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Abstract

This paper addresses bandwidth allocation for an integrated voice/data broadband mobile wireless

network. Specifically, we propose a new admission control scheme called EFGC, which is an extension

of the well-known fractional guard channel scheme proposed for cellular networks supporting voice

traffic. The main idea is to use two acceptance ratios, one for voice calls and the other for data calls in

order to maintain the proportional service quality for voice and data traffic while guaranteeing a target

handoff failure probability for voice calls. We describe two variations of the proposed scheme: EFGC-

REST, a conservative approach which aims at preserving the proportional service quality by sacrificing

the bandwidth utilization; and EFGC-UTIL, a greedy approach which achieves higher bandwidth uti-

lization at the expense of increasing the handoff failure probability for voice calls. Extensive simulation

results show that our schemes satisfy the hard constraints on handoff failure probability and service

differentiation while maintaining a high bandwidth utilization.

Index Terms

Call admission control, voice/data integration, quality-of-service, broadband wireless networks.
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Call Admission Control for Voice/Data

Integration in Broadband Wireless Networks

I. I NTRODUCTION

Emerging wireless technologies such as 3G and 4G will increase the cell capacity of wireless

cellular networks to several Mbps [1]. With this expansion of wireless bandwidth, the next

generations of mobile cellular networks are expected to support diverse applications such as

voice, data and multimedia with varying quality of service (QoS) and bandwidth requirements

[2]. Wireless links bandwidth is limited and is generally much smaller than that of wireline access

links. Therefore, for integrated voice/data mobile networks it is necessary to develop mechanisms

that can provide effective bandwidth management while satisfying the QoS requirements of both

types of traffic.

At call-level, two important quality of service parameters are thecall blocking probability(pb)

and thecall dropping probability(pd). An active mobile user in a cellular network may move

from one cell to another. The continuity of service to the mobile user in the new cell requires a

successful handoff from the previous cell to the new cell. The probability of a handoff failure is

calledhandoff failure probability(pf ). During the life of a call, a mobile user may cross several

cell boundaries and hence may require several successful handoffs. Failure to get a successful

handoff at any cell in the path forces the network to drop the call. The probability of such an

event is known as the call dropping probability.

Since dropping a call in progress has a more negative impact from the user perspective, handoff

calls are given higher priority than new calls in accessing the wireless resources. This preferential

treatment of handoffs increases the probability of blocking new calls and hence may degrade

the bandwidth utilization. The most popular approach to prioritize handoff calls over new calls

is by reserving a portion of available bandwidth in each cell to be used exclusively for handoffs.

Based on this idea, a number of call admission control (CAC) schemes have been proposed which

basically differ from each other in the way they calculate the reservation threshold [3]–[8].

Bandwidth allocation has been extensively studied in single-service (voice) wireless cellular

networks. Hong and Rappaport [3] are the first who systematically analyzed the famousguard



2

channel(GC) scheme, which is currently deployed in cellular networks supporting voice calls.

Ramjee et al. [9] have formally defined and categorized the admission control problem in

cellular networks. They showed that the guard channel scheme is optimal for minimizing a

linear objective function of call blocking and dropping probabilities while thefractional guard

channelscheme (FGC) [9] is optimal for minimizing call blocking probability subject to a hard

constraint on call dropping probability. Instead of explicit bandwidth reservation as in GC, the

FGC accepts new calls according to a randomization parameter called theacceptance ratio. One

advantage of FGC over GC is that it distributes the new accepted calls evenly over time which

leads to a more stable control [10].

Because of user mobility, it is impossible to describe the state of the system by using only

local information, unless we assume that the network is uniform and approximate the overall

state of the system by the state of a single cell in isolation. To include the global effect of

mobility, collaborative or distributed admission control schemes have been proposed [4]–[8],

[10], [11]. Information exchange among a cluster of neighboring cells is the approach adopted

by all distributed schemes.

In particular, Naghshineh and Schwartz [4] proposed a collaborative admission control known

asdistributed call admission control(DCA). DCA periodically gathers some information, namely

the number of active calls, from the adjacent cells to make, in combination with the local

information, the admission decision. It has been shown that DCA is not stable and violates

the required dropping probability as the load increases [10]. Levin et al. [5] proposed a more

sophisticated version of the original DCA based on theshadow clusterconcept, which uses

dynamic clusters for each user based on its mobility pattern instead of restricting itself (as

DCA) to direct neighbors only. A practical limitation of the shadow cluster scheme in addition

to its complexity and inherent overhead is that it requires a precise knowledge of the mobile’s

trajectory. Recently, Wu et al. [10] proposed a stable distributed scheme (SDCA) based on the

classical fractional guard channel scheme which can precisely achieve the target call dropping

probability. A key feature of SDCA is the formulation of the time-dependent call dropping

probability which can be computed by the diffusion approximation of the channel occupancy.

One of the challenges in considering multi-services systems is that the already limited band-

width has to be shared among multiple traffics. Epstein and Schwartz [12] investigated complete

sharing, complete partitioning and hybrid reservation schemes for two classes of traffic, namely



3

narrow-band and wide-band traffic. In general, complete sharing strategy achieves the highest

bandwidth utilization [12].

Fixed and movable boundary schemes for bandwidth allocation in wireless networks were

studied by Wieselthier and Ephremides [13]. They concluded that movable boundary schemes

can achieve a better utilization than fixed boundary schemes for voice and data integration. Since

then, a number of papers have been published focusing on the performance of fixed and movable

boundary schemes given different assumptions and network configurations [14]–[20].

In particular, Haung et al. [18] proposed a bandwidth allocation scheme for voice/data inte-

gration based on the idea of movable boundaries (MB). In their scheme, bandwidth is divided

into two portions that can be dynamically adjusted to achieve the desired performance. However,

they completely neglected the prioritization of handoff calls over new calls and treated the two

identically. Yin et al. [19] proposed adual threshold reservation(DTR) scheme, which extends

the basic guard channel to use two thresholds, one for reserving channels for voice handoff, and

the other for limiting the data traffic into the network in order to preserve the voice performance.

An extended version of DTR which implements queueing for data calls (DTR-Q) was proposed

in [20]. In general, queueing of new/handoff calls, can further improve the performance of call

admission control [21]. The main limitation of DTR (DTR-Q) is that it is static, i.e., the two

reservation thresholds are fixed over time regardless of the state of the network. Interested readers

are referred to [22] for a comparison between DTR and MB schemes.

