3 we prove that the pivot should be chosen from as far as

possible if we can not guarantee it is within distance rc from the query. Moreover, we
also prove that

√
1

1+(
√

D
β

)
1

D−1
≤ rc ≤ (β√

D
)

1
D−1 where β is a number between 1

2
and 1

3
,

D is the number of dimensions, and the chance of choosing a pivot within distance rc

from the query in high dimensional spaces is extremely small. Thus the �rst pivot is

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 32

always chosen from far away.
Now let's assume m pivots have been chosen from far away. We are going to choose

pivot m + 1.
If pivot m + 1 can't be within distance rc to the query, this pivot should be chosen

from far away.
If pivot m + 1 can be within distance rc to the query, we need to consider whether

to choose the pivot within distance rc or from far away. Note that after obtaining
the m distances from the �rst m pivots to the query, more information about the
distances from the query to other objects are availalbe, such as lower-bound distances,
even though the exact distances are unknown. If we used divide-and-conquer, we can
capitalize on this information when choosing the next pivot. In this situation, assume
in the best case we can eliminate all objects except those distances within rc. Now we
have a hypersphere of radius rc with uniform distribution. Note that if we normalized
the radius rc to 1, we get back the same condition as if choosing the �rst pivot. Since
the �rst pivot should be chosen from far away, so should pivot m + 1.

So, all-at-once selection outperforms divide-and-conquer selection in this uniformly
distibuted hypersphere.

It is a safe assumption that data sets with almost-uniform distributions and hypersphere-
like shapes, such as hypercubes, should also have better query performance with all-at-
once selection. That is, they should maximize the pivot sharing level and minimize the
pivot localization level. Experimental results are shown later in this section.

For highly clustered data, lower sharing level and higher localization level should be
used. That is, careful divide-and-conquer selection methods beat all-at-once selection
for highly clustered data sets. The following examples are used for explanation. Let
us assume there is a highly clustered data set which is composed of m clusters, whose
inter-cluster distances are much larger than intra-cluster distances. For the �rst m

pivots, we adopt Baeza-Yates's recommendation that we should choose one pivot from
each cluster and each pivot is shared by all objects. For the next pivot, there must be

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 33

Figure 4.1: 10-dimensional data set with uniform distribution.

another pivot inside the same cluster with it. If pivot m + 1 is shared by all objects
in the whole data set, it provides almost the same information to objects outside its
cluster as the pivot in its same cluster. Thus, the next pivot should be shared by the
objects inside the same cluster only. So, divide-and-conquer selection should be used
in this case. For lower dimensional spaces, fewer than m pivots might be enough for
eliminating the majority of the clusters. For data sets whose cross-cluster distances is
not much larger than within-cluster distances, more pivots are needed before choosing
locally. In general, a rule of thumb is to use lower sharing level and higher localization
level for more highly clustered data.

4.2.2 Experimental Results

The following experiments show that all-at-once selection provides pivots with better
eliminating power than divide-and-conquer selection when clustering is low. We chose
GNAT [5], a divide-and-conquer algorithm based on hyperplane, to compare against

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 34

Figure 4.2: E�ect of clustered data

LAESA [16], an example of all-at-once selection. To make the comparison fair, we
modi�ed GNAT so that pairwise distances from pivots to their objects are stored instead
of ranges, thus allowing it to occupy as much storage space as does LAESA.

In the �rst experiment, data is uniformly distributed inside a hypercube with length
1 on all sides and dimensionality 10. LAESA uses 50 pivots for this situation. In
modi�ed GNAT, M pivots are chosen at each recursive step and there are 50

M
recursive

steps. Note that when M = 50, the algorithm is identical to LAESA. Experimental
results are shown in Figure 4.1. It can be seen that the larger the value of M , the
smaller the number of distance computations. LAESA has the best query performance
here.

The second experiment is done on a clustered data set. The data set is created
arti�cially as follows: A 15-dimensional hypercube with length 1 on each side serves
as the data space. 10 objects are selected randomly from the hypercube, and these 10

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 35

Figure 4.3: E�ect of localization for real data sets

objects are used as cluster seeds. From each seed, more objects are created by altering
each dimension of that seed with the addition of random values chosen from the interval
[−ε, ε], where ε is a small constant (ε = 0.1 here). The number of pivots M is de�ned
in the same way as in the �rst experiment. Figure 4.2 shows that divide-and-conquer
selection with M = 25 has the best query performance, gaining some bene�t from
localization.

