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Abstract

This paper presents an extension to previously proposed bottom-up compensation-

based algorithms for calculating the usability of a view to answer a database query, where

both query and view definition are multi-block SQL queries containing aggregation. The

goal of our extension is to increase the recall of previous algorithms. The main idea

of approach is to improve recall by deferring certain view pruning decisions through

the introduction of pseudo-algebraic operators that we call prerequisites. We present

a set of transformation rules for manipulating query expressions containing prerequisite

operators, as well as a modified matching algorithm that utilizes the prerequisite operators

and associated transforms. Finally, we discuss the effect that prerequisite operators have

on efficiency of the algorithm, and propose a combination of heuristics and normal forms

to limit the introduction of prerequisites to scenarios in which they are likely to be helpful.

1 Introduction

View matching is the problem of determining whether or not a view V is useful for answering
a query Q, and if so, how Q can be rewritten to use V . A view V is useful if its definition is
contained as a subexpression within a query expression that is equivalent to Q. This paper
details an algorithm for rewriting multi-block aggregation queries to use materialized views
that are also defined by multi-block aggregation queries.

View matching is closely related to query equivalence. The query equivalence problem has
been studied in the context of aggregation queries by Nutt et al.[15, 8, 6, 7]. However, these
authors only consider queries with a single aggregation operator at the root of the query; as
well, they do not consider any schema information.

View matching is also closely related to logical query rewriting. Many authors have sug-
gested rules for transforming multi-block aggregation queries[16, 17, 3, 4, 2]; however, this
work is orthogonal to our own. In fact, our algorithm for view matching uses a set of these
transform rules as an extensible toolkit.

There are several papers in the literature which discuss view matching for SQL queries.
Bello et al.[1] describe the implementation of view matching in Oracle, but their paper gives
few details, and their matching method only appears to support single-block aggregation
queries. Goldstein and Larson[11] address the more limited problem of deciding whether or
not a view exactly matches a query. (An “exact match” occurs when the definitions of Q

and V are identical modulo some very simple operations such as application of a predicate.)
Finding exact matches is a simpler problem than general view matching; hence, the main
contribution of their paper is an efficient indexing technique for speeding up exact matching.
The exact matching test is invoked repeatedly by an external process as it navigates through
the query definition. A weakness of this method is that the exact matching algorithm provides
no guidance as to how the query definition should be manipulated using transformation rules
in order to find a successful match. Thus, in order to answer view usability in a complete
fashion, the algorithm of Goldstein and Larson must assume that an external transformational
optimizer is driving the matching via a forward-chaining application of transformation rules
that exhaustively generates all possible formulations of the query.

Zaharioudakis et al.[18] describe a bottom-up algorithm for view matching. In contrast to
the work described above, the algorithm described by these authors handles multi-block view
definitions. Their algorithm is presented as a set of simple templates that dictate the form of
the rewrite, assuming that a matching template can be found. The authors do not explicitly
utilize transformation rules, although each template essentially embodies the application of a
sequence of transformation rules. A weakness of this method is that although it does not incur
the expense of applying transformation rules in a forward-chaining fashion, it also is unable
to find rewritings that could potentially be found by a strategy that does. Our work in this
paper attempts to increase the matching power of the bottom-up algorithm of Zaharioudakis
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et al. by using transformation rules, but we use the matching process to guide the application
of the transformation rules so that they are only ever applied in a goal-oriented manner.

The outline of this paper is as follows. Section 2 defines some preliminary concepts such
as the query language and classes of aggregation functions considered. Section 3 gives an
(incomplete) listing of known transformation rules that can be used to rewrite aggregation
queries. Section 4 describes a generalized version of Zaharioudakis’ algorithm for bottom-up
view matching. Section 5 introduces a new concept that we call a prerequisite query operator,
and Section 6 details a list of transformation rules for modifying queries containing prerequisite
operators. Finally, Section 7 describes how prerequisite operators can be integrated into the
bottom-up matching process in order to increase the matching power of the algorithm.

2 Preliminaries

2.1 Encoding Semantic Information

Suppose that a database catalog contains semantic information encoded as integrity con-
straints. We will consider two common types of constraints: functional dependencies and
inclusion dependencies. Let Σ be a set of functional dependencies of the form

Y → z

where Y is a set of attributes of some relation R, and z is a single attribute of R1. To
accommodate bag semantics, we will assume that each (base or intermediate) relation R has a
virtual attribute IdR. Then, for each attribute z in base relation R, Σ contains the functional
dependency {IdR} → z; as well, for each set of attributes Y forming a candidate key of R, Σ
contains the functional dependency Y → IdR.

Let ∆ be a set of inclusion dependencies of the form

R1(x1) ⊆ R2(x2)

where R1 and R2 are relation names, x1 is an attribute of R1, and x2 is an attribute of
R2. Then, the implication problem with respect to Σ ∪ ∆ is in NP[13] (note that if ∆ is not
restricted to unary inclusion dependencies, the implication problem becomes undecidable[14]).

2.2 Query Language

The query language that we consider for both query and view definitions is a subset of con-
junctive SQL including aggregation. Informally, define a single-block SQL query as an SQL
query composed of selections, projections, and joins of (base) relations, followed by an op-
tional aggregation operation (GROUP BY + aggregation functions + HAVING clause); a
multi-block query is then inductively defined as single block query in which the base relations
are generalized to being either single or multi-block queries. In this paper we do not consider
NULL values, and so all joins are presumed to be inner joins.

For conciseness, we will represent SQL queries using an algebraic notation that contains
only two operators. The operator Π encapsulates selection, projection, and join operations
(often called SPJ or PSJ queries); it is defined according to the following expansion into SQL

Π
α

ρ (X1, . . . ,Xn) ≡
SELECT α

FROM X1, . . . ,Xn

WHERE ρ

where

1Throughout this paper we may abuse notation slightly by allowing z to be a set of attributes, which is to
be interpreted as a set of FDs, one for each member of z.
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• each Xi is either a base relation or subquery whose attribute set is described by the
function schema(Xi)

2;

• α is a set of attribute names occurring in
⋃

i schema(Xi); and

• ρ is a set of binary predicates of the form y θ z where y ∈
⋃

i schema(Xi) and either
z ∈

⋃
i schema(Xi) or z ∈ D for some fixed domain of constants D.

Any predicate y θ z in ρ such that y ∈ schema(Xi), z ∈ schema(Xj), i 6= j is referred to as a
join predicate between Xi and Xj . Note that the function schema(·) is defined on Π as

schema(Π
α

ρ (X1, . . . ,Xn)) := α

The operator Λ performs a grouping operation as well as calculating a set of aggregation
functions over the tuples in each group. It is defined by the following expansion into SQL

Λ
α

F (X1) ≡
SELECT α, F

FROM X1

GROUP BY α

where α and X1 are defined as for Π, and F is a set of aggregation expressions of the form
“f(x) as y” where f(·) is an aggregation function, x (the internal expression) is an expression
composed of constants from domain D and attribute names from schema(X), and y (the
external name) is a valid attribute name that is unique from all other attribute names in the
query. The function schema(·) is defined on Λ as

schema(Λ
α

F (X1)) := α ∪ external(F )

where external(F ) is a function returning the set of external names in F (similarly, expressions(F )
returns the set of internal expressions in F , and attributes(F ) returns the set of attribute names
from schema(X1) occurring somewhere within expressions(F )).

With certain restrictions3, the language formed by composing Π and Λ operators is equiv-
alent to the multi-block SQL queries described earlier in this section. Note that HAVING
clauses and grouping attributes which do not occur in the output attribute set can be mod-
eled using a Π operator above a Λ operator.

Example 1 Suppose that you have a student table S(sid, sname) and an enrollment table
E(student, course, term, grade, credits). The SQL query

Q := SELECT sname, AVG(grade) as avg

FROM S, E

WHERE sid = student

GROUP BY sid, sname

HAVING SUM(credits) > 10

can be expressed by the algebraic expression

Q := QΠ
{sname,avg}

{sum>10} (Q1Λ
{sid,sname}

{AVG(grade) as avg,SUM(credits) as sum}(
Q1.1Π

{sid,sname,grade,credits}

{sid=student} (S, E)))

Note that each algebraic operator might be prefixed with a label in order to facilitate discussion.

2For simplicity, we assume that the attribute sets of all Xi are disjoint, which can be easily implemented
by prefixing as needed the names of attributes with the relation or subquery from which they are drawn.

3Specifically, for simplicity of exposition the operators Π and Λ do not provide capabilities for renaming
attributes or for outputting expressions; however, this functionality could be easily added.
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2.3 Classes of Aggregation Functions

This section defines some useful classes of aggregation functions.

Definition 2.1 (Duplicate Insensitive Aggregation Function)
An aggregation function f is duplicate insensitive if and only if its application over a bag of
constants is equivalent to its application over the set projection of the same bag of constants.
In other words, for any bag of constants B,

f(B) = f({v : v ∈ B}).

Common examples of duplicate insensitive functions include Min, Max, and CountDistinct.

Definition 2.2 (Cleanly Composable Functions) [9]
A pair of aggregation functions f and g cleanly compose (written f ◦ g) if and only if for any
two bags of constants B1 and B2,

f({|g(B1 ] B2)|}) = f({|g(B1), g(B2)|}).

where {|x, y|} denotes a bag containing the elements x and y.

Some examples of cleanly composable aggregation functions include Sum◦Count, Sum◦Sum, and
Min◦Min.

Definition 2.3 (Distributive Aggregation Function)
An aggregation function f is distributive if there exists a pair of cleanly composable functions
f2 and f1 such that (f2 ◦ f1) ≡ f .

For example, the aggregation function Sum is distributive because it is equivalent to the cleanly
composable pairing Sum◦Sum, while Count is distributive because it is equivalent to Sum◦Count.

3 Transformation Rules

The rules in this section embody transformations that can be applied to transform a valid
algebraic expression to another form that is also a valid algebraic expression and is equivalent
to the first form with respect to interpretation under bag semantics. Since query equivalence
is maintained, each rule could potentially be applied in both directions; however, most of
the rules are presented as asymmetric both because in practice they are primarily useful in
one direction, and because in many cases the the conditions that need to be tested to verify
correctness are expressed with respect to the query expression on one side of the equivalence
and would need to be re-formulated in order to use the rule in the opposite direction.

Let Σ be a set of functional dependencies and ∆ be a set of unary inclusion dependencies
such that Σ ∪ ∆ encode the integrity constraints which all valid instances of the database
must satisfy. When the conditions of a transform rule refer to Σ ∪ ∆, query equivalence is
only preserved with respect to interpretation over database instances that satisfy Σ ∪ ∆. For
the remainder of this section, Q denotes a subquery expression, R a base relation, X either a
subquery or a base relation, and X a set of X.

3.1 Query Simplifying Transformations

3.1.1 View Flattening

View flattening is used to merge adjacent operators of the same type into a single block4, or
to partition a block into adjacent blocks.

4Since our defined algebraic operators correspond closely to blocks within an equivalent graphical represen-
tation of a query such as QGM[12], we refer to an instance of Π or Λ as a block, and to the entire query as a
query graph.
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Rule VF1

Π
α

ρ (X1, Π
β

% (X2))
m

Π
α

ρ∪%(X1,X2)

Conditions: In the upward direction, the choice of β and % must be syntactically valid.

Rule VF2

Λ
α

F 2(Λ
β

F 1(X))
m

Λ
α

F 2◦1(X)

Conditions:

1. α ⊆ β

2. All of the aggregation expressions in F 2◦1 are decomposable and equivalent to aggrega-
tion expressions F 2 composed with aggregation expressions F 1.

3.1.2 Output Schema Pruning

These rules remove unnecessary attributes from the output schema of a subquery. Note that
they can be trivially modified for the case where the parent operator is Λ instead of Π.

Rule AR1

Π
α

ρ (X1, Π
β

% (X2))
⇓

Π
α

ρ (X1, Π
β′

% (X2))

where β′ is defined as the subset of attribute names in β that occur either in α or in ρ. (In
other words, β′ := β ∩ (α ∪ attributes(ρ)), where attributes(ρ) is the set of attribute names
occurring in the predicates in ρ.)

Conditions: none.

Rule AR2

Π
α

ρ (X1, Λ
β

F (X2))
⇓

Π
α

ρ (X1, Λ
β

F ′(X2))

where F ′ := {f ∈ F | external(f) ⊆ (α ∪ attributes(ρ))}.