This paper introduces anextended fractional guard channel call admission mechanism(EFGC)

for integrated voice and data mobile cellular networks. EFGC maximizes the wireless bandwidth

utilization while satisfying a target call dropping probability and a relative voice/data service

differentiation. The main idea is to use two acceptance ratios for voice and data according to

the desired dropping probability of voice calls and the relative priority of voice calls over data

calls. Similar to [15]–[20], we assume that call dropping is not an important issue for data calls

and treat handoff and new data calls in the same way. We define the extended MINBLOCK [9]

problem as follows:

for a given cell capacity, maximize the bandwidth utilization subject to a hard constraint

on the voice call dropping probability and relative voice/data call blocking probability.

To the best of our knowledge, extending the basic fractional guard channel scheme to address

the extended MINBLOCK problem is a novel work. We follow an approach similar to the stable
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admission control algorithm proposed by Wu et al. [10] to derive the acceptance ratios for voice

and data calls. The main features of EFGC are as follows:

1) EFGC is dynamic, therefore, adapts to a wide range of system parameters and traffic

conditions.

2) EFGC uses separate acceptance ratios for voice and data calls, therefore, it is very straight-

forward to enforce a relative or even strict service differentiation between voice and data

traffic.

3) EFGC is distributed and takes into consideration the information from direct neighboring

cells in making admission decisions.

4) The control mechanism is stochastic and periodical to reduce the overhead associated with

distributed control schemes. EFGC determines the appropriate control parameters such

as the control interval length in order to restrict the impact of the network to the direct

neighbors only.

The rest of the paper is organized as follows. Our system model, assumptions and notations are

described in section II. Section III is dedicated to the proposed admission control algorithm and

presents the analysis of the proposed algorithm in detail. In section IV, we discuss the estimation

of control parameters such as arrival rates, then we address the multiple handoffs problem and

control interval length. Extensive simulation results and their analysis are presented in section

V. Finally, section VI concludes this paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cellular system which carries both voice and data traffic.

We assume that wireless bandwidth is channelized where a channel can be a frequency, a time

slot or a code sequence. We define the basic bandwidth unit (BU) as the smallest amount of

bandwidth that can be allocated to a call, e.g., a channel. In this paper we focus on call-level

QoS parameters, therefore only call-level traffic dynamics are required for resource allocation and

admission control. More specifically, we assume that theeffective bandwidth[23]–[25] concept

is applied to each call. When employing this concept, an appropriate effective bandwidth is

assigned to each call and each call is treated as if it required this effective bandwidth throughout

the active period of the call. The feasibility of admitting a given set of connections may then
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Fig. 1. Integration of voice and data at the base station of a cellular network.

be determined by ensuring that the sum of the effective bandwidths is less than or equal to the

total available bandwidth, i.e. the cell capacity.

We assume that each voice call requiresbv BUs and each data call requiresbd BUs for the

whole duration of the call. In the system under consideration, voice handoff calls have the highest

priority, then come new voice calls, and lastly the new and handoff data calls are considered. As

mentioned earlier, there is no prioritization of handoff data calls, and hence handoff data calls

are treated the same as new data calls.

The considered system is not required to be uniform. Each cell can experience a different

load, e.g., some cells can be over-utilized while others are under-utilized. Letk = {v, d} denote

the type of traffic, i.e.k = v for voice andk = d for data traffic. Below is the notation which

will be used throughout this paper.

• M : number of cells in the network

• Ai: the set of the adjacent cells of celli

• ci: the capacity of celli in terms of BUs

• Ri(t): bandwidth requirements (used capacity) in celli at time t in terms of BUs

• pf i: voice handoff failure probability in celli

• pQoS: target voice handoff failure probability to be guaranteed

• k: the service index for voice and data withk = v for voice andk = d for data

• λk
i : type-k new call arrival rate into celli

• 1/µk: type-k mean call duration

• 1/hk: type-k mean cell residency time
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• T : length of the control period

• bk: bandwidth requirement of type-k calls in terms of BUs

• Nk
i (t): number of active type-k calls in cell i at time t

• rji: routing probability from cellj ∈ Ai to cell i

• bk
i : type-k call blocking probability in celli

• ak
i : type-k call acceptance ratio in celli

• αi: relative priority of voice traffic over data traffic in celli defined asαi = av
i /a

d
i

• αQoS: target relative priority of voice traffic over data traffic to be guaranteed

• pk
b : network-wide type-k call blocking probability

• pd: network-wide voice call dropping probability

• E[z]: the mean of random variablez

• V [z]: the variance of random variablez

• z̃: time-averaged value of random variablez

• ẑ: measured (observed) value of random variablez

Let random variablestdk
andtrk

denote the call duration (call holding time) and cell residency

time of a typical type-k call, respectively. Similar to [3], [9], [10], [12]–[22], we assume that

tdk
and trk

are exponentially distributed. In the real world, the cell residence time distribution

may not be exponential but exponential distributions provide the mean value analysis, which

indicates the performance trend of the system. Furthermore, our proposed admission control

algorithm involves a periodic control where the length of the control period is set to much less

than the average cell residency time of a call to make the algorithm insensitive to this assumption.

A. Multiple Handoffs Probability

As mentioned earlier, in order to make the optimal admission decision, distributed schemes

regularly exchange some information with other cells in the network. Those cells involved in

the information exchange form acluster. Due to the intercell information exchange, base station

interconnection network incurs a high signalling overhead. Moreover, as the cluster size increases

the operational complexity of the control algorithm increases too. In particular, two major factors

affect the overhead and complexity of distributed CAC schemes; (1) frequency of information

exchange, and, (2) depth of information exchange, i.e. how many cells away information is

exchanged.
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To reduce the overhead, distributed CAC schemes typically have a periodic structure in which

only at the beginning of control periods information exchange is triggered. Moreover, information

exchange is typically restricted to a cluster of neighboring cells. Note that, if the control interval

is too small then frequent communications increases the signalling overhead. On the other hand,

if the control period is too long then the state information stored locally may become stale.

