
Investigations in Tree Locking for Compiled Database

Applications

Heng Yu and Grant Weddell

School of Computer Science, University of Waterloo

Abstract

We report on initial experiments in tree locking
schemes for compiled database applications.
Such applications have a repository style of
architecture in which a collection of software
modules or subsystems operate on a common
database in terms of a predefined set of trans-
action types, and are very often at the core
of embedded systems. Since the tree locking
protocol is deadlock free, it becomes possible
to decouple recovery mechanisms from concur-
rency control, a property that we believe is crit-
ical to the successful deployment of database
technology to this new application area. Our
experiments show that the performance of tree
locking can compete with two phase locking for
cases such as the above in which a great deal
can be known at the time of system generation
about workloads.

1 Introduction

A compiled database application is a software
system consisting of a collection of modules
or subsystems that interact with a common
database through a set of predefined transac-
tion types [11]. Compiled database applica-
tions are very often at the core of embedded
systems. One example of compiled database
applications is the server control program for
a private branch exchange (PBX) [12], whose
software modules access a common database of

control data including subscriber information,
network and device status, routing informa-
tion, etc. Another example is the processing of
TPC-C benchmark [1], from which we make our
experimental case in this paper. TPC-C has a
set of specified transaction types of a wholesale
supplier that access common data tables of cus-
tomer, inventory, and order information. High
performances are required for both examples.

It is the nature of the application area it-
self and the often very high throughput require-
ments that dictate the need to separate recov-
ery from concurrency control. We believe that
forcing all update to any part of the common
database to be logged in order to support very
general abort capabilities can lead inexorably
to unacceptable throughput. The need for this
happens either (a) because of a very general
“begin transaction/commit/abort” transaction
model, or (b) because of the use of strict two
phase locking (2PL) [4] to manage concurrency
control (as happens in virtually all existing
commercial database systems). In regard to
case (a), we shall assume a much simpler “be-
gin transaction/commit” transaction model for
the remainder of the paper. As for case (b),
transactions may be aborted internally by the
system for deadlock resolution, which is un-
avoidable under the not deadlock free 2PL pro-
tocol. Therefore, we need a locking protocol
other than 2PL that guarantees both serializ-
ability [2] and freedom from deadlocks.

A locking protocol that satisfied the above
requirements is tree locking (TL) [9]. TL as-

1

sumes a lock tree structure whose nodes are the
data items accessed by the transactions. It al-
lows only write operations and exclusive locks1.
The basic TL rules are:

1. a transaction can operate on a data item
only after it obtains a lock on it;

2. except for the first data item that a trans-
action locks, a data item can be locked by
a transaction only if the transaction cur-
rently holds a lock on its parent in the tree;

3. after a transaction releases the lock on a
data item, it can never get the lock on it
again.

Besides serializability and freedom from
deadlock, the performance of transactions with
the TL protocol is also an issue of interest. The
concurrency of TL, as compared with 2PL, de-
pends on how close the transactions match the
lock tree. On one hand, TL allows a transac-
tion to release the lock on a data item earlier
than obtaining locks on other data, so that it
may enable better concurrency than 2PL. On
the other hand, due to rule 2 in the TL proto-
col, a transaction may unavoidably lock extra
data items, which are not involved in the trans-
action itself, but lie “on the way” in the tree to
some data items the transaction intends to lock
and access. As we have predefined transaction
types and the probability of each transaction
type in a compiled database application, it is
possible to optimize the tree structure to alle-
viate the disadvantage of TL.

There are quite some research work on the
theoretical aspects of the TL protocol, to name
a few, [6] [9] [15] [7] [10]. Regarding to appli-
cation domain, variations of TL are used in B-
tree-like searching structures, e.g. in [8]. How-
ever, as far as we know, not much research has
been taken on how to apply TL to a set of pre-
defined transactions. One recent research work
with TL involved in is the implementation of
transactional extensions in Java programming
language [5]. A tree construction algorithm
from a set of transactions is given in [5]. How-
ever, [5] only considers binary lock trees, and

1Variations of the TL protocol with both shared
locks and exclusive locks are proposed in [7]. However,
we only consider the TL protocol with exclusive locks
in this paper.

only allows data items to be tree leafs. And the
internal nodes are extra “virtual” nodes. We
believe it is preferable to have arbitrary lock
tree shapes and to have all tree nodes corre-
sponding to data items.

In this paper, we consider a heuristic method
to build a lock tree from a set of transaction
types along with their probabilities. To fit in
compiled database applications, the lock tree,
as well as some other data structures, can be
constructed at compile time and stored for each
transaction type. Moreover, we design runtime
algorithms to lock and unlock data items based
on these stored data structures.

We conduct some preliminary experiments
to compare the performances of TL and 2PL
on a set of predefined transactions that are
taken from the TPC-C benchmark [1] with
some modifications. The results show that TL
performs as well as 2PL.

The organization of the remaining of the pa-
per is as follows. In Section 2, the transac-
tion model is defined. Section 3 introduces the
runtime TL locking and unlocking algorithms
for our transaction model, while Section 4 cov-
ers the process to generate at compile time
the data structures that are crucial for runtime
locking/unlocking. Experiment setting and re-
sults are presented in Section 5. Finally Section
6 concludes the paper.