Conditions: none.

Rule AR3

Π
α

ρ (X1, Λ
β

F (X2))
⇓

Π
α

ρ (X1, Λ
β′

F (X2))

where β′ := β ∩ (α ∪ attributes(ρ)).

Conditions:

1. For each x ∈ (β \ β′), Σ ∪ ∆ plus any predicates in X2 imply that β′ → x.
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3.1.3 Conjunct Removal

This rule uses schema information to remove an “unnecessary” conjunct from an Π operator
(that is, a conjunct that does not contribute any attributes to the output set, and is joined
with a lossless join).

Rule CR
Π

α

ρ (X,X1)
⇓

Π
α

ρ\ρ′(X)

where ρ′ is the subset of ρ that reference attributes in schema(X1).

Conditions:

1. α ∩ schema(X1) = ∅
That is, X1 does not contribute to the output attribute set.

2. X on X1 is a lossless join. More formally, let A and B be the sets of attribute names
from X1 and X, respectively, appearing in ρ′. Then,

(a) All of the predicates in ρ′ are equality join predicates between X1 and X (i.e. no
filtering predicates over only X1); and

(b) Σ ∪ ∆ plus any predicates in X and X1 imply that

i. A → IdX1
and

ii. X(B) ⊆ X1(A).

3.2 Group-by Pushdown

3.2.1 Invariant Grouping

Rule PD1 [16]

Λ
α

F (Π
β

ρ (X,X1))
⇓

Π
α∪external(F )

ρ′ (X1, Λ
α′

F (Π
β′

ρ\ρ′(X)))

where ρ′ is defined as the set of predicates in ρ that reference attributes in schema(X1).
Let A be the set of attributes from X that participate in the join to X1 (that is, A :=
schema(X)∩attributes(ρ′)). Then, β′ := (β∩schema(X))∪A, and α′ := (α∩schema(X))∪A.

Conditions:

1. Σ ∪ ∆ plus the predicates in ρ and inside X imply that α → A.

2. Σ ∪ ∆ plus the predicates in ρ and inside X and X1 imply that α ∪ A → IdX1
.

3.2.2 Eager Grouping

Rule PD2 [17]
Assume that in the following query, F

X
and FX1

are sets of aggregation expressions whose
internal expression only reference constants as well as attributes from X and X1, respectively.

Λ
α

F
X
∪F 2◦1

X1

(Π
β

ρ (X,X1))

⇓

Λ
α

F
X
∪F 2

X1

(Π
α∪attributes(F

X
∪F 2

X1
)

ρ\ρ′ (X, Λ
α′

F 1

X1

(Π
β′

ρ′ (X1))))
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where ρ′ is defined as any set of predicates in ρ that reference only attributes in schema(X1).
Let A be the set of attributes from X1 needed for the predicates pushed above the inner
aggregation (that is, A := schema(X1) ∩ attributes(ρ \ ρ′)). Then, β′ := (schema(X1) ∩ α) ∪
A ∪ attributes(F 1

X1
) and α′ := (schema(X1) ∩ α) ∪ A. Note that the innermost Π operator is

unnecessary if ρ′ is empty.

Conditions:

1. All of the aggregation expressions in F 2◦1
X1

are decomposable and equivalent to aggrega-
tion expressions F 2

X1
composed with aggregation expressions F 1

X1
.

2. All of the aggregation expressions in F
X

are duplicate insensitive aggregation functions.

3.2.3 Partial Eager Grouping

Rule PD3 [9]
Assume that in the following query, F

X2
and F 1

X3

are sets of aggregation expressions whose

internal expressions only reference constants as well as attributes from X2 and X3, respectively,
and F 2

X3

is a set of aggregation expression whose internal expressions only reference constants

as well as attributes from external(F 1
X3

).

Λ
α

F
X2

∪F 2

X3

(Π
β

ρ (X2, Λ
γ

F 1

X3

(Π
λ

%(X3,X1))))

⇓

Λ
α

F
X2

∪F 2

X3

(Π
β

ρ∪(%\%′)(X1,X2, Λ
γ′

F 1

X3

(Π
λ′

%′ (X3))))

where %′ is defined as any set of predicates in % that reference only attributes in schema(X3).
Let A be the set of attributes from X3 needed for the predicates pushed above the inner
aggregation (that is, A := schema(X3)∩attributes(% \%′)). Then, γ′ := (γ ∩ schema(X3))∪A

and λ′ := (λ ∩ schema(X3)) ∪ A.

Conditions:

1. All of the expressions in F 2
X3

cleanly compose with the expressions in F 1
X3

which they

depend upon.

2. All of the aggregation expressions in F
X2

are duplicate insensitive aggregation functions.

3.3 Group-by Pullup

3.3.1 Invariant Grouping

Rule PU1 [4] (essentially an adaptation of [16])

Π
β

ρ (X1,X2, Λ
γ

F (X3))
⇓

Π
β

ρ\ρ′(X2, Λ
γ∪δ

F (Π
λ∪δ

ρ′ (X1,X3)))

where ρ′ is defined as the set of predicates in ρ that reference only attributes in schema(X1)∪
schema(X3), and δ is any set of attribute names from schema(X1) that contains all of the
necessary join and output attributes of X1—that is, δ ⊇ (β ∪ attributes(ρ \ ρ′))∩ schema(X1).

Conditions:

1. ρ does not contain any predicates that reference external names from F .

2. Σ ∪ ∆ plus predicates in ρ, X1, X2, and X3 imply that γ ∪ δ → IdX1
.
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3.3.2 Lazy Grouping

Rule PU2 (adapted from [17])
Assume that in the following query, F

X
and FX1

are sets of aggregation expressions whose
internal expression only reference constants as well as attributes from X and X1, respectively.

Λ
α

F
X
∪F 2

X1

(Π
β

ρ (X, Λ
γ

F 1

X1

(X1)))

⇓

Λ
α

F
X
∪F 2◦1

X1

(Π
β

ρ (X,X1))

Conditions:

1. All of the aggregation expressions in F 2
X1

reference only constants and the external names
of F 1

X1
, and can be rewritten as equivalent aggregation expressions F 2◦1

X1
which reference

only constants and attributes in schema(X1).

2. All of the aggregation functions in F
X

are duplicate insensitive.

3. The aggregate values generated by F 1
X1

are not used in any predicates or grouping sets.
In other words, the external names in F 1

X1
do not occur in ρ or α.

3.3.3 Partial Lazy Grouping

Rule PU3 [9]
Assume that in the following query, F

X2
and F 1

X3
are sets of aggregation expressions whose

internal expressions only reference constants as well as attributes from X2 and X3, respectively,
and F 2

X3
is a set of aggregation expression whose internal expressions only reference constants

as well as attributes from external(F 1
X3

).

Λ
α

F
X2

∪F 2

X3

(Π
β

ρ (X1,X2, Λ
γ

F 1

X3

(X3)))

⇓

Λ
α

F
X2

∪F 2

X3

(Π
β

ρ\ρ′(X2, Λ
γ∪δ

F 1

X3

(Π
λ∪δ

ρ′ (X1,X3))))

where ρ′ is defined as the set of predicates in ρ that reference only attributes in schema(X1)∪
schema(X3), and δ is any set of attribute names from schema(X1) that contains all of the
necessary join and output attributes of X1—that is, δ ⊇ (β ∪ attributes(ρ \ ρ′))∩ schema(X1).

Conditions:

1. ρ does not contain any predicates that reference external names from F 1
X3

.

2. All of the expressions in F 2
X3

cleanly compose with the expressions in F 1
X3

which they
depend upon.

3. All of the aggregation expressions in F
X2

are duplicate insensitive aggregation functions.

4 Query Rewriting Using Compensations

Algorithms that perform bottom-up view matching have been described by Zaharioudakis
et al.[18] from IBM, as well as in patent applications by IBM[5] and Microsoft[10]. The
algorithms from IBM take as input a query Q and a view definition V —both represented as
QGM graphs—and return a rewriting of Q using V (if such a rewriting can be found). A
rewriting is modeled as a new QGM graph that is equivalent to Q but contains a reference to
V (by name, not by definition) as a leaf; all operators in the new graph besides V are referred
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to as the compensation operators required to make V equivalent to Q. As described by the
authors, the algorithms operate at the logical rewrite phase (prior to cost-based optimization),
and so because they only return one (or a small fixed number) of rewritings, presumably the
algorithms make choices heuristically (since the components of the query have not yet been
costed by the optimizer). The Microsoft algorithm is similar, but it functions during the cost-
optimization stage. The advantage to this is that choices can be made based upon estimated
cost, rather than heuristically. The disadvantage is that a cost-optimizer generates plans in
which join ordering is already fixed, while view matching is independent of join order, meaning
that some extra overhead occurs collapsing physical plans down to an unordered representation
and testing whether the desired match has already been calculated for another equivalent join
order.

Since the three algorithms mentioned above all work similarly, we will choose Zaharioudakis
et al.’s as representative and will limit our discussion in the sequel to comparing against their
algorithm.

4.1 The Bottom-up Matching Algorithm

Zaharioudakis et al.’s algorithm roughly works as follows: Given Q and V , assume that all
combinations (with some limitations) of the child blocks Qi and Vj of Q and V , respectively,
have already been compared, and where a rewriting is possible the compensation operators
needed to make Vj equivalent to Qi have been calculated. Furthermore, suppose you are given
a one-to-one mapping of successful rewritings between a subset of the child blocks of Q and
a subset of the child blocks of V such that any Vj that does not have a matching Qi in the
mapping can be logically deleted from V using Rule CR (after any attributes of Vj have been
removed from the output set of V ). Zaharioudakis et al. then provide a set of templates that
calculate the compensation operators for V from the compensation operators of its matched
child blocks, the unmatched child blocks of Q, and any difference in the predicates, output
attributes, or grouping attributes of Q and V .

Although the bottom-up template-based algorithm is undoubtedly efficient, the method de-
scribed by Zaharioudakis et al. has a few fundamental weaknesses. First of all, the correctness
of a given template is hard to verify. The templates given in [18] work by copying operators
from within the given query Q and attaching them to the top of the view definitions V . The
compensated view definition then replaces Q. Unfortunately, when the rewriting process is
viewed this way, it is unclear how the copying should be done to preserve equivalence. For
example, given a template that copies compensation operators from several subquery-subview
matches to the top of V , how do we know that the chosen order in which to perform the
copying preserves equivalence? Furthermore, how can we generate (correct) templates that
implement rewritings whose correctness is not obvious? Those authors only give templates
covering the simple (albeit most common) cases where the correctness of the rewrite can be
intuited.

A second weakness of Zaharioudakis’ algorithm is that it is prone to what we will call multi-
level failures. A multi-level failure occurs when all of the non-logically-deletable relations and
predicates in V have matching components somewhere in Q, but the bottom-up algorithm fails
because the matching components occur at different heights in the tree. Example 2 illustrates
a simple multi-level failure. The multi-level failure is caused by the restriction imposed by
the bottom-up algorithm that a query block and a view block can only be matched if there
is a one-to-one matching among their children (modulo the children in V that are logically-
deletable and the children in Q that can be pushed up). This requirement of one-to-one child
matching is reasonable—it limits the potential matches to explore to a tractable number—but
it generates false negatives.

Example 2 Consider the student and enrollment tables from Example 1, and the following queries
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Qa and Qb phrased over them.

Qa :=QaΠ
{sid,sname,grade,credits}

{sid=student,sname=“Smith′′,grade=A}(S, E)

Qb :=QbΠ
{sid,sname,grade,credits}

{sid=student,sname=“Smith′′}(S,
Qb1Π

{student,grade,credits}

{grade=A} (E))

Suppose the Qa is the user query, and Qb is the view definition. A bottom-up matching algorithm
will start by matching subview Qb

1 with query Qa and determine that this intermediate match is
successful with compensation involving a join of relation S. However, the overall match will then
fail because the root of the user query has been reached while unmatched levels remain in the view.
Conversely, if Qb is the user query and Qa is the view, then the bottom-up algorithm attempts
to match subquery Qb

1 with view Qa but fails because Qa contains a non-logically-deletable child
‘‘S’’, which cannot be matched against any child of Qb

1.
Quite obviously the failures in this example could be avoided by first flattening the definition of

Qb using Rule VF1. However, when the different blocks in the query definitions contain aggregation,
there may be no such obvious normalization strategy that will avoid multi-level failures.

