
Technical Report CS-2004-35

Enabling Chaotic Ubiquitous Computing1

O. Andrei Dragoi and James P. Black
oadragoi@shoshin.uwaterloo.ca, jpblack@uwaterloo.ca

School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Abstract: Today, ubiquitous computing is possible only in handcrafted environments, and not

across administrative and technological domains. For this to happen, a middleware “ecology”

will need to emerge, so that users can exploit a chaotic environment of competing

communication and service providers, and overlapping administrative authorities. Although

key elements of the ecology exist today, simple exploitation of unfamiliar (or familiar)

ubiquitous environments remains a challenge for users. They need simple tools that open the

way to this increasingly rich ecology of devices, services, and information. This paper

describes how such tools can be provided through a software abstraction called a frame.

Keywords: ubiquitous computing, software abstractions, services, service access, middleware,

web proxy

1. Introduction
Several elements contribute to enabling ubiquitous computing: ubiquitous deployment of networked

electronic devices, ubiquitous wireless and wired Internet access, portable user devices, standardized

protocols and formats, and, more significantly, software that allows the user to make sense of and use the

rather chaotic environment that results. While most of these elements are a reality, this is not true of the

software. This paper proposes a clear software abstraction for ubiquitous computing that can help impose

some structure and order on the complex and chaotic environment facing the user.

There are several aspects to this chaos. Ubiquitous computing is challenging because of the variety of

players that contribute to the user’s experience, and the fact that one cannot reasonably expect all of them

to cooperate. Various electronic devices can be used in the environment. Internet Service Providers (ISPs)

provide wireless or wired ubiquitous access to the Internet, and multiple ISPs may be available in the

same physical area. End-user service providers of various sizes and levels of technical expertise, from a

big mall-management company to a small corner store, want to make their services accessible. Some

might set up smart spaces (such as presentation rooms), but these spaces may overlap arbitrarily and may

not necessarily cooperate since service providers compete for users. For instance, when the user is in a

conference room, service providers such as a university, the city, and commercial businesses nearby may

1 This research was supported by Bell University Laboratories at the University of Waterloo, and by the Natural Sciences and Engineering

Research Council of Canada.

1

Enabling Chaotic Ubiquitous Computing

have services accessible there. Finally, the user may have a number of simultaneous goals that compete

for his or her attention, and that need to be mapped to operations involving electronic services.

In our attempt to bring some simple structure to this chaos, we make a number of assumptions. Users

browse the internet with conventional thin clients, mediated by a middleware proxy that can observe and

transform web objects passing through it. They achieve their goals by using single tools for simple tasks,

and each tool generally applies an operation of some service to data being browsed. Some services may

require the user to be in an authenticated role. Users can access a home node where they store and retrieve

private data.

With these assumptions, our contribution is a software abstraction we call a frame. Each frame

implements an operation to be applied to particular data, which could be a web page, an image, a link in a

web page, a table in a web page, a paragraph, a word etc. When invoked by the user, a frame must

discover and use specific services, and might have to handle localized access credentials for them. Only

select, relevant frames are presented to the user, grouped into toolboxes. Frames themselves decide on

their relevance to a user, in the context of their use. These tools bring order out of the chaos of ubiquitous

services confronting the user. They allow multiple administrative domains and competing service

providers to co-exist and even interoperate, have low barriers to entry that can be used to leverage existing

electronic services, and enable an ecology of ubiquitous computing in a general setting.

In the next section, we motivate the need for a ubiquitous-computing software abstraction, and describe

our model of how the user interacts with the system. Section 3 identifies the functional properties of

frames and describes the rationale behind each. Section 4 argues the benefits of this design and describes a

proof-of-concept implementation used to validate it. Section 5 further discusses deployment and

implementation issues as well as several open problems. Section 6 contrasts our approach with related

work. Conclusions follow.

2. Vision and Motivation
Middleware at the edge of the Internet plays a key role in mediating among the various players that

interact there: end users, known or unknown to the infrastructure; end-user service providers like stores,

hotels, cinemas, travel guides, and print shops; middleware and internet-service providers; and software

developers who would provision all or parts of a user-friendly ubiquitous-computing environment.

While the software developers need to recover development expenses, the user needs non-disruptive,

functional, and interoperable software. When the user (or the service provider) purchases a ubiquitous-

computing space designed for a single purpose such as a meeting room, it is clear to both where and how

to add value. In the general case, however, unless clear software abstractions are defined, it is less obvious

how value can be added. For instance, what is the model of software licensing and the incentive to write

2

Enabling Chaotic Ubiquitous Computing

it? How are the sources of individual software components identified? How does one, in fact, identify

what brings a specific benefit?

Outside of smart spaces built with a fixed purpose, different software developers design the different

“applications.” It is important for a developer to understand where the boundaries of each application are,

and to comprehend how the different applications might or should interact. The user of a ubiquitous-

computing system is immersed in the physical and electronic environment. For instance, a user might be

simultaneously tracking a parcel, finding his or her way through the building, accessing his or her

calendar, and then suddenly decide to buy a beverage from a vending machine that happened to be along

the way. In other words, the user interacts with multiple “applications” in arbitrary ways. This brings us to

the open problem of what an application means, in the special case of ubiquitous computing. It also

suggests smaller units of software to simplify development by reducing the complexity for the developer.

