
Exploiting Statistics of Web Traces to Improve Caching
Algorithms

Alexander Golynski∗ Alejandro López-Ortiz∗ Ray Sweidan∗

October 20, 2003

Abstract

Web caching plays an important role in reducing network traffic, user delays, and
server load. One important factor in describing the stream of requests made to a given
server is the popularity of links between accessed pages. For example, the probability
of requesting page A increases if a user makes a request to a page which contains a link
to page A. Furthermore, this probability depends on the amount of time elapsed since
the request was made to the page containing the link and on popularity of the link. In
this project we (1) analyze web access logs and determine the frequency distribution of
access and mean life expectancy of correlations, (2) propose two new cache replacement
policies that use the above distribution, and (3) evaluate the effectiveness of the new
policies by comparing them to widely-used algorithms such as GreedyDual-Size (GDS)
and GreedyDual-Frequency (GDSF).

1 Introduction

There are different opinions about the importance of caching in the Web. For example,
authors in [8] argue that sizes of hard drives and memory grow very fast so that the
cache capacity is not a constraint. Thus, the fine tuning of caching algorithms is not
of great importance. However, in [5] authors argue that

1. the byte and hit ratios grow in a log-like fashion, and thus increasing them by
some small factor is equivalent to raising the cache size to some power;

2. the growth rate of Web content is much higher than the growth rate of memory
sizes suitable for web caching;

3. small improvements in web caching algorithms might lead to savings in network
traffic. These saving might be even greater if a hierarchy of caches is used.

∗School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, {agolynski,
alopez-o, rrsweida }@uwaterloo.ca

1

We feel that the importance of Web caching lies somewhere in the middle between these
extremes. On one hand, some big commercial servers (like www.yahoo.com) cache all
its contents in fast memory and seem not to experience problems in all three points
mentioned in [5]. On the other hand, for proxies, such an approach is unacceptable,
since the size of potential cacheable documents is large. Another area where caching
may be applied is streaming media, which is known to be the next “traffic killer”. In
this case, the second and third points might be of great importance.

2 Background

The first greedy dual algorithm was introduced by Young [9] and dealt with pages
of the same size but with varying cost. The algorithm associates with each page a
value Hp that is initially set to its fetching cost. Upon a request the requested page
is brought into cache and its value is set to its original value. Upon a miss, the page
with the lowest Hp is evicted, and all other pages in the cache get their Hp reduced by
the value of the evicted page. Thus pages get evicted because they either are “cheap”
to fetch or have not been accessed recently. The algorithm is normally implemented
using priority queue using Hp as key, and an inflation mechanism for keeping track of
the amount of offset required upon evicting a page.

The extension proposed by Cao and Irani [2] accounts for variable document sizes
by setting H equal to cost

size . The drawback of the resulting GreedyDual-Size (GDS)
algorithm is that it does not account for the popularity of documents in the cache.
This lead to yet another extension: the GreedyDual-Size-Frequency (GDSF) which
was proposed by Cherkasova in [3]. In GDSF, the value of H is set equal to freq×cost

size .

3 Processing and Cleaning up Web Traces

For the experimental part of this project we decided to use web traces granted to us by
Information Systems and Technology (IST) of University of Waterloo. Typical entry
of these traces is shown in Figure 1.

web sub-server client ip time/date of request
www.adm.uwaterloo.ca X.X.X.X [05/Jul/2002:01:27:47 -0400]

resource/protocol code size
"GET /infoucal/COURSE/course-ENGL.html HTTP/1.1" 200 93589

referrer
"http://www.adm.uwaterloo.ca/infoucal/MATH/mathdeg.html"

browser type
"Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)"

Figure 1: Typical entry in web traces

Several issues have arose while processing these web traces

2

Confusing names The same object can be named differently, i.e. http://www.
quest.uwaterloo.ca, www.quest.uwaterloo.ca, quest.uwaterloo.ca or
quest.uwaterloo.ca/index.html. Some of these can be easily detected, how-
ever some might be very annoying, e.g. www.quest.uwaterloo.ca and quest.
uwaterloo.ca in general might be referring to different pages. This become
a serious problem in the logs where there are no web sub-server name field.
For this type of requests we can not distinguish between www.uwaterloo.ca
and www.quest.uwaterloo.ca, if the resource field is ”GET /” or ”GET /in-
dex.html”.