4.2 A Generalized Subsumption Algorithm Using Compensations

The following algorithm is a generalization of the template-based algorithm described by
Zaharioudakis et al. A few significant modifications have been made to the algorithm:

1. Rather than using templates that copy operators from the query to the view compen-
sation, the new algorithm uses an extensible set of transformation rules to iteratively
re-shape the original query definition into a query containing the view definition as a
subtree (which means the ancestors to the subtree form the compensation). Using this
iterative re-shaping approach has two advantages over templates:

(a) The correctness of any rewrite can be justified by citing the sequence of transfor-
mation rules that generated it.

(b) Adding a new transformation rule to the set of available transforms automatically
increases the power of the rewriting algorithm.

2. The source of multi-level failures mentioned in the previous section has been partially
avoided, for the case where the view has more levels than the equivalent query. The
novel logic is to allow the root query operator of Q to match against both the root of V

and one of its children Vj . Given the queries Qa and Qb from Example 2, our modified
algorithm would successfully rewrite query Qa to use view Qb (in contrast to the failure
of the original algorithm), but it would still fail to rewrite Qb to use view Qa.

3. The algorithm has been written to navigate the query and view definitions in a top-down
rather than bottom-up fashion for reasons that will be explained later in the paper. Al-
though it is not explicitly written into the algorithm, a memo structure would obviously
be used to eliminate redundant work caused by repeated intermediate invocations. It
is important to note that even though the algorithm navigates the query and view
definitons top-down, the matching process itself still proceeds essentially bottom-up, as
(almost) all non-navigational work is performed after the recursive calls on the children
have returned.

Note that as written, our algorithm makes non-deterministic choices. This emphasizes
the fact that many different rewritings may be possible, depending upon the choices made;
therefore, an implementation would need to either heuristically make decisions to obtain a
single rewrite, or potentially explore all paths through the algorithm to obtain an optimal-
cost solution. Because of the non-determinism, when the algorithm returns “FAIL”, it only
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indicates that no rewriting can be found for the choices made so far by the algorithm; it does
not preclude that a different set of choices could find a correct rewriting.

Given an invocation of Match(Q, V ), there are three different styles of matches that the
algorithm can choose to make. The first match style recursively matches V completely within
a subquery Qi; this match style is an artifact of the top-down structuring of the algorithm and
plays a navigational role analogous to the bottom-up “navigation function” in [18]. The second
match style matches the root operator of Q against the root operator of V , and children of Q

against children of V ; this corresponds to the style of matches made by the templates in [18].
Finally, the third match style matches the root of Q against both a subview Vi and the root
of V ; this is the new match style mentioned above that was introduced to avoid multi-level
failures for the case where the view has more levels than the matching query.

Assume that query Q and the definition of view V have been simplified (recursively) as
much as possible using the following steps.

1. Adjacent Π operators (i.e. Π operators with Π children) are flattened using Rule VF1.

2. The heads of each Π and Λ subquery have been pruned using Rules AR1, AR2, and AR3,
respectively.

3. Predicates are pushed down as far as possible without introducing adjacent Π operators.

Also assume that each base relation occurs at most once anywhere within a query or view
definition (i.e. no self-joins), and that all attribute names are unique. These assumptions are
only for simplicity of presentation; they can easily be removed by creating extra mappings for
variables names and relation names.

The Matching Algorithm

Function MATCH(Q, V ) returns a rewriting of Q using V , or FAIL

Guess a match style of 1, 2, or 3.

Case 1: // Pass-thru invocation to subquery of Q

Guess a subquery Qi and recursively call MATCH(Qi, V ) returning CQi,V .

If CQi,V == FAIL, return FAIL.

Otherwise, replace Qi with CQi,V , and return the modified Q.

Case 2: // Match of root operators of Q and V

If the root operators of Q and V are not the same type, return FAIL.

If the root operators of Q and V are both Π then:

Let ΠQ, ΠV denote the initial root operators of Q,V with

output sets αQ, αV and predicate sets ρQ, ρV .

// αQ and αV are only initial root operators for

// Q and V because as we use transformations to push other operators

// above them, the definitions of Q and V will become rooted by

// other operators.

For each pair of relations R
Q
i ,R

V
j listed in ΠQ and ΠV , respectively,

such that R
Q
i and RV

j refer to the same relational schema:

Mark R
Q
i and RV

j as matched.

For each pair of subqueries Qi,Vj in ΠQ and ΠV , respectively, containing

at least one common relation:

Call MATCH(Qi, Vj) returning CQi,Vj.

Guess a partial one-to-one mapping θ : {subqueries of ΠQ} → {subviews of ΠV }
such that CQi,θ(Qi) 6= FAIL.
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Mark each subquery Qi in the domain of θ as matched.

Mark each subview Vi in the range of θ as matched.

For each unmarked relation or subquery X in ΠQ:

Push X above ΠQ using rule VF1.

If X cannot be pushed above ΠQ, return FAIL.

Attempt to find an ordering of the unmarked children (relations and subviews)

in ΠV such that each unmarked child can be logically deleted from ΠV

using rule CR (after first removing any of the child’s attributes from

the output set of ΠV ). If no such ordering can be found, return FAIL.

Replace each subquery Qi in ΠQ with its rewrite CQi,θ(Qi).

While child compensation operators exist below ΠQ:

Choose a child compensation operator immediately below ΠQ and attempt to

find a transformation that will move it above ΠQ.

If no such operator-transformation pair can be found, return FAIL.

// At this point, ΠQ and ΠV now contain the exact same children.

If ρV ÷ ρQ is not empty5, return FAIL.

Insert a new operator Π′
Q immediately above ΠQ with output set αQ,

ΠQ as its only child, and ρQ ÷ ρV as its predicate set.

If αQ ⊆ αV , then

Replace ΠQ with a reference to V .

Return Q (where Q now refers to the root of the rewritten query,

including the compensation operators).

For each attribute a ∈ αQ \ αV

If Σ ∪ ∆ plus predicates in V imply that αV → a, then

// Attempt to rejoin the source of attribute a

Let Xa be lowest subquery or relation in the original Q such that

a ∈ schema(Xa) and there exists two ordered sets of attributes

A ⊆ schema(Xa) and B ⊆ αV such that A → IdXa

and the predicates in V imply that A = B.

If no such Xa exists, return FAIL.

If Xa is not already a child of Π′
Q, then

Add Xa as a child of Π′
Q, and add A = B to the

predicate set of Π′
Q.

Replace ΠQ with a reference to V .

Return Q.

Else, if the root operators of Q and V are both Λ then:

Let ΛQ, ΛV denote the initial root operators of Q,V with

grouping sets αQ, αV and aggregation expressions FQ, FV .

Call MATCH(Q1, V1) returning CQ1,V1.

If CQ1,V1 == FAIL, then return FAIL.

Replace subquery Q1 in ΛQ with its rewrite CQ1,V1.

While child compensation operators exist below ΛQ:

Attempt to find a transformation that will push the nearest

child compensation operator above ΛQ.

If no such transformation can be found, return FAIL.

// Now ΛQ has been rewritten to have the child V1.

If αQ = αV then

If FQ ⊆ FV , then

// We (unrealistically) assume that equivalent aggregation expressions
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// in ΛQ and ΛV have identical external attribute names.

// This can be improved by allowing expressions and variable

// renaming in Π operators.

Replace ΛQ with a reference to V .

Return Q.

Otherwise return FAIL.

Else

// Re-aggregation will be needed.

Insert a new operator Λ′
Q immediately above ΛQ with grouping set αQ

and an initially empty aggregation expression set.

For each aggregation expression f(x) in FQ:

Attempt to rewrite f(x) as f ′(C), where C ∈ FV .

If this succeeds, add f ′(C) to the aggregation expression set of Λ′
Q.

Otherwise, return FAIL.

If αQ ⊂ αV , then

Replace ΛQ with a reference to V .

Return Q.

Else

// Rejoin compensation will be needed to retrieve missing grouping attributes.

Insert a new operator Π′
Q between Λ′

Q and ΛQ, with

output attributes αQ ∪ external(FV ) and an empty predicate set.

For each attribute a ∈ αQ \ αV :

If Σ ∪ ∆ plus predicates in V imply that αV → a, then

// Attempt to rejoin the source of attribute a

Let Xa be lowest subquery or relation in the original Q

such that a ∈ schema(Xa)
and there exists two ordered sets of attributes

A ⊆ schema(Xa) and B ⊆ αV such that A → IdXa

and the predicates in V imply that A = B.

If no such Xa exists, return FAIL.

If Xa is not already a child of Π′
Q, then

Add Xa as a child of Π′
Q, and add A = B to the

predicate set of Π′
Q.

Replace ΛQ with a reference to V .

Return Q.

Case 3: // Match Q first with a subview Vj, then with the root of V

Guess a subview Vj and recursively call MATCH(Q, Vj) returning CQ,Vj.

If CQ,Vj == FAIL, then return FAIL.

Else, return MATCH(CQ,Vj, V ).

// Within this recursive invocation, treat Vj as a base relation within

// both CQ,Vj and V . In other words, do not recurse into the

// definition of Vj, or else the recursion will not terminate.

End Function

Example 3 Suppose that you have a database tracking sales of a product using the following
relational schemas:

5We use ρ1 ÷ ρ2 to denote the set of predicates in ρ1 not implied by ρ2 with respect to any schema
constraints.
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R(Rid, Rname, Rman, Rpop) Region id, name, manager, and population
S(Sid, Sname, Sregion) Store id, name, and region
E(Eid, Ename, Estore) Employee id, name, and store
C(Cid, Cname, Cage) Customer id, name, and age
P(Pid, Pname, Pcat, Pcost) Product id, name, category, and cost
ST(STstore, STcust, STprod, STdate, STprice) Sales Transaction

For each relation Ri, Σ contains the FD {IdRi
} → schema(Ri). In addition, Σ also contains the

following FDs:

{Rid} → IdR, {Sid} → IdS, {Eid} → IdE, {Cid} → IdC, {Pid} → IdP

As well, ∆ contains the following inclusion dependencies:

S(Sregion) ⊆ R(Rid), E(Estore) ⊆ S(Sid), ST(STstore) ⊆ S(Sid),
ST(STcust) ⊆ C(Cid), ST(STprod) ⊆ P(Pid)

Suppose that the database contains the following view V recording sum of sales by region, which
first calculates as a subview the sum of sales by store.

V := VΛ
{Rid,Rname}

{SUM(sales) as sales}(
V1Π

{Rid,Rname,sales}

{Rid=Sregion} (R, V1.1Λ
{Sid,Sname,Sregion}

{SUM(STprice) as sales}(
V1.1.1Π

{Sid,Sname,Sregion,STprice}

{STstore=Sid} (S, ST))))

Now suppose that the following query Q is posed to the database.

Q := QΛ
{Rname}

{SUM(STprice) as sales}(
Q1Π

{Rname,STprice}

{Rid=Sregion,Sid=STstore,Rname=“Canada′′}(R, S, ST))

Algorithm MATCH can find a rewrite of Q to use V , as illustrated by the following trace of the
algorithm:

Call MATCH(Q, V )

Choose match style 3

Call MATCH(Q, V1)

Choose match style 3

Call MATCH(Q, V1.1)

Choose match style 2

Call MATCH(Q1, V1.1.1)

Choose match style 2

Mark matched pairs of relations for S and ST.