Many scenarios discussed in ubiquitous-computing research reflect an assumption that the system

should deduce user intentions and fulfill them proactively, with limited user intervention. This approach is

unlikely to be successful in a general-purpose system. Moreover, deploying several “parallel” special-

purpose systems is likely to be prohibitive. We take the approach that a careful selection of simple tools,

presented to the user by the middleware, can provide enough structure and coherence for users to

understand and exploit an unfamiliar (or familiar) ubiquitous-computing environment.

chose the
relevant

tools

HTML page

contextual
tools

annotated page

contextual information

user
middleware proxy

(at the ISP or a third party)

provider W provider Zprovider Yprovider X
services

software
developer A

software
developer B

software
developer C

code units behind potential tools

Figure 1. A view of a ubiquitous-computing system

The general-purpose ubiquitous-computing middleware (acting as a proxy) should manage, select, and

present only those tools that are currently relevant to the user, and then manage the execution of the

software behind the tools (Figure 1). We assume each tool corresponds to a single operation on certain

3

Enabling Chaotic Ubiquitous Computing

data, operation that might make use of external services. These services may require the identification and

authentication of the user in a particular role. We discuss this in more detail elsewhere [8]. In general, we

also assume each user has some home node, which is not part of the infrastructure. We expand further on

these assumptions below.

Ubiquitous computing is about service access, not about computations on the mobile device. People use

mobile devices to browse data, to access services, and to control how these services act on user data [1].

As implied by the figure, we assume browser-based access mediated by a proxy server under the control

of an ISP. Competing software developers and service providers want to improve the users’ experience by

easing and customizing their access to services. Middleware providers deploy an overlay infrastructure to

manage and run software that facilitates access to these ubiquitous services. As the user browses, the

proxy can modify, annotate, or replace each page requested.

A service is any entity that can send, receive, generate, or manipulate data (e.g., and HTML document,

an image, a PostScript document, or a text document). Ready examples of services are a printer, a wireless

digital camera, a display, or a mobile phone. Services can be offered by software (e.g., banking,

translation) or they can be offered by hardware (e.g., printing, storage).

Figure 2. Continuum infrastructure at work

We adopt a simple usage metaphor for the ubiquitous-computing interactions, related to what has been

proposed in projects such as Speakeasy [2], m-Links [2], and Satchel [2]. The web page rendered in 4 8 2

4

Enabling Chaotic Ubiquitous Computing

the browser is augmented with dynamically generated toolboxes of contextual tools that the user can

apply to data objects or groups of data objects contained or referenced in the web page. The data objects

are structured documents (an HTML page, a PowerPoint presentation, a photo), or components of them (a

picture in a web page, a table in a web page, a chart in a PowerPoint presentation). Each tool in a toolbox

corresponds to the user interface of an operation on data. An operation can move data between devices

and services (e.g. displaying on a nearby projector, acquiring a photo from a digital camera, saving to a

disk, beaming to a peer mobile device), or can transform data. It is very specialized, has a minimalist,

data-centric interface with the ubiquitous-computing infrastructure, but may be arbitrarily complex in

functionality and have arbitrary user interfaces. An operation can use one or more external services. For

complex interactions, several operations might be applied by the user in sequence to the same or different

data. Some operations, as some service, do not need any input data (e.g. a digital camera), but might

generate data objects or have other side effects, so we also define a degenerate case of tools that are

associated with no data.

Figure 2 shows an example of interaction implemented in the Continuum prototype (to which we return

later in this paper). The user views a map on her PDA. When she finds that the map is not rendered

acceptably on the small screen, the user clicks through the map to access a toolbox with tools referring to

the map. The toolbox has five tools. She chooses the Display tool, to magnify the small map on a nearby

public-use display.

To enable these interactions, the Display frame first had to be published. Then, it had to interact with the

user, look for external displays in service directories in the user’s area, and drive those displays, using

their respective protocols. The data transferred by the frame to the target display might or might not have

been in a format understood by the display service.

We use the term publication to mean the process of dynamically selecting the set of relevant operations

to be associated with a particular hotspot, followed by instantiation of the code units that implement each

of these operations. Portions of this code are added on the fly to the web pages the user visits to give him

or her access to the operations. The code behind these operations is often provided by the middleware

provider not by the service provider.

We use the term decoration to mean the user-perceived impact of annotating a web page with toolboxes.

To what data the tools in a particular toolbox refer, it is a separate issue. We make this association through

an UI artefact, called a hotspot. For a web page, the hotspot is an icon in the corner of the page; for an

image, it is the image itself on which the user can click. If the primary interface with the user is voice, the

“hotspot” might be a special keyword pronounced by the user.

5

Enabling Chaotic Ubiquitous Computing

A tool starts executing if the user chooses to interact with it. While executing (part at the browser part at

the middleware, as we shall see), tools have access to information about services, but also to the values of

the attributes associated with users, devices, and services. The attributes and their values are also

important parameters to the publication decisions and to tool operation. Examples of attributes are the

location of a device (or its user), a certificate asserting that a user is able to act with a certain role (a role

certificate), or the URL of the user’s home node.

We assume all interactions happen over HTTP, as a de facto standard, but any request-reply transport

protocol could be used. The user’s personal device is assumed to be running a thin client (a standard

Internet browser). This data-centric view takes into account that, with all the variability in a ubiquitous-

computing environment, the user will relate first to the data he or she needs to access and only second to

what can be done to that data and how. Furthermore, we do not assume local availability of stable storage

for private data, or that the user carries all the data he or she needs with him.

To perform its function, the middleware has to have access to the unencrypted data the user is browsing

(as is often the case of an ISP). In this paper, we assume interactions for which the benefits of

convenience overcome the risk of potential security breaches. Target settings are, for example, a mall, a

hotel, a university, an airport, or a commercial street. The assumption is that breach of trust produces only

nuisance, or at most the loss of small amounts of money. When security is a larger issue, it is assumed that

the owners of a service (employers, businesses, governments, law enforcement agencies, the user, etc.)

and of the data objects will choose security over convenience, and employ “classic” solutions such as

VPNs, direct authentication, and end-to-end encryption.