Confusing sizes In many caching algorithms we know of, it is implicitly assumed that
the size of response of web server (provided that its response code is OK=200) is
fixed. However, in practice this size depends on the protocol used (i.e. different
for “HTTP/1.0” and “HTTP/1.1”), it also might vary depending on the browser
used. The other factor is that if an HTTP transfer was interrupted then the size
field reflects the amount of bytes transferred before the interruption (status code
is still 200). Subsequent requests might resume the download with code 206
(partial content), thus size fields of all these requests should be summed up
to get the original size. This problem might become quite critical for caching
algorithms which use the reciprocal value of the size, and in the worst case
these algorithms will crash if the size is 0 (we encountered this situation during
experiments).

Embedded objects We tried to get rid of requests to embedded objects: pictures,
java scripts and stylesheets. These requests will be always generated by browser
(unless this option is turned off by a user, which seems to be quite uncommon
these days). This type of requests will only give us information about the latency
that given user is experiencing communicating with University of Waterloo web
server. We decided not to deal with this issue in our project, so we sorted out
all requests to gif, jpeg, js and css files. However, there are some HTTP requests
of this type as well, for example frames or automatic redirection.

These requests can be detected. Fix a user and consider a pair resource-referrer,
say that the active time of the request is the time difference between requests
to the resource and referrer by the user (i.e. the time spent by the user at the
referrer page before the request to the resource has been made). We plot graphs
of the active times of “computer generated” requests versus “human generated”
ones, see Figure 2.

From this figure we see that shapes of the plots are different. Computer generated
requests have the property that almost all of them are made within at most 2-3
seconds, while human generated seem to have a peak at 2-10 seconds.

Inaccuracy of time stamp Usually the time of request is provided with precision of
one second. Imagine two requests: one arrived at the beginning of the current
second and the other at the end. They will have the same time stamp, but the
first user will look a little bit faster than the second one from the point of view
of the server (e.g. it can make the next request in the same second, while the

3

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Time when request is made (in sec)

N
um

be
r

of
 r

eq
ue

st
s

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Time when request is made (in sec)

N
um

be
r

of
 r

eq
ue

st
s

Figure 2: Active time of computer (left) versus human generated (right) requests

other user will not have time for it). This explains why the number of computer
generated requests on 0-th second is sometimes smaller than on the 1-st (the
effect of the first second), see Figure 2. This effect will spoil a bit the graph of
computer generated requests.

Another problem related to this one is that the distant users will appear to be
slower than the near ones. For example, for a “frame” link http://www.adm.
uwaterloo.ca/infosche/interface/def.htm to http://www.adm.uwaterloo.
ca/infosche/interface/main/crse_def.html, the active time is higher than
4 seconds for 18 percent of users (expected active time for this link is 4 seconds).
This effect can spoil the estimation of actual expected active time for “human
generated” links by several seconds.

Confusing users The field client ip is not precise enough to distinguish different
clients or in ideal case to distinguish different sessions of the same client. For
example, the ip address of httpproxy.math.uwaterloo.ca was used by many
users and does not give any information about the user in a particular request.

Similar work on cleaning web access logs and other software related issues has been
done by Krishnamurthy et al. in [7].

4 Popularity of Links

In this section, we propose a method for computing popular links. Here by a link
we mean a pair of (absolute) addresses of referrer and resource. We plotted graphs
showing popularity of a particular link versus its rank. Rank of a link is its place in
a list of all possible links encountered in a given web trace sorted by their popularity.
The graphs for five different web logs are shown in Figure 3.