Similarly, if the cluster is too small then the exchanged information will poorly reflects the state

of the network. On the other hand, a big cluster will lead to higher overhead. An efficient CAC

scheme must compromise between the frequency and depth of information exchange.

In this paper, we set the control interval in such a way that the probability of having multiple

handoffs in one control period becomes negligible. Therefore, we can effectively assume that

only those cells directly connected to a cell can influence the number of calls in that cell during

a control period. In a sense, we reduce the control interval in favor of a smaller cluster size. We

claim that using this technique, the signalling overhead will not increase, while the collected

information on the network status will be sufficiently accurate for the purpose of a stochastic

admission control. The reason is that: first, by decreasing the control interval, the probability

of multiple handoffs decays to zero exponentially (see section IV-C); second, a cluster shrinks

quadratically with decreasing the depth of information exchange (see below).

Without loss of generality, consider a symmetric network where each cell has exactlyA

neighbors. Consider celli and all the cells around it forming circular layers as shown in Fig. 2.

From celli, all the cells up to layern are accessible withn handoffs assuming that celli forms

layer 0. The number of cells reachable byn handoffs from celli denoted byM(n) is given by

M(n) = 1 +A+ · · ·+ nA

= 1 +
1

2
n(n + 1)A .

(1)

Therefore, by slightly reducing the control interval, we essentially achieve the same control

accuracy but with reduced signalling overhead. The problem of choosing the proper control

interval will be further addressed in section IV-C.

B. Handoff Failure and Call Dropping Probabilities

Although call dropping probability is more meaningful for mobile users and service providers,

calculating the handoff failure probability is more convenient. Therefore, our calculations in this
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Fig. 2. A cellular system with 3 layers.

paper are based on the handoff failure probability,pf , which can be related to the call dropping

probability, pd, as follows (refer to [3] for more details):

pd =
∞∑

H=0

(P v
h )H(1− pf )

H−1pf =
P v

hpf

1− P v
h (1− pf )

, (2)

whereH is the number of possible handoffs during the life of a call, andP v
h is the handoff

probability of a voice call before the call completes which can be computed by the following

equation:

P v
h = Pr(tdv > trv)

=

∫ ∞

t=0

Pr(tdv > trv |trv) Pr(trv = t) dt

=

∫ ∞

t=0

hv exp(−µvt) exp(−hvt) dt =
hv

µv + hv

(3)

therefore,

pf =
pd

1− pd

(
µv

hv

)
. (4)

It means that for a givenpd, the equivalentpf can be easily computed based on (4). Therefore,

in this paper it is assumed that a target handoff failure probabilitypQoS must be guaranteed for

voice calls. Notice that, exponential assumption is a necessary condition in deriving (3). Interested

readers are referred to [26], [27] for the handoff probability under general call duration and cell

residency distributions.
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C. Time-Dependent Handoff and Stay Probabilities

We compute here some useful probabilities required for the rest of our discussion. LetP k
h (t)

denote the probability that a type-k call hands off by timet and remains active untilt, given

that it has been active at time0. Also, letP k
s (t) denote the probability that a type-k call remains

active in its home cell until timet, given that it has been active at time0. Then,

P k
h (t) = Pr(trk

≤ t) Pr(tdk
> t)

= (1− exp(−hkt)) exp(−µkt),
(5)

and,

P k
s (t) = Pr(trk

> t) Pr(tdk
> t)

= exp(−(µk + hk)t) .
(6)

These equations are valid as far as the memoryless property of call duration and cell residency

is satisfied. On average, for any call which arrives at timet′ ∈ (0, t], the average handoff and

stay probabilitiesP̃ k
h and P̃ k

s are expressed as

P̃ k
h (t) =

1

t

∫ t

0

P k
h (t− t′) dt′, (7)

P̃ k
s (t) =

1

t

∫ t

0

P k
s (t− t′) dt′ . (8)

These integrals can be easily computed with respect to (5) and (6). Finally, letP k
ji(t) denote

the time-dependent handoff probability and̃P k
ji(t) denote the average time-dependent handoff

probability from cellj to cell i wherej ∈ Ai. It is obtained that

P v
ji(t) = P v

h (t) rji, (9)

P̃ v
ji(t) = P̃ v

h (t) rji, (10)

because voice handoff calls are always accepted if there is enough free bandwidth. Similarly,

P d
ji(t) = ad

i

[
P d

h (t) rji

]
, (11)

P̃ d
ji(t) = ad

i

[
P̃ d

h (t) rji

]
, (12)

because data calls are always subject to an acceptance ratioad
i in cell i.

In next section, we will use the computed probabilities to find the maximum acceptance ratios

for voice and data calls with respect to the prespecified call dropping probability (pQoS) and

relative voice/data acceptance probability (αQoS).
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III. A DMISSION CONTROL ALGORITHM

The proposed distributed algorithm, EFGC, consists of two components. The first component

is responsible for retrieving the required information from the neighboring cells and computing

the control parameters. Using the computed control parameters, the second component enforces

the admission control locally in each cell. The following sections describe these two components

in detail.

A. Distributed Control Algorithm

As mentioned earlier, to reduce the signalling overhead EFGC has a periodic structure. All the

information exchange and control parameter computations happen only once at the beginning of

each control period of lengthT . Several steps involved in EFGC distributed control are described

below:

1) At the beginning of a control period, each celli sends the following information to its

adjacent cells:

a) the number of active voice and data calls presented in the cell at the beginning of

the control period denoted byN v
i (0) andNd

i (0), respectively.

b) the number of new voice calls,N v
i , and new/handoff data calls,Nd

i , which were

admitted in the last control period.

2) Each celli receivesNk
j (0) andNk

j from every adjacent cellj ∈ Ai.

3) Now, cell i uses the received information and those available locally to compute the

acceptance ratiosav
i andad

i using the technique described in section III-C.

4) Finally, the computed acceptance ratiosav
i andad

i are used to admit call requests into cell

i using the algorithm presented in section III-B.

Assume that all the cells have the same number of adjacent cells. LetA denote the number of

adjacent cells. Also, assume that in one message all the required information can be sent from

one cell to another cell. Then, the signalling overhead in terms of the number of exchanged

messages in one control period isA messages per cell.