2 Transaction model

In classical transaction model, a transaction
type is a linear sequence of r(xi) and w(xi)
operations in which each xi is a data item. For
compiled data applications, we allow a more
general form of transactions. Each transaction
type is modelled as a finite state machine, in
which each state represents an operation on a
data item, and each arc indicates a transition
to a next operation. For an operation, there
may be more than one succeeding operations
with probabilities. Therefore, arcs are drawn
for such transitions, and each arc is assigned
with a probability of the transition from the
source operation to the target one. For the
time being, we assume only write operations,
so it suffices to label each state with the data
item that is written. The formal definition of a

2

transaction type is:

Definition 2.1 Let D be a data set that con-
sists data items in the database, and each data
item is identified with a name.

A transaction type T is defined as T =
〈N, s, F, A, data, duration, prob〉.
• N is a set of states in the finite state ma-

chine, each representing an operation in
the transaction type.

• s ∈ N is the starting state of the transac-
tion type.

• F ⊆ N is a set of terminating states of the
transaction type.

• A ⊆ (N − F) × N . A is a set of transi-
tion arcs from states to states. Terminat-
ing states have no outgoing arcs.

• data is a mapping from N to D. For each
n ∈ N , data(n) is the data item accessed
by state n.

• duration is a mapping from N to non-
negative real number set. For each n ∈
N . duration(n) is the time cost of the
operation at state n to access data item
data(n). For n1, n2 ∈ N , it is pos-
sible that data(n1) = data(n2) while
duration(n1) 6= duration(n2).

• prob is a mapping from A to real numbers
between 0 and 1. For each arc 〈n1, n2〈∈
A, prob(〈n1, n2〉) is the probability that a
transaction goes from n1 to n2.

Moreover, we require that for each n ∈ (N−F),

• ∑
〈n,n′〉∈A prob(〈n, n′〉) = 1, and

• there is a directed path from n to some f ∈
F .

Intuitively, the last two requirements state
that a transaction (see Definition 2.2) must go
from a non-terminating state to some state and
only end with a terminating state2.

Based on the notion of transaction type, we
can define an individual transaction:

2In general finite state machines, it is legal to
allow terminating states to have outgoing arcs, i.e.
A ⊆ N × N . And for each n ∈ F , it is pos-
sible that

∑
〈n,n′〉∈A

prob(〈n, n′〉) < 1, and 1 −∑
〈n,n′〉∈A

prob(〈n, n′〉) is the possibility that a trans-

A/2 B/6 Y/0
1.0 0.1 0.8

0.2

D/6
0.1

Z/0

0.7

C/3

0.2 0.4

0.2

0.3
F/10

E/5

n1 n2 n3

n4n5

n6

n7

n8

Figure 1: An example of transaction type

Definition 2.2 A transaction t of transaction
type T = 〈N, s, F, A, data, duration, prob〉 is a
sequence n0 · · ·nk, where ni ∈ N for 0 ≤ n ≤
k. Along the sequence, n0 = s, nk ∈ F , and for
each adjacent pair ni−1, ni such that 1 ≤ i ≤ k,
〈ni−1, ni〉 ∈ A.

Example 2.1 An example of transaction types
in given in Figure 1. The starting state is n1,
and the terminating states are n5, n6, n7, n8.
The data items and durations of the states are
shown in the boxes, separated by “/”. The prob-
abilities are attached to the arcs. An example
of the transactions of this transaction type is
n1, n2, n2, n3, n4, n3, n6.

In a compiled database application, there is
a set of predefined transaction types, each with
a probability. Such a set of transactions is de-
fined as a transaction system as follow.

Definition 2.3 A transaction system
〈D,TS, prob〉 is characterized by a set of
transaction types, denoted as TS, on a data
set D, and a mapping prob from TS to
real numbers between 0 and 1. For each
T ∈ TS, prob(T) specifies the probability
that transactions of transaction type T is
chosen when it is to select the next transaction
to execute.

∑
T∈TS prob(T) = 1. Without

loss of generality, we can always assume
that D is the set that consists of all data
items appearing in all transaction types, i.e.
D =

⋃
t∈TS{datat(n)|n ∈ Nt}.

action terminates at the node. However, we can always
transform such transaction type to the one in Defini-
tion 2.1 by introducing extra terminating states with
duration 0.

3

3 Runtime locking and un-
locking algorithms

Before we present the locking/unlocking algo-
rithms under the TL protocol, we first define a
lock tree as follow:

Definition 3.1 A lock tree LT = 〈D, E〉
w.r.t. a transaction system 〈D,TS, prob〉 is
a tree with a node set D and an edge set E.
Each node of the tree corresponds to a data item
involved in the transaction system. When we
know the transaction system in the context, we
also call such a tree a global lock tree.

Each transaction, when executing, must
lock/unlock data items following the TL rules
on the lock tree. However, it is not necessary
for a transaction to have the knowledge of the
whole global lock tree. The transaction only
needs to keep the part of the global lock tree
that covers all data items its transaction type
accesses.

