
A Graphical XQuery Language
Using Nested Windows

Technical Report: CS-2004-37

Zheng Qin, Benjamin Bin Yao, Yingbin Liu, and Michael McCool

University of Waterloo
School of Computer Science, Waterloo, Ontario, Canada N2L 3G1

{zqin, bbyao, ybliu, mmccool}@uwaterloo.ca

Abstract. A graphical XQuery-based language using nested windows,
GXQL, is presented. Definitions of both syntax and semantics are pro-
vided. Expressions in GXQL can be directly translated into correspond-
ing XQuery expressions. GXQL supports for, let, where, order by and
return clauses (FLWOR expressions) and also supports predicates and
quantifiers. This graphical language provides a powerful and user-friendly
environment for non-technical users to perform queries.

1 Introduction
XML is now being used extensively in various applications, so query languages
have become important tools for users from many different backgrounds. How-
ever, the use of query languages can sometimes be difficult for users not having
much database training. A graphical query language supported by a user-friendly
interface can potentially be very helpful. With a graphical interface, users do not
have to remember the syntax of a textual language, all they need to do is select
options and draw diagrams.

In this paper, a graphical XQuery-based language is described. Early graphi-
cal query languages for XML included G [7], G+ [8], G+’s descendant Graphlog
[6], G-Log [11], WG-Log [4], and WG-Log’s descendant XML-GL [3, 5]. In these
visual languages, a standard node-edge graphical tree representation is used to
visualize the hierarchical structure of XML documents. The nodes represent el-
ements and attributes in the documents, and the edges represent relationships
between the nodes. In addition to the node-edge representation, research has also
been performed into form-based query languages, such as Equix [2], and nested-
table based query languages, such as QSByE (Query Semi-structured data By
Example) [9]. The BBQ language used a directory tree visualization of the XML
tree [10].

Most of these visual languages were developed before XQuery. A recent
graphical XQuery-based language, XQBE (XQuery By Example) [1], extends
XML-GL to XQuery, and also overcomes some limitations of XML-GL. The
XQBE query language is good at expressing queries, but there are some prob-
lems with it. First, XQBE defines many abstract symbols. For instance, there are

2 Z. Qin, B. B. Yao, Y. Liu and M. McCool

two kinds of trapezoids, lozenges of two different colors, circles of two different
colors, and so on. It is difficult to remember which abstract symbol represents
what concept, especially for non-technical users. Second, the representation is
not visually obvious, as all relationships are mapped onto a uniform tree struc-
ture. This is also true of other systems otherwise similar to ours (such as BBQ).
Representing all relationships with a common visual formalism can lead to con-
fusion. For instance, when a node points to another node via an edge, does it
mean a parent-child relation, a cause-result relation, or an attribute relation?
Users who are unfamiliar with XML or XQuery cannot tell at first sight. Third,
there are some XQuery expressions that cannot be easily expressed by XQBE,
for example, quantifiers. XQBE could be extended to support these features, but
such an extension would involve even more abstract symbols, edges and labels,
which would make the representation harder to understand and use.

We have designed a nested window XQuery-based language, called GXQL
(Graphical XQuery Language). GXQL has fewer symbols than XQBE, and these
symbols are visually suggestive and therefore easier to remember. We use nested
windows to represent parent-child relationships. Child elements and attributes
are also visually distinguished. The visualization of a document in GXQL in
fact resembles a real document in appearance. The query interface in GXQL is
user-friendly. Users do not have to input everything textually or need to draw
queries from scratch. Like BBQ, in our visual notation windows and icons can
be dragged around to construct new nodes or copy nodes. The interface also
allows users to visualize only the parts of the document structure they need to
perform a query. GXQL is also more expressive than XQBE. Some queries hard
to express in XQBE are easy in GXQL, and some queries impossible to express
in XQBE are possible in GXQL. For instance, in XQBE predicates of a node in
a return clause can only affect its parent node, whereas in GXQL, predicates
can affect arbitrary nodes. These will be shown in the examples.