These assumptions lead us to search for the small, self-contained software abstraction we now call a

frame. We expand on frames in the next section.

3. A software abstraction
The developer’s task is to implement the software unit behind each tool. We refer to this software unit

as a frame. (The term is used to convey the idea of bundling together well-defined functionalities; it has

no relation to the HTML <FRAME> tag or to link-layer transmission units.) What functionality must a

developer include in such a self-contained unit of software that implements an operation? These

operations must be developed considering a number of characteristics unique to interactions in ubiquitous

computing: an environment rich in electronic devices, provided by a combination of small service

providers and hand-crafted smart spaces, multiple administrative domains, arbitrary properties or

attributes of services and devices (or their users), and the need for dynamic discovery of both service

directories and services. We are primarily concerned with reusable aspects of this design, so we keep the

initial description independent of particular programming languages and infrastructural elements. In a

6

Enabling Chaotic Ubiquitous Computing

subsequent section, we describe our implementation of Continuum, the proof-of-concept prototype we

used to test and validate our ideas.

Figure 3 illustrates the functional properties of a frame. The frame logic combines the functionality of

the external services, interacts with those services over various protocols, drives the process of authorizing

the user to access the service, and drives the user-interface interaction. It can make use of contextual

information like attributes and role assertions. The frame logic is typically split between an applet,

running in the browser and dealing primarily with the user interface, and a servlet, running in the proxy

server. The servlet provides an onPublication method to help decide if the frame should be published,

responds to user events as reported by the applet (assuming publication occurs), discovers services as

necessary, and interacts with them to execute operations. Some frames may not require external services;

this is a design issue for the frame developer.

user interface
code

data conversion
code

code to decide
on publication
of this frame

code to look for
services

frame instance
user

web object

Continuum
transcoding support transcoding

services

services
&

service directories

Continuum
service lookup
suport

a priori context,
likely compiled by Continuum

Continuum
UI support

frame logic

Figure 3. Frame functional properties

3.1. User Interface
What must a developer do to implement the frame behind a new tool? A first step is to design and code

the user interface (UI).

A tool makes the semantics of the frame apparent to the user, and may gather additional input.

Conveying clear semantics to the user can be challenging. Fortunately, users are better than software in

dealing with semantics. For example, a button labeled Start would break software that expects the label

Play, but would pose no problems to a user.

7

Enabling Chaotic Ubiquitous Computing

In the simplest case, the semantics of a frame can be conveyed through as little as an entry in a menu,

like the tools Print and Display in Figure 2 below. Frames can also have more sophisticated interfaces,

such as voice, if the client device supports them.

The underlying assumption is that each frame has a certain UI “real estate” associated with it, allocated

during the publishing process, in the toolbox for the hotspot for which the tool has been published. The

tools pictured in Figure 1 (on page 3) represent interfaces exposed to the user simultaneously by several

frames. There can also be tools associated with no data, all in a special toolbox, accessed through a

dedicated hotspot.

The ubiquitous-computing infrastructure could ease the implementation of frame interfaces with

special-purpose libraries and templates, through dynamic generation or adaptation of interfaces [1], and

through dynamic generation of meaningful labels for services and other URLs [2].

6

8

3.2. Data Conversion
The purpose of a frame is to give the user access to specific contextual services. Yet often, even services

with identical high-level semantics accept and generate different data types. This is the case even for

widely deployed and standardized services such as printers. Some printers accept PostScript while some

accept only proprietary languages. To complicate things further, different formats might have the same

apparent fidelity to the user (e.g., PostScript and PDF) while others might not (e.g., JPEG and GIF).

In the general case, a frame developer cannot avoid having to control how data-type conversion takes

place, because this is tightly tied to the particular semantics of a frame. For example, does Print mean

printing an outline of the document, does it mean printing what the user sees (potentially a poor quality

rendering of the document), or does it mean printing the original?

This notion of data transcoding for the web was first advocated by Brooks et al. [4]. Directing type

conversions and data versioning does not necessarily mean the developer implements the actual

conversion inside the frame. The frame can locate transcoding services in the same way it locates the

other services it needs to execute its particular operation. Transcoding services that are unavailable can be

dealt with like other missing services by not publishing the frame or, if the frame is already published, by

revealing the problem to the user.

3.3. Service Discovery
Once the user chooses an operation to execute on an object, that operation must be bound to an actual

service. To do this, the frame first obtains references to instances of the services required. Service

discovery and use are related. Both depend on the semantics and specific properties of the potential target

services. Many current ubiquitous-computing systems are handcrafted, based on a set of simplifying

assumptions with respect to the discovery protocols used, the types of services to be encountered, the

8

Enabling Chaotic Ubiquitous Computing

kinds of activities the user will perform in the setting, and the patterns of interactions that will take place.

For example, within the iRoom project at Stanford, Ponnekanti et al. [2] report that they felt no need to

use existing discovery protocols, because they were served well enough by the event-communication

facility at the core of their infrastructure. This results in a system that is highly decoupled in its structure,

yet monolithic in application, and is not unlike early attempts in distributed-systems research to hide the

distribution, when in fact the user could have taken advantage of it.