B. Local Admission Control Algorithm

Let (m,n) denote the state of celli, where there arem voice calls andn data calls active

in the cell. DefineSi as the state space of celli governed by EFGC scheme. ThenSi can be
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expressed as

Si = {(m, n)|mbv + nbd ≤ ci} . (13)

Let ak
i (m, n) denote the acceptance ratio for type-k calls where the cell state is(m,n). Fig. 3

shows the state transition diagram of the EFGC scheme in celli for a typical state(m,n) ∈ Si. In

this figure,νk
i is the type-k handoff arrival rate into celli. At each state there are two acceptance

ratios for voice and data calls in such a way thatav
i (m, n) = 0, if (m + 1, n) /∈ Si

ad
i (m, n) = 1

αi
av

i (m,n), if (m, n) ∈ Si

(14)

There is a service differentiation (αi) between voice and data calls that governs the relation

between these two acceptance ratios. In this paper, we assume that this service differentiation is

specified apriori (αQoS) and EFGC should maintain it regardless of traffic conditions.

For an accurate control, the call blocking probability in each period is given by complementing

the acceptance ratio. Therefore, by averaging acceptance ratios over a number of control periods,

the call blocking probability is expressed as

bk
i = 1− E[ak

i ] (15)

Consequently, the average network-wide call blocking probability for the considered network is

given by

pk
b =

∑M
j=i λ

k
i b

k
i∑M

j=i λ
k
i

. (16)
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if (xk is a voice handoff call) then

if (Ri(t) + bv ≤ ci) then

accept call;
else

reject call;
end if

else /* new voice or new/handoff data call */
if (Ri(t) + bk ≤ ci)&(rand(0, 1) < ak

i
) then

accept call;
else

reject call;
end if

end if

Fig. 4. Local call admission control algorithm in celli.

The pseudo-code for the local admission control in celli is given by the algorithm of Fig. 4.

In this algorithm,xk is a type-k call requestingbk BUs. The corresponding type-k acceptance

ratio is ak
i . Also, rand(0, 1) is the standard random generator function. In the next section, we

will present a technique to compute the acceptance ratio vectorai = (av
i , a

d
i ) in order to complete

this algorithm.

C. Computing Acceptance Ratios

It is assumed that by setting the control intervalT to an appropriate value, each call experiences

at most one handoff during a control period (see section IV-C for more detail). Therefore,

immediate neighbors of celli, i.e. Ai, are those which will affect the number of calls and

consequently the bandwidth usage in celli during a control period.

The proposed approach for computing the acceptance ratios includes the following steps:

1) Each celli uses the information received from its adjacents and the information available

locally to find the time-dependent mean and variance of the number of calls in the cell.

2) The computed mean and variance of the number of calls is used to find the mean and

variance of the bandwidth requirement process in the cell.

3) Having the mean and variance of the bandwidth requirement process, the actual time-

dependent bandwidth requirement process is approximated by a Gaussian distribution.

4) The tail of this Gaussian distribution is used to find the time-dependent handoff failure in

each celli.
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5) Time-dependent handoff failure is averaged over control interval of lengthT to find an

average handoff failure probability for the whole period.

6) Using the computed handoff failure probability and the prespecified QoS constraints, i.e.

pQoS andαQoS, acceptance ratiosav
i andad

i are computed.

The number of calls in celli at timet is affected by two factors: (1) the number of background

(existing) calls which are already in celli or its adjacent cells, and, (2) the number of new calls

which will arrive in cell i and its adjacent cells during the period(0, t] (0 < t ≤ T ). Let gk
i (t)

andnk
i (t) denote the number of background and new type-k calls in celli at timet, respectively.

A background type-k call in cell i will remain in cell i with probability P k
s (t) or will handoff

to an adjacent cellj with probability P k
ij(t). A new type-k call which is admitted in celli at

time t′ ∈ (0, t] will stay in cell i with probability P̃ k
s (t) or will handoff to an adjacent cell

j with probability P̃ k
ij(t). Therefore, the number of background calls which remain in celli

and the number of handoff calls which come into celli during the interval(0, t] are binomially

distributed. For a binomial distribution with parameterq, the variance is given byq(1−q). Using

this property it is obtained that

V k
s (t) = P k

s (t) (1− P k
s (t)), (17)

V k
ji(t) = P k

ji(t) (1− P k
ji(t)), (18)

Ṽ k
s (t) = P̃ k

s (t) (1− P̃ k
s (t)), (19)

Ṽ k
ji(t) = P̃ k

ji(t) (1− P̃ k
ji(t)) . (20)

where,V k
s (t) andV k

ji(t) denote the time-dependent variance of stay and handoff processes, and,

Ṽ k
s (t) and Ṽ k

ji(t) are their average counterparts, respectively.

The number of type-k calls in cell i is the summation of the number of background calls,

gk
i (t), and new calls,nk

i (t), of typek. Therefore, the mean number of type-k active calls in cell

i at time t is given by

E[Nk
i (t)] = E[gk

i (t)] + E[nk
i (t)], (21)

where,

E[gk
i (t)] = Nk

i (0)P k
s (t) +

∑
j∈Ai

Nk
j (0)P k

ji(t), (22)
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E[nk
i (t)] = (ak

i λ
k
i t)P̃

k
s (t) +

∑
j∈Ai

(ak
j λ

k
j t)P̃

k
ji(t) . (23)

Similarly the variance is given by

V [Nk
i (t)] = V [gk

i (t)] + V [nk
i (t)], (24)

where,

V [gk
i (t)] = Nk

i (0)V k
s (t) +

∑
j∈Ai

Nk
j (0)V k

ji(t), (25)

V [nk
i (t)] = (ak

i λ
k
i t)Ṽ

k
s (t) +

∑
j∈Ai

(ak
j λ

k
j t)Ṽ

k
ji(t) . (26)

Note that given the arrival rateλk
i and the acceptance ratioak

i , the actual new call arrival rate

into cell i is given byλk
i a

k
i (see section IV-B). Therefore, the expected number of call arrivals

during the interval(0, t] is given byak
i λ

k
i t.