In Section 2, we will show how GXQL visualizes the structure of XML doc-
uments. Section 3 describes how queries can be set up using the user interface
of GXQL. Examples to show how this language is used are given in Section 4.
Since we want to compare GXQL directly with XQBE, the sample XML docu-
ment and the example queries in this paper are taken from the XQBE paper [1].
Some modifications were made to Query 5 to demonstrate a query not supported
by XQBE. The semantics of GXQL are analyzed in Section 5. Conclusions and
future work are given in Section 6.

2 Visualization Interface
The schema of the sample document we will be using for our example queries is
represented by GXQL in Figure 1 (a). Each rectangle represents an element that
can have a URI, attributes and subelements. The URI indicates the location of
the document. In the sample document, element <bib> is at the outermost level,
element <book> includes attribute year and some children.

Rectangles representing children are enclosed completely in the parent rect-
angle. The borders of these rectangles can be drawn in various styles. These will
be explained in the next section.

GXQL - A Graphical XQuery Language 3

(a) (b)

Fig. 1. Visualization Interfaces. (a) GXQL representation of the sample document (b)
Query interface of GXQL

Initially, only the parent node and its immediate children are represented.
However, users can expand elements inline by double clicking on them. Already
expanded elements can be zoomed to fill the window by double-clicking on them
again. When an attribute is expanded, information about that attribute, such as
its data type, will be added to the representation. When an element is expanded,
it will remain the same width but will get longer, and its attributes and children
will be drawn nested inside it. If an element is zoomed, its corresponding rect-
angle and all its children will zoom out to fill the window. If the window is not
big enough to display all its elements, a scroll bar will be added to the window
and users can scroll to view all the elements. Right clicking on an attribute or
element will pop up a right click menu. Choosing “predicate” item will bring
up a window showing information (such as name, type and full path) about that
attribute or element and allows the entry of predicates. Expanded or zoomed
elements will have a close icon in the upper right corner. Left clicking on this
icon will close that element (unzoom it or unexpand it as required). We have
not shown these icons in our diagrams to avoid clutter.

Drag actions are also used as part of the query interface, but these are dis-
tinguished from the actions described here because in a drag action, the button
up event happens outside the window.

3 Query Interface

The query interface of GXQL looks like Figure 1 (b). There are three parts
in the main window. On the left, the retrieval pane represents the schema or
input document. It allows users to select the subset of the input they want to
query. In the middle, the construction pane allows users to structure the query
results. On the very right of the interface there is a symbol bar containing all

4 Z. Qin, B. B. Yao, Y. Liu and M. McCool

the symbols used in GXQL. These are used to create new elements from scratch
in the construction pane.

In the retrieval pane, when users choose a document or document schema,
GXQL will visualize its structure. At first, only the outermost node and its
children are shown, but users can zoom into or expand subelements to see detail.
This process can be repeated until the nodes of the innermost level (with no
children) are reached. We chose this design because we want the interface to
give users some way to browse the structure of the document, so that users do
not have to remember the names of elements and attributes themselves, but are
not overwhelmed with detail. Our design also does not require loading the entire
document, so large documents can be visualized incrementally.

We will call elements or attributes “nodes”. Users can select (or deselect) any
node by left clicking on it. Selecting nodes by clicking avoids errors caused by
misspelling. By default, all nodes are first drawn with light blue color indicating
the nodes exist, but have not been selected yet. Selecting nodes will change their
color to black. After the users set up a query, clicking on the “confirm” button
will confirm and execute the query. All selected nodes will participate in the
query, while unselected elements will be ignored.

When users want to input predicates for nodes, they just need to right click
on a node, and a window will pop up asking for the predicate, and providing a
menu of options. After the predicates are confirmed, each predicate will be shown
in the predicate panel below as an object. Both retrieval pane and construction
pane have their own predicate panel.