Similar results were obtained in [1], they characterized popularity of pages and
popularity of request strides. A request stride is sequence of requests from the same

4

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Rank

P
op

ul
ar

ity

Figure 3: Popularity of link versus its rank

client where the time between successive requests in the stride is not larger than given
threshold (they chose threshold of 10 seconds). However, Figure 2 shows that some
“human generated” requests are made after the period of 10 seconds, moreover the
expected time of the next user request is highly dependent on a particular link and
usually exceeds 20 seconds. Figure 4 shows the expected active time of the 23 most
popular “human generated” requests (the link from http://www.uwaterloo.ca to
http://www.uwaterloo.ca/weather.html has expected active time 135 seconds)

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

Rank of the link

E
xp

ec
te

d
ac

tiv
e

tim
e

Figure 4: Expected active time for the most popular “human generated” requests

These statistics can help in constructing a good web caching algorithm, however
they were computed offline using big amount of memory and computation. Here we
aim to obtain a simple heuristic capable of computing the most popular links online
using small amount of memory and computation resources. This can be turned into
the more general problem of answering iceberg queries.

5

Assume that we are dealing with a stream of events (e.g. requests), which can
be divided into m groups {g1, g2, . . . , gm} (e.g. a group may represent requests which
follow a given link). At each given moment of time we want to answer the question:
what are the most popular k groups we have seen so far? Since the popularity of links
can change over time, one might want to give more weight to the recently seen links.
We studied the following heuristic: We maintain k counters each of which monitors a
specific link. When the next request arrives, we check if there is a counter monitoring
its link. We call the request a hit or a miss following caching terminology. If a hit
occurs then we increase the counter by 1. On a miss we will try to accommodate the
corresponding link by evicting links with value below a certain threshold θ < 1. We
try to capture recency of requests by multiplying all the counters by a fixed aging
parameter p < 1 every second.
We call this algorithm POPULAR LINK, it is shown below.

Initialize all counters to zero
Let L = {l1, l2, . . . lk} be the links of requests arrived at time t.
C[i]← C[i] ∗ p // Multiply all the counters by p
for all l ∈ L is a hit do

C[l]← C[l] + 1 // Increment counters for hits
end for
for all l ∈ L is a miss do

Let c be the smallest counter
if c < θ then

Release the counter c if it is busy monitoring a link
Set c to monitor link l
C[l]← 1 // Initialize counter for l

else
Exit loop

end if
end for
t← t + 1
As stated the algorithm requires Θ(m) operations per second. However, this can be

improved using a hybrid of a hash and a heap data structure supporting the following
three operations:

Switch counter set counter to monitor another group;

Update value update value of counter;

Lookup given a group number, return the counter which is monitoring the group or
NULL if there are no;

Return top return the element with minimum value and (optionally) delete it.

We construct this data structure from a heap and a hash. Let the monitored group
id’s to be the indexes of the hash. Value of hash at a given group id is the pair of
the corresponding counter and its index in the heap. Elements of the heap are the
monitored group id’s. To compare two elements in the heap the heap, data structure

6

compares the corresponding counters in the hash. If an element changing its position
in the heap the corresponding index in the hash should be updated. Using perfect
hashing and Fibonacci heaps we can achieve O(1) amortized time for all operations
except for return top operation with deletion, the latter one runs in O(log(m)) time.

The following idea helps to eliminate the need to multiply counters by p each second.
Let t0 be the time of the first request. Let D[i] = C[i]p−(t−t0) be the new counters
and call p−(t−t0) the aging factor at time t. Counters D[i] form the same heap as C[i]
(since multiplying each value of the heap by a constant preserves the order). It is
easier to maintain D[i], since they do not require multiplication step (C[i] ← pC[i])
each second. The step C[l]← C[l]+1 becomes D[l]← D[l]+p−(t−t0). For the purposes
of implementation, we do periodic “clean up”, i.e. set all D[i] ← D[i]pt−t0 and reset
t0 ← t whenever aging factor p−(t−t0) exceeds a certain threshold. Clean up is needed
to make sure we never overflow floating point counters.