Experiments are done on three real data sets: stock data, histogram data, and land
satellite data sets [21]. These data have all been used as benchmarks for similarity
search in multimedia databases [10, 12, 21]. The stock data set contains 6500 objects
in 360 dimensions, and the �rst 30 dimensions are used for these experiments to avoid
excessive computation time. Histogram contains 12,103 objects in 64 dimensions. The
land satellite data set contains 275,465 objects in 60 dimensions. The stock data are
scattered, whereas the histogram data and land satellite data are clustered. All exper-

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 36

iments are repeated 5 times to get the average number of distance computations. The
results are shown in Figure 4.3. 50 pivots are used in the experiment. That is, M = 50

again represents LAESA while the other are di�erent setting on modi�ed GNAT. It can
seen that LAESA performs better on the scattered stock data, but localization works
better on the two more clustered data sets.

These experiments verify our conclusion that all-at-once pivot selection has better
query performance on scattered data sets, but divide-and-conquer pivot selection does
better on clustered data sets.

4.3 RLAESA

RLAESA stands for representative LAESA and can be viewed as a extended version of
LAESA. It is designed to take advantage of all-at-once selection while keeping the space
requirement low. RLAESA is designed mainly for scattered data sets. However, thanks
to its grouping methods, RLAESA outperforms previous algorithms using divide-and-
conquer selection for all but highly clustered data sets.

4.3.1 LAESA

Since RLAESA can be viewed as an extension of LAESA, it is necessary to introduce
LAESA in more detail [16]. It works as follows.

A set of k pivots are chosen so that they are almost as far away from each other as
possible. The distances from each pivot to each of the n data object are computed and
stored in a k by n matrix. This matrix and the k pivot indices are the only information
stored in the indexing structures, taking O(kn) space.

At query time, the distances from the query object to all of the k pivots are computed
�rst. Put all these k pivots into a priority queue along with their actual distances as the
keys. For all of the remaining objects, choose the pivot p having the smallest distance to
the query and obtain the lower-bound distance |d(p, q)−d(p, o)|. Store these objects and

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 37

their lower-bound distances into the priority queue. Pop up the object with the smallest
distance from the priority queue. If the actual distance is computed, this object is the
closest object to the query object. If the actual distance is not yet computed, apply
the next pivot pi to tighten the lower-bound distance. The new lower-bound distance
is max{|d(pi, q) − d(pi, o)|, prev lower bound distance}. If all of the pivots have been
applied to tighten the lower-bound distance, compute the actual distnace to the object.
Put this object back into the priority queue with its new distance. Pop the next object
from the priority queue, and repeat the above procedure.

The query time performance in LAESA is surprisingly good if the optimal k is used.
It is reported that experiments show that it uses O(1)+k distance computations [16, 8].
However, LAESA requires O(kn) space and optimal k is usually very large and grows
exponentially in the number of the dimensions. This makes LAESA less suitable for
high dimensional spaces and/or large data sets, as compared to the tree structures. In
the remainder of this chapter, we propose RLAESA to alleviate the problem.

4.3.2 Construction Process for RLAESA

We pick k pivots from the data set, as in LAESA. Next, we cluster the data set of size
n into g groups where g = n/k. Each group is formed by �rst choosing a representative
object at random from the object set. Other objects are assigned to the groups as
described below. For each pivot and each group, the lower range is the smallest distance
from that pivot to any object in that group while the upper range is the largest distance.
Store the lower range from each pivot to each group in a two dimensional array, called
lMatrix; similarly, we use uMatrix for upper ranges. For each group, compute the
distances from each object in that group to the representative of the same group and
store them in a two dimensional array, gDistances.

Now, let's go back to the grouping methods. There are three grouping methods
proposed.

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 38

Figure 4.4: Lower-bound distances for group

• Method 1: Each object in a group is no further from the representative of that
group than from any other representatives. That is, each object o in a group has
d(o, r) ≤ d(o, r′) where r is the representative of the group and r′ is any other
representative.

• Method 2: Each object o in a group has max
p∈P

|d(p, r) − d(p, o)| ≤ max
p∈P

|d(p, r′) −

d(p, o)| where r is the representative of that group, r′ is any other representative
and P is the pivot set.