In the constructions pane, there are two ways to construct a node, either
by dragging a symbol from the symbol bar, or by dragging a node from the
retrieval pane. After dragging a symbol from the symbol bar, the new element is
empty, and the user must input the name for it. When dragging a node from the
retrieval pane, the node (including all its descendants) are dragged along into
the construction pane, forming a new node there (expanded to the same level
as in the retrieval pane). Users can then select the nodes they want or delete
(by a right click menu selection) the ones not needed. Users can also drag the
nodes around and switch their order. The results will be given based on this
order. When nodes are dragged from the left part, their frame border can also
be changed via a right click menu item.

Some rectangles have single-line frames and some have shadowed frames.
Other frame styles are possible; a complete set of symbols representing the rela-
tions between nodes used in GXQL is given in Figure 2. Each frame style has a
specific meaning suggested by its visual design. Symbol 1 indicates that node B
is the single immediate child of node A. Symbol 2 indicates there are multiple B
subelements wrapped within one A node, and all Bs are immediate children of
A. Symbol 3 has the same meaning as symbol 2, except when users set up pred-
icates for B, only some elements B satisfy the predicates. Symbol 4 indicates
that the B subelements are descendants of A. There may be multiple Bs that
are descendants of A. They do not have to be immediate children of A. Symbol 5
has the same meanings as symbol 4, except that when users set up predicates for

GXQL - A Graphical XQuery Language 5

B, only some elements B satisfy the predicates. Symbol 6 indicates that the B
subelements are descendants of A with only one intermediate path in between.
There may be multiple Bs that are descendants of A. Symbol 7 has the same
meanings as symbol 6, except that when users set up predicates for B, only some
elements B satisfy the predicates. Symbol 8 has the same meaning as symbol 1,
except that when users set up predicates for B, they want the complement of
the results. This is just one example of complementation. Any symbol from 1 to
7 can be complemented in the same way. Symbol 9 is used in our diagrams to
indicate actions in the user interface. It is not a visual symbol in GXQL.

8

B

A
single child B
A’s immediate

XQuery: A/B

1

A

some A//B

Some descendant

Bs of A

5

B

B

A

for all A/B

A’s immediate
multiple children Bs

2

B

A

for all A/*/B

6 A’s descendants Bs

B

A

some A/B

Bs of A
Some children3

B

A

some A/*/B

Some descendant

Bs of A

7

A A’s descendants Bs

for all A//B

4

B

B

A negation of B’s
predicate

not ...

Fig. 2. Symbols used in GXQL

4 Examples

The sample XML document and the example queries used in this paper are taken
from the XQBE paper [1] with modifications in Query 5 to demonstrate queries
not supported by XQBE. We are going to show how each of these queries is
expressed in GXQL. We will elaborate the first example, but quickly go through
the rest of the queries.

Query 1: List books published by Addison-Wesley after 1991, including their
year and title.

This query is to show how to represent “for” “where” and “return” in GXQL.
In the XQuery textual language, this query can be expressed as follows:
<bib>

{ for $b in document("www.bn.com/bib.xml")/bib/book

where $b/publisher="Addison-Wesley" and $b/@year>1991
return <book year="{$b/@year}"> { $b/title } </book> }

</bib>

Query 1 is represented by GXQL as in Figure 3 (a). In the retrieval pane,
users first zoom into element <book>, so the attribute year and all subelements
will show up. Right clicking on year to pop up a window as in Figure 4 (a).
This window will show the name (with full path) and data type of the attribute
and will prompt for predicates. The symbol “>” is chosen from a cascade menu.
For the predicate, user can either input it manually or drag a node from the
document. Right clicking on the <publisher> element to pop up a window as in
Figure 4 (b) will show the name (with full path) and data type of the content of
this element, and will ask for predicates. Once a predicate is set, the predicate

6 Z. Qin, B. B. Yao, Y. Liu and M. McCool

or

(and)year publisher

File Help

bib

book

bib

book

.
.
.

drag

title

titlepublisher

year year
dragdrag

drag

confirmreset

and not group ungroupor

confirmreset

and not group ungroup

reset

File Help

bib

book

.
.
.

dragresults

result

author

title

drag

title

author
drag

drag

and not group ungroupor and not group ungroupor

confirm confirmreset

(a) (b)

reset

and not group ungroupor

File Help

book book

.
.
.

title

publisher

title

last

drag

dragauthor

and not group ungroupor

confirm confirmreset

title

and not group ungroupor and not group ungroupor

book

title

price

File Help

.