To estimate the aging parameter p, we take the following approach. First, fix some
time parameter t′. Then we pretend that we are no longer interested in requests which
took place more than t′ seconds ago and the value of the link is proportional to number
of requests to it within t′ seconds. However, in our algorithm the value (=counter) of
the link at time t is given by the formula ct = pct−1 + βrt−1, where rt is number of
requests to that link on t-th second, β is some multiplicative parameter which does not
affect the algorithm’s behavior. This gives

ct = b1rt−1 + b2rt−2 + . . . + btr0 (1)

where {bt} are defined by b1 = β and bk = pbk−1, or simply bk = βpk−1. Our goal is to
approximate the following equation (sliding window)

ct = 1 ∗ rt−1 + 1 ∗ rt−2 . . . + 1 ∗ rt−t′ + 0 ∗ rt−t′−1 + 0 ∗ rt−t′−2 + . . . (2)

with (1). We choose the following measure of badness of approximation to minimize.

µ(p, β) = (b1 − 1)2 + . . . + (bt′ − 1)2 + b2
t′+1 + b2

t′+2 + . . .

=
t′∑

i=1

(bi − 1)2 +
∑
i>t′

b2
i =

∑
i

b2
i − 2

t′∑
i=1

bi + t′

Substituting bk = βpk−1 gives

µ(p, β) =
β2

(1− p2)
− 2β(1 − pt′+1)

1− p
+ t′

minimizing µ over β gives β = A−1v, where A = 1/(1−p2) and v = (1−pt′+1)/(1−p).
So the expression to minimize over p is

µ(p) = −A−1v2

The graph of µ for t′ = 10 is shown in the Figure 5 This function has exactly one
minimum if t′ > 1 and the argument of this minimum (optimal p) asymptotically
behaves like

pmin ∼ 1− c

t′
+ O

(
1
t′2

)

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

µ

p

Figure 5: Plot of µ over p for t′ = 10

if t′ → ∞. The constant c is the positive root of the equation exp(c) − 1 − 2c = 0,
c ≈ 1.256

These considerations can be easily extended to the case where counters are updated
by n-th order linear recurrence.

ct = λ1ct−1 + λ2ct−2 + . . . + λnct−n + ξ1rt−1 + ξ2rt−2 + . . . + ξnrt−n

In this case, general solution is bk = β1p1
k +β2p2

k . . . βnpn
k for some constants {βi, pi}.

Define matrix A and vector v to be

A =

1
p2
1

1
p1p2

. . . 1
p1pn

1
p2p1

1
p2
2

. . . 1
p2pn

...
.

...
1

pnp1

1
pnp2

. . . 1
p2

n

 ; v =

[
(1−p1)t′+1

1−p1

(1−p2)t′+1

1−p2
. . . (1−pn)t′+1

1−pn

]T

Then the measure µ(p, β) becomes

µ(p, β) = βT Aβ − 2βT v + t′

Minimizing over β gives Aβ = v and

µ(p) = −vT A−1v

which is hard to minimize over p numerically. Experiments (for n = 2, 3) show that
the minimum is achieved when p1 = p2 = . . . = pn which probably can be proved for
general n. This problem can be also generalized for any “shape” of sliding window, i.e.
if we wish to approximate

ct = w1rt−1 + w2rt−2 + . . . + wt′rt−t′ + 0 ∗ rt−t′−1 + 0 ∗ rt−t′−2 + . . . (3)

for some (positive) constants wi.