Knowing the bandwidth requirement of each type of calls, the mean and variance of bandwidth

usage in celli at time t are given by

E[Ri(t)] = bvE[N v
i (t)] + bdE[Nd

i (t)], (27)

V [Ri(t)] = b2
vV [N v

i (t)] + b2
dV [Nd

i (t)] . (28)

As we mentioned in section I, the cellular system considered in this paper is a broadband

wireless system with a capacity of several Mbps. In practice, 3G systems and beyond can be

considered as broadband wireless systems (for example a UMTS system can support up to 2

Mbps) [1], [2]. With this range of cell capacity it is reasonable to apply the central limit theorem.

We will informally verify this in section V-C. Thus, the bandwidth usage in each cell can be

approximated by a Gaussian distribution with meanE[Ri(t)] and varianceV [Ri(t)]. That is

Ri(t) ∼ G
(
E[Ri(t)], V [Ri(t)]

)
. (29)

Therefore, the original problem of maintaining a target handoff failure probabilitypQoS is

reduced to maintaining the bandwidth usage below the available capacityci at any point in

time t ∈ (0, T ]. Approximating the handoff failure probability by the overload probability, the

time-dependent handoff failure probabilityPf i(t) can be computed as follows:

Pf i(t) = Pr
(
Ri(t) > ci

)
, (30)
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therefore,

Pf i(t) =
1

2
erfc

(
ci − E[Ri(t)]√

2 V [Ri(t)]

)
, (31)

whereerfc(c) is the complementary error function defined as

erfc(c) =
2√
π

∫ ∞

c

e−t2 dt . (32)

Then the average handoff failure probability over a control period is given by

P̃fi
=

1

T

∫ T

0

Pf i(t) dt . (33)

Finally, to guarantee the target handoff failurepQoS, we should have

P̃fi
= pQoS . (34)

To solve (34) forai = (av
i , a

d
i ) we need one more equation. This equation can be derived

with respect to the required service differentiation. Given the service conditionad = f(av), the

acceptance ratio vectorai = (av
i , a

d
i ) can be found by numerically solving (34). Functionf is

such that0 ≤ f(av
i ) ≤ 1 and f(0) = 0. In addition,f is uniformly increasing over[0, 1]. The

boundary condition is thatai ∈ [0, 1] × [0, 1], hence if P̃fi
is less thanpQoS even forav

i = 1

thenai is set to(1, f(1)). Similarly, if P̃fi
is greater thanpQoS even forav

i = 0, thenai is set

to (0, 0). In this paper, we only consider a constant service differentiation function denoted by

αi, wheread
i = av

i /αi.

Finally, (34) can be solved using the bisection method [28]. Letξ denote the required numerical

precision. Then, the computational complexity of this technique isO(log 1/ξ), given that all

mathematical operations (including exponentiation and integration) can be performed inO(1).

IV. CONTROL PARAMETERS

In previous sections, we assumed that several parameters are known to the admission control

algorithm apriori. Among these parameters are the call arrival rates, mean call durations, mean

cell residency times and routing probabilities. In practice, all these parameters can be extracted

from measured field data using an estimation technique. Measurement and estimation units are

used for providing the required parameters to the admission control unit as shown in Fig. 5. One

useful estimation technique is presented in the following subsection.
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A. Parameter Estimation

A common technique for estimating the mean values from measurement data is theexpo-

nentially weighted moving average(EWMA) technique. Letz denote a control parameter to be

estimated, e.g., arrival rate, and̂z its measured (observed) value. A moving average estimator

for z at nth step is given by

z(n) = (1− ε) ẑ(n− 1) + εz(n− 1) (35)

whereε is a weighting factor that should be specified with respect to the sampled observations

of z. In general, a small value ofε can keep track of the changes more accurately, but is too

sensitive to temporary fluctuations. On the other hand, a large value ofε is more stable but

could be too slow in adapting to real traffic changes. By using this estimator, it can be verified

that E[z] = E[ẑ]. However, EFGC is independent of the estimation technique, and hence, it is

possible to use more sophisticated estimation techniques to achieve more accurate estimations

(refer to [29], [30]).

We now use the EWMA technique to compute the new call arrival rateλ into a cell of the

network. To obtain a time series for the estimation, time is divided into intervals of lengthT . At

the beginning of each intervali, we compute the estimated valueλ(i) for the arrival rate during

that interval. Total experiment time is set toNT seconds. Let̂λ(i) denote the measured arrival

rate during theith interval. Using (35), it is obtained that

λ(i + 1) = (1− ε) λ̂(i) + ελ(i) . (36)
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TABLE I

EFFECT OFε ON MEAN SQUARED ERROR.

ε MSE: Fixedλ MSE: Variableλ

0.0 0.090 0.087

0.1 0.080 0.079

0.2 0.073 0.072

0.3 0.066 0.066

0.4 0.061 0.061

0.5 0.056 0.057

0.6 0.052 0.054

0.7 0.049 0.051

0.8 0.046 0.050

0.9 0.043 0.054

The only unknown parameters in (36) is the estimation coefficientε. As mentioned before,

the accuracy of the EWMA estimation depends onε. The goal is to chooseε in such a way to

minimize the estimation error. To measure the estimation error, we use the mean squared error

(MSE) of the estimations as expressed by

MSE =
1

N

N∑
i=1

(
λ(i)− λ̂(i)

)2

. (37)

Two scenarios are simulated: (1) arrival rate is fixed atλ = 1 call/sec during the experiment;

and (2) arrival rate varies two times during the experiment, fromλ = 1 call/sec toλ = 2/3

call/sec and back toλ = 1 call/sec again. The initial value for the estimator isλ = 0. Table (I)

shows the corresponding errors for a range of values ofε. Notice that, ifε is very close to 1

then the estimation becomes very sensitive to the initial value, hence must be avoided. Also, to

avoid the transient part of scenario (1), values in Table (I) are computed using only the second

half of experiment data.

According to Table (I), optimal values for cases (1) and (2) areε = 0.9 and ε = 0.8,

respectively. Using these values, Fig. 6 shows the estimated arrival rate versus the measured

arrival rate for these two cases. As expected, the estimation process in Fig. 6(a) is more smooth

while the estimation process in Fig. 6(b) is more adaptive to changes. Finally, Table (II) represents

the average and variance of the estimated and measured arrival rates for case (1). It is observed



18

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Control period (n)

C
al

l a
rr

iv
al

 r
at

e 
(λ

)
Measured Arrival Rate
Mean Arrival Rate
Estimated Arrival Rate

(a) Constant arrival rate.