6

0

5 0

In the general case, the semantics of these services and the way they are characterized will still be

arbitrary, even if software interfaces of services are simplified to a common, bare minimum (e.g., HTTP,

or the minimal interfaces in the Speakeasy project [1]). Furthermore, different administrative domains

can choose different service-discovery protocols, with different type hierarchies and conventions. For

instance, the SLP [1] template for printers uses the printer-location attribute, while in Jini [3], a printer

location is expressed as an instance of the class net.Jini.lookup.entry.Location. Unlike software, human

users can often easily map the semantics of the services encountered into previously known semantics.

The frame will have to commit to a specific set of discovery protocols and, ultimately, to issue the

service-discovery query or queries to directories known to the infrastructure. Consider the differences

among the semantics of the following three frames: PrintInTheRoom, PrintForDeliveryTomorrow, and

PrintOnTheDepartmentalPrinter. All require a printer, potentially the same kind of printer, but there are

significant differences in the exact query issued. A frame that is to be robust in discovering and using

services with similar semantics but different discovery protocols will have to include significant

knowledge of those semantics and protocols. If additional service-discovery protocols need to be

supported, the code for the frame may be modified, or an additional frame coded, deployed, and published

when appropriate.

By having frames take responsibility for performing discovery, one avoids the need to agree on a

discovery protocol, a hierarchy of service types, and the names and semantics of attributes.

3.4. Frame Publication
We have mentioned several times the idea of a frame being published if it is “relevant.” This relevance

is subjective because of the difference between what the ubiquitous-computing middleware can know or

infer about the user and his or her context, and the actual user intentions, given the situation and the

environment as he or she sees it. We conceptualize this difference by using the terms a priori context and

electronic context.

The a priori context is a partial reflection of the “real world” in the ubiquitous system. It refers to

contextual information about the user and his or her activities and goals, e.g., the user is in a meeting, the

user is John. It can come from sensors as in the Context toolkit [7], environment monitors, service

9

Enabling Chaotic Ubiquitous Computing

directories, inference engines, or even from the user. The corresponding system artifacts of the electronic

context are likely to be highly simplified or approximate because of, for instance, the lack of sensors, or

sensors of suitable accuracy, the inability to predict the future correctly, or even the lack of a tangible

technical definition of certain notions.

Starting from the a priori context, the job of a ubiquitous-computing system is to provide contextual

means that help the user devise and carry out his or her tasks related to the data object(s) viewed on the

mobile device. The set of published frames (or, for the user, the set of tools) represents the electronic

context generated by the system.

heuristics for
frame publication

HTML page

internal state
related to the

hotspot

cached client
attributes,

role certificates

known services
directories,

services already
discovered

published
frame-applets

annotated page

frames participating in
the publication decision

a priori context

user

Figure 4. Frame publication

Figure 4 illustrates this frame publication process and elements of the a priori context that can influence

it. The relevance and semantics of the a priori context elements are tightly linked to the particular

objectives implemented by a frame. For example, if the user is a visitor (indicated by a special role

assertion) in an office building (indicated by the location attribute of the device), a frame

PrintOnTheDepartmentalPrinter might not be relevant, while a frame PrintInTheRoom could be.

A developer writing a frame could list conditions on the a priori context that warrant frame publication.

This works for middleware with simple publication heuristics and for simple frames. Otherwise, the only

option is to request certain elements of the a priori context and to implement a customized frame-

publication decision algorithm in the frame. This might include actively discovering certain services or

obtaining certain a priori context elements directly. Yet, querying service directories can be expensive, so

frames might choose publication without first looking for services. On the other hand, this might result in

a large number of published frames.

10

Enabling Chaotic Ubiquitous Computing

The user should be made aware that the synthesized electronic context can only be an approximation,

and he or she should ideally have a means to control the extension of the set of tools proactively.

Although not user-friendly, simple examples of such actions are providing URLs to additional “local”

service directories, providing information about the user as additional attributes, or even providing the

code for the frames of interest.

4. Validating the Frame Concept with the Continuum Prototype
We have refined these general notions by building the Continuum prototype to validate the frame

notion, and to get an idea of how complicated frames are to implement, and of what they require in terms

of middleware infrastructure. The middleware is mostly implemented in Java. The exercise helped us

refine the four functionalities a frame must include, and provided evidence that infrastructure cannot be

completely relied upon to implement them on behalf of the frame developer.

In the current prototype, a Continuum middleware server is assumed to run at the last wired hop,

controlling frame publication and offering a (server) runtime for frames. From an HTTP perspective, the

server runs as an HTTP proxy, but its functionality goes well beyond altering the HTTP traffic. A frame

consists of an applet executing at the client (within a browser), and a servlet executing at the Continuum

server. Currently, applets are a combination of HTML and JavaScript, to capitalize on the functionality

already available in web browsers, and they are mostly responsible for the user interface of the frame. The

frame servlets are implemented in Java and can make use of several methods offered by the Continuum

runtime.

We have already refer to Figure 2 (on page 4), showing an instance of how Continuum might be used.

The Print frame in the shown toolbox prints on a nearby printer. Printers are well standardized services,

yet, as previously mentioned, their properties vary from one discovery protocol to another. The frame we

implemented can discover printers advertised over Jini [30] and SLP [15]. The frame accesses SLP

printers with the line printer daemon protocol [23]. Jini objects representing printers are accessed over a

specialized Java interface. Currently, we do not use the javax.print.PrintService interface, but it would be

trivial to do so. The frame handles only PostScript printers; for conversion to this format, it uses methods

offered by the Continuum runtime.

Unlike printers, displays are less standardized as network devices (the closest approximation is exposing

the display through an X server), in spite of the very standard interface between a display and a computer,

and the clear semantics for the users. The Display frame in Figure 2 can only locate displays advertised

over Jini (because there is no display type defined in SLP) and manipulates the displays through a

specialized Java interface. (The frame discovers and uses custom Jini objects that communicate with the

remote X display server.)