Push R above ΠQ1
using rule VF1

CQ1,V1.1.1 := C
Q1,V1.1.1
1 Π

{Rname,STprice}

{Rid=Sregion,Rname=“Canada′′}(R, V1.1.1)

Replace Q1 with CQ1,V1.1.1

Push C
Q1,V1.1.1

1 above Q using rule PD1

CQ,V1.1 := C
Q,V1.1
2 Π

{Rname,sales}

{Rid=Sregion,Rname=“Canada′′}(R,
C
Q,V1.1
1 Λ

{Sregion}

{SUM(sales) as sales}(V1.1))

Call MATCH(CQ,V1.1, V1)

Choose match style 2

Mark matched pairs of relations for R. Call MATCH(C
Q,V1.1

1 , V1.1)

Choose match style 1

Call to MATCH(V1.1, V1.1) returns exact match

CC
Q,V1.1
1

,V1.1 := C
C
Q,V1.1
1 ,V1.1

1 Λ
{Sregion}

{SUM(sales) as sales}(V1.1)

Push C
C

Q,V1.1
1

,V1.1

1 above CQ,V1.1 using rule PU1

CCQ,V1.1 ,V1 := C
CQ,V1.1 ,V1
2 Π

{Rname,sales}

{Rname=“Canada′′}(
C
CQ,V1.1 ,V1
1 Λ

{Rid,Rname}

{SUM(sales) as sales}(V1))

15



Return CCQ,V1.1 ,V1

CQ,V1 := C
Q,V1
2 Π

{Rname,sales}

{Rname=“Canada′′}(
C
Q,V1
1 Λ

{Rid,Rname}

{SUM(sales) as sales}(V1))

Call MATCH(CQ,V1, V )

Choose match style 1

Call MATCH(C
Q,V1

1 , V )

Choose match style 2

Call to MATCH(V1, V1 returns exact match

Exact match between grouping attributes and aggregation functions

CC
Q,V1

1
,V := V

CCQ,V1 ,V := C
CQ,V1 ,V
1 Π

{Rname,sales}

{Rname=“Canada′′}(V)

CQ,V := C
Q,V
1 Π

{Rname,sales}

{Rname=“Canada′′}(V)

Return CQ,V

Observe that V is partitioned into more levels that Q, which would cause the bottom-up
algorithm of [18] to fail (even though each subquery in Q can be rewritten over a subview in V

using only compensation operators). Our algorithm MATCH is able to find the rewrite only by using
the third matching style which matches the root operator of the query against a subview.

5 Prerequisite Operators

Algorithm MATCH(Q,V ) in Section 4 generates correct rewritings of query Q to use view V by
utilizing a set of transformation rules, but it is far from complete. As mentioned earlier, one
notable type of failure is when a query and an equivalent view are partitioned into a differing
numbers of levels. Even though transformation rules may exist which can consolidate or
partition levels (e.g. Rules PD1, PD2, etc.), we do not want the matching algorithm to have to
exhaustively apply all possible transformations to either V or Q before a match can be found.
The MATCH() algorithm of the previous section is an improvement over the original algorithm
in that it finds rewritings where V is partitioned into more levels that Q (c.f. Example 3).
However, the MATCH() algorithm will still fail when Q is partitioned into more levels that V .
The following example illustrates the problem.

Example 4 Given the same schema and constraint information as in Example 3, consider the
following query Q and view V (note that we’ve broken up the definition of Q at arbitrary points
simply for readability).

Q :=QΛ
{Rname}

{SUM(sales) as sales}(
Q1Π

{Rname,sales}

{Rid=Sregion,Rname=“Canada′′}(R, Q1.1))

Q1.1 :=Q1.1Λ
{Sregion}

{SUM(STprice) as sales}(
Q1.1.1Π

{Sregion,STprice}

{STstore=Sid} (S, ST))

V :=VΛ
{Rname}

{SUM(STprice) as sales}(
V1Π

{Rname,STprice}

{Rid=Sregion,Sid=STstore}(R, S, ST))

A successful bottom-up matching of Q to V requires that subquery Q1.1.1 be matched against V1.
This matching will fail, as Q1.1.1 cannot be rewritten to use V1 due to the fact that V1 contains a
non-lossless join to relation R which does not occur within Q1.1.1. This failure propagates upward,
causing the matches that depend upon it to also fail. However,

Q ≡ Π
{Rname,sales}

{Rname=“Canada′′}(V)

with respect to Σ ∪ ∆, and so the matching algorithm has missed a valid rewriting opportunity.
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A “prerequisite” is a condition that must be satisfied before a certain action can be taken.
In Example 4, we would like to avoid the failure that occurs when attempting to rewrite
Q1.1.1 to use V1; this failure could be avoided if we knew that higher up in the query tree,
the result of Q1.1.1 was going to be joined to relation R with the predicates Rid=Sregion and
Rname=‘‘Canada’’ (as is the case in query Q). If Q and V are matched bottom-up, then
this information is not available; however, rather than declaring a failure, we could create a
“specialized” solution that rewrites Q1.1.1 to use V1 and attaches to it a prerequisite condition
stating that the join to R must occur higher in query Q in order for this rewrite to be valid.
It is even possible that such a specialized solution would be preferable to a universal solution,
if we had foreknowledge that the prerequisite conditions would satisfied. For example, if the
join to R in V1 was lossless, a universal rewrite of Q1.1.1 to use V1 would succeed by “logically
deleting” R from V1, but then within Q1, R would be re-joined; however, a specialized solution
that retained the necessary attributes from R that occur in V1 and attached to the rewrite a
prerequisite condition of a join to R could avoid the need to perform the later join specified
within Q1.

We extend the algebraic query language defined in Section 2.2 to include two new quasi-
operators which embody the notion of a prerequisite. A prerequisite operator is not a full-
fledged algebraic operator because it can not actually be evaluated. However, although pre-
requisite operators can not be evaluated (and therefore must not occur in the final query plan),
they are useful to encode information passed between recursive invocations of the matching
algorithm. As the rewriting process proceeds up the query tree, prerequisite operators are
either resolved against query operators (and thus removed), or a transformation is needed to
move a prerequisite of a child operator above its parent.

5.1 Prerequisite PSJ Operator

The Φ operator encapsulates prerequisite conditions on a rewritten query that can only be
satisfied by an ancestor Π operator. It has the following form

Φ
δ; ε

ϕ [X](Y )

which is made up of the following components.

• Y is a subquery expressed in the extended query algebra; it represents the rewritten
query for which this Φ serves as a prerequisite. Y is considered to be this operator’s
single child operator.

• X is a set of “extra” relations and/or subqueries expressed in the base (non-extended)
query algebra; each Xi ∈ X represents a relation/subquery occurring in the view defini-
tion which did not have a match in the original query.

• δ is a set of attributes “available” to be output by this operator; as such, it is required
that δ be derivable from the child operator Y (i.e. δ ⊆ schema(Y )).

• ε is a set of attributes “missing” from the output of this operator. In other words, ε

contains all attributes in the schema of the original query which are not available from
the rewritten query Y .

• ϕ is a set of “extra” predicates occurring in the view definition that were not implied by
the predicates in the original query. This includes any predicates applied over schema(X)
(including the join predicates). Note that it is required that predicates in ϕ can be

applied over schema(Φ
δ; ε

ϕ [X](Y )) ∪ schema(X), or else there is no possibility that a
matching predicate could be found higher up in the query.
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Since a rewriting requires that all attributes in the schema of the original query be present in
the schema of the rewritten query6, it follows from the definitions of δ and ε that schema(·)
is defined on Φ as

schema(Φ
δ; ε

ϕ [X](Y )) := δ ∪ ε

Example 5 Given the queries from Example 4, subquery Q1.1.1 can be rewritten over view V1

with conditions encapsulated by the following prerequisite operator.

Q1.1.1 ≡ Φ
{Rname,STprice}; {Sregion}

{Rid=Sregion} [R](V1)

Observe that within the prerequisite operator, Rname is part of the available attribute set because
it is available in V1 and originates from the extra relation R; also, Sregion is listed as a missing
attribute because it was in the original schema of Q1.1.1 but is not available from V1.

5.2 Prerequisite Aggregation Operator

The Ω operator encapsulates prerequisite conditions on a rewritten query that can only be
satisfied by an ancestor Λ operator. It embodies an assumption made during a rewriting of the
subquery beneath it that there would be an aggregation operator higher up. The Ω operator
has the following form

Ω
δ; ε

F a; F m(Y )

which is made up of the following components.

• Y is a subquery expressed in the extended query algebra; it represents the rewritten
query for which this Ω serves as a prerequisite. Y is considered to be this operator’s
single child operator.

• δ is the set of attributes “available” as grouping attributes. In other words, δ specifies
the maximum grouping granularity available to parent operators. It is required that δ

be derivable from the child operator Y (i.e. δ ⊆ schema(Y )).

• ε is a set of base-relation attributes “missing” from the output of this operator. In other
words, ε contains all attributes in the schema of the original query that are not the result
of an aggregation expression, and are not available from the rewritten query Y .

• F a is a set of aggregation expressions “available” that were already calculated within
Y . As such, it is required that external(F a) ⊆ schema(Y ) (there are no requirements
on attributes(F a)). The parent operator would access the value of these expressions by
their external attribute name, since they have already been calculated; the definition of
the aggregation expression is stored so that the parent operator knows the origin of the
attribute and is therefore able to use it for rewriting expressions.

• Fm is a set of aggregation expressions “missing” from the aggregation expressions avail-
able in Y . In other words, Fm contains all aggregation expressions calculated in the
original query which are not available in the rewritten query Y . The definition of these
expressions is stored to enable the parent operator to rewrite an expression that uses an
external variable from Fm to instead use an external variable from one of the available
expressions in F a.

For reasons similar to the Φ operator, the function schema(·) is defined on Ω as

schema(Ω
δ; ε

F a; F m(Y )) := δ ∪ ε ∪ external(F a ∪ Fm)

6One would normally expect a rewritten query to have a schema identical to the original query; however,
we loosen this to a containment relationship in order to allow the output to contain attributes available from
the set of extra relations.
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Example 6 Given the queries from Example 4, subquery Q1.1 can be rewritten over subview V

with conditions encapsulated by the following prerequisite operators.

Q1.1 ≡ Φ
{Rname,Sregion,sales}; {}

{Rid=Sregion} [R](Ω
{Rname}; {Sregion}

{SUM(STprice) as sales}; {}(V))

This solution can be interpreted as saying:

Q1.1 can be rewritten using V if when traversing the global query tree upwards start-
ing at the root of Q1.1, you see a Π operator that joins relation R with predicate
Rid=Sregion, followed later by a Λ operator that does not include Sregion in the
grouping set.

Some interesting points to observe:

• The attribute Sregion is listed within the set of “available” attributes by the Φ operator,
even though Sregion is not available in view V . The knowledge that Sregion is missing is
encapsulated within the Ω operator and is transparent to the operators above it. The parent
operator of the Ω operator only needs to “become aware” that Sregion is not available
when an attempt is made to either resolve the Ω operator against its parent or push the Ω
operator past its parent.

• The attribute Rname which originates from an extra relation is included in the output schema
of the new rewrite, even though it was not in the output schema of Q1.1.

6 Transformations Involving Prerequisite Operators

This section presents transformation rules for simplifying, commuting, and removing prereq-
uisite operators within an expression of the extended query algebra. For the duration of this
section, let Y denote a subquery expressed in the extended query algebra, X a base relation
or subquery expressed in the standard (non-extended) query algebra, X a set of X, and Y
a set of Y . Note that besides the conditions listed limiting when a transformation rule can
be correctly applied, there is also the expectation that the input and output operators in
transform rule are syntactically valid.

6.1 Query Simplifying Transformations

6.1.1 Φ Introduction

This rule introduces or removes a trivial Φ operator that encapsulates no prerequisite condi-
tions.

Rule PI

Φ
schema(Y ); ∅

∅ [ ](Y )
m
Y

Conditions: None.

6.1.2 Φ Flattening

This rule merges (or partitions) adjacent Φ operators.

Rule PF

Φ
δ1; ε1

ϕ1
[X1](Φ

δ2; ε2

ϕ2
[X2](Y ))

m

Φ
δ1\ε2; ε1∪ε2

ϕ1∪ϕ2
[X1 ∪ X2](Y )

Conditions: None.
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6.1.3 Missing Set Pruning

Theses rules remove unneeded attributes from the “missing” sets of a Φ or Ω operator.

Rule MSP1

Φ
δ; ε

ϕ [X](Y )
m

Φ
δ; ε∩γ

ϕ [X](Y )

where γ is the set of attribute names mentioned anywhere within the parent operator of this
Φ operator.

Conditions: none

Rule MSP2

Ω
δ; ε

F a; F m(Y )
m

Ω
δ; ε∩γ

F a; F m∩γ(Y )

where γ is the set of attribute names mentioned anywhere within the parent operator of this
Ω operator.

Conditions: none

6.1.4 Rejoin Compensation Introduction

Like the rules in Section 6.1.3, this rule removes attributes from the missing set of a prerequisite
operator; however, whereas Rules MSP1 and MSP2only apply when the missing attributes are
never used by their parent, these rules make the missing attributes available to their parent
by introducing a child compensation operator that performs a join to retrieve the needed
columns.

