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Abstract

Self-similarity is an important characteristic of traffic in high speed networks which can not be

captured by traditional traffic models. Traffic predictors based on non-traditional long-memory models

are computationally more complex than traditional predictors based on short-memory models. Even on-

line estimation of their parameters for actual traffic traces is not trivial work. Based on the observation

that the Hurst parameter of real traffic traces rarely exceeds 0.85, which means that real traffic does not

exhibit strong long-range dependence, and the fact that infinite history is not possible in practice, we

propose to use a simple non-model-based minimum mean square error predictor.

In this paper, we look at the problem of traffic prediction in the presence of self-similarity.

We briefly describe a number of short-memory and long-memory stochastic traffic models and talk

about non-model-based predictors, particularly minimum mean square error and its normalized version.

Numerical results of our experimental comparison between the so-called fractional predictors and the

simple minimum mean square error predictor show that this simple method can achieve accuracy within

5% of the best fractional predictor while it is much simpler than any model-based predictor and is easily

used in an on-line fashion.

I. I NTRODUCTION

One of the key issues in measurement-based network control is to predict traffic in the next

control time interval based on the online measurements of traffic characteristics. The goal is to

forecast future traffic variations as precisely as possible, based on the measured traffic history.

Traffic prediction requires accurate traffic models which can capture the statistical character-

istics of actual traffic. Inaccurate models may overestimate or underestimate network traffic.
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Recently, there has been a significant change in the understanding of network traffic. It has been

found in numerous studies that data traffic in high-speed networks exhibits self-similarity [1]–[6]

that can not be captured by classical models, hence self-similar models have been developed.

The problem with self-similar models is that they are computationally complex. Their fitting

procedure is very time consuming while their parameters can not be estimated based on the

on-line measurements.

In this paper, we look at the problem of traffic prediction in the presence of self-similarity. We

briefly describe a number of short-memory and long-memory stochastic traffic models and talk

about non-model-based predictors, particularly minimum mean square error and its normalized

version. This study aims to compare the so-called fractional predictors with the simple minimum

mean square error predictor based on the following criteria:

1) Accuracy: the most important criteria in choosing a predictor is the quality of its predic-

tions, since the goal of the predictor is to closely model the future.

2) Simplicity : in order to achieve a real-time predictor a certain level of simplicity is neces-

sary. Simplicity has an intrinsic value due to ease of use and implementation.

3) On-line: most traffic modeling has been done for off-line data. In reality, e.g., network

control, we want to use on-line measurements to forecast the future. We do not know

any thing about the underlying traffic structure instead we should estimate the predictor

parameters based on the on-line measurements.

4) Adaptability : a good predictor should adapt to changing traffic. As time progresses,

more samples are available. Therefore more is known about the traffic characteristics.

An adaptive traffic predictor should use new information to improve itself and update its

parameters.

This study is motivated by the observation that the Hurst parameter, referred to by0 < H < 1

as the long-range dependence indicator, of real traffic traces rarely exceeds 0.85 [2], [4], [7],

[8], which means that real traffic does not exhibit strong long-range dependence, and the fact

that infinite history is not possible in practice. We propose to use a simple non-model-based

minimum mean square error predictor instead of complex long-memory predictors for on-line

predictions. Similar work has been done for variable-bit-rate video traffic in ATM networks [5],

we want to verify it for Ethernet traffic. Briefly speaking, this study aims to verify the relevance
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of long-range dependency in real applications of traffic prediction.

The rest of this paper is organized as follows. In section II we discuss the self-similarity

concept and introduce short-range and long-range dependencies. Section III introduces widely

used short-memory and long-memory stochastic models applicable to traffic modeling. Section IV

is dedicated to minimum mean square error predictors. Our experimental results of applying

these predictors on the Ethernet traffic trace from Bellcore are presented in section V. Finally,

section VI is the conclusion of this article.