• Method 3: Each object o in a group has ∑
p∈P

|d(p, r)−d(p, o)| ≤
∑
p∈P

|d(p, r′)−d(p, o)|

where r is the representative of that group, r′ is any other representative and P

is the pivot set

4.3.3 Nearest Neighbour Search with RLAESA

Assume that given a query object and a data set, we want to �nd the nearest neigh-
bour for that query. First, all of the actual distances from the pivots to the query
are computed. The lower and upper ranges are then used to determine lower-bound
distances for all objects in each group. Figure 4.4 gives an intuitive explanation, where

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 39

for pivot p and group j, lr and ur are the lower range stored in lMatrix and the upper
range stored in uMatrix, respectively. In can be seen that with query object q1, q2

and q3, the lower-bound distance for this group is d(p, q1) − ur, 0 and lr − d(p, q3),
respectively. If a group cannot be eliminated by its lower-bound distance, we compute
the actual distance from its representative to the query object. Since the distances
from that representative to all of the objects in the group are pre-computed, they can
be used to tighten the lower-bound distance to each object. The lower-bound distance
of each object is the maximum of the group lower-bound distance and the lower-bound
distance via the representative. Thus, some more individual objects can be eliminated.
If an object still cannot be eliminated, we compute its actual distance from the query
object.

The details of the algorithm follow:

1. Compute all of the distances from the pivots p1, p2, ..., pk to the query.

2. Construct a priority queue which is minimum-oriented (that is, smaller keys have
higher priority).

3. For each group j, apply the lower and upper ranges with the pivot p1 to obtain
its lower-bound distances ld using ld = max{lMatrix[1][j] − d(p1, q), d(p1, q) −

uMatrix[1][j], 0}. Put these groups into the priority queue with their lower-bound
distances as keys.

4. Repeatedly retrieve the element with the smallest distance from the priority queue.

(a) If the element is a group, check if more pivots can be applied to tighten its
lower-bound distance.
i. If yes, use the next available pivot pi to tighten the lower-bound distance
of this group j. The new lower-bound distance is ld = max{lMatrix[i][j]−

d(pi, q), d(pi, q)−uMatrix[i][j], ld}. Put this group back into the priority
queue with the new ld.

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 40

ii. If no, compute the distance d(r, q) from its representative to the query.
Use this distance to tighten the lower-bound distances of each object
in the group. Let the lower-bound distance of this group j be ld. The
lower-bound distance for each object o is obtained by max{|d(r, q) −

gDistancesj[o]|, ld}. Put each object, other than the representative,
and its corresponding lower-bound distance into the priority queue. Since
the representative-query distance is computed, it is put back into the pri-
ority queue with the actual distance instead of the lower-bound distance.

(b) If the element is an object with its lower-bound distance, compute its actual
distance to the query object. Put this object and its actual distance back
into the priority queue.

(c) If the element is an object with its actual distance, return the object and
stop.

4.3.4 Storage Space and Construction Cost Analysis for RLAESA

Two k × g matrices, lMatrix and uMatrix are needed to store the lower and upper
ranges using O(n) space, since g = n/k. Each group has an array gDistances. Distances
from each object in the groups to the representative of the same group are stored. This
takes O(n) space, since each object has one distance stored. Pivots and representatives
also take O(n) space. So, the space requirement for RLAESA is linear in the data size.

The number of distance computations during construction is composed of that for
the grouping procedure and that for preparing lower and upper range matrices. For
methods 1, 2 and 3, it can be shown that the numbers of distance computations in the
grouping procedure are O(gn), O(kn), and O(kn), respectively. To construct the lower
and upper range matrices, the actual distance from each object of a group to each pivot
needs to be computed, which takes O(kn) distance computations. Thus, the numbers
of distance computations are O(gn + kn), O(kn) and O(kn) for methods 1, 2 and 3,

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 41

Figure 4.5: Comparison of grouping methods.

respectively. Since g = n/k, the number of the distance computations for method 1

will be O(n2/k + kn). Thus method 1 is not suitable for large data sets.

4.3.5 Experimental Results

We �rst consider the three grouping methods in RLAESA. Arti�cial data with uniform
distribution is constructed in a 10-dimensional hypercube with length 1 on each side.
Each test is repeated �ve times. Figure 4.5 shows that method 1 has the best query
performance, and the performances of methods 2 and 3 are almost equivalent. Thus
grouping method 1 has best query performance, but as mentioned previously, its con-
struction cost is quadratic in the data size. This leads to a trade o� between query
performance and construction cost. For large data sets, methods 2 and 3 have a better
balance between query performance and construction cost. In the rest of this section,
we therefore choose to use grouping method 2 only.