Definition 3.2 A cover of a transaction type
T = 〈N, s, F, E, data, duration, prob〉 in a
global lock tree GLT = 〈GD, GE〉, denoted as
CLT = 〈CD,CE〉, is a subtree of GLT such
that for each n ∈ N , data(n) ∈ CD. Different
from convention, we allow the leafs of CLT to
correspond to internal nodes of GLT .

It is possible there are some nodes in CD
whose data are never accessed by T . We define
in-transaction nodes as the nodes {d ∈ CD|
there exists some n ∈ N and data(n) = d}.
The remaining nodes are non-in-transaction
nodes. When CLT satisfies

1. all leafs of CLT are in-transaction nodes,
and

2. there is no lock tree LT ′ = 〈D′, E′〉 such
that D′ ⊂ CD, E′ ⊂ CE, and LT ′ is also
a cover of T in GLT ,

we call CLT the minimal cover of T in GLT .
When the context is clear, we call such a mini-
mal cover a local lock tree, denoted as LLT =
〈LD, LE〉.
Example 3.1 For a global lock tree in Figure
2(a), the minimal cover of it by a transaction
type in Figure 1 is shown in Figure 2(b). In the
local lock tree, all nodes but v are in-transaction
nodes.

W

G

P Q

V

YA

B D

C E F

Z

U

(a) (b)

V

YXA

B D

C E F

Z

Figure 2: A global lock tree (a) and a local lock
tree (b)

For each transaction type in a transaction
system, we store its local lock tree. In the im-
plementation, the nodes with the same name in
all local lock trees share a common semaphore
which only allows counts 0 and 1. Therefore,
locking and unlocking a single node can be re-
alized by the p and v semaphore operations.
When a transaction accesses a data item at a
state, it retrieves the corresponding node in the
local lock tree for its transaction type and tries
to lock it. To facilitate this process, in our im-
plementation, a hash table is maintained for the
retrieval. It is noteworthy that both the local
lock tree and the hash table are built at compile
time and kept static during the run time.

The algorithm to lock a data item at a state
when executing a transaction, is shown in Al-
gorithm 1. Each tree node has a field visited
to indicate whether it has been locked for later
unlocking choice.

Algorithm 1 Locking a data item x at a
state:
Require: an empty stack
1: find the tree node n corresponding to x in

the hash table;
2: while n is not locked do
3: push n to stack;
4: if n is root of the local tree then
5: break;
6: else

4

7: n ← n.parent;
8: end if
9: end while

10: while the stack is not empty do
11: pop the node n on top of the stack;
12: lock node n; {semaphore p operation}
13: n.visited ← true;
14: end while

For unlocking a data item, it is more compli-
cated than locking. As we see from rule 2 of the
TL protocol, a lock on an tree node not only
protects the shared data item but also serves
as a “bridge” to lock other nodes that are its
descendants in the tree. Because of rule 3, we
cannot relock the data item after we have un-
locked it. So we have to hold the lock until we
know all its children either have been locked or
lead to subtrees whose data items will never be
accessed in the future. Moreover, also because
of rule 3, we cannot unlock a data item unless
we are certain that the data item will not be
accessed at any future states of the transaction
type.

To formalize these conditions for unlocking,
we define unreachability and tree unlockability
as follow.

Definition 3.3 Given a transaction type T =
〈N, s, F, A, data, duration, prob〉, for a state
n ∈ N , if on all paths from n to all termi-
nating states f ∈ F , each state n′ satisfies
data(n′) 6= d, which means d will never be ac-
cessed by transactions of T after state n, we say
d is unreachable from state n. All data at non-
in-transaction nodes in the local tree are also
unreachable from any state n. And the data set
that are unreachable from state n is denoted as
UR(n).

Definition 3.4 Given a transaction type T =
〈N, s, F, A, data, duration, prob〉, when a trans-
action of T is executing and reaches a certain
state n ∈ N , we say a data item d is tree-
unlockable if for each child c of the node d in
the local lock tree, either

1. c has been locked by the transaction before,
or

2. all data items in the subtree rooted at c are
in UR(n).

The unreachable set is related to a transaction
type and can be built at compile time, while
tree unlockability depends on individual trans-
action and can only be tested at runtime. The
following theorem is straightforward.

Theorem 3.1 Given a transaction type along
with its local lock tree, for a transaction of this
transaction type, at each state n, if we lock data
items following Algorithm 1, and unlock a data
item only when it is both tree-unlockable and is
in UR(n), then the transaction observes the TL
protocol.

The conditions of unreachability and tree
unlockability specifies the correctness of lock-
ing and unlocking. However, in the compiled
database application context, we notice that:

1. although it is possible to compute the
UR(n) set at each state n at compile time,
storing such information takes much mem-
ory. Moreover, we only care about which
of those previously locked data items can
be unlocked at the state;

2. checking condition 2 of tree unlockability
is very time consuming at runtime.

To reduce the storage space, for each state of
a transaction type, we only keep an unlockable
set instead of all unreachable items.