II. SELF-SIMILARITY

There is evidence that traffic is self-similar and fractal in nature. This can be explained by

assuming that network workloads are described by apower-lawdistribution; e.g., file sizes, web

object sizes, transfer times, and even user’s think times have heavy-tailed distributions which

decay according to a power-law distribution [4]. A heavy-tailed distribution has the following

form

P [X > x] ∼ x−α

asx →∞ and0 < α < 2.

These heavy-tailed distributions can be explained byZipf ’s law. According to Zipf’s law the

degree of popularity is exactly inversely proportional to the rank of popularity. It is believed that

every human information processingobeys a power-law distribution which leads to the belief

that nature has a fractal geometry.

As stated in [2], [4], the self-similarity in high-speed networks such as the Internet can be

explained by heavy-tailed distributions and many ON/OFF traffic sources. In other words, many

ON/OFF sources with heavy-tailed ON and/or OFF periods result in aggregate self-similar traffic.

Human as well as computer sources of traffic, behave as heavy-tailed ON/OFF sources, therefore

the resulting traffic in core networks is self-similar.

Intuitively, a process is self-similar if its statistical behavior is independent of the time-scale.

This means that averaging over equal periods of time does not change the statistical characteristics

of the process.

Let {Xt}, t = 0, 1, 2, . . . be a wide-sense stationary process (covariance stationary) with

mean zero and autocorrelation functionρk = γk/γ0 at lag k where γk = E[XtXt−k] is the
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autocovariance function. A stochastic process{Xt} is stationary if, for eachn, then dimensional

joint distribution{Xt1+τ , . . . , Xtn+τ} is independent ofτ for any set ofn times{t1, . . . , tn}.

For eachm, let {X(m)
j }, m = 1, 2, . . . denotes a new time series obtained by averaging the

original series{Xt} over non-overlapping blocks of sizem, i.e.,

X
(m)
j =

1

m
(
m−1∑
l=0

Xjm+l) (1)

The processes{X(m)
j } are also wide sense stationary with meanµ and autocorrelationρ(m)

k .

There are different classes of self-similarity:

• Exact Self-Similar:the process{Xt} is said to be exactly self-similar ifρ(m)
k = ρk for all

m. In other words, the autocorrelation structure is preserved across different time scales.

Fractional Gaussian noise of section III-B is an example of such a process.

• Asymptotic Self-Similar:the process{Xt} is said to be asymptotically self-similar ifρ(m)
k →

ρk, whenm →∞, e.g., Fractional ARIMA (section III-B) is asymptotically self-similar.

• Stochastic Self-Similar:stochastic self-similar processes retain the same statistics over a

range of scales, and they satisfy the relationXat ' aHXt for all (a > 0), where' denotes

equality in distribution. This is a very strict form of self-similarity and calledself-similarity

with stationary increments. ProcessXt as defined above, is aH-sssi process. Fractional

Brownian motion of section III-B is an example of such a process.

A. Short-Range and Long-Range Dependence

Long-range dependence (LRD) can be considered the phenomenon where current observations

are significantly correlated to observations farther away in time. This phenomenon is of particular

interest to traffic modeling, since it has been discovered that Internet traffic posses long-range

dependence. Short-range dependence (SRD) on the other hand, refers to the phenomenon where

current observations are not correlated to very old observations. For SRD processes, correlation

to previous observations decays to zero very quickly while it remains significant for LRDs even

for very old observations.

Let ν andνm denote the variance ofXt and{X(m)
j }, respectively. For largem equation 1 can

be approximated by:
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νm ≈ ν[2
m∑

k=1

ρk]m
−1 (2)

Xt is said to have a short-range dependence [9], ifΣkρk < ∞. Equivalently,νm decays to

zero in proportion tom−1. According to equation 2 this requires that the autocorrelation function

of Xt decays exponentially to zero. That is,

ρk ∼ Ck(−1 < C < 1).

The processXt is said to have a long-range dependence [9], ifΣkρk →∞. Equivalently,νm

decays at a slower rate thanm−1. For example, processes in whichρk ∼ k−(2−2H) for large

k. H (0 < H < 1) is the so-calledHurst parameter, which is an important quantity used to

characterize the LRD. An interesting characteristic of the correlation structure of a long-range

dependent process is thatρk obeys the well-known power-law distribution.