MVP-tree (MVPT) also uses all-at-once pivot selection and takes linear space, and
it is a leading algorithm in similarity search. Chavez [8] reports that MVP-tree outper-

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 42

Figure 4.6: Performance on real data.

forms VP-tree (VPT) and GH-tree (GHT). Here we compare RLAESA with MVP-tree.
The three real data sets, stock, histogram, and land satellite, used in Section 4.2.2

is used for the �nal comparison. However, only some dimensions in the data sets
are used to avoid excessive computation time. The �rst 30 dimensions of the stock
data set are used, while the �rst 15 dimensions of Histogram and Land Satellite data
sets are used. All experiments are repeated 5 times to get the average number of
distance computations. Figure 4.6 shows that on all three data sets RLAESA requires
signi�cantly fewer distance computations than MVP-tree does.

As a matter of interest, we also compare RLAESA with M-tree [9], an alternative
divide-and-conquer algorithm, on these three real data sets as above. Note that taking
only the �rst 15 dimensions of the histogram and landsat makes them less clustered
than before. Histogram data set is more clustered than landsat. Figure 4.7 shows that
RLAESA works better on the scattered stock data set and �rst 15 dimensions of landsat

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 43

Figure 4.7: Comparison of RLAESA with M-tree

data set, but worse on the clustered histogram data set as compared to M-tree.
The experimental results with RLAESA not only show it signi�cantly outperforms

MVP-tree, the leading algorithm using all-at-once pivot selection; but also supports
our previous conclusion that all-at-once is preferrable for scattered data sets, while
divide-and-conquer is better for clustered data sets.

4.4 NGHT

A variant of GHT (GH-tree) with improved pivot sharing is presented in this subsec-
tion. The relationship between distance computations and pivot sharing is analyzed via
experiments. In the remainder of this thesis, we use NGH-tree (New gh-tree) or NGHT
as the name for this index structure.

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 44

Figure 4.8: Sharing depth of NGHT

4.4.1 Construction Process for NGHT

The �rst step for NGHT is to construct a GHT, as described in Section 2.1.2.3 and in
more detail elsewhere [22].

With a suitable integer for sharing depth, we adjust the pivot sharing level as follows:
Consider two sibling nodes a and b at the same level inside GHT. If a and b have a
common ancestor within depth sh, the distances from each object in the subtree Ta

to the pivot of b are pre-computed and the pair of the maximum and the minimum
distances is stored as the range of a with respect to the pivot of b. Similarly, the range
of b with respect to the pivot of a is obtained and stored. Note that a and b can refer
to the same node. A graphical explanation is provided in Figure 4.8. Let sh be 2. In
this case, the pivot in node a will be used/shared by the objects in subtree Tb; similar
for node b and subtree Ta. However, the pivot in node c will not be used/shared by all
objects in either subtree Ta or Tb.

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 45

4.4.2 Search on NGH-tree

Search on NGHT is similar to search on GHT but more conditions are applied to
tighten the lower-bound distances. Recall that the lower-bound distance on GHT is
|d(pa,q)−d(pb,q)

2
| where pa and pb are the pivots to construct the hyperplane. Beside this,

two more formulas are used to tighten the lower-bound distance.

• d(q, pa)−max(a) where pa and max(a) are the pivot and the maximum distance
for node a, respectively. Moreover, d(q, pa) > max(a) must hold for this formula
to be used.

• min(a)− d(q, pa) where paa and min(a) are the pivot and the minimum distance
for node a, respectively. Moreover, min(a) > d(q, pa) must hold for this formula
to be used.

From all of the above three formulas, the one with the largest value is used as a new
lower-bound distance for node a. Then this new lower-bound distance is applied in
the same way as the lower-bound distance in GHT to prune away the subtrees which
cannot contain the result object(s).

In short, search in NGHT requires fewer distance computations than that in GHT
because more information is stored in order to provide tighter lower-bound distances
during query time.

4.4.3 Analysis

Now we analyze the NGH-tree with respect to the space and construction cost.