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Control period (n)

C
al

l a
rr

iv
al

 r
at

e 
(λ

)

Measured Arrival Rate
Mean Arrival Rate
Estimated Arrival Rate

(b) Changing arrival rate.

Fig. 6. EWMA.

TABLE II

FIXED ARRIVAL RATE .

Technique Mean Variance

Measurement (̂λ) 1.005 0.203

Estimation (λ) 1.009 0.026

that the estimated value is very close to the actual valueλ = 1 call/sec with a very small

deviation.

B. Actual New Call Arrival Rate

In section III-C, we used productsak
j λ

k
j to compute the mean and variance of the number of

calls in celli (j ∈ Ai). Let us define theactual new call arrival rateinto cell j, denoted bȳλk
j ,

as follows

λ̄k
j = ak

j λ
k
j . (38)

In order to computeak
i for the new control period we need to know̄λk

j for every adjacent cell

j (j ∈ Ai). Similarly, cell j needs to know̄λk
i in order to be able to computeak

j . Therefore,

every cell depends on its adjacents and vice versa. To break this dependency, instead of using

the actual value of̄λk
j , each celli estimates the actual new call arrival rates of its adjacents for

the new control period.
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Let λ̄k
j (n) denote the actual new call arrival rate into cellj during thenth control period.

Also, let Nk
j (n) denote the number of new calls that were accepted in cellj during thenth

control period. Similar to [4], [10], an estimator for̄λk
j is expressed as

λ̄k
j (n + 1) = (1− ε)

Nk
j (n)

T
+ ελ̄k

j (n), (39)

where,λ̄k
j (n + 1) is the actual new call arrival rate into cellj at the beginning of the(n + 1)th

control period. Note that̄λk
j (n) is known at the beginning of the(n+1)th control period. In our

simulations we found thatε = 0.3 leads to a good estimation of the actual new call arrival rate.

C. Control Interval

The idea behind at-most-one handoff assumption is that by setting control interval appropri-

ately, the undesired multiple handoffs during a control period can be avoided. As discussed in

section III, this minimizes the signalling overhead and operational complexity of EFGC. In this

section, we address the control interval selection problem.

Consider a symmetric network where each cell has exactlyA neighbors, and the probability

of handoff to every neighbor is the same. Then, the routing probabilityrij from cell i to cell j

is given by

rij =

1/A, j ∈ Ai,

0, j /∈ Ai .
(40)

Let q(n) denote the probability that an active call experiencesn handoffs during time intervalT .

Also, let qij(n) denote the probability that a call originally in celli moves to cellj over a path

consisting ofn handoffs during time intervalT . Define δ as the multiple handoffs probability

from cell i to cell j. We then can write

δ =
∞∑

n=2

qij(n) . (41)

Our goal is to find a relation betweenT andδ in order to be able to controlδ by controllingT .

For an effective control (pf in the range of10−4 to 10−2) we can assume thatpf is effectively

zero. Similarly, if δ ≈ pf for a givenT , we can assume that the multiple handoffs probability

is zero. Since cell residency is exponential, the number of handoffs a call experiences during
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TABLE III

MULTIPLE HANDOFFS PROBABILITY FORT = 20 s.

n Layer max{Lj0(n)} max{Pj0(n)}

0 0 1 0.73263

1 0 1 0.02442

2 0 6 0.00244

3 1 15 0.00007

4 0 90 0.00000

5 0 360 0.00000

an interval is Poisson distributed with meanhT , given that the call is active during the whole

interval. Therefore, it is obtained that

q(n) =
(hT )n

n!
e−(h+µ)T . (42)

In order to computeqij(n) based on (42), we need to find the probability of moving from cell

i to cell j by n handoffs. LetLij(n) denote the number of paths consisting ofn handoffs from

i to j, then

qij(n) =
Lij(n)

An
q(n) . (43)

Consider the network depicted in Fig. 2. LetT = 20 s, 1/µ = 180 s, 1/h = 100 s andA = 6.

Table (III) shows the maximum probability of multiple handoffs from any cellj to cell 0, Pj0(n),

based on the number of handoffs,n. For eachn, we have also determined which layer has the

maximum paths to cell0. Interestingly, cell0 has the most paths to itself through other cells.

We have also illustrated in Fig. 7 the impact of the control intervalT on the multiple handoffs

probability δ for the same set of parameters.

Consider celli and all the cells around it forming circular layers. From celli, all the cells up

to layer n are accessible withn handoffs assuming that celli forms layer 0. It can be shown

that

Lij(n) ≤ An−1, n ≥ 1 (44)

because forn ≥ 1, at each level there are at leastA cells which have the same number of paths

to the destination celli. Therefore

qij(n) ≤ 1

A
(hT )n

n!
e−(h+µ)T , n ≥ 1 . (45)
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Fig. 7. Effect ofT on multiple handoffs probability.

Using (41) and (45), it is obtained that

δ ≤
∞∑

n=2

1

A
(hT )n

n!
e−(h+µ)T

=
ehT − hT − 1

Ae(h+µ)T
.

(46)

Using the Taylor expansion of exponential terms forδ � 1
A( h

µ+h
), it is obtained that

T ≤ Aδ(µ + h) + h
√

2Aδ

Aδ(µ + h)2 − h2
, (47)

which finally leads to the following simple relation

T ≈
√

2Aδ

h
. (48)

V. SIMULATION RESULTS

A. Greedy EFGC

The basic EFGC introduced in section III may seem to be too conservative about accepting

data calls. We refer to this restrictive version of EFGC by EFGC-REST (or simply REST).

REST is a conservative approach which aims at satisfying the specified priority functionf over

time. In other words, REST always uses the acceptance ratioai = (av
i , f(av

i )) regardless of the

congestion situation to impose an exact priority function.

It is observed that in some states of the system it is possible to increase the acceptance ratio

of data calls beyond the limit returned by the service differentiation function. For example when
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the network is not congested (at light traffic loads), we found that by increasing the priority of

data traffic the overall utilization of the wireless bandwidth is increased while the handoff failure

remains almost untouched. This relaxed version is called EFGC-UTIL (or simply UTIL) due to

its greedy behavior in maximizing the bandwidth utilization. To find the data acceptance ratio

in cell i, UTIL follows the following steps:

1) Find av
i using (34),

2) If (av
i == 1) then find the maximum value ofad

i ∈ [f(1), 1] which satisfies (34),

It is worth noting that the computational complexity of EFGC-UTIL is the same as EFGC-REST,

i.e. O(log 1/ξ).