.
.

title

books−with−prices

book−with−prices

price−amazon

price−bn

drag

drag

drag

drag

drag

confirm confirmreset reset

entry

title

price

(c) (d)

Fig. 3. GXQL expressions for queries 1 through 4

object will show up in the predicate panel below the main figure as shown in
Figure 4 (c). Predicates can be combined together by boolean operations. For
example, first the user clicks on and button and then clicks on objects year and
<publisher>. The predicates for year and <publisher> will be combined by and.
They are also grouped together (represented by the parenthesis around them) so
that the grouped object can participate in further boolean operations. The user
can also ungroup the predicates by the ungroup button. The predicate objects
can be dragged around to switch orders, which supports arbitrary combinations
of the predicates. All boolean operations are supported, such as or and not. This
cannot be done in XQBE, which can only represent and relation, and this is why
there are only and relations in their examples.

(b)

www.bn.com/bib/book/@year : integer

predicates: 1991>

www.bn.com/bib/book/publisher : string

predicates: = Addison−Wesley

(a) (c)

and not group ungroupor

year publisher

Fig. 4. Pop-up windows for attributes and elements

GXQL - A Graphical XQuery Language 7

To express the example query, in the construction pane users first drag an
icon with a single frame from the symbol bar to create a new element <bib>,
then drag an icon with shadowed frame for element <book>. Then users can drag
year and <title> from the retrieval pane to the construction pane (left to right).
When the “confirm” button is clicked, appropriate textual XQuery language
will be generated and passed down to the processing pipeline. The query should
be read from the outermost rectangle toward the innermost rectangles. In the
retrieval pane, elements <bib> and <book> at the outermost level are interpreted
as “for each <book> element in <bib>”. The predicates for year and <publisher>

are interpreted to mean “the year has to be later than 1991 and the <publisher>

has to equal Addison-Wesley”. In the construction pane, elements <bib> and
<book> are interpreted to mean “construct new nodes <bib> and <book>, with
multiple <book> elements wrapped inside a single <bib> element.” The attribute
year and element <title> are copied from the retrieved results.

Query 2: For each book in the bibliography, list the title and authors, grouped
inside a <result> element.

This query shows that we can construct new element with new names. This
query is expressed in XQuery as follows:
<results>

{ for $b in document("www.bn.com/bib.xml")/bib/book

return <result>

{ $b/title } { $b/author }

</result> }

</results>

Query 2 is represented by GXQL as in Figure 3 (b). In the left part, the frame
for element <book> has a shadow, which means there are multiple instances of
element <book> within a single pair of <bib> tags. We iterate over each instance
of the <book> element in the input document, which corresponds to the for

clause in XQuery. In the construction pane, dashed lines with arrowheads show
how the elements are constructed. The shadowed frame of element <result>

means multiple instances of <result> will be wrapped in one <results> tag. Each
<result> instance will have a copy of the <title> and an <author> elements from
each <book> in the input.

Query 3: For each book, list only the title and the surnames of the authors
(maintaining the books in the order of the original document).

This query shows how to choose multiple descendants of arbitrary depth. This
query is expressed in XQuery as follows:
for $b in //book

return <book>

{ $b/title } { $b/author/last }

</book>

Query 3 is represented by the GXQL given in Figure 3 (c). In the retrieval
pane, the frame of <book> has shaded double lines, which means the query is

8 Z. Qin, B. B. Yao, Y. Liu and M. McCool

looking for any book element in the document, corresponding to path //book in
XQuery (frame options are chosen by right clicking on the frame). When this
frame mode is selected, double clicking will cause zooming to operate “in place”,
allowing users to burrow down through the document tree.