4.4.3.1 Space Requirement

NGHT consists of a GHT structure and the additional range information. Each node
in NGHT has at most 2sh−1 ranges, where sh is the sharing depth. Thus the range
information in NGHT takes O(2sh−1) times storage space as that in GHT. GHT has

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 46

Figure 4.9: The relationship between sharing depth and distance computations for
uniformly distributed data

linear storage space requirement in total. Thus, NGHT requires O(n · 2sh−1) storage
space.

4.4.3.2 Construction Cost

In GHT the distances from the objects inside a node to the two pivots of the same
node are pre-computed, while in NGHT the distances from the objects inside a node
to the pivots of at most 2sh−1 nodes are pre-computed. The construction cost for
GHT is O(n log n) distance computations. Thus, the construction cost for NGHT is
O(2sh−1n log n) distance computaions.

4.4.4 Experimenetal Results

Uniformly distributed data is used in the following experiments. In the �rst experiment,
2000 objects are distributed in a 15-dimensional hypercube with unit lengths. The
results are shown in Figure 4.9. It can be seen that increasing the sharing depth
reduces the number of distance computations at query time. Since the sharing depth

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 47

Figure 4.10: Relative Ratio of the number of distance computations for NGHT to GHT
under di�erent dimensionalities and di�erent data sizes

de�nes the amount of information stored, the distance computations are saved at the
expense of the cost of storage space. For di�erent data sets, we are more interested
on the percentage of distance computations being reduced than the absolute value.
The number of distance computations with sharing depth of 3 is divided by that with
sharing depth of 0 to obtain the relative ratio shown in Figure 4.10. It can be seen from
the �gure that the percentage of distance computations reduces for larger data sets.
This is because each node in NGH-tree has a higher percentage of being pruned than
that in GHT. If a node is pruned, the whole subtree rooted at it can be ignored for
further consideration. For a while, the percentage of distance computation reduction
grows as the data size increases. Moreover, it can be seen that the relative ratio is at a
valley when the number of dimensions is 10 for a �xed data size. More investigation is
necessary in the future to �nd out the reason.

NGHT demonstrates that distance computations in uniformly distributed data sets
can be reduced by increasing pivot sharing, and this can be applied to a general data
structure with minor modi�cation only. Moreover, it is shown by experiment that its

CHAPTER 4. PIVOT SHARING AND LOCALIZATION 48

application is more e�ective for large data sets.

4.5 Conclusions

In this section, pivot sharing and pivot localization are de�ned and their relationship
is evaluated through probabilistic analysis and experiments. We conclude that pivot
sharing is preferrable for scattered data while pivot localization is better for clustered
data if the storage space is �xed. Two data indexing structures, RLAESA and NGHT,
are proposed to provide test data. RLAESA is a new data structure with linear storage
requirement and it outperforms MVPT, the leading algorithm with all-at-once pivot
selection. NGHT demonstrates a general framework which can be used to improve
search e�ciency by increasing the pivot sharing level.

Chapter 5

Reducing I/O

Most current similarity search algorithms focus on reducing the number of distance
computations while paying little attention to I/O cost. We have followed this convention
in the previous sections. However, as the data size grows, the percentage of information
that can be loaded into main memory will be low. Depending on the data sizes and the
applications, I/O cost might play an important role in query cost. In this section we
try to reduce the I/O cost while keeping the number of distance computations low.

M-tree is the only indexing structure designed speci�cally for secondary memory [8].
The tree nodes in M-tree are stored in a single disk page. The insertion of new data
object in M-tree is similar to that in B-tree. M-tree is balanced so that the I/O cost is
low. It is not hard to imagine that other tree structures can be turned into this B-tree
style [8]. For instance, the subtrees of a tree structure can be �compressed� into a disk
page so as to take advantage of each disk read. However, it is hard to apply this style
to non-tree structures such as AESA and LAESA.

In this chapter, a new indexing structure is proposed to alleviate the I/O problem
for LAESA-like structures via a B-tree approach. We call this new structure SLAESA
(sequential LAESA).