8

The above considerations suggest the use of a simple 1-dimensional recurrence. We
implemented this idea in Perl using the efficient data structures described above. A sim-
ilar approach (but for a different purpose) was proposed in [6], their idea was to halve
the value every two days, which corresponds to our value of p = (1/2)1/(2∗24∗60∗60) ≈
0.9999959887 and the value of t′ = 313223 seconds (3.5 days). This value of quite large,
as it implies that we remember the entire history for 3.5 days. To compare different
algorithms we use the competitive ratio defined as follows. Define popularity of a group
l, n(l) to be the number of occurrences of events of group l in the whole data stream.
At time t the competitive ratio f(t) of the algorithm is the sum of popularities of the
groups that have a counter at time t divided by the sum of popularities of top m groups
(maximum possible popularity algorithm can achieve). More formally,

f(t) =
∑

l∈Ct
n(l)∑

l∈Tm
n(l)

(4)

where Ct is the set of groups monitored at time t and Tm is the set of m most popular
groups.

We made a number of experiments for different traces and values of m, looking
for the optimal t′. For example, if we try t′ = 11250 seconds and compare it with
t′ = 313223 mentioned above, we get the plots shown in Figure 6. We found out that

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
om

pe
tit

iv
e

ra
tio

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
om

pe
tit

iv
e

ra
tio

Figure 6: Measuring performance of POPULAR LINKS (t′ = 11250 - solid line, t′ = 313223 -
dashed line

small values of t′, (e.g. t′ < 10) lead to a very unstable competitive ratio, while for
big values of t′ the function f stabilizes too fast, i.e. the monitored counters will be
chosen among the popular groups in the beginning of the stream (usually stabilizes
no later than 5000-th event), which are not necessary the most popular in the entire
stream. These groups are popular enough to be capable of maintaining sufficient values,
which allows them to hold counters and not being evicted. This prevent all the other
groups (including the most popular ones) from entering the cache. Figure 7 shows the
behavior of POPULAR LINKS with p = 1 for the first 3000 requests and with p = 0.9 for
500 requests taken from the middle of the stream.

9

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

C
om

pe
tit

iv
e

ra
tio

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

C
om

pe
tit

iv
e

ra
tio

Figure 7: Measuring performance of POPULAR LINKS for the margin cases of the aging pa-
rameter (p = 1 on the left and p = 0.9 on the right)

5 Page Dependency

Based on the concept of functional dependencies in database applications, we define
a page dependency model which captures the time-dependent transition probability
matrices. An entry pij in a given probability matrix P (ta) represents the probability
that page j is requested after page i within time interval ta. The active time interval
ta is a measure of the period during which the correlation between pages i and j is
considered active. The main role of ta is to divide a given set of P (t) matrices into two
groups: an active group if t < ta, and a dormant group otherwise. This idea can be
extended to a larger number of groups in future work. The connection between page
dependency and P ta is made by considering a column j in P ta and finding the row imax

which produces the highest probability of requesting page j. We define pageimax to be
the determining page of page j, and dependency(i, ta) to be the set of pages determined
by page i within an active period ta.

5.1 Approximate Page Dependency

In Section 6 we show how to use the concepts of page dependency and active time
interval in designing a new extension of the greedy-dual family of algorithms. In
this section, we describe two approaches to computing page dependency sets. The
first approach uses brute force to keep a hash table of the requested pages. For each
requested page, an inner hash is used to maintain the count of referring pages and the
identity of the page with the highest count. This approach was used in our experiments
on the proposed heuristic. Although the memory requirements of this method makes it
infeasible in practice, the use of brute force for testing and “proof of concept” purposes
was acceptable. We illustrate the method with an example (Figure 8), which shows how
hash tables (right) are used to maintain the determining pages for the requests shown
on left (assume ta = 40). The resulting page dependencies are: 1 → {3}, 3 → {1, 2};

10

requested referrer
page page

1 3
2 1
2 3
1 3
3 2
2 4
3 1
2 3

Requested page requests (pid, count) max argmax
1 (3, 2) 2 3
2 (1, 1); (3, 2); (4, 1); 2 3
3 (1, 1); (2, 1) 1 1

Figure 8: Computing page dependency: link sequence (left), counting referrer pages (right)

both dependency(2, 40) and dependency(4, 40) are empty.