B. Simulation Parameters

Simulations were performed on a two-dimensional cellular system consisting of 19 hexagonal

cells (see Fig. 2). Opposite sides wrap-around to eliminate the finite size effect. It is assumed that

mobile users move along the cell areas according to a uniform routing pattern. In other words, all

neighboring cells have the same chance to be chosen by a call for handoff, i.e.rji = 1/6. For ease

of illustrating the results, the simulated system is uniform, i.e. input load is the same for every

cell, although EFGC as well as the simulation program are designed to handle the nonuniform

case as well. Therefore, unless explicitly specified, the subscripti is omitted hereafter.

The common parameters used in the simulation are as follows. All the cells have the same

capacity c = 5 Mbps, which is equal to 160 BU assuming each BU is equal to32 Kbps

(encoded voice using ADPCM requires 32 Kbps). Target handoff failure probability for voice

calls ispQoS = 0.01 andT = 20 s. We use normalized load in simulations which is simply the

total arrival load per BU. Letρ denote the total normalized arrival load into a cell, then

ρ =
1

c

(
ρv + ρd

)
, (49)

where,ρv andρd are, respectively, voice and data load given by

ρv = bvλv/µv, (50)

ρd = bdλd/µd . (51)

For each load, simulations were done by averaging over 8 samples, each for 10 hours of

simulation time. Load distribution between voice and data traffic is fixed over time. At any
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TABLE IV

VOICE/DATA SERVICE PARAMETERS.

Type Priority 1/µ (s) 1/h (s) BU Load

voice 1 180 100 1 60%

data 0.5 1000 800 2 40%

load, 60% of the load is due to voice calls and the remaining40% is composed of data calls.

Table IV summarizes service and traffic parameters for both traffic types. In this table,priority

refers to the relative priority (service differentiation) of voice and data calls. It means that new

voice calls have higher priority than data calls for the admission control algorithm. In particular,

the probability of accepting a new voice call is at least twice the probability of accepting a data

call (new/handoff) at any time and any load. Equivalently, this is achieved by settingαQoS = 2.

As mentioned earlier, this relative priority can be any service differentiation function. In our

simulations, for the sake of simplicity we have chosen a constant service differentiation function.

We have also implemented the DTR scheme introduced in section I for comparison purposes.

Since DTR is designed for a static traffic pattern, the handoff failure probability increases rapidly

with the network load when the guard channels for handoff are few, but remains too low when

the guard channels are many. Here, we choose the two thresholds in such a way that DTR

achieves its objectives when the network starts to get overloaded. Hence, the voice threshold is

set to 155 BUs and the data threshold is set to 151 BUs. Using these thresholds at load 2,pf

andα = av/ad were found to be 0.01 and 2, respectively.

C. Gaussian Verification

When the network is not congested and each cell has only a few active calls, it is clear that

Gaussian approximation is not good. However, at light loads the admission algorithm does not

require a high precision estimation of the load since there is no congestion in the network. As

the load increases the number of active calls in each cell increases rapidly until no more calls

can be accepted. Due to the high capacity of broadband systems, it is expected to have enough

active calls in each cell so that central limit theorem can be applied.

Other researchers have also successfully applied Gaussian approximation for similar purposes.

Schwartz et al. [4], [7] used the same kind of approximation. The main difference is that we
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Fig. 8. QQ-plots of bandwidth usage in cell 0 at load 2.

extend their single point approximation at the end of the control period to a time dependent

approximation over the whole control period. The authors of [10] also realized that for large

system sizes, as is the case in this paper, the cell occupancy distribution evolves into a Gaussian

distribution.

We further investigated this issue in our simulation. At the beginning of each interval, the

bandwidth usage at cell 0 is recorded until the end of simulation for load 2 (which is not

a very high load). To verify the normality of these samples, we used the standard QQ-plot.

Fig. 8 depicts the QQ-plot of a sample of the bandwidth usage at cell 0 versus the quantiles

of the standard normal distribution. This plot clearly shows that Gaussian approximation of the

bandwidth usage in each cell is satisfactory for our stochastic control. Please note that QQ-plot

only shows the non-tail part of the distribution. Investigating the tail behavior of the bandwidth

usage distribution is beyond the scope of this paper, instead we rely on the results from other

researchers [4], [7], [10], [23].

D. Results and Analysis

1) Effect of arrival load: The first set of simulation results show the main performance

parameters of EFGC. Fig. 9 shows the handoff failure probability for the three schemes for a

wide range of loads. Both UTIL and REST maintain a constant failure probability independent

of the load. For DTR, it grows very rapidly with the load (which was expected). With light

loads (load< 2), DTR and REST have almost the same handoff failure probability while UTIL
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Fig. 9. Voice handoff failure probability.

has slightly higher handoff failure probability. But with high loads (load> 2), UTIL and REST

converge to exactly the same handoff failure probability while DTR has much higher handoff

failure probability. Fig. 11(b) shows that, although REST has better failure probability in light

loads, this is accomplished at the expense of the data call blocking probability. However, even

in this region (load< 2), UTIL satisfies the target handoff failure probabilitypQoS.

One of the objectives of EFGC is to maintain the relative service priority between voice and

data calls. In our simulations, this relative priority is fixed and indicates that the acceptance

probability of new voice calls should be twice the acceptance probability of new data calls.

Fig. 10 gives the service differentiationα = av/ad for different loads. It shows that EFGC

maintains an almost constant service priority between the two types of traffic. More precisely,

REST preservesα = 2 for the whole range of loads while UTIL hasα = 1 in light loads and

α = 2 in high loads as expected. This can be explained by the fact that in light loads UTIL

accepts data calls as long as there is free bandwidth (without violating the target voice handoff

failure probability). As the load increases, service priority of DTR increases rapidly. Fig. 11(b)

shows that at high loads almost no data calls are accepted. In other words, DTR is not fair and

leads to starvation of data traffic. It is worth mentioning that, although in this simulation the

service differentiation is fixed, the EFGC can satisfy more complex priority disciplines such as

state dependent priorities.