Rule RCI1

Φ
δ; ε

ϕ [X](Y )
⇓

Φ
δ∪schema(X1); ε\schema(X1)

ϕ [X](Π
δ∪schema(X1)

ρX1

(X1, Y ))

where X1 is any relation or subquery occurring within the original query Q for which Y is a
rewrite, and ρX1

is the set of predicates {ai = bi}, where the pair (ai, bi) is defined as below.

Conditions:

1. There exists two lists of attributes A ⊆ schema(X1) and B ⊆ δ such that

(a) Σ ∪ ∆ implies that A → IdX1
; and

(b) for each corresponding pair (ai, bi) such that ai is the i-th element of A and bi is the
i-th element of B, either ai and bi are the same attribute name7, or the predicates
within the original query Q imply that ai = bi.

7Obviously, this condition relies on our earlier assumptions that all attribute names are unique, the original
query contains no self-joins, and the query language does not include facilities for attribute renaming. Removing
these assumptions is possible, but requires some addition variable-mapping notation that is orthogonal to the
contributions of this paper.
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Rule RCI2

Ω
δ; ε

F a; F m(Y )
⇓

Ω
δ∪schema(X1); ε\schema(X1)

F a; F m (Π
δ∪schema(X1)

ρX1

(X1, Y ))

where X1 is any relation or subquery occurring within the original query Q for which Y is a
rewrite, and ρX1

is the set of predicates {ai = bi}, where the pair (ai, bi) is defined as below.

Conditions:

1. There exists two lists of attributes A ⊆ schema(X1) and B ⊆ δ such that

(a) Σ ∪ ∆ implies that A → IdX1
; and

(b) for each corresponding pair (ai, bi) such that ai is the i-th element of A and bi is the
i-th element of B, either ai and bi are the same attribute name7, or the predicates
within the original query Q imply that ai = bi.

6.1.5 Prerequisite Conjunct Removal

This rule removes conjuncts from the “extra” set which can be “logically deleted” from the
underlying expression Y . This performs exactly the same function as Rule CR, except that Rule
CR must be applied on the standard relational operators, while this rule allows the conjunct
removal to be deferred until a later time and performed on the prerequisite operator instead.

Rule PCR

Φ
δ; ε

ϕ [X,X1](Y )
⇓

Φ
δ\schema(X1); ε

ϕ\ϕ′ [X](Y )

where ϕ′ is the set of predicates in ϕ that reference attributes in schema(X1).

Conditions:

1. The (future) join to X1 would be a lossless join. More formally, define A to be the sets
of attribute names from X1 appearing ϕ′ (i.e. A := attributes(ϕ′) ∩ schema(X1)), and
B to be the remaining attributes in ϕ′ (i.e. B := attributes(ϕ′) \ A; note that syntactic
correctness of the given Φ operator guarantees that B ⊆ δ ∪ ε). Then,

(a) All of the predicates in ϕ′ are equality join predicates between an attribute in A

and an attribute in B (i.e. no filtering predicates over only X1); and

(b) Σ ∪ ∆ plus any predicates in Y , X1, and ϕ imply that

i. A → IdX1
and

ii. Y (B) ⊆ X1(A).

6.2 Prerequisite Resolution

These rules remove some or all of the prerequisite conditions embodied with an operator by
resolving them against an operator in the standard query algebra.

6.2.1 Φ Resolution

These rules resolve predicates and extra conjuncts in a Φ operator against components of
an adjacent Π operator. Observe that if all of the predicates and extra conjuncts in a Φ
operator are resolved and the missing attribute set is empty (possibly after applying rules
from Sections 6.1.3 or 6.1.4), then the Φ operator can be subsequently removed using Rule PI.
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Rule PR1

Π
α

ρ (Y,X, Φ
δ; ε

ϕ [X,X](Y ))
⇓

Π
α

ρ÷ϕ(Y, Φ
δ; ε∪ε′

ϕ÷ρ [X](Y ))

where A÷B refers to the set of predicates in A not implied by B, with respect to any available
schema information (Σ ∪ ∆) or other predicates within Y ; and ε′ := (α \ δ) ∩ schema(X) is
the set of attributes from X that are output in α, but not available from Y .

Conditions:

1. schema(X) ∩ attributes(ρ ÷ ϕ) ⊆ δ

In other words, all of the attributes of schema(X) which occur in predicates in ρ ÷ ϕ

are available from Y . If the transformation were performed when this condition is not
satisfied, ρ ÷ ϕ would contain predicates that can not be evaluated. Note that in order
to satisfy this condition, ρ might first have to be rewritten to minimize references to
attributes in schema(X). (For example, if x ∈ schema(X), then ρ := {x = y, x = 3}
should first be rewritten as ρ := {x = y, y = 3}.)

Rule PR2

Φ
δ; ε

ϕ [X,X](Π
α

ρ (Y,X, Y ))
⇓

Φ
δ′; ε∪(δ\δ′)

ϕ÷ρ [X](Π
α′

ρ÷ϕ(Y, Y ))

where A ÷ B defined as previously; α′ := α ∩ (schema(Y) ∪ schema(Y )) is is the set of at-
tributes from α that remain available after the join to X is removed; and δ′ := δ ∩ α′ is the
set of attributes from δ that remain available after the join to X is removed.

Conditions:

1. schema(X) ∩ attributes(ρ ÷ ϕ) ⊆ (schema(Y) ∪ schema(Y ))
In other words, all of the attributes of schema(X) which occur in predicates in ρ ÷ ϕ

are available from Y or Y .

6.2.2 Ω Resolution

These rules resolve a Ω operator against a parent Λ operator. Note that Ω-resolution differs
from Φ-resolution in a fundamental way. A Φ operator records extra predicates and joins
that have already been performed in its child subquery and therefore Φ-resolution need to
cancel out the matching predicates and joins in the Π operator. In contrast, the Ω operator
records aggregation that its child subquery has assumed to exist in order for an underlying
transformation to be correct. Hence, Ω-resolution leaves the parent Λ operator intact.

Rule PR3a

Λ
α

F (Ω
δ; ε

F a; F m(Y ))
⇓

Λ
α

Fδ∪FF a (Y )

Conditions:

1. α ⊆ δ

In other words, all of the attributes needed for partitioning into aggregation groups are
available from Y .
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2. The set of aggregation expressions in F can be rewritten as two sets of expressions Fδ,
FF a such that:

(a) Each expression in F is equivalent to an expression in Fδ ∪ FF a (with identical
external attribute name).

(b) attributes(Fδ) ⊆ δ and all aggregation expressions in Fδ are duplicate insensitive.

(c) attributes(FF a) ⊆ external(F a) and all expressions in FF a cleanly compose with
the expressions in F a on which they depend.

Observe that the first condition of Rule PR3a seems unnecessarily restrictive; if an attribute
a ∈ α is not available in δ (therefore a ∈ ε), but there another attribute in b ∈ δ such that
the predicates in Y imply that a = b, then we would like to simply rewrite α to replace
a with b. However, we have not endowed our query language with the ability to perform
attribute renaming, so this rewrite rewrite is unsafe, as it would change the output schema
of the aggregation operator. This can be solved by introducing a new Φ operator above the
rewrite that records the fact that a is not available, but b is.

Rule PR3b

Λ
α

F (Ω
δ; ε

F a; F m(Y ))
⇓

Φ
α′∪external(F ); α\α′

∅ [ ](Λ
α′

Fδ∪FF a (Y ))

where α′ is formed from α by replacing the attributes in α ∩ ε with attributes in δ that can
be reasoned to be equivalent by the predicates occurring in Y .
Conditions:

1. α′ ⊆ δ and α′ → α

2. Same as Condition 2 in Rule PR3a.

6.3 Pulling Prerequisite Operators above Standard Operators

6.3.1 Non-Aggregated Φ Pull-Up

The following rule pulls a Φ past a Π operator. It assumes that Rules PR1 and MSP1 have
already been applied, so there are no more predicates and/or extra relations that can be
resolved between the Π and Φ operators, and the missing set of Φ is minimized.

Rule PPU1

Π
α

ρ (Y, Φ
δ; ε

ϕ [X](Y ))
⇓

Φ
α′; ε

ϕ [X](Π
α′

ρ (Y, Y ))

where α′ := (δ ∪ schema(Y)) ∩ (α ∪ schema(X)). The intuition is that the output set should
include all of the available attributes that were either originally output by the Π operator or
originate from the extra relations X that are available in Y .

Conditions:

1. attributes(ρ) ⊆ δ ∪ schema(Y)
In other words, the predicates in ρ (possibly after suitable rewriting) only act over
attributes that are available in Y or Y.

2. attributes(ϕ) ⊆ α ∪ schema(X)
In other words, the predicates in ϕ (that need to be resolved against predicates in parent
operators) only act over attributes either in the original output set or in the schemas of
the extra relations.

23



6.3.2 Invariant Φ Pull-Up

The following rule pulls a Φ past a Λ operator by reasoning that the aggregation is invariant
with respect to the extra relations recorded by Φ. Pulling a Φ operator up past a Λ operator
is in a sense equivalent to pushing a Π operator down past the Λ operator, which is why the
conditions are similar to Rule PU1.

Rule PPU2

Λ
α

F (Φ
δ; ε

ϕ [X](Y ))
⇓

Φ
α′∪external(F ); ε

ϕ [X](Λ
α′

F (Y ))

where α′ := δ ∩ (α ∪ schema(X)).

Conditions:

1. attributes(F ) ⊆ δ

That is, the attributes used in the aggregation expressions in F (possibly after suitable
rewriting) are all available from Y .

2. attributes(ϕ) ⊆ α ∪ schema(X)
In other words, the predicates in ϕ (that need to be resolved against predicates in parent
operators) only act over attributes either in the original grouping set or in the schemas
of the extra relations.

3. Σ ∪ ∆ plus predicates in ϕ and within Y imply that α′ → IdX for each X ∈ X.

6.3.3 Partial Lazy Φ Pull-Up

The following rule pulls a Φ past a Λ operator even when the grouping is not invariant with
respect to the extra relations recorded by Φ. Because the grouping possibly varies due to this
transformation, it forces the creation of an aggregate prerequisite operator. This aggregate
prerequisite forces the existence of another aggregation operator higher up in order to resolve,
and it is the existence of this higher up aggregation operator that then justifies the correctness
of the rewrite (essentially by Rule PU3). The fact that the new Ω prerequisite operator is
created below the Φ prerequisite operator forces the existence of a Π operator that resolves
with the Φ below the ancestor Λ operator (i.e. due to the nature of the bottom-up resolution,
the ordering of nested prerequisite operators is opposite that of the the standard operators
against which they need to resolve).

Rule PPU3

Λ
α

F (Φ
δ; ε

ϕ [X](Y ))
⇓

Φ
α′∪ε∪external(F ); ∅

ϕ [X](Ω
α′; ε

F ; ∅ (Λ
α′

F (Y )))

where α′ := δ ∩ (α ∪ schema(X)).

Conditions:

1. attributes(F ) ⊆ δ

That is, the attributes used in the aggregation expressions in F (possibly after suitable
rewriting) are all available from Y .

2. attributes(ϕ) ⊆ α ∪ schema(X)
In other words, the predicates in ϕ (that need to be resolved against predicates in parent
operators) only act over attributes either in the original grouping set or in the schemas
of the extra relations.
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6.3.4 Ω Pull-Up

The following rule pulls a Ω prerequisite operator past a Π operator. Note that since Ω
resolution requires that an ancestor operator will be an aggregation operator, we do not have
to worry about the multiplicity of tuples in this transformation (since duplicate tuples will be
aggregated away by the ancestor operator, and the conditions of Rule PR3a guarantee that
the value of the aggregation expressions will not be affected).

Rule PPU4

Π
α

ρ (X, Ω
δ; ε

F a; F m(Y ))
⇓

Ω
α∩(δ∪schema(X)); ε

F a; F m (Π
α∩(δ∪external(F a)∪schema(X))

ρ (X, Y ))

Conditions:

1. attributes(ρ) ∩ external(F a ∪ Fm) = ∅
None of the predicates in ρ act over the intermediate results of the inner aggregation
expressions. This is necessary because the values of these intermediate results may
have been affected by the underlying rewrite that generated the aggregation prerequisite
operator.