Definition 3.5 For a state n ∈
N in a transaction type T =
〈N, s, F,A, data, duration, prob〉, its un-
lockable set, denoted as UL(n), is a set of data
items. And each d ∈ UL(n) satisfies:

1. there exists some state n′ which lies on a
path from s to n, such that d = data(n′);

2. d ∈ UR(n) is unreachable from state n;

3. on each path from each n′ (specified in 1)
to n, there is no state n′′ between n′ and
n such that d ∈ UR(n′′).

Suppose a transaction of transaction type T
has gone through states n1 = s, n2, · · · , ni−1,
and is currently at state ni, the total unlock-
able set for the transaction, denoted as TUL,
is defined as TUL =

⋃
k=1···n UL(nk).

5

state UR UL
n1 {} {}
n2 {A} {A}
n3 {A,B} {B}
n4 {A,B} {B}
n5 {A,B, C, D, E, F, Y } {C, D}
n6 {A,B,C, D,E, F, Z} {C, D}
n7 {A,B, C,D, F, Y, Z} {C, D}
n8 {A,B, C,D, E, Y, Z} {C, D}

Table 1: Unreachable and unlockable sets of
each state of the transaction type in Figure 1

Intuitively, the elements in UL(ni) are those
data items possibly locked by the transaction
before it enters state ni, and ni is the earli-
est state where these data items can be un-
locked. For each state n, UL(n) can be com-
puted at compile time. The TUL is a run-
time set for an executing transaction, initial-
ized as empty. When the transaction reaches
a state ni, it adds all elements in the unlock-
able set of state n to the total unlockable set,
i.e. TUL ← TUL ∪ UL(n). It is obvious that
TUL ⊆ UR(n) at any state n. The inverse does
not hold, because TUL may not include some
data items that the transaction never accesses
(See Example 3.2). However, we can still use
TUL to approximate UR(n) at each state. The
advantage is we only need to store a smaller
unlockable set for each state. This saves con-
siderable memory space, and still helps to build
TUL incrementally from static UL(n) at each
state n that the transaction goes through at
runtime.

Example 3.2 For the transaction type in Fig-
ure 1, the unreachable sets UR and unlockable
sets UL for all states are shown in Table 1.

If a transaction follows the sequence n1, n2,
n3, n4, n3, n4, n7, the incrementally computed
total unlockable set TUL at each state is shown
in Table 2. We can see that TUL is always a
subsets of UR(n) at each state n. And at n7

state, TUL does not include F , Y , and Z that
are never accessed by the transaction.

Another modification is we use weak tree un-
lockability in stead of the original tree unlock-
ability. Following is the definition of weak tree
unlockability.

state TUL up to the state
n1 {}
n2 {A}
n3 {A, B}
n4 {A, B}
n3 {A, B}
n4 {A, B}
n7 {A,B, C,D}

Table 2: Total unlockable set at each state of a
transaction

Definition 3.6 When a transaction of a
transaction type is executing and reaches a cer-
tain state, we say a data item is weakly-tree-
unlockable if each child of the data item node
in the local lock tree either

1. has been locked by the transaction before,
or

2. is a leaf node and in TUL.

If a node is weakly-tree-unlockable, it must
be tree-unlockable. Again the inverse does not
hold. Testing weak tree unlockability is much
cheaper than testing the original tree unlocka-
bility, because it stops at the direct children
instead of testing the whole subtrees under-
neath. Therefore, we believe the simplification
is worthwhile.

From Theorem 3.1 and the properties of un-
lockablity and weak tree unlockability, we can
conclude with the following corollary.

Corollary 3.1 Given a transaction type along
with its local lock tree, if a transaction locks
data items following Algorithm 1, and unlock
an data item only when

1. it is in TUL and is weakly-tree-unlockable,
or

2. it is a non-in-transaction node and is
weakly-tree-unlockable,

then the transaction observes the TL protocol.

Based on Corollary 3.1, we can design
the unlocking algorithm as shown in Algo-
rithm 2. To improve the efficiency of weak
tree unlockability testing, we attach a field
num children qualified to each tree node.

6

This field shows how many children of the node
either have been locked, or are both leaf nodes
and in TUL. If num children qualified
equals to number of children of the node,
the node is weakly-tree-unlockable. There-
fore, each time we only need to do a num-
ber comparison instead of iterating over the
children of the node. The computing of
num children qualified is very easy. Each
time a node is locked3, or its data item is added
to TUL at some state (if it is a leaf node), we
increment this field of its parent node.

Algorithm 2 Unlocking data items, called at
each state n:
1: for each e in UL(n) do
2: if e is not in TUL then
3: add e into TUL;
4: if not e.visited then
5: increment

e.parent.num children qualified
by 1;

6: end if
7: end if
8: end for
9: for each tree node d locked do

10: if d is an in-transaction node then
11: if d is in TUL then
12: if d.num children qualified equals

to number of children of d then
13: unlock node d;
14: end if
15: end if
16: else
17: if d.num children qualified equals to

number of children of d then
18: unlock node d;
19: end if
20: end if
21: end for

The processing in Algorithm 2 is invoked
when a transaction reaches a state. In addition,
when the transaction finishes at a terminating
state, all remaining locks are released.

3This can be done by add an increment statement
after line 13 in Algorithm 1.