11

Enabling Chaotic Ubiquitous Computing

In general, a frame supplies the specific discovery queries to helper methods provided by the

Continuum middleware. The queries can be constructed based on a variety of information available to the

frame. The type of hotspot for which the frame will be published, which includes the type of data to which

that hotspot associates tools, is an example. Another example is the attributes of the device or the user,

such as the current location. Continuum could make use of whatever location technologies are available,

and currently takes the very simplistic approach of obtaining the location directly from the user.

The service directories queried are those known by the runtime plus any others known for the particular

client. (All the information about a client, such as cached attributes and known service directories, is kept

within a soft session.) While some service directories are built into the prototype, Continuum also

provides a dynamic mechanism for acquiring relevant service directories. We will only describe it briefly

here. More details can be found in a different technical report [8].

Essentially, through formal and informal peer-to-peer interaction with other “local” users, a user

acquires roles and knowledge of directories and services where those roles can be exploited. These other

local users are affiliated with a local administrative domain or have already acquired knowledge of the

local topology. The users exchange role assertions that name a role accepted by contextual services, and

indicate directories where such services can be found. These assertions capitalize on both topological

knowledge and “the trust knowledge” of the issuing user, and can provide the necessary credentials to use

contextual services. The generation and exchange of the role assertions are implemented by specialized

frames published to both the issuing user and the recipient. An example is a hotel guest acquiring a role

assertion from the reception clerk as part of the registration process. The assertion then gives the guest

electronic access to services in and around the hotel.

We also plan to experiment with other mechanisms for discovery and registration of services. Larger

service providers can register their service directories with the ISPs covering the area they serve, much

like local businesses ensure their advertisements are printed in the local newspapers. Service directories

can also be specified in a user’s preferences at the home node, or discovered through mechanisms of

specific discovery protocols. For instance, in Jini, multicast can be used to discover service directories on

the same network. Research results in direct discovery of web presences for physical services, such as the

Cooltown project [20], can also be leveraged.

Returning to Figure 2, the third and fourth frames interact with the user’s home node to store the framed

data object or to bookmark it. The home node offers permanent storage accessible over WebDAV [13]. It

can be under the control of the user or it can be a purchased service. For access to the home node, the user

is challenged for access credentials that are opaque to the middleware. The fifth frame lets the user control

12

Enabling Chaotic Ubiquitous Computing

the fidelity of the framed image: as an empty rectangle, as a thumbnail, at full size, in full color or

grayscale. For this frame, the actual image transcoding is performed by a method supplied by Continuum.

In the prototype, publishing a frame involves only the instantiation of the frame applet, that is, the

HTML and JavaScript code that is added to the HTML page. As a matter of design, servlets are stateless,

so they can be static classes or instantiated as needed. Any state pertaining to one frame instantiation is

kept within the applet. A frame developer provides templates for the HTML and JavaScript code of the

applet, in which certain “well-known” macro definitions are available, such as the data-object URL and its

MIME-type. He or she also provides a Java class implementing a special-purpose servlet interface. Based

on the object MIME-type (if required), the hotspot type, and on other client attributes in the runtime

session, the onPublication() method of this interface is called to determine if the frame should be

published. To create an applet, the various pieces of Java, HTML, and JavaScript code are bundled

together by a meta-information XML record, prepared when the frame code is registered with the

Continuum infrastructure.

The current publishing algorithm is simplistic. For an intercepted page request, and for each hotspot

identified or created in that page, each registered frame is invoked to decide if it is relevant. Frames might

need to know if a certain service is available before deciding on their publication, but querying service

directories can be expensive due to latency. To alleviate this problem, we plan to implement a cache of

services. The frames prototyped so far decide on their relevance without making discovery queries. Those

that do need external services, such as Print and Display, launch discovery queries only if the user chooses

to interact with them. If multiple services are found, the user is asked to choose the service he or she

wants.

It is important to note that, regardless of who takes the publication decision, stale frames might be

published, because of user mobility, of services being stopped, or of optimistically publishing frames that

fail to find some of the services, or when services discovered are not accessible to the particular user. In

Continuum, both the notion that the published set of frames is an approximation and the notion that some

of the published frames could become stale are exposed to the user as part of the contract. Given the

dynamism, and the manifest link between service availability and user location, mobile users will have

fewer expectations of service availability than stationary users. An user can always opt to force a

regeneration of the toolbox. This can be done by reloading the page and hence forcing a rerun the

publication algorithm. One can also imagine delivering the toolbox in separate HTML files referenced

from the web page, and potentially refreshed more often than the page.

The Continuum prototype offers several simple HTML+JavaScript templates for frame user interfaces.

It also offers a limited set of general-purpose JavaScript and Java methods that are available when the

13

Enabling Chaotic Ubiquitous Computing

applet or servlet executes. We have already mentioned service discovery and transcoding helpers. Other

facilities include a standardized communication method between the applet and the server that facilitates

caching of client attributes at Continuum, and predefined user interfaces and methods to access the cached

attributes from the servlet and the attribute pool from the applet.

5. Prospects and Challenges
Ubiquitous-computing systems are complex. The software abstraction introduced in this paper

simplifies the task of the developer. It shifts the burdens of managing software for dealing with this

complexity from the user to the developer and the middleware providers.

Several relationships are significant in the resulting system. Users have a business relationship with the

ISP. Every time they sign into the ISP’s network, they also explicitly or implicitly sign up with the

Continuum server. The underlying assumption is that users are aware that the electronic context compiled

by the Continuum server is an approximation, and that they might need to seek local information actively

about available services and credentials to access them.