49

CHAPTER 5. REDUCING I/O 50

5.1 SLAESA

As in LAESA, k pivots p1, p2, ..., pk are chosen. For each i, compute the distances from
pi to each data object and store the objects into a double-linked B+-tree Ti. There are
k double-linked B+-trees in total with the objects sorted by distances in the leaves. The
construction requires O(kn) distance computations and the storage cost is also O(kn)

where n is the data size as before.
By the triangle inequality, we have d(q, o) > |d(q, p) − d(p, o)|. Given a range

query with query q and range r, each data object o within distance r to q satis�es
d(pi, o)− r ≤ d(q, o) ≤ d(pi, o)+ r for each i. Thus all other objects violating the above
conditions can be eliminated from further consideration. Let the data set be U , the
object set satisfying d(pi, o)−r ≤ d(q, o) ≤ d(piS, o)+r be Ai and the object set violating
d(pi, o)−r ≤ d(q, o) ≤ d(pi, o)+r be Bi. We have Ai = U−Bi. We wish to �nd ∩1≤i≤kAi

which can be obtained by starting with A1 and iteratively intersecting with Ai or
subtracting Bi, whichever is smaller. Since the distances inside the B+-trees are sorted,
this operation takes O(Ai) or O(Bi) disk reads. Thus it takes O(A1 +

∑
2≤i≤k

min Ai, Bi)

disk reads on k B+-trees overall.
Nearest neighbour search in SLAESA is slightly di�erent from range search due

to the fact that the range distance is not available. Nearest neighbour search can be
envisaged as gradually increasing Ai page by page. The details of the algorithm are as
follows.

1. Compute all of the distances from the k pivots to the query.

2. Construct a priority queue which is minimum-oriented.

3. Construct an integer array V with n elements.

4. Store the k pivots into the priority queue using their distances as keys.

5. For each B+-tree Ti, read in the corresponding leaf node vj where the pivot pi is
located. For each pair of Ti and vj, insert pairs Li, j and Ri, j into the priority

CHAPTER 5. REDUCING I/O 51

queue with lower-bound distances of the leftmost object and rightmost object of
vj, respectively, as the keys. For each object o in the node vj, increment the value
of V [o] by 1.

(a) If V [o] equals k, insert o back into the priority queue with its lower-bound
distance |d(pi, o)− d(pi, q)|.

6. Repeatedly retrieve the element with the smallest distance from the priority queue.

(a) If the element is an object with its real distance computed, return it as the
nearest neighbour.

(b) If the element is an object with lower-bound distance, compute its distance
to the query and insert it back to the priority queue with its real distance.

(c) If the element is a pair of Li, j, read in the leaf node vj−1 in tree Ti. Insert the
pair Li, j − 1 back into the priority queue with the lower-bound distances of
the leftmost object of vj as the key. For each object o in the node, increment
the value of V [o] by 1.
i. If V [o] equals k, insert o back into the priority queue with its lower-
bound distance |d(pi, o)− d(pi, q)|.

(d) Otherwise, the element is a pair of Ri, j, read in the leaf node vj+1 in tree Ti.
Insert the pair Ri, j + 1 back into the priority queue with the lower-bound
distances of the rightmost object of vj as the key. For each object o in the
node vj, increment the value of V [o] by 1.
i. If V [o] equals k, insert o back into the priority queue with its lower-
bound distance |d(pi, o)− d(pi, q)|.

Now let's compare the search e�ciency of SLAESA with LAESA. SLAESA has the
same distance computations as LAESA since the pruning conditions using the triangle
inequality are exact the same. The major di�erence between them are the I/O access

CHAPTER 5. REDUCING I/O 52

cost. Let's assume the nearest neighbour searches with the same query object are run
on both SLAESA and LAESA. For a speci�c object o, we assume that g out of k pivots
are such that when they are used to obtain lower-bound distances, they lead to the
elimination of o. The order of pivots being used in LAESA can be treated as random.
By probability, it can be known that the average number of pivots is k

g
so that one of the

g pivots is chosen and leads to the elimination of this object o. For SLAESA, the order
of pivots being used is such that the pivot providing the smaller lower-bound distance
will be used �rst. Thus, k − g + 1 are needed before the lower-bound distance leading
to the elimination of o can be obatined. SLAESA needs to access almost g times more
pivot-object distances than LAESA. However, in practice k for LAESA will seldom
exceed 200 [16] because of the storage space restriction and g is some number smaller
than k. Moreover, SLAESA uses sequential read while LAESA requires random access.
One disk page in modern computer system can easily store more than 1000 pivot-object
distances. Thus, SLAESA can easily outperform LAESA by 5 times in terms of I/O
access.