4 Compile-time processing

In Section 3, the runtime locking/unlocking re-
lies on two types of data structures: the unlock-
able set at each state and the local lock tree.
Both can be generated at compile time.

4.1 Building unlockable set at
each state

First, we address to the computation of unlock-
able set at each state. Given a transaction type
T = 〈N, s, F, A, data, duration, prob〉, we de-
fine G(T) = 〈N,A〉 as a directed graph whose
nodes are the states in T and whose arcs are
transitions in T . G(T) has a source node with
no incoming arcs and a set of sink nodes with
no outgoing arcs, which represent s and F re-
spectively.

For two nodes n1, n2 ∈ N , we say n2 is reach-
able from n1 if there is a directed path from
n1 to n2 in G(T), and n2 is after n1 if n2

is reachable from n1 but not vice versa. So
d ∈ UL(ni) only if there exists some nj such
that d = data(nj) and ni is after nj , i.e, d is
locked before ni and will never be accessed after
ni. For each n ∈ N , we define a set RL(n) =
{nk|nk is after n and data(n) ∈ UL(nk)}. In-
tuitively, RL(n) contains all “earliest” states
where the data item accessed at state n can
be unlocked. Given a data item d, it is ob-
vious that

⋃
n∈N,data(n)=d RL(n) ={n ∈ N |d ∈

UL(n)}. So once we have RL sets for all states,
we can build UL sets as well. Next, we address
to how to build RL sets.

As we know, the nodes of a directed graph
can be partitioned based on which maximal
strongly connect component that a node is in.
Let SC = {C1, · · · , Cn} be such a partition on
N . We can see, if a data item d is accessed at
state n, at each state ni that is reachable from
n, d cannot be unlocked if and only if,

1. ni is in the same C ∈ SC as n, or

2. there is an nk after n and reachable from
ni in G(T) such that data(nk) = d.

We denote the set consisting of all ni that
satisfy the two conditions as L(n). Given the
above definitions, the following theorem holds.

7

Theorem 4.1 For each nj /∈ L(n), nj ∈
RL(n) if and only if there exists an nk ∈ L(n)
and 〈nk, nj〉 ∈ A.

The algorithm to compute UL(n) for all
states is presented in Algorithm 3. At each
iteration of the main loop at line 5, the al-
gorithm processes a state n by calling the
dfs mark procedure. dfs mark is from the
depth-first searching algorithm, and it com-
putes a subset of L(n), denoted as L′(n) =
{ni|ni ∈ L(n) and there is a directed path
from n to ni without passing any nk 6= n such
that data(nk) = data(n)}. After all nodes in
L′(n) are marked and the procedure returns,
the main algorithm continues to look for a node
set RL′(n) = {ni /∈ L′(n)|data(ni) 6= data(n)
and there is an nk ∈ L′(n) such that (nk, ni) ∈
A}. for each ni /∈ L′(n). We can see that
RL(n) − ⋃

n′ is after n,data(n′)=data(n) RL(n) ⊆
RL′(n) ⊆ RL(n). For each ni ∈ RL′(n), the
main program puts data(n) to UL(ni). There-
fore, UL(ni) only gets correct data items from
the algorithm. Furthermore, we show the com-
pleteness of the algorithm. Because the al-
gorithm loops over all state nodes, the ele-
ments in RL(n) that are missing in RL′(n)
will be compensated when other nodes that ac-
cess the same item are processed in the loop.
For each data item d,

⋃
n∈N,data(n)=d RL(n) =⋃

n∈N,data(n)=d RL′(n) holds. By the end of the
algorithm, d is added into the unlockable sets
at all nodes in

⋃
n∈N,d=data(n) R(n). As a con-

clusion, Algorithm 3 correctly computes UL(n)
for each n ∈ N .

Algorithm 3 Compute UL(n) for each state
n:
1: compute the strongly connected components

of G(T) [3]
2: for each state n ∈ N do
3: UL(n) ← {}
4: end for
5: for each state n ∈ N do
6: for each state n′ ∈ N do
7: n′.marked ← false
8: n′.visited ← false
9: end for

10: n.marked ← true
11: call procedure dfs mark(data(n), n)
12: for each marked n′ do

13: for each successor n′′ of n′ do
14: if n′′ is not marked and data(n′′) 6=

data(n) then
15: UL(n′′) ← UL(n′′) ∪ {data(n)}
16: end if
17: end for
18: end for
19: end for

Function dfs mark does a depth-first
searching, and marks nodes to build
RL′(n):
1: function dfs mark(d, n) returns boolean
2: n.visited ← true
3: flag ← false
4: if n ∈ F then
5: return(false)
6: else
7: for each success n′ of n do
8: if n′.visited then
9: if n′.marked then

10: flag ← true
11: end if
12: else
13: if data(n′) = d then
14: flag ← true
15: else
16: flag1 ← dfs mark(d, n′)
17: flag ← flag ∨ flag1
18: end if
19: end if
20: end for
21: end if
22: if flag then
23: n.marked ← true
24: if n is in a strongly connected component

C then
25: for each n′′ ∈ C do
26: n′′.marked ← true
27: end for
28: end if
29: end if
30: return(flag)

4.2 Building the global lock tree

Building a global lock tree is the most diffi-
cult part for an efficient application of the TL
protocol. It is still unclear what quantitative
measurement is the most suitable to judge the
“fitness” of a tree. In our transaction model,

8

we find some categories:

1. a lock tree should favor those more fre-
quent transaction types in a transaction
system.