The relation between self-similarity and LRD is that if a process{Xt} is self-similar with

Hurst parameterH, then its increment processYt = Xt+s −Xs is LRD with parameterH.

III. STOCHASTIC TRAFFIC MODELS

Traditional traffic models including Markov and Regression models can only capture short-

range dependencies in traffic. We refer to these models as short-memory models. Long-memory

models are nontraditional models which are capable of capturing long-range dependencies.

A. Short-Memory Models

We briefly discuss two classes of models: (1) Markov models, and (2) Regression models.

In Markov modeling, activities of a system can be modeled by a finite number of states. In

general, increasing the number of states results in a more accurate model at the expense of

increased computational complexity. The Markovian property is the common characteristic of

these models;the next state of the system depends only on the current state. Markov-type models

often result in a complicated structure and many parameters when used to model a long-range

dependent or a mixed process [10].

Regression models define explicitly the next random variable in the sequence by previous

ones within a specified time window and a moving average of white noise.
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Define the lag operatorB asBXt = Xt−1, whereBsXt = Xt−s. Also assume that∆ denotes

the difference operator, i.e.,∆Xt = Xt − Xt−1, equivalently∆d = (1 − B)d which can be

expressed using the binomial expansion:

(1−B)d =
∞∑

k=0

(
d

k

)
(−1)kBk

where,

(
d

k

)
=

d!

k!(d− k)!
=

Γ(d + 1)

Γ(k + 1)Γ(d− k + 1)

We also define polynomialsφ(B) andθ(B) as follows:

φ(B) = (1− φ1B − · · · − φpB
p)

θ(B) = (1− θ1B − · · · − θqB
q).

1) Autoregressive Model:

The autoregressive model of orderp, denoted as AR(p), has the form

φ(B)Xt = εt

whereεt is white noise (independent identically distributed random variables with mean

0 and varianceσ2
ε ). In this model variableXt is regressed on previous values of itself,

Xt = φ1Xt−1 + · · ·+ φpXt−p + εt.

AR models can be used to model stationary time series (time series that have a constant

mean) and if all the roots ofφ(B) lie outside the unit circle, then it is invertible (can be

written in the formXt = φ−1(B)εt). Autocorrelation of AR(p) is expressed by

ρk = A1G
k
1 + . . . + AP Gk

P ,

where 1
Gi

s are the roots ofφ(B).

2) Autoregressive Moving Average Model:

An ARMA(p, q) has the form

φ(B)Xt = θ(B)εt,
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or equivalently,

Xt = φ1Xt−1 + · · ·+ φpXt−p + εt − · · · − θqεt−q.

Note thatθ(B)εt is the moving average part of this model. These models have a great

flexibility in modeling time series but still they can not model non-stationary time series.

In practice, it is frequently true that adequate representation of actual time series can be

obtained with models, in whichp andq are not greater than 2 and often less than 2.

3) Autoregressive Integrated Moving Average Model:

ARIMA (p, d, q) [11] is an extension to ARMA(p, q). It is obtained by allowing the poly-

nomialφ(B) to haved roots equal to unity. The rest of the roots lie outside the unit circle.

ARIMA( p, d, q) has the form

φ(B)∆dX(t) = θ(B)εt.

ARIMA is used to model non-stationary processes. Note that

∆dXt = (1−B)dXt = φ−1(B)θ(B)εt,

and accordingly,

Xt = (1 + B + B2 + · · · )dφ−1(B)θ(B)εt.

In this expansionXt is regressed to sum (integration) of infinite noise variables. In some

cases it is possible that the original seriesXt is not stationary but its incrementsXt −

Xt−d = (1−B)dXt exhibit stationary characteristics. This is the philosophy behind the

inclusion of difference operator∆ in this model.

B. Long-Memory Models

In this section we review some long-memory models which are widely used in theory and

practice.