Large ISPs seem best positioned to act as middleware providers, through their size, their technical

expertise, and the fact they always transmit the packets to and from the mobile clients. The core open

issue is how frame code is managed, that is, how Continuum comes into possession of frame descriptions

and code. Ubiquitous-computing middleware providers can proactively purchase frame code for popular

services in the area they cover, recovering licensing expenses from the flat access rate they charge to

users. They might also have business agreements with select service providers, and roaming agreements

with other ISPs. Such agreements would include sharing frames to ensure a similar level of service in a

foreign network. When the ISP and service providers in the area are more decoupled, one could also

imagine services that push frames to the mobiles, code that in the end is cached at the Continuum server

for future use by the same or other users.

We see the set of frames at a Continuum server as expanding dynamically and possibly on demand, to

suit the preferences and the topology of available services for the area the ISP covers. This brings us to the

possibility of having heuristics for publication that can track frame usage history for all users and for each

individual user. Alternatively, to reduce the latency to transfer frame code to the client, frames could be

cached at the client or pre-fetched, assuming storage is inexpensive. However, the publication decision is

still better taken at a well-connected network node like the Continuum server.

In theory, service providers could provide code directly to mobile devices, but it is likely that another

level of indirection (the frame), provided by a third party, can better take into account user preference

(e.g., localization). Moreover, service providers do not collaborate with each other and might in fact

compete, so there is no incentive for them to create software that also makes use of services offered by

14

Enabling Chaotic Ubiquitous Computing

other service providers. In addition, some service providers are small entities (e.g., the corner store) that

would rather minimize the infrastructure they need to deploy. Ideally, they would just have to provide the

services.

6. Frames Compared with Other Approaches
Having identified the promising prospects of frames, how do they compare with related notions? The

notion of user activity has been proposed as a replacement for the notion of application, in the context of

ubiquitous computing, but this notion is too fluid and can change frequently and arbitrarily at the user’s

whim. In the general case, such changes can rarely be “guessed” from the a priori context. Newman et al.

[24] observe that ubiquitous-computing systems should support the user in assembling available resources

to accomplish his or her goals, since it is virtually impossible to have applications for each potential goal.

Erickson [12] notes that humans should be left in the loop because of the discrepancy between what the

user expects and what the context-aware system performs.

Other research tries to design infrastructures that guesses or is provided with the services needed by the

current broader task. Then, the infrastructure tries to match the needs with the available services. For

instance, in the Aura project [29], longer-lived tasks, such as writing a paper or buying a home, are first-

class entities, and the system strives to bind the tasks of a newly-arrived user to suitable services.

Continuum takes an alternative stand that such long-term tasks are arbitrarily complex and often cannot be

characterized statically. Frames define simpler operations, which are not long-lived, so do not require re-

binding, as do Aura tasks.

The notion of a longer-lived task, or rather of a task template, from the Speakeasy recombinant

computing project [9] is a less complex notion than in Aura. A task template takes services accepting and

generating objects, and coordinates them by specifying the data connections among them. Even a file

system can be seen as a service in Speakeasy. Task templates can be predefined, or the user can assemble

them manually. In Speakeasy, services are assumed to have minimal, “recombinant interfaces,” for data

transfer, metadata, and control. Speakeasy is close to Continuum in its endeavors. From a system

perspective, frames are more active than a task template, containing code that can interact with the

Continuum server to locate suitable services, and code that decides if a frame should or should not be

published in conjunction with a certain data object. From a user perspective, a frame does not perform the

operation by itself. Instead, it is associated with an individual data object on which one can perform an

operation, advancing the user in his or her goal. Conceivably, to achieve the same results as certain

Speakeasy tasks, a user might have to interact with several Continuum frames in sequence.

Be they long-lived tasks, frames, or even full-fledged applications, all these software artefacts represent

another level of indirection in the user’s interactions with services. A frame offers access to a set of

15

Enabling Chaotic Ubiquitous Computing

existing services in the form of operations to be applied to data viewed by the user. The Appliance Data

Services (ADS) project [17] looks at the complementary problem of how to apply device and/or context-

dependent services to data generated by the user’s simple and single-purpose mobile devices.

From a user perspective, the idea of the frame interface (the tool) is very similar to the notion of tools,

task panels, smart tags, and the context menus in office- productivity suites on conventional computers.

However, from a system perspective, there are several fundamental differences in the requirements and

the way frames are created, published and executed. First, external services are needed to apply an

operation, and these services are not under the control of the designer of the software unit (the frame) that

sits behind each tool. These services need to be found, but one cannot have built-in references to them,

and cannot rely on a well-known registry for bootstrapping. The publication of a given frame is usually

determined by the services available at the user’s location. The user’s current activity is not as well

defined as in dedicated applications like a word processor. Furthermore, frames are published and execute

in a heterogeneous environment, with different administrative domains.

Compared with traditional software units, frames can be as simple as proxies, but usually, unlike

proxies, they will add additional functionality and find the services they need actively. Unlike drivers,

frames interface directly with the user, not with an operating system. Web Services [3] are on par with

other software services used by frames. Unlike frames, which manifestly convey certain semantics

directly to the user, Web Services have a service contract with other pieces of software, and commit to a

message structure rather than to certain functionality. Similarly, DCOM objects and JavaBeans commit to

interfaces with other software components.

The design of individual Continuum frames can benefit from research into the adaptability of mobile

applications, where one can identify several models: data-centric adaptation, such as the MPEG video

player for the Odyssey platform [25], protocol-centric adaptation as in the use of protocol filters [32],

application-centric adaptation such as the speech-recognition application for Odyssey [25], and hybrid

adaptation (a combination).