2. a lock tree should favor transactions with
higher probabilities under the same trans-
action type.

3. for those data items accessed at states
that are close in some transaction type, it
is preferable that their corresponding tree
nodes are also close, e.g. as parent and
child, or children under the same parent.

4. a transaction should lock as few non-in-
transaction nodes as possible in the lock
tree.

Our idea is first building individual trees
from each transaction type, then merging them
into a global lock tree. To build individual
trees, we use a modified depth-first searching
algorithm as shown in Algorithm 4. The al-
gorithm always expands at first the unvisited
successor with the highest probability. This fol-
lows the 2nd category above. It builds a tree
covering all data items accessed in the transac-
tion type.

Algorithm 4 Given a transaction type T =
〈N, s, F, A, data, duration, prob〉, build a tree t:
1: add data(s) to t as root
2: call procedure build tree(s, t)

1: procedure build tree(n)
2: n.visited ← true
3: while there is unvisited successor of n in

G(T) do
4: choose the unvisited successor c with

highest prob(n, c)
5: if data(c) is not a node in t then
6: add data(c) as child of data(n) in t
7: end if
8: call procedure build tree(c, t)
9: end while

For a transaction system with transaction
type set TS = {trans1, · · · , transn}, after we
build the trees from all transi ∈ TS, we merge
them into a global lock tree. We sort the trees
in the descending order of the probabilities of
the transaction types, and get an array of trees

[tree1, · · · , treen]. Then we build the global
lock tree with a greedy algorithm, shown as
Algorithm 5.

Algorithm 5 Given an ordered array of trees
[tree1, · · · , treen], build a global lock tree
t:
1: initialize t as a copy of tree1

2: for i ← 2 to n do
3: for each node d in treei do
4: if d is not in t then
5: if the parent of d in treei, d′, is in

t then
6: add d to t as a child of d′

7: else if d has a child d′ in treei, and
d′ is the root of t then

8: add d to t as the root and parent
of d′

9: else if d has a child d′ in treei, and
d′ is a non-root node in t then

10: find the parent of d′ in t, d′′

11: add d to t as a child of d′′

12: else
13: add d as the child of an arbitrary

leaf node in t
14: end if
15: end if
16: end for
17: if there is a path d, m1, · · ·, mk, n1, · · ·,

nl in t and a path d, n1, · · ·, nl in treei

then
18: change n1 to be a child of d {move the

subtree rooted at n1 to under d}
19: end if
20: end for

Algorithm 4 initializes the global lock tree as
the tree of the “most likely” transaction type
(line 1), and processes other trees following the
decreasing order of probabilities of transaction
types. By doing this, we try to favor the trans-
action types with higher probability (category
1) and avoid non-in-transaction nodes in their
local lock trees (category 4). The rules applied
to add a new node into the global lock tree are
reflected at line 5-14, which is to fulfill category
3 and makes the data items probably accessed
by close states in a transaction type to be also
close in the global lock tree. The final process
to move the subtree (line 17-18) intends to en-
able the transaction type transi to immediate
lock ni after it holds a lock on d without lock-

9

ing the possibly unnecessary data items like mi

in between.
It is obvious that the greedy algorithm works

better if the transaction types have great dif-
ference in their probabilities and the most fre-
quent transaction type have a dominant prob-
ability. When the probabilities of transaction
types are very close, the global lock tree may be
over biased to the transaction type with slightly
higher probability.

After the global lock tree is built, building
local lock trees for all transaction types is a
trivial task.

5 Experiments

5.1 Experimental case derived
from the TPC-C benchmark

In the experiments we would like to exam-
ine our tree locking on some transaction sys-
tem which is close to real world applications,
and compare to 2PL in terms of performance.
Our experimental case are derived from trans-
actions in the TPC-C Benchmark [1]. Sim-
ilar to TPC-C, our transaction system has
five transaction types, New-Order, Payment,
Order-Status, Delivery, and Stock-level. Fol-
lowing the percentages of transaction mix in
TPC-C with some simplification, we fix the
probabilities of the above transaction types to
0.45, 0.43, 0.04, 0.04, and 0.04 respectively.
There are nine tables involved, so the base data
set includes these table names. As another sim-
plification from TPC-C, we abstract all selec-
tions, updates, insertions, and deletions to one
type of “write” operation on some individual
table, and do not consider shared read lock.