1) Fractional Brownian Motion (fBm) :

Brownian motion [9] is a stochastic process, denoted byBmt, t ≥ 0. It is characterized

by the property that incrementsBmt0+t − Bmt0 are normally distributed with mean 0

and varianceσ2t. The fractional Brownian motionfBmt is a self-similar process with
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1/2 < H < 1. Fractional Brownian motion differs from the Brownian motion by having

increments with varianceσ2t2H .

2) Fractional Gaussian Noise (fGn):

Although fBm is useful for theoretical analysis, its increment process (for finite increment

τ )

fGnt = fBmtτ − fBm(t−1)τ ,

known as fractional Gaussian noise, is often more useful in practice. While fBm is not

stationary, fGn is stationary. The autocorrelation function of this process has the form

ρk = 1/2[(k + 1)2H − 2k2H + (k − 1)2H ]

and ask →∞

ρk = H(2H − 1)k(2H−2).

3) Fractional ARIMA Model (FARIMA) :

Fractional ARIMA proposed by Hosking [12] in 1980 is the natural extension of the

ARIMA process when we allow real values for parameterd. Xt is a stationary invertible

FARIMA(p, d, q) process if:

φ(B)∆dXt = θ(B)εt

whered is a real number(−1/2 < d < 1/2), and whereφ(B) andθ(B) are stationary AR

and invertible MA polynomials. The relationH = d + 1
2

holds betweend and H. Thus,

Xt is a long-memory process if(0 < d < 1/2) and a short-memory process ifd = 0. This

model has been extensively used in network traffic modeling [7].

FARIMA(0, d, 0) is the fundamental form of this process

∆dXt = εt .

For this basic form

ρk =
(−d)!(k + d− 1)!

(d− 1)!(k − d)!

and ask →∞

ρk =
(−d)!

(d− 1)!
k2d−1.

4) Generalized ARMA Model (GARMA) :

GARMA models [8] are the generalization of all the regression models. They can be used
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to model both short-range and long-range dependencies in a time series. In addition, they

can be used to model the cyclical patterns of a time series with fewer parameters than

ARMA models. The GARMA(p,q) model of a processXt is defined as

φ(B)(1− 2ηB + B2)dXt = θ(B)εt

where(−1/2 < d < 1/2) and(−1 < η < 1). The term(1−2ηB+B2)d is the Gegenbauer

polynomial which can be expanded using the power series expansion.

C. Fractional Predictors

Let {Xt} be the invertible FARIMA(p, d, q) process,

φ(B)∆dXt = θ(B)εt .

Regarding invertibility, we can write

εt =
∞∑

j=0

πjXt−j

where
∞∑

j=0

πjB
j = φ(B)θ−1(B)(1−B)d .

From the theorems on linear prediction [9], a one-step predictor of a FARIMA process is

X̂t+1 = −
∞∑

j=1

πjXt−j+1 .

GARMA is very similar to FARIMA, therefore we extended this method to apply it as

GARMA predictor. The only difference is the computation ofπj coefficients which are given

by the following equation

∞∑
j=0

πjB
j = φ(B)θ−1(B)(1− 2ηB + B2)d.

For fGn we preferred to use the simple mean square error predictor which will be introduced

in section IV-A. Of course there is a direct predictor for fGn [13] but it is too complicated and

our simulations did not show any improvement for this particular predictor. Note that instead of

computing the autocorrelation matrix from observed values, we use the respective autocorrelation

function of fGn process as stated in the previous section. Therefore, fGn predictor is the fastest

one in our simulations.
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IV. M EAN SQUARE ERRORPREDICTORS

Let {Xt} denotes a linear stochastic process and suppose that the next value of{Xt} can be

expressed as a linear combination of current and previous observations. That is

Xt+1 = wmXt + · · ·+ w1Xt−m+1 + εt

wherem is the order of regression. Equivalently in matrix form

Xt+1 = WX′ + εt.

As you can see, this is the case for all the regression models and particularly for the FARIMA

and GARMA models. In practical applications such as network control that need on-line traffic

prediction, we do not have any prior knowledge about the underlying structure of the traffic but

it is possible to estimate the weighting constantswi.