Systems research projects in ubiquitous computing, like Microsoft’s EasyLiving [5] and Stanford’s

iRoom [18], often concentrate on well-equipped smart spaces designed to accommodate specific activities

such as a presentation, known at system-design time. One of the problems with current ubiquitous-

computing solutions is the lack of generality and interoperability. The approach considered in this paper

facilitates interoperability of existing or proposed solutions without requiring changes to deployed

services. By not assuming pre-existing relationships between the user and the service providers, it

facilitates access to services offered by small service providers. It also enables interactions with contextual

services in ways not foreseen at system-design time.

16

Enabling Chaotic Ubiquitous Computing

Today, ubiquitous overlay solutions offer access only to a few types of service, and they are hardly

transparent for the user. For instance, PrintMe NetworksTM [11] is a product marketed to hotels and

mobile users. It facilitates printing from a mobile device to a printer in a hotel, printing to a nearby

affiliated copy center, and printing with in-room or overnight delivery. A service provider (a hotel) installs

additional hardware provided by the middleware company. The user also has to agree to use the same

middleware company, and he or she has to manually enter the coded URL for the particular location

where he or she wants to print. There are no mechanisms to offer access to an additional service type. This

likely implies adding hardware at the service provider, possibly establishing a business relationship with

another middleware company, and communicating URLs to users for the services. None of this is likely to

go smoothly.

The design of ubiquitous-computing systems is an open area of research. Kindberg et al. give several

design principles for ubiquitous-computing systems [21]. From an infrastructure-deployment perspective,

one approach in related work is to design the system from ground up, usually on top of Java, such as with

the one.world architecture [14]. Other projects require an overlay infrastructure to support mobile

software units that devices themselves inject into the network. This is the case of the context-aware

packets in Capeus [27], and the device-associated mobile agents in the Adaptive Personal Mobile

Communications Architecture [19]. As Continuum, they draw from active-network research [31] and

mobile agents [6]. However, Continuum frames, or rather the frame applets, are a very simplified case of

mobile code in the sense that they are added dynamically to web pages in transit to the user.

The Continuum infrastructure for publishing frames could well be built on top of Open Pluggable Edge

Services (OPES) [2]. This is a recent standardization effort towards a framework for invoking,

authorizing, and deploying distributed application services such as content transcoding and adaptation,

content assembling, logging and accounting. In that respect, it is orthogonal with the framework described

in this paper, which focuses on how to help the user access services, including ones built on, or benefiting

from a deployed OPES infrastructure.

7. Conclusions
Given the characteristics of a ubiquitous-computing environment, we identify the functional properties

that a software building block for ubiquitous-computing must have. A corresponding software abstraction

is proposed, the Continuum frame. We show how this design was validated and refined through a proof-

of-concept prototype.

Frames provide a simple software abstraction that can enable general, chaotic ubiquitous-computing

ecologies with niches for users, ISPs, end-user service providers, and software developers. Middleware

proxies, operated by one or more ISPs, provide a hosting environment where simple tools for service

17

Enabling Chaotic Ubiquitous Computing

access can be deployed, the tools and the services can be discovered by users, and user goals are achieved

through sequences of simple operations facilitated by these tools. Security and the competing interests of

service providers and users can be accommodated, and various commercial entities can provide software

and services for profit, with low barriers to entry into the ubiquitous-computing ecology. Software

developers can develop and market small tools and/or related toolsets, and users require neither special

software on their devices nor advance knowledge of the contexts in which they find themselves. Each

service (or even each frame) can implement its own models for authentication and revenue generation.

The proxy providers can charge users for access to the services, and/or can charge other providers for

making their services available in the proxy. Users may or may not need an existing business relationship

with the proxy provider or with the other service providers. These questions can be decided by market

pressures and the values added by the tools and services.

8. References
[1] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman and D. Zukowski, “Challenges: An

application model for pervasive computing”, in 6th International Conference on Mobile Computing

and Networking (MOBICOM ‘00), pp. 266–274, Boston, MA, USA, August 2000.

[2] A. Barbir, R. Chen, M. Hofmann, H. Orman and R. Penno, “An Architecture for Open Pluggable Edge

Services (OPES)”, Internet draft, work in progress, expires June 2003, December 2002.

[3] D. Booth, M. Champion, C. Ferris, F. McCabe, E. Newcomer and D. Orchard, “Web Services

architecture”, W3C working draft, work in progress, http://www.w3c.org/, May 2003.

[4] C. Brooks, M.S. Mazer, S. Meeks and J. Miller, “Application-specific proxy servers as HTTP stream

transducers”, World Wide Web Journal, vol. 1, n. 1, 1996.

[5] B. Brumitt, B. Meyers, J. Krumm, A. Kern and S. Shafer, “EasyLiving: Technologies for intelligent

environments”, in 2nd International Symposium on Handheld and Ubiquitous Computing, pp. 12–29,

Bristol, UK, September 2000.

[6] D. M. Chess, C. G. Harrison and A. Kershebaum, “Mobile agents: Are they a good idea? ”, IBM

Research Division, T.J. Watson Research Center, RC 19887, December 1994.

[7] A. K. Dey, Providing architectural support for building context-aware applications, PhD thesis,

Georgia Institute of Technology, December 2000.

[8] O. A. Dragoi and J. P. Black, “Discovering services is not enough”, Technical Report CS-2004-36,

School of Computer Science, University of Waterloo, August 2004.