2. attributes(ρ) ∩ ε = ∅
None of the predicates in ρ act over missing attributes.

6.4 Commuting Prerequisites

The rules in this section commute a pair of adjacent Φ and Ω operators. Note that since the
Ω operator does not actually perform aggregation but instead stipulates that an aggregation
operator exists as an ancestor, the correctness of this transformation does not depend upon
whether or not the grouping is invariant to the join of the extra relations in the Φ operator.

Rule CP1

Φ
α; β

ϕ [X](Ω
δ; ε

F a; F m(Y ))
⇓

Ω
δ∪β; ε

F a; F m(Φ
δ∪external(F a); β

ϕ [Y,X]())

Conditions: none.

Rule CP2

Ω
δ; ε

F a; F m(Φ
α; β

ϕ [Y,X]())
⇓

Φ
α; β∪ε

ϕ [X](Ω
δ\β; ∅

F a; F m(Y ))

Conditions:

1. attributes(ϕ) ∪ external(F a ∪ Fm) = ∅
None of the predicates refer to attributes that are the result of an aggregation expression.
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7 Using Prerequisites for Calculating View Subsumption

This section describes an extension of the MATCH(Q,V ) algorithm described in Section 4 to
take advantage of prerequisite operators (Section 5) and transformation rules available for
manipulating them (Section 6). As described in Section 5, the bottom-up matching process
suffers from the restriction that a query Q can only be rewritten to use a view V if each
descendant subquery in Q subsumes a descendant subview in V —leading to missed rewrite
opportunities such as the one in in Example 4. The use of prerequisite operators can (at least
partially) eliminate this restriction.

7.1 Extending the MATCH Algorithm

The matching logic of the new algorithm NEWMATCH(Q,V ) proceeds similar to that of MATCH(Q,V ),
with the following crucial differences:

• Recursive calls may return rewrites that contain prerequisite operators. Assume that
the operators in each returned rewrite are normalized so that the prerequisite operators
are completely above the standard (compensation) operators.

• Before pulling up any child compensation operators or unmatched children of Q, the
algorithm first uses transformations from Section 6 to pull all child prerequisite operators
above Q—possibly resolving some prerequisites against Q in the process.

• NEWMATCH() does not automatically try to logically delete unmatched child subviews
of V . Instead, the algorithm creates a prerequisite operator that lists each unmatched
subview as an extra relation. If logical deletion is both possible and necessary, this will
occur at a later stage when the prerequisite operator is simplified using Rule PCR.

• The algorithm does not automatically add compensation operators that rejoin relations
or subqueries in order to obtain attributes output by Q that have been projected away
in V . Instead, the algorithm creates a prerequisite operator that lists each of these
attributes as “missing”. If the attribute is truly required, the rejoin compensation will
be added at a later stage when the prerequisite operator is simplified using Rules RCI1 or
RCI2; otherwise the prerequisite operator will later be simplified using Rules MSP1 or
MSP2which avoid the need for the rejoin.

The new algorithm presumes the same assumptions as the original regarding query and
view definitions having been simplified and not containing self-joins.

The New Matching Algorithm

Function NEWMATCH(Q, V )

Returns either

1. A rewrite of Q using V , possibly including prerequisite operators

which are positioned above any compensation operators; or

2. FAIL

Guess a match style of 1, 2, or 3.

Case 1: // Pass-thru invocation to subquery of Q

Guess a subquery Qi and recursively call NEWMATCH(Qi, V ) returning CQi,V .

If CQi,V == FAIL, return FAIL.

Else

// Treat the remainder of Q as compensation operators,

// and leave it up to the function SIMPLIFY-AND-NORMALIZE to
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// deal with any prerequisites present in CQi,V .

Replace Qi with CQi,V

Return SIMPLIFY-AND-NORMALIZE(Q)

Case 2: // Match of root operators of Q and V

If the root operators of Q and V are not the same type, return FAIL.

If the root operators of Q and V are both Π then:

Let ΠQ, ΠV denote the root operators of Q,V with

attributes sets αQ, αV and predicate sets ρQ, ρV .

For each pair of relations R
Q
i ,R

V
j listed in ΠQ and ΠV , respectively,

such that R
Q
i and RV

j refer to the same relational schema:

Mark R
Q
i and RV

j as matched.

For each pair of subqueries Qi,Vj in ΠQ and ΠV , respectively, containing

at least one common relation:

Call NEWMATCH(Qi, Vj) returning CQi,Vj.

Guess a partial one-to-one mapping θ : {subqueries of ΠQ} → {subviews of ΠV }
such that CQi,θ(Qi) 6= FAIL.

Mark each subquery Qi in the domain of θ as matched.

Mark each subview Vi in the range of θ as matched.

Replace each subquery Qi in ΠQ with its rewrite CQi,θ(Qi).

While child prerequisite operators exist below ΠQ:

Choose a child prerequisite operator immediately below ΠQ and attempt to find

a sequence of transformations that will either resolve it with ΠQ

or move it above ΠQ (note that this might require first

applying simplifying transformations such as Rule PCR).

If no such operator-transformation pair can be found, return FAIL.

For each unmarked relation or subquery X in ΠQ:

Push X above ΠQ using rule VF1.

If X cannot be pushed above ΠQ, return FAIL.

While child compensation operators exist below ΠQ:

Choose a child compensation operator immediately below ΠQ and attempt to

find a transformation that will move it above ΠQ.

If no such operator-transformation pair can be found, return FAIL.

// Note that the above transformations potentially modify αQ and ρQ.

Use Rule PI to insert a trivial prerequisite operator ΦQ immediately above ΠQ.

// Note ΦQ will have an available attribute set δQ := αQ, a

// missing attribute set εQ := ∅, and an extra predicate set ϕQ := ∅.)
For each unmarked relation or subview X in ΠV :

Add X to ΠQ and to the set of extra relations in ΦQ.

Let αX := αV ∩ schema(X).
Add αX to both αQ and δQ.

// ΠQ and ΠV now contain the same children

For each predicate p ∈ ρV ÷ ρQ:

Add p to both ρQ and the set of extra predicates in ΦQ.

Insert a new operator Π′
Q above ΦQ with output set δQ,

ΦQ as its only child, and ρQ ÷ ρV as its predicate set.

If ρQ ÷ ρV acts on any attribute names not in δQ,

add these attribute names to the missing set εQ of ΦQ.

For each attribute a ∈ (αQ \ αV ):
Move a from δQ to εQ within operator ΦQ.

Replace ΠQ with a reference to V .
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Return SIMPLIFY-AND-NORMALIZE(Q)

Else, if the root operators of Q and V are both Λ then:

Let ΛQ, ΛV denote the root operators of Q,V with initial

grouping sets αQ, αV and aggregation expressions FQ, FV .

Call NEWMATCH(Q1, V1) returning CQ1,V1.

If CQ1,V1 == FAIL, then return FAIL.

Replace subquery Q1 in ΛQ with its rewrite CQ1,V1.

While child prerequisite operators exist below ΛQ:

Attempt to find a transformation that will either resolve the nearest

child prerequisite operator with ΛQ or will push it

above ΛQ.

If no such transformation can be found, return FAIL.

While child compensation operators exist below ΛQ:

Attempt to find a transformation that will push the nearest

child compensation operator above ΛQ.

If no such transformation can be found, return FAIL.

// Note that the above transformations potentially modify αQ and FQ.

// Now ΛQ has been rewritten to have the child V1

If αQ = αV then

If FQ ⊆ FV then

// We (unrealistically) assume that equivalent aggregation expressions

// in ΛQ and ΛV have identical external attribute names.

// This can be improved by allowing expressions and variable

// renaming in Π operators.

Replace ΛQ with a reference to V .

Return SIMPLIFY-AND-NORMALIZE(Q).

Otherwise return FAIL.

Elseif αQ ⊂ αV then

// Re-aggregation is needed.

Insert a new operator Λ′
Q immediately above ΛQ with grouping set αQ

and an initially empty aggregation expression set.

For each aggregation expression f(x) in FQ:

Attempt to rewrite f(x) as f ′(C), where C ∈ FV .

If this succeeds, add f ′(C) to the aggregation expression set of Λ′
Q.

Otherwise, return FAIL.

Replace ΛQ with a reference to V .

Return SIMPLIFY-AND-NORMALIZE(Q).

Elseif αV ⊂ αQ then

// Needed columns are missing, but this could potentially be fixed by rejoins.

// Add a prerequisite operator; any rejoins can be added via Rule RCI2

// when simplifying the prereq at a later time.

Insert a new operator Ω′
Q immediately above ΛQ with the available

grouping set equal to αV , the missing grouping set equal

to αQ \ αV , the available aggregation expressions

equal to FV , and the missing aggregation expressions equal to FQ \ FV .

Replace ΛQ with a reference to V .

Return SIMPLIFY-AND-NORMALIZE(Q).

Else
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// Re-aggregation is needed to remove the extra grouping attributes in αV ,

// but an aggregation prerequisite is also needed to account for the missing

// attributes found in αQ but not αV .

Insert a new operator Ω′
Q immediately above ΛQ with the available

grouping set equal to αV ∩ αQ, the missing grouping set equal

to αQ \ αV , the available aggregation expressions

equal to FV , and the missing aggregation expressions equal to FQ \ FV .

Insert a new operator Λ′
Q between Ω′

Q and ΛQ with

grouping set αQ ∪ αV

and an initially empty aggregation expression set.

For each aggregation expression f(x) in FQ:

Attempt to rewrite f(x) as f ′(C), where C ∈ FV .

If this succeeds, add f ′(C) to the aggregation expression set of Λ′
Q.

Otherwise, return FAIL.

Replace ΛQ with a reference to V .

Return SIMPLIFY-AND-NORMALIZE(Q).

Case 3: // Match Q first with a subview Vj, then with the root of V

Guess a subview Vj and recursively call NEWMATCH(Q, Vj) returning CQ,Vj.

If CQ,Vj == FAIL, return FAIL.

Else

Let C ′ be the topmost non-prerequisite operator in CQ,Vj.

Call NEWMATCH(C ′, V ) returning CC′,V .

// Within this recursive invocation, treat Vj as a base relation within

// both C ′ and V . In other words, do not recurse into the

// definition of Vj, or else the recursion will not terminate.

If CC′,V == FAIL, then Return FAIL.

Substitute CC′,V for C ′ within CQ,Vj.

Return SIMPLIFY-AND-NORMALIZE(CQ,Vj)

End Function

As its name implies, the function SIMPLIFY-AND-NORMALIZE(Q) both simplifies and nor-
malizes a (rewritten) query expression that potentially contains prerequisite operators. The
goal of the simplification is to remove as many prerequisites as possible. The goal of the
normalization is to leave the query in a useful normal form, which in this case means to leave
all prerequisite operators above the compensation operators. Due to how the matching algo-
rithm first pulls up all of the child prerequisites operators before the child compensation, it
is possible that a Φ operator pulled up from one child contains an extra relation that could
resolve against a rejoin within a Π compensation operator from another child (this scenario
is illustrated in Example 7). A method for removing these unnecessary prerequisites is as
follows.

1. Use transformations from Sections 6.2 and 6.3 to push all prerequisites to the top of the
query. If this is not possible, then return FAIL.

2. Use Rules CP1 and PF to merge all Φ prerequisite operators into a single operator located
immediately above the compensation operators.

3. Use transformations from Section 3.2 to pull up rejoined subqueries and/or relations
wherever possible.

4. Use Rule PR2 to resolve the rejoins at the top of the compensation with the Φ operator.
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This method leaves the query expression in the required normal form.

Example 7 This example demonstrates resolution of a Φ prerequisite operator from one subquery
with a Π compensation operator from a sibling subquery.

Given the schema and constraint information from Example 3, consider the following query Q

and view V , which both calculate the number of employees and total sales for each store with an
id greater than 100.