Let Ŵ denote the estimated weight vector, then

X̂t+1 = ŴX′ + εt

whereX̂t+1 is the predicted value ofXt+1.

In the following subsections we will introduce two solutions for this estimation problem.

The first solution is based on minimum mean square error (MMSE) which requires matrix

inversion and autocorrelation computation while the second solution which is based on recursive

linear regression can eliminate these time-consuming computations in the expense of decreased

accuracy.

A. Minimum Mean Square Error Predictor

One simple solution to the estimation problem of section IV isminimum mean square error

(MMSE), in which a weight vector is derived by minimizing the expected value of squared errors:

et = Xt+1 − X̂t+1

and

E[e2
t ] = E[(Xt+1 − X̂t+1)

2] .
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This is a minimization problem and can be solved by using its derivative equation which leads

to the following solution [14]

Ŵ = ΓG−1

whereG is the autocorrelation matrix andΓ is an autocorrelation vector starting at lagm.

G =


ρ0 ρ1 . . . ρm−1

ρ1 ρ0 . . . ρm−2

...
...

...
...

ρm−1 ρm−2 . . . ρ0


and

Γ = [ ρm . . . ρ1 ].

Autocorrelationsρk can be computed by the following relation

ρk =
1

m

m∑
t=k+1

XtXt−k,

wherem is the order of MMSE predictor.

MMSE predictor has the benefit that there is no need to know the underlying structure of

traffic, therefore it can be used for on-line prediction purposes. Another benefit of using MMSE

is the simplicity of implementation. There are only some matrix manipulations which can readily

be implemented in hardware and software at a very high speed [15]. There are even some

approximation approaches for computing the weight vectorŴ which eliminate matrix inversion

and autocorrelation computations [16]. In section IV-B we will discuss a recursive method for

calculatingŴ.

B. Normalized Minimum Mean Square Error Predictor

The normalized MMSE method is an adaptive and recursive solution to compute weight vector

for MMSE. We choose this name as the authors of [17] although this method has been originally

callednormalized recursive linear regressionin [16]. NMMSE does not require prior knowledge

of the correlation structure of the time series. Therefore, it can be used as an on-line algorithm

for forecasting network traffic.
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The recursive linear estimator for weight vectorW is as follows

Ŵt+1 = Ŵt + µ
X

||X||2
et,

whereµ is the adaptation constant and determines the convergence speed. NMMSE is convergent

in the mean square error sense if the adaptation constantµ satisfies the following condition [17]

0 < µ < 2.

V. NUMERICAL RESULTS

So far, in this paper we have talked about several prediction methods. Briefly speaking,

MMSE based methods can be used as on-line predictors while they are very simple and efficient

for implementation. Regarding our criteria for comparing traffic predictors, we have not seen

anything about the accuracy of these methods in practical traffic forecasting. In this section we

investigate this issue.

To do this accuracy comparison, we implemented three fractional predictors, fGn, FARIMA,

and GARMA, and three non-fractional predictors, MMSE, NMMSE, and Naive predictor. Naive

predictor is a very simple predictor as follow

Xt+1 = Xt,

which is an AR(1) predictor.

In this experiment we used an Ethernet traffic trace (pAug89.TL 1) from Bellcore which is

collected by Leland et al. [2]. This trace has information on the time-stamp and the packet size of

traffic. The data they collected is cumulative. To get a time series, we need a uniform time scale.

We extracted the traffic data at 0.01 millisecond intervals. We dedicated the first 2000 samples

of this trace to estimate parameters of the fractional models (actually we used the reported

parameters in [18] for FARIMA and [8] for GARMA predictors) and then we implemented and

used predictors to forecast 20,000 samples into the future.

1Accessible athttp://ita.ee.lbl.gov
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TABLE I

PREDICTORPARAMETERS

Model Model Parameters

FARIMA(1, d, 1) θ1 = −0.37, φ1 = −0.17, d = 0.3

GARMA(0,0) η = 1, d = 0.3

fGn H = 0.8, µ = 3.90, σ2 = 7.36

Finally, we used the reverse ofSignal to Noise Ratio[19] as the accuracy measure to compare

these predictors

SNR−1 =

∑
e2∑
X2

,

the smaller theSNR−1, the more accurate the predictor.