The second approach to determining page dependency belongs to the well researched
area of finding fast algorithms for frequent itemsets/hotlists. The paper [4] describes
in more detail different algorithms which can be applied to finding frequent items in a
data stream. Our implementation of finding frequent itemsets is described in section
4.

6 GreedyDual-Active

In this section we describe two methods for using the popularity of page links in caching
replacement. The new methods are extensions to GreedyDual family of algorithms.

6.1 Extending GreedyDual-Size

To incorporate the effect of page links and active time ta, we extend the GreedyDual-
Size proposed by Cao and Irani in [2] as follows. When a page p is requested, we
identify the pages in cache which are determined by page p. Then for each such page,
we increase its current H value to the maximum possible at this time and store the
increase amount in ∆. The increase amount represents a credit that is granted to each
determined page for a limited amount of time. When the credit period expires, the
value of the corresponding page is restored to its original value, provided that it is still
above the minimum value L. The idea behind the credit and expiry period is to give
each page determined by the currently requested page p a chance to prove that it is
indeed going to be requested “soon”. Therefore, it would make sense to increase the
chances for these pages to stay in the cache. Here is the pseudocode for the above
extension, called GreedyDual-Active-1.

L← 0
Let p be the current request
for all page s in cache do

11

if page s is determined by p then
∆(s)← [L + cost(s)/size(s)] −H(s)
H(s)← L + cost(s)/size(s)
expiryT ime(s)← currentT ime + ta

else
if 0 < expiryT ime(s) < currentT ime then

expiryT ime← 0
H(s)← max{L,H(s)−∆(s)}

end if
end if

end for
Run GreedyDual-Size(p)
A similar extension can be made to Cherkasova’s greedy-dual-size-frequency algo-

rithm [3].

6.2 Extending GreedyDual-Frequency

As an alternative to using page dependency, we use the list of top frequent links to
decide which page(s) in cache is likely to be requested next (given that the current
request is for page p). The top frequent links are maintained using the method de-
scribed in section 4. Let Top be the set of such top links, and let Sp be the set formed
by extracting from Top all the links from p to some page in cache. For each link
l = (from, to) in Sp, we give page to a credit equal to cost

size × freq
sum , where cost and

size are as defined before, freq is the value of counter count(l) monitoring link l (as
described in section 4), and sum is the sum of count(l) over all links in Sp. The vari-
able sum measures the degree of competition for credit between pages predicted by the
from page. Credits are maintained in a queue for a period determined by the active
time, and, upon expiry, all credits are withdrawn. Here is pseudocode for the above
method, called GreedyDual-Active-2.

sum← 0
Let p be the current request
for all link l = (p, q) in Top and q in cache do

sum← sum + count(l)
Sp ← Sp ∪ q

end for
for all page s in Sp do

credit← (freq/sum)(cost(s)/size(s))
H(s)← H(s) + credit
expiryT ime(s)← currentT ime + ta
add credit, expiryT ime, s to queue

end for
for all credit in queue, expiryT ime < currentT ime do

delete credit’s record from queue
H(s)← H(s)− credit

end for

12

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

4

Cache size (byte)

F
au

lt
ra

te

GDS
GDS−Active

Figure 9: Performance of GreedyDual-Active-1 vs. GreedyDual-Size

Run GreedyDual-Frequency(p)

7 Performance Evaluation

We used a trace-driven simulation to compare the performance of GreedyDual-Active(-
1 & -2) with GreedyDual-Size and GreedyDual-Frequency, respectively.

7.1 Traces Used in Experiments

Initially we had to decide whether to go with proxy or server traces. Proxy traces offer
a client-centric view of the web while server traces are site-centric. The focus on site
makes server traces easier to analyze and simplifies the task of detecting pattern and
correlations. Thus we used traces from uwaterloo.ca web server. The logs cover the
most recent 4 weeks, and include requests made to such servers as adm., co-op, human
resources.