To build each transaction type as defined in
Section 2, we approximate each TPC-C trans-
action with a finite state machine. From the
program of each transaction, we are only inter-
ested in embedded SQL statements and control
statements like if-else, for. First, we trans-
form each SQL query to a part of a transaction
type graph G(T). Most embedded SQL state-
ments in TPC-C transactions operate on a sin-
gle table, and only a couple are two table joins.
For a SQL statement on a single table A, we
add a new state n and let data(n) = A (Figure

A

(a)

A B

(b)

1

A B
1

(c)

Figure 3: Transformations of queries

1 1

s1 sn
(a)

(b)

1 1
....

s1 sn

(c)

s1

Figure 4: Transformations of control flows

3(a)). For a join on two tables A and B, if the
tables are pre-selected based on their key val-
ues to have at most one row per table involved
in the join, we add two nodes that access A and
B respectively and let the one accessing B fol-
low that accessing A (Figure 3(b)); otherwise,
the join is transformed to Figure 3(c), and the
probabilities on the unlabelled arcs in Figure
3(c) can be estimated from the table cardinal-
ity and query selectivity.

The transformation of control statements is
straightforward, and the result is similar to a
program flow-graph. A sequential execution of
SQL statements s1, · · ·, sn is transformed to
a lineal path through these nodes as in Fig-
ure 4(a). An if statement is transformed to a
branch out in the graph (Figure 4(b)). Because
the TPC-C benchmark already gives the prob-
ability for each branch, we can it apply here on
each arc. And a loop statement can be trans-
formed as Figure 4(c).

Example 5.1 The new-order transaction in

10

1
customer district

1
START

warehouse

district

1

new_order order
11

item

1

stock stock
11

order_line

1

Finish

0.9

0.1

Figure 5: New-order transaction type

TPC-C can be transformed into a transaction
type in Figure 5. To satisfy the requirement
in Definition 2.1 that terminating state cannot
have outgoing arcs, we introduce a new state,
and assume it access a virtual data item “fin-
ish” with duration 0. The loop in the graph is
from a for loop in the TPC-C transaction pro-
gram. So far the durations for other states have
not been filled in yet.

With those transaction types, we build a
global lock tree following the procedures in Sec-
tion 4 and local lock trees for all transaction
types.

Next step is getting the durations of all the
states. We create tables and insert rows into
them in IBM DB2 as specified by the TPC-C
benchmark. Because most tables have a pri-
mary key, we create unique indexes for these
tables in addition. We run the SQL statements
with plugged-in parameters in DB2, and get
the durations on indexes and tables from query
plan graphs that are provided by DB2 visual-
ization tools.

In addition, we also consider partitioning a
table to table1, · · ·, tablen, with n as a pa-
rameter partition factor. To accommodate
indexes and table partitions, we change the
graphs of transaction types and local lock trees.
If the query at a state is a key-matching query,
we change the state in transaction type as in
Figure 6(a). If it is a full sequential table scan,
we change it according to Figure 6(b). If keyed
queries on the table are dominant in the trans-
action type, we change the tree node corre-

sponding to the table as in Figure 6(c), oth-
erwise we change the node as in Figure 6(d)4.

5.2 Experiment setting and re-
sults

Our experiments are carried on a workstation
with Intel P4 1.5GHz CPU, 256M RAM, and
20G hard disk. The operating system is Mi-
crosoft Window 2000 Professional. The pro-
grams for the experiments are written in Java
language.

Similar to the TPC-C specifications, we sim-
ulate a number of user terminals with Java
threads. On each user terminal, transactions
run sequentially. Each transaction is a simu-
lation on the finite state machine of the trans-
action type. When a transaction completes,
the transaction type of the new one is chosen
based on the probabilities of the transaction
types. We also add some keying time before
a transaction and some thinking time after it,
following the TPC-C benchmark. Transactions
from different user terminals are executed con-
currently and compete for the locks. And the
locks on tree nodes are basically semaphores
whose p and v methods are implemented with
Java synchronized methods. During the sim-
ulation, we use random number sequences to
select the transaction type for the next trans-
action and to select the next state transition in
a transaction respectively.

To make a comparison with 2PL, we also im-
plement strict 2PL locking with semaphores in
a similar way in Java. The code for the 2PL
protocol are much simpler than the TL protocol
because each transaction only needs to remem-
ber the locks it holds and release them when
it reaches a terminating state. The extra work
for the 2PL implementation is another thread
working as deadlock detector. It checks a wait-
for graph structure periodically, and aborts the
youngest transaction involved in the deadlock
when it finds a cycle in the wait-for graph.

Figure 7 and Figure 8 show some throughput

4We add partitions to graphs and lock trees after
generating the original local lock trees from the graphs
without partitions. The reason is that we believe it
is necessary to have all partitions directly under their
indexes in lock trees.

11

table_part_1

...
.

table_part_n

(a) transformation of state in transaction type for keyed query

table_name

table_index

(b) transformation of state in a full table scan query

(c) transformation of tree node for keyed query

table_name

....

....
(d) transformation of tree node for full table scan query

table_part_1

table_part_n

...
.

table_name

....

table_index

....
table_part_1 table_part_n

table_name

table_part_1

table_part_n

...
.