[9] W. K. Edwards, M. W. Newman and J. Z. Sedivy, “The case for recombinant computing”, Technical

Report CSL 01-1, Xerox Parc, April 2001.

18

Enabling Chaotic Ubiquitous Computing

[10] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith and S. Izadi, “Challenge: Recombinant

computing and the Speakeasy approach? ”, in 8th International Conference on Mobile Computing and

Networking (MOBICOM ‘02), pp. 279–286, Atlanta, GA, USA, September 2002.

[11] Electronics for Imaging, “PrintMeTM”, http://www.efi.com/.

[12] T. Erickson, “Technical opinion: Some problems with the notion of context-aware computing”,

Communications of ACM, vol. 45, n. 2, pp. 102–104, February 2002.

[13] Y. Goland, E. Whitehead, A. Faizi, S. Carter and D. Jensen, “HTTP extensions for distributed

authoring: WebDAV”, RFC2518, Network Working Group, IETF, February 1999.

[14] R. Grimm, System support for pervasive applications, PhD thesis, University of Washington,

December 2002.

[15] E. Guttman, C. Perkins, J. Veizades and M. Day, “Service location protocol, version 2”, RFC2608,

Network Working Group, IETF, June 1999.

[16] T. D. Hodes and R. H. Katz, “Composable ad hoc location-based services for heterogeneous mobile

clients”, ACM Wireless Networks Journal, Special issue on mobile computing: Selected papers from

MOBICOM ‘97, vol. 5, n. 5, pp. 411–427, October 1999.

[17] A. Huang, B. Ling and J. Barton, “Making computers disappear: Appliance data services”, in 7th

annual ACM/IEEE international conference on Mobile computing and networking, pp. 108–121,

Rome, Italy, August 2001.

[18] B. Johanson, A, Fox and T. Winograd, “The interactive workspaces project: Experiences with

ubiquitous computing rooms”, IEEE Pervasive Computing Magazine, vol. 1, n. 2, pp. 67–74, April-

June 2002.

[19] T. G. Kanter, Adaptive personal mobile communication. Service architecture and protocols, PhD

thesis, Laboratory of Communication Networks, Department of Microelectronics and Information

Technology and Royal Institute of Technology, Stockholm, Sweden, November 2001.

[20] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal, M. Frid,

V. Krishnan, H. Morris, J. Schettino and B. Serra, “People, places, things: Web presence for the real

world”, Technical Report HPL-2000-16, HP Laboratories Palo Alto, February 2000.

[21] T. Kindberg and A. Fox, “System software for ubiquitous computing”, IEEE Pervasive Computing,

vol. 1, n. 1, pp. 70–81, January-March 2002.

[22] M. Lamming, M. Eldridge, M. Flynn, C. Jones and D. Pendlebury, “Satchel: Providing access to any

document, any time, anywhere”, ACM Transactions on Computer-Human Interaction, vol. 7, n. 3,

pp. 322–352, September 2000.

19

Enabling Chaotic Ubiquitous Computing

20

[23] L. McLaughlin III (Ed.), “Line printer daemon protocol”, RFC1179, Network Printing Working

Group, IETF, August 1990.

[24] M. W. Newman, J. Z. Sedivy, C. M. Neuwirth, W. K. Edwards, J. I. Hong, S. Izadi, K. Marcelo, T. F.

Smith and J. Sedivy, “Designing for serendipity: Supporting end-user configuration of ubiquitous

computing environments”, in Conference on Designing interactive systems: Processes, practices,

methods, and techniques, pp. 147–156, London, England, 2002.

[25] B. D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn and K.R. Walker, “Agile

application-aware adaptation for mobility”, Operating Systems Review, vol. 31, n. 5, pp. 276–287,

December 1997.

[26] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan and T. Winograd, “ICrafter: A Service Framework for

Ubiquitous Computing Environments”, in 3rd Ubiquitous Computing International Conference

(UBICOMP ‘01), pp. 56–75, Atlanta, GA, USA, 2001.

[27] M. Samulowitz, F. Michahelles and C. Linnhoff-Popien, “CAPEUS: An architecture for context-

aware selection and execution of services”, in Distributed Applications and Interoperable Systems

2001 (DAIS ‘01), pp. 23–40, Kraków, Poland, September 2001.

[28] B.N. Schilit, J. Trevor, D. M. Hilbert and T. K. Koh, “m-Links: An infrastructure for very small

internet devices”, in 7th Annual ACM/IEEE International Conference on Mobile Computing and

Networking, pp. 122–131, Rome, Italy, August 2001.

[29] J. P. Sousa and D. Garlan, “Aura: An architectural framework for user mobility in ubiquitous

computing environments”, in 3rd Working IEEE/IFIP Conference on Software Architecture, pp. 29–

43, Montreal, PQ, Canada, August 2002.

[30] Sun Microsystems, “JINI technology architectural overview”, White paper, http://www.sun.com/,

January 1999.

[31] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A survey of

active network research”, IEEE Communications Magazine, vol. 35, n. 1, pp. 80–86, January 1997.

[32] B. Zenel, A proxy based filtering mechanism for the mobile environment, PhD thesis, Department of

Computer Science, Columbia University, February 1998.

	Enabling Chaotic Ubiquitous Computing
	Introduction
	Vision and Motivation
	Figure 1. A view of a ubiquitous-computing system
	Figure 2. Continuum infrastructure at work
	A software abstraction
	Figure 3. Frame functional properties
	User Interface
	Data Conversion
	Service Discovery
	Frame Publication

	Figure 4. Frame publication
	Validating the Frame Concept with the Continuum Prototype
	Prospects and Challenges
	Frames Compared with Other Approaches
	Conclusions
	References