Q :=QΠ
Sid,Sname,ecount,sales

Sid=STstore (Q1, Q2)

Q1 :=Q1Λ
STstore

SUM(STprice) as sales(ST)

Q2 :=Q2Λ
Sid,Sname

COUNT(Eid) as ecount(
Q2.1Π

Sid,Sname,Eid

Estore=Sid,Estore>100(E, S))

V :=VΠ
Sid,Sname,ecount,sales

Sid=Estore (V1, V2)

V1 :=V1Λ
Sid,Sname

SUM(STprice) as sales(
V1.1Π

Sid,Sname,STprice

Sid=STstore,STstore>100(S, ST))

V2 :=V2Λ
Estore

COUNT(Eid) as ecount(S)

The match of Q1 with V1 generates a prerequisite operator Φ containing an extra relation ‘‘S’’

and the predicate ‘‘Sid=STstore, STstore>100’’, which will get pulled above operator Q using
Rule PPU1. The match of Q2 with V2 generates a compensation operator Π that performs a join of
relation ‘‘S’’ to V2 using predicate ‘‘Estore=Sid, Estore>100’’; this compensation operator
can be pulled above operator Q using two applications of Rule VF1. The prerequisite operator can
now resolve completely against the modified compensation operator below it using Rule PR2 (since
predicates in Q imply that ‘‘Estore=STstore=Sid’’). The final rewrite can be simplified to
Q := V .

7.2 Demonstrating the Value of Using Prerequisites

This section presents a large example which demonstrates how the NEWMATCH algorithm uses a
combination of prerequisite and compensation operators in rewriting a complex, multi-block
aggregation query to use a complex, multi-block aggregation view. Because certain subviews
within the example cannot be subsumed by the subquery that they are matched against
without the use of prerequisite operators, this illustrates a scenario where any algorithm that
only uses compensation operators to perform bottom-up matching necessarily fails to find the
rewrite.

Example 8 Suppose that the set of relational schemas from Example 3 is extended with an
additional relation that represents a date dimension:

D(Ddate, Dday, Dmonth, Dyear, Deom) Date, day, month, year, end-of-month flag

The field Deom is a flag indicating the last business day of each month, and is constrained (by logic
outside of the database engine) so that exactly one date in each month is set to “Y”. Within the
database, the schema constraints relevant to D include the following functional dependencies in Σ

{IdD} → schema(D), {Ddate} → IdD

and the following inclusion dependencies in ∆

ST(STdate) ⊆ D(Ddate)
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The user wishes to generate a list showing for each year the cumulative yearly gross sales in
each product category at each month’s end. Suppose that the database already contains a logical
view Q1.1 which provides this information for each product.

Q1.1 :=Q1.1Λ
{Dmonth,Dyear,STprod}

{SUM(STprice) as gross}(
Q1.1.1Π

{Dmonth,Dyear,STprod,STprice}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(ST, D))

Then, one natural way that the user might choose to express this query is by joining the product
table to the logical view, and then aggregating, which is represented by the following query Q.

Q :=QΛ
{Dmonth,Dyear,Pcat}

{SUM(gross) as gross}(
Q1Π

{Dmonth,Dyear,Pcat,gross}

{Pid=STprod} (P, Q1.1))

Suppose that the database contains the following materialized view V , which stores the yearly
cost and profit for sales broken down by product and store, giving the cumulative totals for each
date (not just month’s end).

V :=VΛ
{Ddate,Deom,Pcat,Pid,Pname,STstore}

{SUM(profit) as profit, SUM(cost) as cost}(
V1Π

{Ddate,Deom,Pcat,Pid,Pname,STstore,cost,profit}

{Ddate≥STdate,Dyear=year(STdate)} (D, V1.1))

V1.1 :=V1.1Λ
{Pcat,Pid,Pname,STdate,STstore}

{SUM(Pcost) as cost, SUM(STprice−Pcost) as profit}(
V1.1.1Π

{Pcat,Pcost,Pid,Pname,STdate,STprice,STstore}

{Pid=STprod} (P, ST))

Assume that the navigation decisions made by NEWMATCH attempt to match subqueries in Q

with subviews in V of corresponding depths (i.e. the algorithm chooses match style 2 every time).
We will examine the results of each of these matches as they are generated in bottom-up order.

NEWMATCH(Q1.1.1, V1.1.1):
Before normalization, the algorithm calculates the rewrite

Q1.1.1 :=Π
{Dmonth,Dyear,STprice,STprod}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(Φ
{Pcat,Pcost,Pid,Pname,STdate,STprice}; {STprod}

{Pid=STprod} [P](V1.1.1))

which is then normalized via Rule PPU1 to return

Q1.1.1 :=Φ
{Dmonth,Dyear,Pcat,Pcost,Pid,Pname,STprice}; {STprod}

{Pid=STprod} [P](Π
{Dmonth,Dyear,Pcat,Pcost,Pid,Pname,STprice}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(V1.1.1, D))

NEWMATCH(Q1.1, V1.1):
Starting with

Q1.1 :=Q1.1Λ
{Dmonth,Dyear,STprod}

{SUM(STprice) as gross}(Q1.1.1)

where Q1.1.1 is defined as rewritten above, the algorithm applies the sequence of Rules PPU2,
PD2 to push the prerequisites and compensation from Q1.1.1 above the operator Q1.1. This gives8

Q1.1 :=Φ
{Dmonth,Dyear,Pcat,Pid,Pname}; {STprod}

{Pid=STprod} [P](Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (X))

X :=Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(D,
Q′1.1Λ

{Pcat,Pid,Pname,STdate}

{SUM(STprice) as gross}(V1.1.1))

The algorithm then reasons that the grouping list in Q′
1.1 is a subset of the grouping list in V1.1, and

that the expression SUM(STprice) can be rewritten as SUM(SUM(STprice−Pcost)+SUM(Pcost)).
Therefore, Q′

1.1 is replaced with an aggregation operator over V1.1, giving

Q1.1 :=Φ
{Dmonth,Dyear,Pcat,Pid,Pname}; {STprod}

{Pid=STprod} [P](Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (X))

X :=Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(D, Λ
{Pcat,Pid,Pname,STdate}

{SUM(profit+cost) as gross}(V1.1))

which is already in normal form (i.e. prerequisites are above compensations, and none of the extra
relations in the prerequisite can cancel out a rejoin in the compensation).

8Note that throughout this example we will arbitrarily break up a query body into sub-pieces X, X′, etc.,
simply for presentation. The definitions of X, X′, etc., should be considered temporary, and will be redefined
in each query expression. As well, we will temporarily prepend labels to certain operators in order to allow us
to refer to then in the body of the text. These labels have no bearing on the definition of the query, and the
same operator may be given a completely new label in a later query expression.
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NEWMATCH(Q1, V1):
Starting with

Q1 :=Q1Π
{Dmonth,Dyear,Pcat,gross}

{Pid=STprod} (P, Q1.1)

where Q1.1 is defined as rewritten above, the algorithm applies the Rule PR1 to resolve the top
prerequisite operator in Q1.1 against the root of Q1, which removes the predicate Pid=STprod

and the relation P. The remaining compensation operators in Q1.1 can then be pulled above Q′
1

(which now is only a projection) using Rules PPU1 and PPU4, which gives us

Q1 :=Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(D, X))

X :=Λ
{Pcat,Pid,Pname,STdate}

{SUM(profit+cost) as gross}(
Q′1Π

{Pcat,Pid,Pname,cost,profit}

{} (V1.1))

Now that all child prerequisites and compensations are moved out of Q′
1, the algorithm creates a

new prerequisite operator to hold any unmatched predicates or relations from V1, and then replaces
Q′

1 with V1, adding the attribute STdate to the missing set of the new prerequisite since it is not
available from V1.

Q1 :=C1Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (C2Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{STdate≤Ddate,year(STdate)=Dyear,Deom=Y}(D, X))

X :=C3Λ
{Pcat,Pid,Pname,STdate}

{SUM(profit+cost) as gross}(
P1Φ

{Ddate,Deom,Pcat,Pid,Pname,cost,profit}; {STdate}

{Ddate≥STdate,year(STdate)=Dyear} [D](V1))

The rewrite is now complete, except that it is not in the required normal form because the prereq-
uisite operator P1 is below the three compensation operators. We can apply Rule PPU3 to move
P1 above C3, which generates a new aggregation prerequisite P2. P1 can then be resolved against
C2 using Rule PR1 (cancelling out the D relation and all of the predicates in P1), and then moved
past it using Rule PPU1, giving us

Q1 :=C1Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (P1Φ
{Ddate,Deom,Pcat,Pid,Pname,gross}; {Dmonth,Dyear}

{} [ ](X))

X :=C2Π
{Ddate,Deom,Pcat,Pid,Pname,gross}

{Deom=Y} (P2Ω
{Ddate,Deom,Pcat,Pid,Pname}; {STdate}

{SUM(profit+cost) as gross}; {} (X′))

X ′ :=C3Λ
{Ddate,Deom,Pcat,Pid,Pname}

{SUM(profit+cost) as gross}(V1)

The prerequisite P1 cannot be moved above C1 because P1 has attributes in its missing list that
are needed by C1. Therefore, we must first use Rule RCI1 to introduce a Π operator below P1

that re-joins the relation D in order to obtain the missing attribute Dmonth and Dyear (which is
possible because Ddate is available in P1, and Σ implies that {Ddate} → IdD). Then, P1 becomes
trivial and can be removed with Rule PI, and the newly created Π operator can be merged into
C2 using Rule VF1, leaving

Q1 :=C1Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (C2Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{Deom=Y,Ddate=Ddate} (D, X))

X :=P2Ω
{Ddate,Deom,Pcat,Pid,Pname}; {STdate}

{SUM(profit+cost) as gross}; {} (C3Λ
{Ddate,Deom,Pcat,Pid,Pname}

{SUM(profit+cost) as gross}(V1))

(Note that the above query expression does not translate to a syntactically pure SQL statement, as
the references to attributes Ddate and Deom in C2 are ambiguous. However, the desired semantics
should be fairly obvious, and this problem would be resolved if we added features for attribute
renaming to our query language.)

The next step in the normalization is to attempt to pull up prerequisite operator P2. Applying
Rule PPU4, we obtain

Q1 :=C1Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (P2Ω
{Dmonth,Dyear,Pcat,Pid,Pname}; {STdate}

{SUM(profit+cost) as gross}; {} (X))

X :=C2Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{Deom=Y,Ddate=Ddate} (D, C3Λ
{Ddate,Deom,Pcat,Pid,Pname}

{SUM(profit+cost) as gross}(V1))

32



to which we can apply Rule PR3a to resolve the aggregation prerequisite P2 against the aggregation
operator C1 (by reasoning that SUM(SUM(profit+cost)) is a cleanly composable nesting of
aggregation functions). Our final, normalized rewrite for Q1 is

Q1 :=C1Λ
{Dmonth,Dyear,Pcat,Pid,Pname}

{SUM(gross) as gross} (C2Π
{Dmonth,Dyear,Pcat,Pid,Pname,gross}

{Deom=Y,Ddate=Ddate} (D, X))

X :=C3Λ
{Ddate,Deom,Pcat,Pid,Pname}

{SUM(profit+cost) as gross}(V1)

NEWMATCH(Q, V ):
Starting with

Q :=QΛ
{Dmonth,Dyear,Pcat}

{SUM(gross) as gross}(Q1)

where Q1 is defined as rewritten above, the algorithm attempts to move the compensation operators
above operator Q. Operator C1 can be merged into its parent using Rule VF2. Then, operator C2

can be pushed up using Rule PD2 (which requires a new aggregation operator to be added above
C2 because the aggregation of the original Q is not invariant to relation D).

Q :=Λ
{Dmonth,Dyear,Pcat}

{SUM(gross) as gross}(
C2Π

{Dmonth,Dyear,Pcat,gross}

{Deom=Y,Ddate=Ddate} (D, X))

X :=Q′Λ
{Ddate,Deom,Pcat}

{SUM(gross) as gross}(
C3Λ

{Ddate,Deom,Pcat,Pid,Pname}

{SUM(profit+cost) as gross}(V1))

Operator C3 then can be merged into its parent using Rule VF2 (which reasons that the re-
sulting aggregation expression SUM(profit+cost) is decomposable and equivalent to the original
composition SUM(SUM(profit+cost))). Now that all of the compensation operators have been
moved above operator Q′, the algorithm reasons that the grouping set of Q′ is a subset of the
grouping set of V , and so Q′ can be replaced by a re-aggregation of view V (which requires reason-
ing that SUM(profit+cost) is distributive and equivalent to SUM(SUM(profit)+SUM(cost))).
This generates the query expression

Q :=Λ
{Dmonth,Dyear,Pcat}

{SUM(gross) as gross}(Π
{Dmonth,Dyear,Pcat,gross}

{Deom=Y,Ddate=Ddate} (D, X))

X :=Λ
{Ddate,Deom,Pcat}

{SUM(profit+cost) as gross}(V)

which is already in normal form. Note the compensation operators could be simplified to remove
the inner aggregation (by Rule PU2), but this is not necessary for correctness. Therefore, the
algorithm returns the above rewriting of Q to use view V .