Both algorithms were implemented in perl and their fault rate was determined on
a trace of ≈ 1, 600, 000 requests. The cache size was varied between 1% to 10% of
the traces’ working set (i.e. total unique file size). Figure 9 shows the fault rate of
both GreedyDual-Size the GreedyDual-Active1 for different cache sizes. Although the
magnitude of improvement obtained from GD-Active-1 is small, the results show that
the underlying structure of page links can be exploited beneficially in caching policies.

The results of varying the active time parameter (ta = 4, 40, and 400) showed that
the fault rate of GD-Active-1 is insensitive to changes in the value of ta. This result
is consistent with the fact that the current implementation of GD-Active-1 makes the
following simplifying assumption:

• Active time ta is uniform over all pages. We could extend this by making ta a
function of one or more property of each page (e.g., type and popularity).

13

• Each page is determined by exactly one referring page. We could extend this to
include a set of most frequent referrers.

• The maximum H value of each determined page is constant. Again, we could
relax this restriction so that Hmax can become a function of the cached pages.

• When a page is requested repeatedly within the active time interval, the old
credit data is overwritten. The result of being determined twice is to merely
extend the expiryT ime and reset the H value; old “debt” is forgiven. In a
sense, GreedyDual-Active-1 is too generous. We could fix this by adding a data
structure for all previously awarded credits, which could improve the sensitivity
of the algorithm to changes in ta.

We suspect that a more elaborate definition of ta and dependency(i, ta) may result
in a more pronounced improvement in the relative performance of GD-active.

Figure 10 shows the fault rate of both GreedyDual-Frequency the GreedyDual-
Active-2 for different cache sizes. The magnitude of improvement obtained from GD-
Active-2 is more significant than those obtained from GD-Active-1. This is due to two
main reasons:

1. The use of link frequency in Active-2 allows each page in cache to be ”predicted”
by more than one page during an active time interval; Active-1, on the other
hand, uses only one predicting page.

2. Experimentation with GD-Active-2 has resulted in a number of fine-tuning fea-
tures, such as multiplying the base H value (i.e. cost/size) by a factor of 1/6,
which boosted the overall performance of the algorithm.

We also experimented with various values for ta and the number of links kept in
the top frequent set. The results showed that the fault rate is insensitive to changes in
these two parameters.

References

[1] Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Char-
acterizing reference locality in the WWW. In Proceedings of the IEEE Conference
on Parallel and Distributed Information Systems (PDIS), 1996.

[2] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In Proceed-
ings of the 1997 Usenix Symposium on Internet Technologies and Systems (USITS-
97), Monterey, CA, 1997.

[3] Ludmila Cherkasova. Improving www proxies performance with greedy-dual-size-
frequency caching policy. Technical Report HPL-98-69R1, Hewlett-Packard Labo-
ratories, November 1998.

[4] Erik D. Demaine, Alejandro Lopez-Ortiz, and J. Ian Munro. Frequency estimation
of internet packet streams with limited space. In The 10th European Symposium
on Algorithms, 2002.

14

1 2 3 4 5 6 7 8 9 10

x 10
6

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

Cache size (bytes)

F
au

lt
ra

te

GDS
GDS−Active1

Figure 10: Performance of GreedyDual-Active-2 vs. GreedyDual-Frequency

[5] Shudong Jin and Azer Bestavros. GreedyDual* web caching algorithm: Exploiting
the two sources of temporal locality in web request streams. In The 5th Interna-
tional Web Caching and Content Delivery Workshop, 2000.

[6] Shudong Jin and Azer Bestavros. Popularity-aware greedy dual-size web proxy
caching algorithms. In The 20th International Conference on Distributed Comput-
ing Systems, 2000.

[7] B. Krishnamurthy and J. Rexford. Software issues in characterizing web server
logs, 1998.

[8] Michael Rabinovich and Oliver Spatscheck. Web Caching and Replication. Addison
Wesley, 2002.

[9] Neal Young. Online caching as cache size varies. In Proceedings of the 2nd Annual
ACM-SLAM Symposium on Discrete Algorithms, pages 241–250, 1991.

15