Figure 6: Adding index and partitions

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

n
u

m
b

e
r

o
f

tr
a

n
s
a

c
ti
o

n
s

trials

Transactions committed w/ TL
New−order transactions committed w/ TL
Transactions committed w/ 2PL
New−order transactions committed w/ 2PL

Figure 7: The throughput comparison between
TL and 2PL: 10 user terminals, 20 minutes,
partition factor = 100

comparisons between TL and 2PL. Each trial is
based on the same random number sequences
for both 2PL and TL. The total numbers of all
transactions committed on all user terminals
for each trial are shown in the two figures. We
also show for both locking protocols the num-
bers of committed transactions of New-Order
transaction type, which has a high probability.
Under 2PL, the abort rate is about 1%. And
we do not show the numbers of aborted trans-
action in the figures.

From the experimental results, we can induce
that the performance of TL can compete with
that of 2PL in our application context. In most
of our trials, TL outperforms 2PL, although
the difference is not enough to convince the
overall performance superiority of TL. We be-
lieve that the early “unlocking in TL” enables
a better concurrency than strict 2PL, which
can compensate the CPU overhead for TL lock-
ing/unlocking.

6 Conclusion and future
work

Our preliminary experiments show that the TL
protocol can produce good throughput and can

12

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

tr
a

n
s
a

c
ti
o

n
s

trials

Transactions committed w/ TL
New−order transactions committed w/ TL
Transactions committed w/ 2PL
New−order transactions committed w/ 2PL

Figure 8: The throughput comparison between
TL and 2PL: 10 user terminals, 60 minutes,
partition factor = 100

compete with the widely used 2PL protocol
in the respect. This is very very promising
for the usage of the TL protocol in compiled
database applications. First, we can gener-
ate the lock trees and unlockable sets at com-
piled time. Second, for query processing, we
can expand the compile-time query optimizer
in [12] to generate the locking and unlock-
ing code for each operation at compile time
as well. Although such code is not trivial,
it is still manageable, and can still produce
good throughput as shown in the experiments.
Moreover, because of the properties of TL, se-
rializability is guaranteed and deadlocks are
prevented. Not only are the transactions ex-
ecuted correctly, but also the costly recovery
for transactions aborted for deadlock resolu-
tion becomes unnecessary. Therefore, we be-
lieve TL is a good choice for the “begin transac-
tion/commit” transaction model for compiled
database applications.

Future work includes an in-depth research
on the measurement of lock tree fitness. We
hope to find some better guidance to build the
trees. Another direction of future research is
how to extend our transaction model to multi-
level transaction model [13] [14] to allow inde-
pendent object level transaction management

and physical level transaction management for
compiled database applications.

References

[1] Transaction Processing Performance
Council. URL http://www.tpc.org.

[2] Philip A. Bernstein, Vassos Hadzilacos,
and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems.
Addison-Wesley, 1987.

[3] Thomas H. Cormen, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to Al-
gorithms. McGraw Hill, 2001.

[4] K. P. Eswaran, J. Gray, R.A. Lorie, and
I.L. Traiger. The Notions of Consistency
and Predicate Locks in Database System.
Communications of the ACM, 19(16):624–
633, 1976.

[5] Pasal Felber and Michael K. Reiter. Ad-
vanced Concurrency Control in Java. Con-
currency and Computation: Practice and
Experience, 14(4):261–285, 2002.

[6] Zvi Kedem and Abraham Silberschatz.
Controlling Concurrency Using Locking
Protocolsi (Preliminary Report). In Pro-
ceedings of 20th Symposium on Founda-
tions of Computer Science, pages 274–285,
October 1979.

[7] Zvi M. Kedem and Abraham Silberschatz.
Locking Protocols: From Exclusive to
Shared Locks. Journal of ACM, 30(4), Oc-
tober 1983.

[8] Dennis Shasha and Nathan Goodman.
Concurrent search structure algorithms.
ACM Transactions on Database Systems
(TODS), 13(1):53–90, March 1988.

[9] Abraham Silberschatz and Zvi Kedem.
Consistency in Hierarchical Database Sys-
tems. Journal of ACM, 27(1), January
1980.

[10] Abraham Silberschatz and Zvi M. Ke-
dem. A Family of Locking Protocols
for Database Systems that Are Modeled
by Directed Graphs. IEEE Transactions

13

on Software Engineering, 8(6):558–562,
November 1982.

[11] Lubomir Stanchev and Grant Weddell.
Index Selection for Compiled Database
Applications in Embedded Control Pro-
grams. In Proceedings of CASCON 2002,
pages 156–170, Toronto, Canada, Septem-
ber - October 2002.

[12] David Toman and Grant E. Weddell.
Query Processing in Embedded Control
Programs. In 2nd International Work-
shop on Databases in Telecommunica-
tions, number 2209 in Lecture Notes in
Computer Science, pages 68–87. Springer-
Verlag, 2001.

[13] Gerhard Weikum. Principles and Real-
ization Strategies of Multi-level Transac-
tion Management. ACM Transactions on
Database Systems, 16(1):132–180, March
1991.

[14] Gerhard Weikum and Gottfried Vossen.
Transactional Information Systems: The-
ory, Algorithms, and the practice of con-
currency control and recovery. Morgan
Kaufmann, 2001.

[15] Mihalis Yannakakis. A Theory of Safe
Locking Policies in Database Systems.
Journal of ACM, 29(3):718–740, July
1982.

14