It is not enough that the final rewriting be in the normal form (i.e. prerequisites opera-
tors above compensation operators). Instead, we have the added requirement that the final
rewriting may not contain any prerequisite operators. The rewriting generated by the topmost
matching in Example 8 already met this requirement; however, it is possible that the rewrite
returned by the topmost match still contains a prerequisite operator. At this point we would
need to find a sequence of simplifying transformations that would remove the prerequisite in
order for the final rewrite to be valid. For example, the returned re-writing might be rooted
by a Φ operator that lists an extra relation R; in order for the rewrite to be usable, either
the extra R needs to resolve with a re-joined R below it in the compensation (a simplification
which should have already been performed by the function SIMPLIFY-AND-NORMALIZE()), or
R needs to be logically deleted from the Φ operator using Rule PCR, after which the Φ needs
to be removed using Rule PI.

7.3 Implementation Issues

The focus of this research has been on improving the recall of previously published algorithms
for rewriting complex aggregation queries using complex aggregation views. In presenting
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our extensions, we have not addressed what impact our modifications have on efficiency of
the algorithm. There are three features of our modified algorithm NEWMATCH that negatively
impact performance compared to the bottom-up approach described by Zaharioudakis et al.:

1. The cost of replacing templates with transform rules.

2. The cost of multiple equivalent paths through the algorithm.

3. The cost of generating rewrites containing unsatisfiable prerequisites.

The remainder of this section will address each of these costs in turn.

7.3.1 The Cost of Using Transform Rules

As described in Section 4, the use of simple templates to drive the matching is efficient, but
limited in power, while driving the matching by iterative application of a set of transformation
rules is powerful, but potentially expensive. We can reap the benefits of both approaches by
creating templates for the simple cases, and using transform rules if none of the templates
apply. Of course, this means the cost of trying the transformation rules is still incurred for
every failed match. It should be noted, however, that our algorithm never applies tranforma-
tion rules blindly in a forward-chaining manner. Instead, every use of transformation rules is
goal-oriented, and so we expect that an efficient backward-chaining process can be devised to
locate a successful sequence of transformations, if one exists.

7.3.2 The Cost of Multiple Paths

An unfortunate side-effect of adding prerequisite operators to the matching algorithm is that
they allow the matching styles 1 and 3 to interact such that a choice 1 followed by a later choice
3 (or vice-versa) can be equivalent to a single choice 2. The net effect is to create multiple paths
through the algorithm that generate the same rewriting. The following example illustrates
the problem.

Example 9 Assume that the following query Q and view V are phrased over the sales database
schema from Example 3.

Q :=QΠ
{Pname,Sname,STprice}

{Pid=STprod,Page>18}(P,
Q1Π

{Sname,STprice,STprod}

{Sid=STstore,Scat=3} (S, ST))

V :=VΠ
{Page,Pname,Scat,Sname,STprice}

{Pid=STprod} (P, V1Π
{Scat,Sname,STprice,STprod}

{Sid=STstore} (S, ST))

There are three different paths through the algorithm NEWMATCH(Q,V ) that generate the identical
rewriting.

Path 1:

Call NEWMATCH(Q, V )

Choose match style 2

Call NEWMATCH(Q1, V1)

Choose match style 2

Return Q′
1 := Π

{Sname,STprice,STprod}

{Scat=3} (V1)

Return Q′ := Π
{Pname,Sname,STprice}

{Page>18,Scat=3} (V)
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Path 2:

Call NEWMATCH(Q, V )

Choose match style 3

Call NEWMATCH(Q, V1)

Choose match style 1

Call NEWMATCH(Q1, V1)

Choose match style 2

Return Q′
1 := Π

{Sname,STprice,STprod}

{Scat=3} (V1)

Return Q′ := Π
{Pname,Sname,STprice}

{Pid=STprod,Page>18,Scat=3}(P, V1)

Call NEWMATCH(Q′, V )

Choose match style 2

Return Q′′ := Π
{Pname,Sname,STprice}

{Page>18,Scat=3} (V)

Return Q′′

Path 3:

Call NEWMATCH(Q, V )

Choose match style 1

Call NEWMATCH(Q1, V )

Choose match style 3

Call NEWMATCH(Q1, V1)

Choose match style 2

Return Q′
1 := Π

{Sname,STprice,STprod}

{Scat=3} (V1)

Return Q′′
1 := Φ

{Page,Pname,Sname,STprice}; {STprod}

{Pid=STprod} [P](Π
{Page,Pname,Sname,STprice}

{Scat=3} (V))

Return Q′ := Π
{Pname,Sname,STprice}

{Page>18,Scat=3} (V)

Obviously, the different paths would be avoided if we first flattened Q and V using Rule VF1.
However, the same behaviour can be observed among queries and views containing aggregation
operators that cannot be flattened.

In Example 9, Path 1 performs a one-to-one match between the blocks of V and the blocks
of Q; hence, this path mimics the behaviour of the original bottom-up algorithm. Path 2
matches the root of Q against both V and V1 but still uses only compensation operators;
therefore, this path was enabled by our adding of match style 3 to algorithm MATCH. Path 3
matches Q1 against both V and V1, using prerequisite operators to do to; thus, this path was
enabled by our adding of prerequisite operators to algorithm NEWMATCH.

The main disadvantage to having multiple equivalent paths through a top-down algorithm
is that an exhaustive search of the space will perform redundant work. In the NEWMATCH

algorithm as given, the number of equivalent paths (and hence the redundant work) grows
exponentially in the number of operators in the query and view definitions. However, there
is a high amount of overlap in the recursive invocations made by different paths. Thus, if
a memo structure is used to avoid redundancy due to re-invocation, the redundancy due to
differing choices of matching style is at most quadratic in the number of operators in the
query and view definitions. (The same quadratic factor would be introduced if prerequisites
and matching style 3 were added to the equivalent purely bottom-up algorithm.) In practice,
it is unlikely that a quadratic scale-up would actually be observed, even when attempting to
find all possible rewrites. However, it is left for future work to design heuristics that attempt
to decide when the different match types should be tried or can be avoided.
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7.3.3 The Cost of Unsatisfiable Prerequisites

By design, prerequisite operators are intended to avoid early pruning of usable views in an
attempt to improve the recall of the matching process. However, unconstrainted use of pre-
requisites can destroy efficiency by delaying pruning of unusable views. For example, a view
V containing a non-logically-deletable relation R that occurs nowhere in query Q should be
pruned as soon as R is encountered; but, by creating a Φ prerequisite that lists R as an
extra relation, algorithm NEWMATCH could conceivably proceed much farther through the
matching process, only to discover at the end that the prerequisite cannot be resolved.

In an ideal world, our algorithm would use an oracle to tell it which prerequisites could be
resolved later in the matching process, and it would only create those prerequisites, pruning
any views that required a prerequisite that could not be later resolved. This would improve
the recall of the original algorithm without introducing any false positives at intermediate
stages. Unfortunately, constructing a perfect oracle requires global knowledge of the query
and view definitions, destroying the efficiency of the bottom-up process that makes local
decisions. However, if we replace the oracle with an approximation that does not require
global knowledge, we can still hope to improve recall without introducing too many false
positives. Different choices in designing oracle-approximations lead to different levels of trade-
off between false positives and negatives in the matching process.

One possible oracle-approximation can be constructed by an approach that we will call An-
cestor Inspection. Given an invocation of NEWMATCH(Q,V ) in which Q is actually a subquery
within a larger query tree, Ancestor Inspection examines only the operators occurring as an-
cestors to Q within the outer query tree (including the grouping sets, aggregation expressions,
predicate sets, and joined base relations within these operators) in order to decide whether
the given prerequisite is resolvable. It should now be clear why we have written NEWMATCH to
navigate the query tree from the top-down rather than bottom-up—the information required
by Ancestor Inspection is not locally available when traversing the query definition bottom-
up. In contrast, a top-down traversal can carry forward memory of Q’s ancestor operators
using space proportional to the depth of Q in the larger query tree (or constant space, if
we approximate this memory using hashing), allowing the decision to be made based upon
locally-available information.

Ancestor Inspection is inherently conservative, because it rejects prerequisites that could
be resolved against compensation operators originating out of an ancestor’s sibling (such as
the scenario illustrated in Example 7). Initially converting the query to a normal form can
help to improve the recall of Ancestor Inspection by maximizing the opportunity to resolve
against operators along the ancestor path.

Definition 7.1 (Ancestor Normal Form (ANF)) A query expression Q composed of stan-
dard relational operators is said to be in Ancestor Normal Form iff

1. The transformations VF1 (flattening direction), PD1, and PD3 cannot be applied anywhere
within Q.

2. Each predicate is located at its divergent point.

Definition 7.2 (Divergent Point) A predicate p1 is located at its divergent point if it is
pushed down as far as possible so that there does not exist a predicate p2 among the ancestor
operators of p1 such that

1. p2 is an equality predicate;

2. attributes(p1) ∩ attributes(p2) 6= ∅; and

3. p2 is at its divergent point.
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The intuition behind the first condition of Ancestor Normal Form is that in order to
maximize the opportunity to resolve a prerequisite containing an extra relation, all relations
should be pulled up as high as possible. Rules VF1, PD1, and PD3 all cause relations to move
upward in the query tree, thus increasing the size of the descendant subtree for which they
would be visible for Ancestor Inspection. The intuition behind the second condition of ANF is
that pushing a predicate p1 down past its divergent point removes it from the ancestor path of
the subquery to which p2 joins it, which could cause Ancestor Inspection to reject resolvable
prerequisites within that subquery.

Converting the initial query to ANF gives the added benefit that the function SIMPLIFY-AND-NORMALIZE

described in Section 7.1 does not need to search to resolve prerequisites and compensations
originating out of sibling subqueries.

Example 10 The query Q from Example 7 can be converted to the following query Q′ which is
in Ancestor Normal Form.

Q′ :=Q′Π
Sid,Sname,ecount,sales

Estore=Sid,Sid=STstore,Estore>100(S, Q
′
1, Q

′
2)

Q′
1 :=Q′1Λ

STstore

SUM(STprice) as sales(ST)

Q′
2 :=Q′2Λ

Estore

COUNT(Eid) as ecount(E)

Observe that the divergent point for the predicate ‘‘Estore>100’’ is within the operator Q′—not
Q′

2—due to its overlap with the predicate ‘‘Estore=Sid’’ which can not be pushed down any
further.

Consider the view V also from Example 7. Ancestor Inspection would disallow the rewriting
of Q to use V described in Example 7 because there is no reason to believe that prerequisite
operator generated by matching Q1 with V1 has any chance of being resolved, based upon the
predicates and relations along Q1’s ancestor path (i.e. neither the relation ‘‘S’’ nor the predicate
‘‘STstore>100’’ are found in either Q1 or Q). In contrast, Ancestor Inspection permits the
rewriting of Q′ to use V because the prerequisite formed when matching Q′

1 with V1 is potentially
resolvable by the predicates and relations occurring in the ancestor operator Q′.

Through the use of heuristics such as Ancestor Inspection in conjunction with normal
forms such as ANF, we believe that prerequisite operators can be used to improve matching
recall without seriously hampering the ability to prune unusable views early.

8 Conclusions

Using prerequisite operators is a promising strategy for improving the recall of known algo-
rithms that perform view matching for multi-block aggregation queries in a bottom-up fashion.
Although there are serious performance drawbacks associated with unrestrained introduction
of prerequisite operators, a judicious governing of prequisite introduction (through the use
of heuristics such as Ancestor Investigation in conjunction with normal forms such as ANF)
should lead to increased matching recall with a limited increase in algorithmic overhead.

In the future we plan to investigate more strategies for limiting the introduction of prerequi-
sites to cases where they are likely to be satisfiable. We also plan on investigating completeness
of the matching algorithm with respect to a set of known transformation rules, as well as the
impact of the afore-mentioned governing strategies on this completeness.
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