Fig. 11 shows the new voice and new/handoff data call acceptance probabilities respectively.
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(b) New/handoff data calls acceptance probability.

Fig. 11. Acceptance probability of voice and data.

Again for high loads, UTIL and REST converge to the same result but the difference in their

performance at light loads is significant. For data traffic at light loads the acceptance probability

of UTIL is almost twice that of REST. This explains why the utilization of UTIL is superior to

REST. It can be seen that DTR has slightly higher acceptance probability for voice but much

lower acceptance probability for data in comparison to UTIL and REST.

Finally, Fig. 12 shows the wireless bandwidth utilization under the three bandwidth allocation

mechanisms. Although DTR performs poorly in terms of handoff failure probability and service
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Fig. 12. Wireless bandwidth utilization.

priority, its utilization is slightly better than EFGC. Interestingly, UTIL has exactly the same

utilization level as DTR at light loads but higher than that of REST. In this simulation, voice

traffic constitutes the larger portion of the total load. As the percentage of data traffic increases,

the utilization of DTR is expected to drop. This will be investigated next.

2) Effect of load sharing:In previous simulations, the load sharing factorβ(β > 0) is set to

1.5, where

β =
arriving data traffic load (ρv)
arriving voice traffic load (ρd)

. (52)

Due to the priority of voice calls over data calls, varyingβ will affect the behavior of EFGC.

As shown in Fig. 13, EFGC is insensitive to the load sharing factor. In these plots, theX axis

indicates the load sharing factorβ. It is assumed that most of the traffic is composed of voice

calls, henceβ varies between 0.5 and 5.

For this set of simulations, normalized arrival load is set to1.5 Erlang and voice priority is

set to 2 (α = 2). As expected, DTR is not able to adjust to changes in load shares although the

total load is fixed. Interestingly asβ increases, EFGC-UTIL and EFGC-REST converge to the

same value for handoff failure probability. The reason is that by increasingβ, voice traffic will

dominate data traffic. Therefore, a larger portion of the available bandwidth is allocated to voice

traffic in such a way that there is no extra free bandwidth to be assigned to data traffic (more

than their guaranteed share).

The primary goal of the following set of simulations is to show the stability of EFGC under
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(c) Wireless bandwidth utilization.

Fig. 13. Effect of load sharing (β).

various QoS requirements (pQoS and αQoS) and the insensitivity of EFGC to the exponential

assumption we made about the cell residency time.

3) Effect of voice priority:Fig. 14 shows the effect of changing the relative priority of data

calls and voice calls. In this set of plots, theX axis indicates the quantity1/α, where

1/α =
data calls acceptance probability (ad)
voice calls acceptance probability (av)

. (53)

In the simulations, the total arrival load is set to1.5 Erlang which consists of60% voice traffic

and40% data traffic (i.e. a load sharing factor of 1.5). It is found that regardless ofα, EFGC is

able to satisfy the targetαQoS while providing the desired service differentiation. The straight
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Fig. 14. Effect of voice priority.

lines in Fig. 14(b) indicate that any value of service differentiation can be strictly guaranteed

with EFGC.

As indicated in these figures, UTIL and REST converge to the same control policy asα tends

towards 1. This was expected because the two schemes differ from each other with respect toα.

In this case, available resources are completely shared among voice and data traffic and channel

utilization is maximized. However, for large values ofα (small values of1/α), UTIL has a

superior performance over REST. For example, atα = 1/0.2, UTIL has 4% better utilization.

4) Effect of handoff failure probability (QoS):In cellular systems, the targetpQoS is typi-

cally set to1%. To show the adaptiveness of EFGC, simulations were performed forpQoS =
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Fig. 15. Effect of handoff failure probability (QoS).

[0.2%, 1%, 5%]. Notice thatpQoS = 0.2% is an extremely low handoff failure probability. As

shown in Fig. 15, handoff failure and service differentiation are fully satisfied regardless of the

target QoS requirements. In particular, Fig. 15(a) shows the stability of EFGC under different

target dropping requirements.

5) Effect of non-exponential cell residency:The first part of our analysis, which gives the

equations describing the mean and variance of channel occupancy (i.e., number of busy channels

in a cell), is based on the exponential cell residency time assumption. This assumption may not be

correct in practice and needs more careful investigation as pointed out in [31]–[33] and references
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Fig. 16. Effect of non-exponential cell residency.

there in. Although exponential distributions are not accurate in practice but the models based

on the exponential assumption are tractable and do provide mean value analysis which indicates

the system performance trend.

Using real measurements, Jedrzycki and Leung [31] showed that a lognormal distribution is

a more accurate model for cell residency time. We now compare the results obtained under

exponential distribution with those obtained under more realistic lognormal distribution. The

mean and variance of both distributions are the same (refer to Table (IV)). Fig. 16 shows that

the exponential cell residency achieves sufficiently accurate control. In other words, the control
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algorithm is rather insensitive to this assumption due to its periodic control in which the length

of the control interval is much less than the average cell residency time.

VI. CONCLUSION

In this paper, we proposed a new admission control algorithm for voice/data integration in

broadband wireless networks. Our algorithm is a natural extension of the well-known fractional

guard channel proposed for voice cellular systems. EFGC always achieves the predetermined call

dropping probability for voice calls while keeping the relative blocking probability of voice and

data calls within a target threshold. We then described two versions of the EFGC, namely EFGC-

UTIL and EFGC-REST. EFGC-UTIL follows a greedy approach to maximize the bandwidth

utilization while EFGC-REST maintains the relative service priority. Both versions converged

to the same result for high traffic loads. The major advantage of EFGC is its insensitivity to

network traffic load. The dropping probability of voice calls and relative blocking probability of

voice and data calls is maintained at a stable level over a wide range of traffic loads. From the

simulation results, we conclude that EFGC-UTIL is a better candidate for integrated voice/data

cellular networks.

We are currently investigating the case of multiple classes of traffic where each class has its

own QoS requirements in terms of call blocking and dropping probabilities. EFGC can readily

support multiple classes of traffic by assigning a separate acceptance ratio to each class. However,

computing these acceptance ratios in order to satisfy the desired QoS is not trivial.
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