This path cannot be represented clearly by XQBE. XQBE uses Figure 6
(a) to represent the descendant path. However, it is hard to tell whether this
indicates bib/book or bib//book. For this reason, in the examples used by the
XQBE paper, the “//” path specifier is not used except at the very beginning of
the path. Even when XQBE example uses “//” at the beginning of a path, we
feel the XQBE representation is confusing as in the second half of Figure 6 (a).
When the users choose <last> in <author>, the <author> rectangle will expand,
and users can drag the <last> element to the construction pane.

Query 4: For each book found at both bn.com and amazon.com, list the title of
the book and its price from each source.

This example shows how to join two documents to produce a new document.
The corresponding XQuery is as follows:
<books-with-prices>

{ for $b in document("www.bn.com/bib.xml")//book,

$a in document("www.amazon.com/review.xml")//entry

where $b/title=$a/title
return <book-with-prices>

{ $a/title }

<price-amazon> { $a/price/text() } </price-amazon>

<price-bn> { $b/price/text() } </price-bn>

</book-with-prices> }

</books-with-prices>

Query 4 is represented by GXQL in Figure 3 (d). In the retrieval pane, users
first right click on the “<title>” node in the first document, which will pop up
a window. Then users need to drag the “<title>” node in the second document
into the predicate, which will be converted into the path automatically. The rest
of the construction pane is then built as previously discussed.

Query 5: List all the books in element <bib> and wrap them within one <results>
element.

We modified this example so that it uses the let clause. The let clause is not
supported in XQBE, so there is no example using let in the XQBE paper.
XQBE can wrap multiple elements within a single element, but the query is
always translated into for clause. The modified XQuery is given as follows:
let $b := document("www.bn.com")/bib/book,

return <results> { $b } </results>

Query 5 is represented by GXQL in Figure 5 (a). In this example, the <book>

element is first dragged from the retrieval pane to the construction pane. Note
that the <book> rectangle has a shadowed frame. This means all the retrieved
<book> elements will be wrapped together in one <results> element in the result.

GXQL - A Graphical XQuery Language 9

reset

and not group ungroupor and not group ungroupor

File Help

bib

.
.
.

book

results

book

drag

drag

confirm confirmreset
reset

and not group ungroupor and not group ungroupor

File Help

book book

.
.
.

title title

editor editor

affiliation

first

last

drag

drag

drag

affiliation

confirm confirmreset

(a) (b)

reset

(and)year publisher

and not group ungroupor

File Help

bib

book

.
.
.

book

bib

publisher title

year year

title

drag

drag
drag

drag

confirm confirm

and not group ungroupor

reset resetconfirm

File Help

.

.
.

title

list

Jack−s−book

first

FullName

title

last

drag

drag

dragdrag

drag

drag

author

first

and not group ungroupor

(and)first publisher

publisher

and not group ungroupor

first

book

confirmreset

(c) (d)

Fig. 5. GXQL expression of queries 5 through 8

Query 6: Make a list of all the books with their title, including the editors only
if they are affiliated to CITI.

This query shows how to represent queries with predicates in the return clause.
This query is expressed in XQuery as follows:
for $b in //book

return <book>

{ $b/title } { $b/editor[affiliation="CITI"] }

</book>

Query 6 is represented by GXQL as in Figure 5 (b). The predicate is on the
construction pane in this case. This is because the predicate must be in the return
clause of the XQuery. Putting the predicate in the retrieval pane would filter off
some results that we need. The pink color in the construction pane indicates that
the predicate will affect all the elements that have the same color as the predicate
element. In this case, element <editor> will be affected by the predicate. If, for
example, only element <first> would be affected, then we would just dye the
<first> rectangle pink.This relationship cannot be represented well in XQBE
either. XQBE uses Figure 6 (b) to represent this relationship. The double border
around affiliation indicates that it is an attribute. The ∗ indicates that all