At least two variants of SLAESA are available for di�erent applications. The �rst
variant follows. Note that because the distances are sorted in SLAESA, a single distance
can be used for several close objects if precise lower-bound distances are not required.
By doing so, fewer disk I/O operations are required. Of course, the number of distance
computations will increase slightly since the lower-bound distances are no longer as
tight as before. It is a tradeo� between CPU cost and disk I/O cost. The second
variant tries to improve the order of pivots being used. Choose arbitrarily h out of k

pivots and form h B+-trees as before. Form a distance matrix as in LAESA with the
remaining k − h pivots. By using this distance matrix, we start the nearest neighbour
search as in LAESA. However, each time when a distance from an object to the query
is computed, we know for sure that any object with lower-bound distances bigger than
the above distance is not in the result and can be eliminated. By sequentially scanning
the h B+-trees, we can mark some objects as being eliminated. If the same object

CHAPTER 5. REDUCING I/O 53

is retrieved from the priority queue, it can be discarded. Note that in such a way,
the tightest lower-bound distances are obtained in the early stage of the search. The
implementation and testing of hese two variants are left for future work.

5.2 Experimental Results

Since the number of distance computations is no longer the only factor of search e�-
ciency, we use the query time to evaluate the search e�ciency. The experiments are
performed on a PC with a 388 Hz CPU and a 256MB physical memory, running on
a Redhat Linux 8 OS. The data set contains 100,000 arti�cal objects, distributed uni-
formly in a 10-dimensional hypercube. The numbers of pivots, k, in both LAESA
and SLAESA are 100. Both indices take 80MB. Tests are repeated for 5 times on
both SLAESA and LAESA. The average query time for SLAESA is 138 seconds while
LAESA takes 147 seconds in average. Due to the long construction time, this is the
only experimental results we have at this moment. More experiments are needed in
further work.

5.3 Conclusions

For large data sets, it is necessary to consider not only the cost of distance computations
but also that of I/O accesses. Experiments demonstrates that SLAESA outperforms
LAESA in some large data sets. Further experimentation on di�erent data sets and
other variants of SLAESA are needed.

Chapter 6

Conclusions and Future Work

In this thesis, we analyzed pivot selection probabilistically. We proved that whether a
pivot should be chosen from far away or within the cluster depends on the critical radius,
rc and obtained the value of rc. Moreover we de�ned the concepts of pivot sharing and
pivot localization and analyzed them and their relationship. We conclude that pivot
sharing level should be increased for scattered data while pivot localization level should
be increased for clustered data. This means that the algorithms using all-at-once pivot
selection are preferrable for scattered data while those using divide-and-conquer pivot
selectlion are better for clustered data.

Two new algorithms, RLAESA and NGH-tree, were proposed. RLAESA is an algo-
rithm using all-at-once selection, and it outperforms MVP-tree, the fastest algorithm
using all-at-once slelection and linear storage space. By studying the NGH-tree, we
showed a general framework which can increase the pivot sharing levels for any al-
gorithm using divide-and-conquer selection without decreasing the pivot localization
level, so that the search e�ciency can be improved. The experiments with RLAESA
and NGH-tree not only show their performance but also support, with some other exper-
iments, the above conclusion that pivot sharing level should be increased for scattered
data while pivot localization level should be increased for clustered data.

Furthemore, we addressed disk I/O, which has received too little attention in most

54

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 55

algorithms, and presented the SLAESA to reduce disk I/O cost.
A next step is to design an algorithm which is suitable for both scattered and

clustered data. One approach is to build RLAESA on top of another algorithm using
divide-and-conquer selection, since the data is usually scattered within clusters. It is
also interesting to see how to combine these algorithms with the techniques of reducing
disk I/O.

Bibliography

[1] R. Baeza-Yates, W. Cunto, U. Manber and S. Wu. Proximity matching using �xed-
queries trees. Proceedings of the Fifth Combinatorial Pattern Matching (CPM'94),
Lecture Notes in Computer Science, 807:198-212.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval Addison-
Wesley, Reading, Mass, 1999.

[3] C. Bohm, S. Berchtold and D.A. Keim. Searching in high-dimensional spaces �
Index structures for improving the performance of multimedia database, ACM
Comput. Surv., 33(3):322-373, 2001.

[4] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional met-
ric spaces. Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, 357-368, 1997.

[5] S. Brin. Near Neighbour Search in Large Metric Spaces. In Proceedings of the 21st
Conference on Very Large Databases (VLDB'95), 574-584, 1995.

[6] W.A. Burkhard and R.M. Keller. Some Approaches to Best-Match File Searching.
Commun. ACM, 16(4):230-236, 1973.