The first experiment investigates the accuracy of each model with respect to the history size

which is used in prediction. This is a performance measure because there is a direct relation

between the size of history and the amount of computation required by predictor.

Simulation results show that for this traffic trace the best history size is 100 samples for

both FARIMA and GARMA predictors. Theoretically, as the size of the history increases the

accuracy of long-memory models must increase but in practice, increasing the history size

beyond a limit has a marginal effect on the accuracy while it increases the computation time.

In practice you can not calculate infinite series of coefficientsπj because of the finite precision

of floating point operations and numerical errors introduced in this computation. An important

observation is that optimal history size for both MMSE and NMMSE is about 20 samples which

is much smaller than the optimal history size of FARIMA and GARMA. For fGn, as the size

of the history increases, the accuracy also increases, as expected. fGn is a pure long-range

dependent process, which means that it can not capture short-range dependencies. Therefore,

as the history size increases its forecasts become more accurate. This predictor does not suffer

from the impreciseness introduced by numerical errors because of the simplicity of the predictor.

Again, accuracy improvement by longer history size is very marginal.

In the second experiment, we investigated the effect of cumulative errors for optimal history

size. We used the optimal history size from the first experiment and predicted 20,000 samples in

future, step by step. In other words, in each time interval we used one-step predictors to predict
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Fig. 1. All Predictors Accuracy Comparison

the next value and so on. This experiment confirms thatSNR−1 goes to zero as we go farther

into the future. This is a very important feature and shows the rate of adaptability of predictors

to the traffic.

Figure 1 depicts the accuracy of all the predictors, when the history size is 20. As you can

see, MMSE is somewhere between fGn and GARMA predictor which is very close to FARIMA

predictor. As we said earlier, fGn is a pure long-memory process. Therefore, its accuracy is

clearly weak for history size 20. The interesting observation is the difference between accuracy

of complex off-line predictor FARIMA and simple on-line predictor MMSE:

SNR−1
(FARIMA) − SNR−1

(MMSE) ≤ %5

Note that we does not mean that long-memory models are useless. Indeed, our comparison

is between traffic predictors not traffic models. In MMSE approach there is not any underlying

model at all. It means that you can not use MMSE to generate synthesis traffic. There are

several applications both in theory and in practice that you need an exact model for the network

traffic. In these situations models like FARIMA are the best choice, but if you want a simple on-

line predictor with an acceptable performance and accuracy, at least in our experiment, MMSE

predictor is the most suitable predictor.

In figures 2 and 3 we have compared the accuracy of MMSE predictor with Naive and

normalized MMSE predictors. Although it has been claimed that NMMSE can achieve a good

accuracy for VBR video traffic prediction [19], its accuracy is not good for our experiment with
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Ethernet traffic. As we mentioned earlier in section IV-B, advantage of NMMSE over MMSE is

that it eliminates matrix inversion and autocorrelation computations, therefore, it is the fastest

predictor among the investigated predictors.

VI. CONCLUSION

In this paper, we investigated the self-similarity in network traffic. We discussed the concept

of short-range and long-range dependencies intuitively and formally. Then stochastic models

which are used for traffic modeling, including both short-memory and long-memory models,

introduced. While there is certainly much more in the area of stochastic traffic modeling than
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what we have presented in this paper, we have focused on providing a comprehensive overview

of self-similarity and related traffic models.

Based on the observation that the Hurst parameter,H, for real traffic traces rarely exceeds 0.85,

we proposed to use more simple non-model-based prediction methods instead of using complex

long-memory models. Then we investigated MMSE and NMMSE as on-line traffic predictors.

Finally, experimental results of applying these predictors to Ethernet traffic showed the suitability

of our proposal for on-line forecasting. Based on our results, accuracy of MMSE predictor is

within a 5% of accuracy of FARIMA predictor which is the best fitted fractional model for this

traffic trace. An interesting question here is whether we can apply MMSE predictor for Internet

traffic.
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