10 Z. Qin, B. B. Yao, Y. Liu and M. McCool

book

book

www.amazon.com

bib

"CITI"

editor

affiliation

*

*

www.bn.com

book

Jack−s−book

list

publisher author

first

"Addison−Wesley"

"Jack"

FullName title

(a) (b) (c)

Fig. 6. XQBE examples. (a) Part of query 3 (b) Part of query 6 (c) XQBE expression
of query 8

subelements of editor are selected. However, predicates in XQBE always affect
only the parent element, so XQBE cannot express predicates when only <first>

or <last> is affected.

Query 7: List books published by Addison-Wesley after 1991, including their
year and title, sorting the retrieved books in lexicographic order.

This example shows how the “order by” clause can be invoked. The correspond-
ing XQuery is given by
<bib>

{ for $b in document("www.bn.com/bib/xml")/bib/book

where $b/publisher="Addison-Wesley" and $b/@year>1991
order by $b/title
return <book>

{ $b/@year } { $b/title }

</book>

</bib>

Query 7 is represented by GXQL as in Figure 5 (c). Setting up the sorting
order of <book> works the same way as setting up predicates, except that it won’t
show up in the predicate panel.

Query 8: List all the books not published by Addison-Wesley and with an author
whose first name is “Jack”. Rename each of these books in <Jack-s-book>,
and only remain the title and the full name of the authors whose first name
is Jack.

The equivalent XQuery is given by the following:
<list>

{ for $b in document ("www.bn.com/bib.xml")//book

where some $a in $b/author satisfies

some $f in $a/first/text() satisfies

($f = "Jack" and

not (some $p in $b/publisher/text() satisfies

($p = "Addison-Wesley")))

return <Jack-s-book>

{ for $a in $b/author

GXQL - A Graphical XQuery Language 11

where some $f in $a/first/text() satisfies ($f = "Jack")

return <FullName> { $a/* } </FullName> }

{ $b/title }

</Jack-s-book>

</list>

Query 8 is represented by GXQL as in Figure 5 (d). Remember if an element
has a predicate and its frame border has a dashed line, it means we need only
some of the elements to satisfy the predicates.

Users can read the query from the diagram as followings: In the retrieval
pane, the <book> element has double-line frame, which means we are looking for
all book elements in path “//book”. The <author> element has both a dashed and
a shadowed frame, which means multiple author elements are inside each book
element, and we need only some of them to satisfy their predicates. The <first>

rectangle is also shadowed, which means there are multiple <first> elements (to
represent multiple given names) in each author element, and we need only some
of them to satisfy the predicate. The <publisher> elements are set up similarly,
except that we want the negation of a predicate, i.e. “not (some publisher ele-
ments satisfy the predicate)”. In the construction pane, <list>, <Jack-s-book>,
and <FullName> are new elements. The <FullName> element is pink, which means
for the authors’ name of each book retrieved from the document, we only want
to list the names that have at least one first element that is equal to “Jack”. In
XQBE, they use the graph in Figure 6 (c) to represent the same query. Here the
dashed line indicates negation. From the way the <author> and <first> nodes
are drawn, it is really hard to tell whether it means all of them have to satisfy
the predicates or only some of them have to.