[7] E. Ch\'{a}vez and J. Marroquin. Proximity queries in metric spaces. Proceedings
of 4th South American Workshop on String Processing (WSP'97), 21-36, 1997.

[8] E. Ch\'{a}vez, G. Navarro, R. Baeza-Yates and J. Marroqu\'{i}n. Searching in
Metric Spaces. ACM Comput. Surv, 33:273-321, 2001.

56

BIBLIOGRAPHY 57

[9] P. Ciaccia, M. Patella and P. Zezula. M-Tree: An e�cient access method for simi-
larity search in metric spaces. In Proceedings of the 23rd Conference on Very large
Database (VLDB'97), 426-435, 1997.

[10] P. Ciaccia and M. Patella. Pac nearest neighbor queries: Approximate and con-
trolled search in high-dimensional and metric spaces. Proceedings of of 17th Inter-
national Conference on Data Engineering, 244-255, 2000.

[11] K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Comput. Geom.,
22(1):63-93, 1999.

[12] A. Gionis, P. Indyk and R. Motwani. Similarity search in high dimensions via
hashing. Proceedings of 25th International Conference on Very Large Data Bases,
518-529, 1999.

[13] G. Hjaltason and H. Samet. Ranking in spatial databases. Proceedings of Fourth
International Symposium on Large Spatial Databases, 83-95, 1995.

[14] G. Hjaltason and H. Samet. Incremental Similarity Search in Multimedia
Databases. Proceeding of 1998 ACM SIGMOD international conference on man-
agement of data, 237-248, 1998.

[15] A.E. Lawrence. The volume of an n-dimensional hypersphere
http://sta�.lboro.ac.uk/~coael/hypersphere.pdf

[16] L. Mico, J. Oncina and E. Vidal. A new version of the Nearest-Neighbour Approx-
imating and Eliminating Search Algorithm (AESA) with linear preprocessing time
and memory requirements. Pattern Recogn. Lett., 15:9-17, 1994

[17] L. Mico, J. Oncina and R. Carrasco. A Fast Branch & Bound Nearest Neighbour
Classi�er in Metric Spaces. Patt. Recog. Lett., 17:731-739, 1996.

BIBLIOGRAPHY 58

[18] G. Navarro. Searching in Metric Spaces by Spatial Approximation In Pro. 6th South
American Symposium on String Processing and Information Retrieval (SPIRE'99),
pages 141-148. IEEE CS Press, 1999.

[19] G. Navarro. Searching in Metric Spaces by Spatial Approximation. VLDB Journal,
Vol. 11, Issue 1, 28-46.

[20] M. Shapiro. The Choice of Reference Points in Best-Match File Searching. Com-
mun. ACM, 20(5):339-343, 1977.

[21] E. Tuncel, H. Ferhatosmanoglu and K. Rose. VQ-index: an index structure for sim-
ilarity search in multimedia databases. Proceedings of the 10th ACM International
Conference on Multimedia, 543-552, 2002.

[22] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Inf.
Proc. Lett., 40(4):175-179, 1991.

[23] J.K. Uhlmann. Metric trees. Applied Mathematics Letters , 4(5), 1991.

[24] E. Vidal. An algorithm for �nding nearest neighbours in (approximately) constant
average time. Pattern Recogn. Lett. 4(3):145-157, 1987.

[25] E. Vidal and M.J. Lloret. Fast speaker independent DTW recognition of isolated
words using metric space search algorithm (AESA). Speech Communication 7:417-
422, 1988.

[26] E. Vidal. New formulation and improvements of the Nearest-Neighbour Approx-
imating and Eliminating Search Algorithm (AESA). Pattern Recognition Lett.,
15:1-7, 1994.

[27] T.L. Wang and D. Shasha. Query processing for distance metrics. In Proceedings
of the 16th International Conference on Very Large Databases (VLDB), 602-613,
1990.

BIBLIOGRAPHY 59

[28] Y. Wen. Incremental Similarity Search with Distance Matrix Methods. University
of Waterloo Course Project, 2003.

[29] P. Yianilos. Data Structures and Algorithm for Nearest Neighbor Search in Gen-
eral Metric Spaces. Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1993.

[30] P. Yianilos. Excluded middle vantage point forests for nearest neighbor search. In
DIMACS Implementation Challenge, ALENEX'99 (Baltimore, Md), 1999.

[31] Math World http://www.mathworld.com