5 Semantics

To implement a query in GXQL, we just have to translate a given GXQL diagram
into a corresponding XQuery FLWOR expression. We are going to explain how
each symbol in GXQL is translated into a clause in FLWOR, which also defines
the semantics of GXQL. In the construction pane, when users set up rectangles
by dragging icons from the symbol bar, it corresponds to constructing new nodes
in the result. In the retrieval pane, each shaded double-line frame, if not dragged
to the construction pane, corresponds to a “for” clause with a “//” path, e.g.
“for $b in bib//book”. If such a frame is dragged to the construction pane, it
corresponds to a “let” clause, e.g. “let $b = //book”, and the result of “$b” is
wrapped within a single parent tag. Each double-line frame unshaded works the
same way as shaded double-line frame, except that it represents path “/*/”. Each
shadowed frame, if not dragged to the construction pane, also corresponds to a
“for” clause with a path containing only “/”, e.g. “for $b in bib/book”. If such
a frame is dragged to the construction pane, it corresponds to a “let” clause, e.g.
“let $b = /bib/book”, and the result of “$b” is wrapped within a single parent
tag. Each single-line frame corresponds to a child “/”, e.g. “$f = bib/book”. If
a frame has a dashed border, it corresponds to use of the “some” quantifier, e.g.
“some $b in //book satisfies”. If a rectangle is crossed, it corresponds to the
use of “not” in all predicates, e.g. “not ($b = ‘‘Jack’’)”.

12 Z. Qin, B. B. Yao, Y. Liu and M. McCool

So to perform translation, the construction pane should be analyzed first to
find out what nodes are new and which nodes are copied from the retrieved
results. The next step is to analyze the retrieval pane, going from the outer-
most rectangle to the innermost rectangle and binding variables to expressions
according to how they are going to be used in the “return” clause. The last
step is to construct complete FLWOR expressions based on the elements in the
construction pane.

6 Conclusions
In this paper, we have described the design of GXQL, a graphical query lan-
guage using nested windows to visualize hierarchy. Representations in GXQL
can be directly translated into corresponding “FLWOR” clauses. GXQL also sup-
ports predicates, different path patterns, and quantifiers. GXQL is also easy to
expand to support more XQuery features. To keep the user interface clear, GXQL
does use textual input for simple expressions. We think textual expressions are
a much easier way to express simple computations.

More features of XQuery might eventually be supported in GXQL, such as
conditional expressions, type casting, functions, and so on. However, being both
powerful and clear is a challenge to graphical languages. The system should not
have so many features added to it that it becomes too difficult for a user to
learn.

References
1. D. Braga and A. Campi. A Graphical Environment to Query XML Data

with XQuery. In Fourth Intl. Conf. on Web Information Systems Engineering
(WISE’03), pp. 31–40, 2003.

2. S. Cohen, Y. Kanza, Y. A. Kogen, W. Nutt, Y. Sagiv, and A. Serebrenik. Equix
Easy Querying in XML Databases. In WebDB (Informal Proceedings), pp. 43–48,
1999.

3. S. Comai, E. Damiani, and P. Fraternali. Computing Graphical Queries over XML
Data. In ACM Trans. on Information Systems, 19(4), pp. 371–430, 2001.

4. S. Comai, E. Damiani, R. Posenato, and L. Tanca. A Schema Based Approach to
Modeling and Querying WWW Data. In Proc. FQAS, May 1998.

5. S. Comai and P. di Milano. Graph-based GUIs for Querying XML Data: the
XML-GL Experience. In SAC, ACM, pp. 269–274, 2001.

6. M. P. Consens and A. O. Mendelzon. The G+/GraphLog Visual Query System.
In Proc. ACM SIGMOD, 1990, pp. 388.

7. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A Graphical Query Language
Supporting Recursion. In Proc. ACM SIGMOD, 1987, pp. 323–330.

8. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. G+: Recursive Queries without
Recursion. In 2nd Int. Conf. on Expert Database Systems, pp. 335–368, 1988.

9. I. M. R. Evangelista Filha, A. H. F. Laender, and A. S. da Silva. Querying
Semistructured Data by Example: The QSByE Interface. In 2nd Int. Conf. on
Expert Database Systems, pp. 335–368, 1988.

10. K. D. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for Inte-
grated Browsing and Querying of XML. In 5th IFIP 2.6 Working Conf. on Visual
Database Systems, 2000.

11. P. Peelman J. Paredaens and L. Tanca. G-log: A Declarative Graph-based Lan-
guage. In IEEE Trans. on Knowledge and Data Eng., 1995.

